31 research outputs found

    On Range Searching with Semialgebraic Sets II

    Full text link
    Let PP be a set of nn points in Rd\R^d. We present a linear-size data structure for answering range queries on PP with constant-complexity semialgebraic sets as ranges, in time close to O(n11/d)O(n^{1-1/d}). It essentially matches the performance of similar structures for simplex range searching, and, for d5d\ge 5, significantly improves earlier solutions by the first two authors obtained in~1994. This almost settles a long-standing open problem in range searching. The data structure is based on the polynomial-partitioning technique of Guth and Katz [arXiv:1011.4105], which shows that for a parameter rr, 1<rn1 < r \le n, there exists a dd-variate polynomial ff of degree O(r1/d)O(r^{1/d}) such that each connected component of RdZ(f)\R^d\setminus Z(f) contains at most n/rn/r points of PP, where Z(f)Z(f) is the zero set of ff. We present an efficient randomized algorithm for computing such a polynomial partition, which is of independent interest and is likely to have additional applications

    On the complexity of range searching among curves

    Full text link
    Modern tracking technology has made the collection of large numbers of densely sampled trajectories of moving objects widely available. We consider a fundamental problem encountered when analysing such data: Given nn polygonal curves SS in Rd\mathbb{R}^d, preprocess SS into a data structure that answers queries with a query curve qq and radius ρ\rho for the curves of SS that have \Frechet distance at most ρ\rho to qq. We initiate a comprehensive analysis of the space/query-time trade-off for this data structuring problem. Our lower bounds imply that any data structure in the pointer model model that achieves Q(n)+O(k)Q(n) + O(k) query time, where kk is the output size, has to use roughly Ω((n/Q(n))2)\Omega\left((n/Q(n))^2\right) space in the worst case, even if queries are mere points (for the discrete \Frechet distance) or line segments (for the continuous \Frechet distance). More importantly, we show that more complex queries and input curves lead to additional logarithmic factors in the lower bound. Roughly speaking, the number of logarithmic factors added is linear in the number of edges added to the query and input curve complexity. This means that the space/query time trade-off worsens by an exponential factor of input and query complexity. This behaviour addresses an open question in the range searching literature: whether it is possible to avoid the additional logarithmic factors in the space and query time of a multilevel partition tree. We answer this question negatively. On the positive side, we show we can build data structures for the \Frechet distance by using semialgebraic range searching. Our solution for the discrete \Frechet distance is in line with the lower bound, as the number of levels in the data structure is O(t)O(t), where tt denotes the maximal number of vertices of a curve. For the continuous \Frechet distance, the number of levels increases to O(t2)O(t^2)

    Algorithms for Unit-Disk Graphs and Related Problems

    Get PDF
    In this dissertation, we study algorithms for several problems on unit-disk graphs and related problems. The unit-disk graph can be viewed as an intersection graph of a set of congruent disks. Unit-disk graphs have been extensively studied due to many of their applications, e.g., modeling the topology of wireless sensor networks. Lots of problems on unit-disk graphs have been considered in the literature, such as shortest paths, clique, independent set, distance oracle, diameter, etc. Specifically, we study the following problems in this dissertation: L1 shortest paths in unit-disk graphs, reverse shortest paths in unit-disk graphs, minimum bottleneck moving spanning tree, unit-disk range reporting, distance selection, etc. We develop efficient algorithms for these problems and our results are either first-known solutions or somehow improve the previous work. Given a set P of n points in the plane and a parameter r \u3e 0, a unit-disk graph G(P) can be defined using P as its vertex set and two points of P are connected by an edge if the distance between these two points is at most r. The weight of an edge is one in the unweighted case and is equal to the distance between the two endpoints in the weighted case. Note that the distance between two points can be measured by different metrics, e.g., L1 or L2 metric. In the first problem of L1 shortest paths in unit-disk graphs, we are given a point set P and a source point s ∈ P, the problem is to find all shortest paths from s to all other vertices in the L1 weighted unit-disk graph defined on set P. We present an O(n log n) time algorithm, which matches the Ω(n log n)-time lower bound. In the second problem, we are given a set P of n points, parameters r, λ \u3e 0, and two points s and t of P, the goal is to compute the smallest r such that the shortest path length between s and t in the unit-disk graph with respect to set P and parameter r is at most λ. This problem can be defined in both unweighted and weighted cases. We propose an algorithm of O(⌊λ⌋ · n log n) time and another algorithm of O(n5/4 log7/4 n) time for the unweighted case. We also given an O(n5/4 log5/2 n) time algorithm for the weighted case. In the third problem, we are given a set P of n points that are moving in the plane, the problem is to compute a spanning tree for these moving points that does not change its combinatorial structure during the point movement such that the bottleneck weight of the spanning tree (i.e., the largest Euclidean length of all edges) during the whole movement is minimized. We present an algorithm that runs in O(n4/3 log3 n) time. The fourth problem is unit-disk range reporting in which we are given a set P of n points in the plane and a value r, we need to construct a data structure so that given any query disk of radius r, all points of P in the disk can be reported efficiently. We build a data structure of O(n) space in O(n log n) time that can answer each query in O(k + log n) time, where k is the output size. The time complexity of our algorithm is the same as the previous result but our approach is much simpler. Finally, for the problem of distance selection, we are given a set P of n points in the plane and an integer 1 ≤ k ≤ (n2), the distance selection problem is to find the k-th smallest interpoint distance among all pairs of points of p. We propose an algorithm that runs in O(n4/3 log n) time. Our techniques yield two algorithmic frameworks for solving geometric optimization problems. Many algorithms and techniques developed in this dissertation are quite general and fundamental, and we believe they will find other applications in future

    Espacios de búsquedas geométricamente separables

    Get PDF
    Una temática abordada a menudo en Bases de datos es el estudio de los rangos y las consultas por rangos, denominado Búsquedas por Rangos. Este problema tratado desde una perspectiva geométrica nos permite diseñar y analizar algoritmos y estructuras de datos con herramientas propias de la Geometría Computacional. En el ámbito de la geometría, el estudio de Separabilidad Geométrica es de utilidad en campos de aplicación donde se requiere discriminar y/o separar objetos. En este sentido, las regiones se obtienen basándose en características propias de los objetos y de su ubicación en el espacio considerado. Podemos unificar las nociones de búsquedas por rangos con las de separabilidad geométrica. Tenemos conjuntos disjuntos de objetos en el espacio y nos interesan particularmente las descripciones de las curvas que determinan las regiones que contienen tales conjuntos, puesto que ellas constituyen los separadores geométricos. En este sentido, la búsqueda por rangos puede aprovechar estas particiones del espacio para la recuperación de objetos. Dado que la selección de los separadores geométricos a ser aplicados para obtener la partición del espacio es un problema difícil, por ser de tipo combinatorio, proponemos el uso de herramientas no tradicionales como las Metaheurísticas, donde la partición pueda ser guiada. En este trabajo de investigación presentamos los aspectos teóricos y prácticos relevantes para las búsquedas por rangos en espacios de búsquedas geométricamente separables proponiendo la aplicación de metaheurísticas.Eje: I - Workshop de Ingeniería de Software y Base de DatosRed de Universidades con Carreras en Informática (RedUNCI

    Espacios de búsquedas geométricamente separables

    Get PDF
    Una temática abordada a menudo en Bases de datos es el estudio de los rangos y las consultas por rangos, denominado Búsquedas por Rangos. Este problema tratado desde una perspectiva geométrica nos permite diseñar y analizar algoritmos y estructuras de datos con herramientas propias de la Geometría Computacional. En el ámbito de la geometría, el estudio de Separabilidad Geométrica es de utilidad en campos de aplicación donde se requiere discriminar y/o separar objetos. En este sentido, las regiones se obtienen basándose en características propias de los objetos y de su ubicación en el espacio considerado. Podemos unificar las nociones de búsquedas por rangos con las de separabilidad geométrica. Tenemos conjuntos disjuntos de objetos en el espacio y nos interesan particularmente las descripciones de las curvas que determinan las regiones que contienen tales conjuntos, puesto que ellas constituyen los separadores geométricos. En este sentido, la búsqueda por rangos puede aprovechar estas particiones del espacio para la recuperación de objetos. Dado que la selección de los separadores geométricos a ser aplicados para obtener la partición del espacio es un problema difícil, por ser de tipo combinatorio, proponemos el uso de herramientas no tradicionales como las Metaheurísticas, donde la partición pueda ser guiada. En este trabajo de investigación presentamos los aspectos teóricos y prácticos relevantes para las búsquedas por rangos en espacios de búsquedas geométricamente separables proponiendo la aplicación de metaheurísticas.Eje: I - Workshop de Ingeniería de Software y Base de DatosRed de Universidades con Carreras en Informática (RedUNCI
    corecore