
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2023

Algorithms for Unit-Disk Graphs and Related Problems Algorithms for Unit-Disk Graphs and Related Problems

Yiming Zhao
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Zhao, Yiming, "Algorithms for Unit-Disk Graphs and Related Problems" (2023). All Graduate Theses and
Dissertations. 8769.
https://digitalcommons.usu.edu/etd/8769

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F8769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F8769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/8769?utm_source=digitalcommons.usu.edu%2Fetd%2F8769&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

ALGORITHMS FOR UNIT-DISK GRAPHS AND RELATED PROBLEMS

by

Yiming Zhao

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Computer Science

Approved:

Haitao Wang, Ph.D. David Brown, Ph.D.
Major Professor Committee Member

Curtis Dyreson, Ph.D. Steve Petruzza, Ph.D.
Committee Member Committee Member

Shuhan Yuan, Ph.D. D. Richard Cutler, Ph.D.
Committee Member Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2023

ii

Copyright © Yiming Zhao 2023

All Rights Reserved

iii

ABSTRACT

Algorithms for Unit-Disk Graphs and Related Problems

by

Yiming Zhao, Doctor of Philosophy

Utah State University, 2023

Major Professor: Haitao Wang, Ph.D.
Department: Computer Science

In this dissertation, we study algorithms for several problems on unit-disk graphs and

related problems. The unit-disk graph can be viewed as an intersection graph of a set of

congruent disks. Unit-disk graphs have been extensively studied due to many of their ap-

plications, e.g., modeling the topology of wireless sensor networks. Specifically, we consider

the following problems: L1 shortest paths in unit-disk graphs, reverse shortest paths in

unit-disk graphs, minimum bottleneck moving spanning trees, unit-disk range reporting,

distance selection, etc. We develop efficient algorithms for these problems and our results

are either first-known solutions or somehow improve the previous work.

In the problem of L1 single source shortest path in unit-disk graphs, we are given a

point set P and a source point s ∈ P , the target is to find all shortest paths from s to all

other vertices in the L1 weighted unit-disk graph defined on set P . We present an O(n log n)

time algorithm, which matches the Ω(n log n)-time lower bound. In the second problem,

we are given a set P of n points, parameters r, λ > 0, and two points s, t ∈ P , the goal is

to compute the smallest r such that the shortest path length between s and t in the unit-

disk graph with respect to set P and parameter r is at most λ. We propose an algorithm

of O(⌊λ⌋ · n log n) time and another algorithm of O(n5/4 log7/4 n) time for the unweighted

case. We also give an O(n5/4 log5/2 n) time algorithm for the weighted case. In the third

iv

problem, we are given a set P of n points that are moving in the plane, the problem is to

compute a spanning tree for these moving points that does not change its combinatorial

structure during the point movement such that the bottleneck weight of the spanning tree

(i.e., the largest Euclidean length of all edges) during the whole movement is minimized.

We present an algorithm that runs in O(n4/3 log3 n) time. The fourth problem is unit-disk

range reporting in which we are given a set P of n points in the plane and a value r, we

need to construct a data structure so that given any query disk of radius r, all points of P

in the query disk can be reported efficiently. We build a data structure of O(n) space in

O(n log n) time that can answer each query in O(k+log n) time, where k is the output size.

The time complexity of our algorithm is the same as the previous result but our approach

is much simpler. Finally, for the problem of distance selection, we are given a set P of

n points in the plane and an integer 1 ≤ k ≤
(
n
2

)
, the target is to find the k-th smallest

interpoint distance among all pairs of points of P . We propose an algorithm that runs in

O(n4/3 log n) time. Our techniques yield two algorithmic frameworks for solving geometric

optimization problems.

Many algorithms and techniques developed in this dissertation are quite general and

fundamental, and we believe they will find other applications in future.

(169 pages)

v

PUBLIC ABSTRACT

Algorithms for Unit-Disk Graphs and Related Problems

Yiming Zhao

In this dissertation, we study algorithms for several problems on unit-disk graphs and

related problems. The unit-disk graph can be viewed as an intersection graph of a set

of congruent disks. Unit-disk graphs have been extensively studied due to many of their

applications, e.g., modeling the topology of wireless sensor networks. Lots of problems

on unit-disk graphs have been considered in the literature, such as shortest paths, clique,

independent set, distance oracle, diameter, etc. Specifically, we study the following problems

in this dissertation: L1 shortest paths in unit-disk graphs, reverse shortest paths in unit-

disk graphs, minimum bottleneck moving spanning tree, unit-disk range reporting, distance

selection, etc. We develop efficient algorithms for these problems and our results are either

first-known solutions or somehow improve the previous work.

Given a set P of n points in the plane and a parameter r > 0, a unit-disk graph G(P)

can be defined using P as its vertex set and two points of P are connected by an edge if

the distance between these two points is at most r. The weight of an edge is one in the

unweighted case and is equal to the distance between the two endpoints in the weighted

case. Note that the distance between two points can be measured by different metrics, e.g.,

L1 or L2 metric.

In the first problem of L1 shortest paths in unit-disk graphs, we are given a point set

P and a source point s ∈ P , the problem is to find all shortest paths from s to all other

vertices in the L1 weighted unit-disk graph defined on set P . We present an O(n log n) time

algorithm, which matches the Ω(n log n)-time lower bound. In the second problem, we are

given a set P of n points, parameters r, λ > 0, and two points s and t of P , the goal is to

compute the smallest r such that the shortest path length between s and t in the unit-disk

vi

graph with respect to set P and parameter r is at most λ. This problem can be defined

in both unweighted and weighted cases. We propose an algorithm of O(⌊λ⌋ · n log n) time

and another algorithm of O(n5/4 log7/4 n) time for the unweighted case. We also give an

O(n5/4 log5/2 n) time algorithm for the weighted case. In the third problem, we are given a

set P of n points that are moving in the plane, the problem is to compute a spanning tree

for these moving points that does not change its combinatorial structure during the point

movement such that the bottleneck weight of the spanning tree (i.e., the largest Euclidean

length of all edges) during the whole movement is minimized. We present an algorithm that

runs in O(n4/3 log3 n) time. The fourth problem is unit-disk range reporting in which we are

given a set P of n points in the plane and a value r, we need to construct a data structure so

that given any query disk of radius r, all points of P in the disk can be reported efficiently.

We build a data structure of O(n) space in O(n log n) time that can answer each query in

O(k + log n) time, where k is the output size. The time complexity of our algorithm is the

same as the previous result but our approach is much simpler. Finally, for the problem of

distance selection, we are given a set P of n points in the plane and an integer 1 ≤ k ≤
(
n
2

)
,

the distance selection problem is to find the k-th smallest interpoint distance among all pairs

of points of P . We propose an algorithm that runs in O(n4/3 log n) time. Our techniques

yield two algorithmic frameworks for solving geometric optimization problems.

Many algorithms and techniques developed in this dissertation are quite general and

fundamental, and we believe they will find other applications in future.

vii

ACKNOWLEDGMENTS

It is with great pleasure, gratitude, and humility that I acknowledge the individuals

who have supported and encouraged me throughout my Ph.D. journey in the past four

years. Their steadfast support has made this work possible.

First and foremost, I would like to extend my heartfelt thanks to my brilliant su-

pervisor, Dr. Haitao Wang, who has been a constant source of inspiration, support, and

encouragement throughout my research journey. Dr. Wang’s exceptional guidance, keen

insights, and unwavering commitment to academic excellence have been invaluable in shap-

ing my research and scholarship. His dedication, expertise, and vision have challenged me

to push beyond my limits, and his mentorship has been instrumental in my academic and

personal growth. I am indebted to him for his continuous support.

I would also like to express my gratitude to the other members of my supervisory

committee, Dr. David Brown, Dr. Curtis Dyreson, Dr. Steve Petruzza, and Dr. Shuhan

Yuan, for their insightful comments and constructive feedback. Their intellectual rigor,

scholarly excellence, and steadfast support have been a critical component of my academic

journey, and I am deeply grateful for their guidance and suggestions.

Moreover, I extend my sincere thanks to the staff in the Department of Computer

Science for their administrative support, without which my research could not have been

possible. Their professionalism, efficiency, and dedication to their work have made my

academic journey smoother and more enjoyable.

In conclusion, I feel privileged and honored to have the opportunity to work with such

exceptional individuals, and I am deeply grateful for their support, encouragement, and

guidance.

This work was supported in part by the National Science Foundation through Grant

CCF-2005323.

Yiming Zhao

viii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . v

ACKNOWLEDGMENTS . vii

LIST OF FIGURES . x

1 INTRODUCTION . 1
1.1 Unit-disk graphs . 1
1.2 Overview of our problems . 1

1.2.1 L1 shortest paths in unit-disk graphs 1
1.2.2 Reverse shortest path problem for unit-disk graphs 2
1.2.3 Computing the minimum bottleneck moving spanning tree 3
1.2.4 A simple algorithm for unit-disk range reporting 4
1.2.5 Improved algorithms for distance selection and related problems . . 4

1.3 Dissertation outline . 6

2 L1 SHORTEST PATHS IN UNIT-DISK GRAPHS . 7
2.1 Introduction . 7

2.1.1 Problem definitions and our results 7
2.1.2 Related work . 9

2.2 The main algorithm . 9
2.3 The bottleneck subproblem . 14

2.3.1 Observations . 15
2.3.2 Processing insertions . 17

3 REVERSE SHORTEST PATH PROBLEM FOR UNIT-DISK GRAPHS 23
3.1 Introduction . 23

3.1.1 Problem definitions and our results 23
3.1.2 Our approach . 26

3.2 Preliminaries . 28
3.3 The unweighted case – the first algorithm 34

3.3.1 Building the grid . 34
3.3.2 Running BFS . 38

3.4 The unweighted case – the second algorithm 45
3.5 The weighted case . 50

3.5.1 A review of the WX algorithm . 51
3.5.2 The RSP algorithm . 55
3.5.3 A further improvement . 64

3.6 Concluding remarks . 66

ix

4 COMPUTING THE MINIMUM BOTTLENECK MOVING SPANNING TREE . . 68
4.1 Introduction . 68

4.1.1 Problem definitions . 68
4.1.2 Our result . 70
4.1.3 Related work . 71

4.2 Algorithm for moving-EMBST . 73
4.2.1 The decision problem . 73
4.2.2 The optimization problem . 77

4.3 Deletion-only unit-disk range emptiness query data structure 78
4.3.1 Observations . 80
4.3.2 Preprocessing . 83
4.3.3 Handling UDRE queries and point deletions 87
4.3.4 Putting everything together . 91

4.4 Concluding remarks . 91

5 A SIMPLE ALGORITHM FOR UNIT-DISK RANGE REPORTING 93
5.1 Introduction . 93

5.1.1 Problem definitions and our results 93
5.2 The UDRR algorithm . 95

5.2.1 Constructing a grid . 95
5.2.2 Line-separable UDRR: Proving Lemma 5.2 98

5.3 Computing layers of lower envelopes . 102
5.3.1 Defining the tree graph G . 104
5.3.2 Constructing the tree graph G . 106
5.3.3 Computing lower α-hull layers . 108

5.4 Concluding remarks . 111

6 IMPROVED ALGORITHMS FOR DISTANCE SELECTION AND RELATED
PROBLEMS . 114

6.1 Introduction . 114
6.1.1 Problem definitions and our results 114

6.2 Partial batched range searching . 119
6.3 Distance selection . 125
6.4 Two-sided discrete Fréchet distance with shortcuts 134
6.5 One-sided discrete Fréchet distance with shortcuts 138

7 FUTURE WORK . 143
7.1 Euclidean minimum moving spanning tree 143
7.2 Reverse shortest path problem in unit-ball graphs 143
7.3 Single-source shortest path problem in weighted unit-disk graphs 144

REFERENCES . 145

CURRICULUM VITAE . 155

x

LIST OF FIGURES

Figure Page

2.1 The side length of each square cell in the grid Γ is 1
2 . For the black point

p, the red cell that contains it is □p, and the square area bounded by blue
segments which contains 5× 5 cells is the patch ⊞p. For any point in □p, its
neighboring points in G(P) must lie in the grey region. 10

2.2 Illustrating VD(U ′), where U ′ has six blue points (with the same weight).
VDh(U

′) consists of two vertical half-lines. 15

2.3 Possible cases for the bisector B(a, b) of two weighted points a and b. 16

2.4 Illustrating VDh(U
′), and VDh(U

′′) after u∗ is inserted. The two dash dotted
blue segments are new half-lines in VDh(U

′′) while Bh(u
i, ui+1) does not

appear in VDh(U
′′). Rh(u

i, U ′) is the grey area and Rh(u
∗, U ′′) is the region

between the two dash dotted blue segments. Note that Bh(u
i−1, ui) is lui =

rui−1 and Bh(u
i, ui+1) is rui = lui+1 . 18

2.5 Illustrating the proof of Lemma 2.3 for the case where u is not adjacent to
u∗ in L. 21

3.1 The grey cells are all neighbor cells of C. 29

3.2 P1 = {p1 = s, p2, ..., pm} includes all points of P to the right of s sorted from
left to right. i is the smallest index such that x(pi+1) − x(pi) > r. We have
P ′
1 = {p1, p2, ..., pi}. Points of {pi+1, pi+2, ..., pm} are added to the set Q since

they can not be reached from s in Gr(P). 32

3.3 The point p7 (the red point) is in the 3rd column of Ψ1
r∗(P) while it is in the

4th column of Ψ1
r(P). 36

3.4 The rightmost line is ℓ when r′ = r∗. When r′ decreases from r∗ to r, ℓ will
move leftwards and cross p. 36

3.5 The change of the combinatorial structure of the upper envelope U(r) (the
red solid arcs) as r increases. 39

3.6 Illustrating a vertex v of the upper envelope, which is defined by two red
points p1 and p2. The red solid segment is the bisector of p1 and p2. 41

3.7 Illustrating the scenario where x(q) = x(v), where v is on the bisector (the
red solid segment) of p1 and p2. 41

xi

3.8 The red cell that contains the point p is □p and the square area bounded by
blue segments is the patch ⊞p. All adjacent vertices of p in Gr(P) must lie
in the grey region. 51

3.9 Blue arcs are unit-disks centered at points U = {u1, u2, u3} which are sorted
by their dist[·] values. We have V1 = {v3, v4}, V2 = {v1}, and V3 = {v2} in
this example. Note that point v3 is in unit-disk

⊙
u1

and
⊙

u3
at the same

time, but v3 is in subset V1 ⊆ V by the definition of Vi’s, 1 ≤ i ≤ |U |. 54

3.10 Illustrating U1 and V1, where U1 = {u1, u2, u3} and V1 = {v4, v5, v7}. The
solid arcs are on Ur∗(U1). 60

4.1 Each pair of red and blue points connected by a black arrow represents a
moving point. Blue points denote locations at t = 0 and red points are
locations at t = 1. Black boxes are locations of these moving points at
certain time and the dashed segments form a spanning tree. 69

4.2 Illustrating a unit-disk graph. Two points are connected (by a blue segment)
if their distance is less than or equal to λ. In other words, two points are
connected if congruent disks centered at them with radius λ/2 intersect. . . 71

4.3 The cells in the gray region bounded by the blue curve are all neighbors of
the red cell. 79

4.4 Illustrating the lower envelope (the red curve). 81

4.5 Illustrating a lower envelope (the red curve) that has two connected compo-
nents. 81

4.6 Illustrating the first case in the proof of Lemma 4.4. 83

4.7 Illustrating the second case in the proof of Lemma 4.4. 83

4.8 Illustrating Lemma 4.5: The red (resp., blue) arcs are those from Ξ′(u) (resp.,
Ξ′(w)). There is only one intersection between U(Ξ′(u)) and U(Ξ′(w)). . . . 85

4.9 Illustrating the deletion of ξ = ξw. The red (resp., blue) arcs are those from
Ξ′(u) (resp., Ξ′(w)). 89

5.1 Illustrating the grid Ψ, where P consists of the three black points and C
consists of all gray square cells. Any point whose distance to q is at most
1 must lie in the region bounded by blue segments, which contains 21 cells
(those cells constitute N(C)). 96

5.2 Illustrating the lower envelope U1. Black dotted arcs are boundaries of unit
disks centered at points of Q. The point q1 is below U1 while q2 is above U1. 99

xii

5.3 Illustrating a lower envelope U1 with two connected components. 99

5.4 The three blue arcs are below q while the two red arcs are above q. 100

5.5 Illustrating the case where A′
j and A′

j+1 intersect at a vertex u of U1. 100

5.6 Illustrating layers of lower envelopes U1,U2,U3. 102

5.7 Illustrating the α-hull of Q, for α = −1. 103

5.8 Illustrating the lower α-hull H1 of Q and the lower envelope U1 of A. Black
dotted arcs are boundaries of underlying disks of arcs of U1. Vertices of H1

are centers of arcs of U1, and vice versa. 103

5.9 Illustrating lower α-hull layers {H1,H2,H3}. 104

5.10 Illustrating the graph G for a set Q = {p1, p2, ..., p8} of 8 points. 105

5.11 Illustrating T for the example in Fig. 5.10. Internal nodes store common
tangent arcs, which are edges of G. 105

5.12 Illustrating the adjacency lists Ll(p) and Lr(p) at p. The two red arcs are
bottom edges. The red dashed segment with arrow is the tangent ray of
A(p, q) at p and the tangent angle is shown. 106

5.13 p is an endpoint of A(vi), i.e., the common tangent arc (the red arc) of the
new H(vi−1) and H(v). 109

5.14 Illustrating points a′, b′ and c′, angles {β1, β2, β3} and {ϵ1, ϵ2}. 109

5.15 Illustrating angle ∠(xy1, xy2) of arcs A(x, y1) and A(x, y2). Blue rays with
arrows are tangent rays of A(x, y1) and A(x, y2) at x. 109

5.16 Illustrating the case of pulling up p in which ϵ1 becomes null. 110

5.17 Illustrating the case of pulling up p in which ϵ2 becomes null. 110

5.18 Illustrating the definitions of a∗, b∗, and c∗. 111

6.1 Illustrating an annulus Dp (the grey region). 120

6.2 Illustrating a pseudo-trapezoid. 120

xiii

List of Algorithms

2.1 The SSSP Algorithm [1] . 12
2.2 Update(U, V) [1] . 13

3.1 The WX Algorithm [1] . 52

4.1 Deleting an arc ξ from the envelope tree T (Ξ′). 90

CHAPTER 1

INTRODUCTION

We propose and study several problems related to unit-disk graphs, which is an im-

portant class of geometric intersection graphs. A great number of problems on unit-disk

graphs have been studied in the literature due to many of their applications, e.g., in wireless

sensor networks.

In the rest of this chapter, we first briefly introduce the concept of unit-disk graphs

and then present an overview of the problems we study in this dissertation. An outline of

this dissertation is given at the end of this chapter.

1.1 Unit-disk graphs

A unit-disk graph can be viewed as an intersection graph of a set of congruous disks in

the plane, i.e., centers of the disks are vertices and two centers of disks are connected by an

edge if two corresponding disks intersect. Unit-disk graphs have been widely studied due to

many of their applications, e.g., in wireless sensor networks [2–5]. Lots of problems on unit-

disk graphs have been considered in the literature, such as the shortest path problem [1,6–

10], the clique problem [11], the independent set problem [12], distance oracle [7,8,13], the

diameter problem [7, 8, 13], etc. Comparing to general graphs, these problems in unit-disk

graphs can be solved more efficiently by exploiting their underlying geometric structures.

1.2 Overview of our problems

In this section, we give an overview of the problems we study in this dissertation. The

details can be found in subsequent chapters.

1.2.1 L1 shortest paths in unit-disk graphs

2

This problem comes from the traditional version of the single-source shortest path

(SSSP) problem in unit-disk graphs but the distance between two points in the plane is

measured by the L1 metric. The problem can be formulated as follows. Let P be a set of

n points in the plane. The L1 unit-disk graph G(P) of P is a graph with P as its vertex

set such that two points of P are connected by an edge if the L1 distance between the

two points is at most 1. Alternatively, G(P) is the intersection graph of the set of disks

(diamonds in the L1 case) centered at the points of P with radii equal to 1/2. Each edge of

G(P) has a weight that is equal to the L1 distance of the two incident vertices of the edge.

Given set P and a source point s ∈ P , we compute shortest paths in G(P) from s to all

other points of P .

The L2 case of the SSSP problem where the distance is measured under the L2 metric

has been extensively studied [1, 6–10]. The current best algorithm, which was given by

Wang and Xue [1], runs in O(n log2 n) time. We follow the algorithmic framework of Wang

and Xue [1] but give a faster implementation for the L1 case by deriving a more efficient

algorithm for the bottleneck subproblem in the L1 case. This leads to an overall O(n log n)-

time algorithm, which is optimal.

Our results on this problem have been published in a conference [14] and a journal [15].

Refer to Chapter 2 for the details.

1.2.2 Reverse shortest path problem for unit-disk graphs

Given a set P of n points in the plane and a parameter r, the unit-disk graph Gr(P) is

an undirected graph whose vertex set is P such that an edge connects two points p, q ∈ P

if the distance between p and q is at most r. The weight of each edge of Gr(P) is defined

to be one in the unweighted case and is defined to the distance between the two vertices of

the edge in the weighted case. An L2 or L1 unit-disk graph can be defined if the distance

between points in measured by the L2 or L1 metric. We consider the following reverse

shortest path (RSP) problem. In addition to P , given a value λ > 0 and two points s, t ∈ P ,

the problem is to compute the smallest value r such that the distance between s and t in

Gr(P) is at most λ. There are four cases for the RSP problem depending on whether L1 or

3

L2 metric is considered and whether the unit-disk graphs are weighted or not.

The L1 distance selection problem in the plane can be solved in O(n log2 n) time [16].

Therefore, one can perform a binary search in the set of all pairwise L1 distances among

n points of P using the algorithm in [16] as well as the corresponding decision algorithm

(i.e., the L1 SSSP algorithm) to solve the L1 RSP problem for both the unweighted and

weighted cases in O(n log3 n) time. Note that the time complexity is dominated by the L1

distance selection algorithm. We focus on the L2 RSP problem in this dissertation.

Cabello and Jejčič [6] mentioned a straightforward solution that can compute the op-

timal parameter r∗ in O(n4/3 log3 n) time for both the unweighted and the weighted cases

in the L2 metric. We gave two algorithms for the L2 unweighted case and their time com-

plexities are O(⌊λ⌋ ·n log n) and O(n5/4 log7/4 n), respectively; we also gave an algorithm of

O(n5/4 log5/2 n) time for the L2 weighted case.

Our results on this problem have been published in two conferences [17, 18] and one

journal [19]. In particular, our paper [18] received the Best Student Paper Award of the

conference. Refer to Chapter 3 for the details.

1.2.3 Computing the minimum bottleneck moving spanning tree

Given a set P of n moving points in the plane. We assume that the time interval is

[0, 1]. A moving point p ∈ P is a continuous function p : [0, 1] → R2. Let p(t) denote the

location of p at time t ∈ [0, 1]. We assume that p moves on a straight line segment with a

constant velocity, i.e., p(t) is linear in t and points of {p(t)| t ∈ [0, 1]} form a straight line

segment in the plane; different points may have different velocities). A moving spanning tree

T of P connects all points of P and does not change its connection during the whole time

interval (i.e., for any two points p, q ∈ P , the path connecting p and q in T always contains

the same set of edges). We use T (t) to denote the tree at the time t. The instantaneous

bottleneck bT (t) at time t is the maximum length of all edges in T (t). The bottleneck b(T) of

the moving spanning tree T is defined to be the maximum instantaneous bottleneck during

the whole time interval, i.e., b(T) = maxt∈[0,1] bT (t). The Euclidean minimum bottleneck

moving spanning tree (or moving-EMBST for short) T ∗ refers to the moving spanning tree

4

of P with a minimum bottleneck.

Previously, this problem was solved in O(n2) time by Akitaya, Biniaz, Bose, De Carufel,

Maheshwari, Silveira, and Smid [20]. We present an algorithm of O(n4/3 log3 n) time to

compute T ∗.

Our results on this problem have been published in a conference [21]. Refer to Chapter 4

for the details.

1.2.4 A simple algorithm for unit-disk range reporting

Given a set P of n points in the plane and a value r, we consider the following unit-disk

range reporting problem (or UDRR for short): Construct a data structure such that given

any query disk of radius r, all points of P in the disk can be reported efficiently.

The UDRR problem is also known as the fixed-radius neighbor problem in the litera-

ture [22–25]. Combining the framework in [26] with the shallow cutting algorithm [27], one

can build a data structure of O(n) space in O(n log n) deterministic time that can answer

each UDRR query in O(k + log n) time, where k is the output size; note that this result

also works for query disks of arbitrary radii.

We present a new UDRR data structure with the same complexity as above by ex-

ploiting special properties of unit disks. Our algorithm is much simpler than the algorithm

of [26,27]. Indeed, the algorithm of [26,27] involves relatively advanced geometric techniques

like shallow partition theorem and shallow cuttings in 3D, planar graph separators, com-

puting ϵ-net and ϵ-approximations, etc. Our algorithm only relies on elementary techniques

(the most complicated one might be a fractional cascading data structure [28,29]).

Our result on this problem has been submitted to a conference and is still under review.

Refer to Chapter 5 for the details.

1.2.5 Improved algorithms for distance selection and related problems

We first consider the distance selection problem: Given a set P of n points in the plane

and an integer 1 ≤ k ≤
(
n
2

)
, the problem asks for the k-th smallest interpoint distance among

all pairs of points of P . The problem can be easily solved in O(n2) time. Katz and Sharir [30]

5

presented a deterministic algorithm that runs in O(n4/3 log2 n) time. Very recently, Chan

and Zheng proposed a randomized algorithm of O(n4/3) expected time (see the arXiv version

of [31]). Also, the time complexity can be made as a function of k. In particular, Chan’s

randomized techniques [32] solved the problem in O(n log n + n2/3k1/3 log5/3 n) expected

time and Wang [33] recently improved the algorithm to O(n log n+n2/3k1/3 log n) expected

time; these algorithms are particularly interesting when k is relatively small.

We first introduce a technique that improves the partial batched range searching prob-

lem. Then we present a new deterministic algorithm that solves the distance selection

problem in O(n4/3 log n) time. Albeit slower than the randomized algorithm of Chan and

Zheng [31], our algorithm is the first progress on the deterministic solution since the work

of Katz and Sharir [30] published 25 years ago (30 years if we consider their conference

version in SoCG 1993).

By extending and summarizing all techniques we used, we propose a general algorithmic

framework that can be used to solve any geometric optimization problems that involve

interpoint distances of a set of points in the plane. One application of this new framework

is the two-sided discrete Fréchet distance with shortcuts problem, or two-sided DFD for

short. Fréchet distance is used to measure the similarity between two curves and many

of its variations have been studied, e.g., [34–39]. Avraham, Filtser, Kaplan, Katz, and

Sharir [36] solved the two-sided DFD in O((m2/3n2/3+m+n) log3(m+n)), where m and n

are the numbers of vertices of the two input curves, respectively. Using our new framework,

we improve their algorithm to O((m2/3n2/3 · 2O(log∗(m+n)) +m log n+ n logm) log(m+ n))

time, an improvement of roughly O(log2(m+ n)).

For the computation of the one-sided discrete Fréchet distance with shortcuts (one-

sided DFD for short), the authors [36] gave a randomized algorithm of O((m + n)6/5+ϵ)

expected time, for any constant ϵ > 0. Using our techniques, we improve their algorithm

to O((m + n)6/5 log8/5(m + n)) expected time. Based on the techniques of [36], Katz and

Sharir [40] proposed a randomized algorithmic framework for solving geometric optimization

problems that involve interpoint distances in a point set. We improve the framework to

6

O(n4/3/L1/3 · log2 n + TD · log n · log log n + L1/2 · TD · log n) expected time, where TD is

the running time of the decision algorithm. Our result for the one-sided DFD is a direct

application of this framework.

We also demonstrate that the randomized algorithms for the reverse shortest paths

in unit-disk graphs for both unweighted and weighted cases can be improved over the

previous work by using our new framework. Deterministic algorithms of O(n4/3 log7/4 n)

and O(n4/3 log5/2 n) times are known for the unweighted and weighted problems, respec-

tively [17, 18]. Katz and Sharir [40] solved both problems in O(n6/5+ϵ) expected time.

With our improvement to the framework, we can now solve the unweighted problem in

O(n6/5 log8/5 n) expected time and solve the weighted case in O(n6/5 log12/5 n) expected

time.

Our result on these problems has been submitted to a conference and is still under

review. Refer to Chapter 6 for the details.

1.3 Dissertation outline

The rest of this dissertation is organized as follows. We present our optimal shortest

path algorithm for the L1 unit-disk graph in Chapter 2. In Chapter 3, we give the results on

the reverse shortest path problem for unit-disk graphs. Chapter 4 presents our algorithm

for the Euclidean minimum bottleneck moving spanning tree. Our algorithm for unit-disk

range reporting is introduced in Chapter 5. Chapter 6 provides our new distance selection

algorithm as well as our algorithmic frameworks along with their applications. Finally, the

future work is discussed in Chapter 7.

7

CHAPTER 2

L1 SHORTEST PATHS IN UNIT-DISK GRAPHS

2.1 Introduction

We consider the problem of computing shortest paths from a given vertex to all other

vertices in unit-disk graphs while the distance is measured by the L1 metric. The results in

this chapter have been published in a conference [14] and a journal [15].

2.1.1 Problem definitions and our results

Let P be a set of n points in the plane. The unit-disk graph G(P) of P is a graph

with P as its vertex set such that two points of P are connected by an edge if the distance

between the two points is at most 1. Alternatively, G(P) is the intersection graph of the

set of disks centered at the points of P with radii equal to 1/2. Each edge of G(P) has a

weight that is equal to the distance of the two incident vertices of the edge.

In this chapter, we consider the single-source shortest path (SSSP) problem on G(P),

i.e., given P and a source point s ∈ P , compute shortest paths in G(P) from s to all other

points of P . In particular, we consider the L1 case of the problem in which the distance is

measured under the L1 metric (and each disk becomes a diamond).

The L2 case of the problem where the distance is measured under the L2 metric has

been extensively studied [1, 6–10]. The current best algorithm, which was given by Wang

and Xue [1], runs in O(n log2 n) time. The L1 case, however, has not been particularly

studied before. To solve the L1 problem, we follow the algorithmic framework of Wang and

Xue [1] but give a faster implementation. The runtime of Wang and Xue’s algorithm [1] is

dominated by a bottleneck subproblem. Due to some special properties of the L1 metric,

we derive a more efficient algorithm for the bottleneck subproblem in L1 case, which leads

to an overall O(n log n)-time algorithm for the shortest path problem.

8

More specifically, the bottleneck subproblem is the offline insertion-only additively-

weighted nearest-neighbor problem, where we are given an offline sequence of k insertions

and queries such that an insertion inserts a weighted point to a point set U (which is ∅

initially) and a query asks for the additively-weighted nearest neighbor in U of a query point.

The goal is to answer all queries. Wang and Xue [1] solved the problem in O(k log2 k) time

by using the standard logarithmic method [41,42]. This leads to the overall O(n log2 n) time

for their shortest path algorithm [1]; reducing the time for the subproblem to O(k log k)

would solve the shortest path problem in O(n log n) time. The difficulty in doing so is that

there does not exist a semi-dynamic (for insertions only) weighted Voronoi diagram data

structure that can perform each insertion in O(log k) amortized time (in order to answer

queries, an efficient dynamic point location data structure is also needed). For solving our

L1 shortest path problem, we first observe that in the bottleneck subproblem U and V are

separated by an axis-parallel line ℓ, where V is the set of all query points. Without loss

of generality, we assume that ℓ is horizontal and U is below ℓ. Based on the properties of

the L1 metric, a critical observation we find is that the portion of the weighted L1 Voronoi

diagram of U above ℓ only consists of a set of vertical lines. Then, we can easily maintain

these vertical lines by a balanced binary search tree so that each query can be answered

in O(log k) time. Further, the special structure also allows us to update the portion of

the Voronoi diagram above ℓ in O(log k) amortized time for each insertion. As such, the

bottleneck subproblem can be solved in O(k log k) time in the L1 case, which leads to an

overall O(n log n) time algorithm for the shortest path problem. Note that the space of our

shortest path algorithm is O(n).

Cabello and Jejčič [6] observed that by a simple reduction from the max-gap problem,

deciding whether the unit-disk graph G(P) is connected requires Ω(n log n) time even if

all points of P are on a line. This implies that Ω(n log n) is a lower bound for solving the

shortest path problem in unit-disk graphs for both the L1 and L2 cases (because both cases

are the same when all points of P are on a line). As such, our algorithm for the L1 case is

optimal.

9

2.1.2 Related work

Before Wang and Xue’s work [1], the shortest path problem in the L2 case had been

studied by many others. Roditty and Segal [10] gave the first sub-quadratic algorithm of

O(n4/3+ϵ) time for any constant ϵ > 0. Cabello and Jejčič [6] later proposed an improved

algorithm of O(n1+ϵ) time. Following the framework of Cabello and Jejčič [6] but with

a more efficient data structure for the bichromatic closest pair problem, Kaplan et al. [9]

gave a randomized algorithm that solves the problem in O(n log12+o(1) n) expected time.

Approximation algorithms for the problem have also been developed, e.g., see [1, 7, 8]

The shortest path problem we consider is actually on a weighted unit-disk graph. In the

unweighted case, the weight of each edge of the graph is 1. The unweighted problem is much

easier. The L2 unweighted problem can be solved in O(n log n) time [6, 7]. In particular, if

all input points of P are presorted by their x- and y- coordinates, the algorithm of Chan

and Skrepetos [13] runs in O(n) time.

As an important class of geometric intersection graphs, unit-disk graphs have been

widely studied due to many of their applications, e.g., in wireless sensor networks [4, 5].

In addition to the shortest path problem, many other problems on unit-disk graphs have

also been considered in the literature, such as the clique problem [11], the independent set

problem [12], all pairs of shortest paths [7,8,13], the diameter problem [7,8,13], etc. Com-

paring to general graphs, these problems in unit-disk graphs can be solved more efficiently

by exploiting their underlying geometric structures.

Outline. In the rest of this chapter, we describe the main algorithm in Section 2.2 while

the bottleneck subproblem is tackled in Section 2.3.

2.2 The main algorithm

In this section, we describe the main algorithm for the shortest path problem. Our

algorithm follows Wang and Xue’s algorithmic framework [1]. In the following, we will

adapt their algorithm to the L1 case. We will also borrow some of their notation.

10

p

Fig. 2.1: The side length of each square cell in the grid Γ is 1
2 . For the black point p, the red

cell that contains it is □p, and the square area bounded by blue segments which contains
5× 5 cells is the patch ⊞p. For any point in □p, its neighboring points in G(P) must lie in
the grey region.

For any two points p and q in the plane, we use d(p, q) to denote their L1 distance. For

any point p, we use
⊙

p to denote the unit disk centered at p, which is a diamond in the L1

metric. Let s be the source point of P . Throughout the chapter, we will use the points of

P and the vertices of the unit-disk graph G(P) interchangeably.

The algorithm follows the basic idea of Dijkstra’s shortest path algorithm with the help

of a grid. At the outset, we implicitly build a grid Γ of square cells of side length 1/2. For

simplicity of discussion, we assume that each vertex of G(P) lies in the interior of a single

cell of Γ. A patch of Γ is a square area consisting of 5× 5 cells of Γ. For any point p in the

plane, let □p denote the cell of Γ that contains p and ⊞p denote the patch whose central

cell is □p (see Fig. 2.1). Since the side length of each cell of Γ is 1/2, if two vertices of

G(P) are in a single cell of Γ, they must be connected by an edge in G(P). On the other

hand, if two points p and q are connected by an edge in G(P), then q must be in a cell

of ⊞p. Unlike Dijkstra’s shortest path algorithm, which selects one single vertex in each

iteration to compute shortest-path information, our algorithm tries to compute shortest-

path information for all vertices in a cell of Γ and then pass shortest-path information to

the vertices in the neighboring cells.

For a subset Q ⊆ P and a cell □ (resp., a patch ⊞) of Γ, define Q□ = Q ∩ □ (resp.,

Q⊞ = Q ∩⊞).

To implicitly compute the grid Γ, we actually perform the following preprocessing. We

11

compute P□ for all cells □ of Γ that contain at least one point of P . We also associate

pointers to each point p ∈ P such that from p we can access □p and ⊞p. The preprocessing

can be done in O(n log n) time and O(n) space [1].

The algorithm will compute a table dist[·] for all vertices of G(P), where dist[p] is the

length of a shortest path between s and a point p ∈ P . Note that we should also maintain

the corresponding path-predecessor information to form a shortest path tree; this can be

done by standard techniques [1], so we omit the discussions.

One important subroutine that will be extensively used in the algorithm is Update(U, V).

For two subsets U, V ⊆ P , Update(U, V) is to update the shortest-path information of ver-

tices in the set V by using the shortest-path information of vertices in U . More specifically,

for each v ∈ V , let qv = argminu∈U∩
⊙

v
{dist[u] + d(u, v)}. The purpose of Update(U, V)

is to find qv for all v ∈ V and update dist[v] = min{dist[v], dist[qv] + d(qv, v)}.

With Update(U, V), the algorithm works as follows (refer to Algorithm 2.1 for the

pseudocode). Initially, for each vertex p ∈ P , dist[p] is set to ∞, except that dist[s] = 0.

Initialize Q = P . In the main loop, as long as Q ̸= ∅, in each iteration we find a vertex q ∈ Q

who has a minimum dist[q]. Subsequently there are two subroutines Update(Q⊞q , Q□q)

and Update(Q□q , Q⊞q). Finally, vertices in Q□q are removed from Q, because dist[p] for

all p ∈ Q□q have been correctly computed. Refer to [1] for the correctness proof, which is

applicable to the L1 case.

Implementing the algorithm efficiently hinges on the two Update procedures.

The first update. For the first update Update(Q⊞q , Q□q), the key is to find a point qv ∈

Q⊞q ∩
⊙

v that minimizes dist[qv] + d(qv, v) for each point v ∈ Q□q . If we assign each

point in Q⊞q a weight equal to its dist-value, then qv is essentially the additively-weighted

nearest neighbor of v in Q⊞q ∩
⊙

v. To find qv efficiently, a crucial observation found by

Wang and Xue [1] (see Lemma 2.5 in [1], whose proof is applicable to the L1 case) is that

any point p ∈ Q⊞q that minimizes dist[p]+d(p, v) must be in
⊙

v, i.e., the nearest neighbor

of v in Q⊞q is also the nearest neighbor of v in Q⊞q ∩
⊙

v. Due to this observation, we

can find qv for all v ∈ Q□q as follows. First, we build an L1 additively-weighted Voronoi

12

Algorithm 2.1: The SSSP Algorithm [1]
1 Function SSSP(P , s):
2 for each p ∈ P do
3 dist[p] = ∞
4 end
5 dist[s] = 0
6 Q = P
7 while Q ̸= ∅ do
8 q = argminp∈Q{dist[p]}
9 Update(Q⊞q , Q□q) // first update

10 Update(Q□q , Q⊞q) // second update
11 Q = Q \Q□q

12 end
13 return dist[·]
14 end

diagram on vertices in Q⊞q and then using the diagram to find the nearest neighbor for each

v ∈ Q□q . Constructing the diagram can be done in O(|Q⊞q | log |Q⊞q |) time and O(|Q⊞q |)

space (e.g., by using the abstract Voronoi diagram algorithm [43]), and all queries together

take O(|Q□q | log |Q⊞q |) time (e.g., build a point location data structure on the diagram in

O(|Q⊞q |) time [44,45] and then perform point location queries for points of Q□q , which take

O(log |Q⊞q |) time each).

The second update. Implementing the second update Update(Q□q , Q⊞q) is not that easy

anymore because the above crucial observation does not hold. Since Q⊞q has O(1) cells of

Γ, it suffices to perform Update(Q□q , Q□) for all cells □ ∈ ⊞q.

If □ is □q, then Q□q = Q□. Since the distance between any two points in □q is at

most 1, we can use the following algorithm to implement Update(Q□q , Q□). We first build

an L1 weighted Voronoi diagram on points of Q□q in O(|Q□q | log |Q□q |) time and O(|Q□q |)

space [43], and then use it to find the weighted nearest neighbor qv for each point v ∈ Q□q .

Clearly, the total time is O(|Q□q | log |Q□q |).

If □ is not □q, then a critical property is that □ and □q are separated by an axis-

parallel line ℓ. To perform Update(Q□q , Q□), Wang and Xue [1] proposed the follow-

ing approach (see Algorithm 2.2 for the pseudocode). Let U = Q□q and V = Q□.

13

Algorithm 2.2: Update(U, V) [1]
1 Function Update(U , V):
2 Sort(U = {u1, u2, ..., u|U |}) // dist[u1] ≤ ... ≤ dist[u|U |]
3 for i = 1, 2, ..., |U | do
4 Vi = {v ∈ V | v ∈

⊙
ui
, v /∈

⊙
uj

for all j < i}
5 end
6 U ′ = ∅
7 for i = |U |, |U | − 1, ..., 1 do
8 U ′ = U ′ ∪ {ui}
9 for each v ∈ Vi do

10 qv = argminu∈U ′{dist[u] + d(u, v)}
11 dist[v] = min{dist[v], dist[qv] + d(qv, v)}
12 end
13 end
14 end

We first sort vertices in U = {u1, u2, ..., u|U |} by their dist-values such that dist[u1] ≤

dist[u2] ≤ ... ≤ dist[u|U |]. Then we partition V into subsets Vi = {v ∈ V | v ∈
⊙

ui
, v /∈⊙

uj
for all j < i}, for all i = 1, 2, . . . , |U |. For each 1 ≤ i ≤ |U |, for each vertex v ∈ Vi,

we find qv = argminp∈Ui{dist[p] + d(p, v)}, where Ui = {ui, ui+1, . . . , u|U |}, and update

dist[v] = min{dist[v], dist[qv] + d(qv, v)}. This step is implemented by a for loop (Lines

6–13) in Algorithm 2.2. By the definition of Vi, we have U ∩
⊙

v ⊆ Ui for all v ∈ Vi. Also,

Wang and Xue [1] proved that qv found as above must be in
⊙

v (see Lemma 2.6 in [1],

whose proof is applicable to the L1 case). As such, qv = argminp∈U∩
⊙

v
{dist[p] + d(p, v)}.

This proves the correctness of the algorithm.

We now analyze the runtime of the above algorithm. Sorting the vertices of U takes

O(|U | log |U |) time. To compute the subsets Vi, 1 ≤ i ≤ |U |, Wang and Xue [1] gave an

algorithm of O(k log k) time (and O(k) space) for the L2 case (see Section 2.2.1 [1]) by

making use of the property that U and V are separated by ℓ, where k = |U |+ |V |. For the

L1 case, we can use the same algorithm; in fact, the algorithm becomes easier as a disk in

the L1 case is a diamond. We omit the details and conclude that the subsets Vi, 1 ≤ i ≤ |U |,

can be computed in O(k log k) time in the L1 case. Next, the for loop (Lines 6–13) is for the

bottleneck subproblem mentioned in Section 2.1, i.e., the offline insertion-only additively-

14

weighted nearest-neighbor problem. Indeed, if we assign each vertex in U a weight equal

to its dist-value, then qv is essentially the additively-weighted nearest neighbor of v in U ′,

where U ′ = Ui in the i-th iteration of the for loop. The set U ′ is dynamically changed with

point insertions. Using the standard logarithmic method [41, 42], Wang and Xue [1] solves

the problem in O(k log2 k) time. By exploring the properties of the L1 metric, we give an

O(k log k) time (and O(k) space) algorithm in Section 2.3. As such, Update(Q□q , Q□) can

be performed in O(k log k) time and O(k) space, with k = |Q□q |+ |Q□|.

In summary, since Q⊞q has O(1) cells, the second update Update(Q□q , Q⊞q) can be

implemented in O(|Q⊞q | log |Q⊞q |) time as Q□q ⊆ Q⊞q . This leads to the following theorem.

Theorem 2.1. Given a set P of n points in the L1 plane and a source point s ∈ P ,

the shortest paths from s to all vertices in the unit-disk graph G(P) can be computed in

O(n log n) time and O(n) space.

Proof. As discussed before, constructing the grid Γ implicitly can be done in O(n log n) time

and O(n) space [1]. We have shown that both Update procedures can be implemented in

O(|Q⊞q | log |Q⊞q |) time and O(|Q⊞q |) space. As such, each iteration of the while loop

of Algorithm 2.1 can be implemented in O(|Q⊞q | log |Q⊞q |) time and O(|Q⊞q |) space. As∑
q∈Q |Q⊞q | ≤ 25n, the total time of the algorithm is O(n log n). Note that the overall time

of Line 8 and Line 11 of Algorithm 2.1 can be easily bounded by O(n log n) by using a

balanced binary search tree. The total space of the algorithm is O(n).

2.3 The bottleneck subproblem

In this section, we present an O(k log k) time and O(k) space algorithm to solve the

bottleneck subproblem on U and V , with k = |U |+ |V |. Recall U and V are separated by

an axis-parallel line ℓ. Without loss of generality, we assume that ℓ is horizontal such that

U is below ℓ and V is above ℓ. Our goal is to find qv ∈ U ′ for all v ∈ Vi (i.e., Line 10 in

Algorithm 2.2), for a subset U ′ ⊆ U .

In the following, we first discuss some observations about the geometric structure of

the problem and then describe the algorithm.

15

<latexit sha1_base64="ADfmFTOd5eHhzCKJs+DIuzX9P+4=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGC/YA2lM120i7d3YTdjVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYsGNdd1vZ219Y3Nru7RT3t3bPzisHB23TZRohi0WiUh3A2pQcIUty63AbqyRykBgJ5jc5X7nCbXhkXq00xh9SUeKh5xRm0t9FGJQqbo1dw6ySryCVKFAc1D56g8jlkhUlglqTM9zY+unVFvOBM7K/cRgTNmEjrCXUUUlGj+d3zoj55kyJGGks1KWzNXfEymVxkxlkHVKasdm2cvF/7xeYsMbP+UqTiwqtlgUJoLYiOSPkyHXyKyYZoQyzbNbCRtTTZnN4ilnIXjLL6+Sdr3mXdXqD5fVxm0RRwlO4QwuwINraMA9NKEFDMbwDK/w5kjnxXl3Phata04xcwJ/4Hz+AA+wjkI=</latexit>

`

Fig. 2.2: Illustrating VD(U ′), where U ′ has six blue points (with the same weight). VDh(U
′)

consists of two vertical half-lines.

2.3.1 Observations

Let VD(U ′) denote the weighted Voronoi diagram of U ′. To find qv, it suffices to locate

the cell of VD(U ′) that contains v. Let h denote the upper half-plane bounded by ℓ. As v

is above ℓ, it suffices to maintain the portion of VD(U ′) above ℓ, denoted by VDh(U
′). In

what follows, we first show that VDh(U
′) has a very simple structure: it only consists of

a set of vertical half-lines with endpoints on ℓ and going upwards to the infinity (e.g., see

Fig. 2.2). Then, we will show that VDh(U
′) can be updated in O(log k) amortized time for

each insertion (i.e., inserting a point into U ′).

We say a vertical half-line is grounded on ℓ if it goes upwards to the infinity and has

its endpoint on ℓ. For any point or a vertical line segment p in the plane, we use x(p) to

denote its x-coordinate. For each point u ∈ U , we define its weight w(u) = dist[u].

Properties of bisectors of two weighted points. Consider two weighted points a and b in

the plane with nonnegative weights w(a) and w(b), respectively. The bisector B(a, b) of

a and b is the locus of points with equal (additively-)weighted distance to a and b, i.e.,

B(a, b) = {p ∈ R2 | w(a) + d(a, p) = w(b) + d(b, p)} (e.g., see Fig. 2.3). Note that in the

degenerate case it is possible that an entire quadrant of the plane is in B(a, b) (e.g., see

Fig. 2.3b), in which case we only consider the vertical boundary of the quadrant to be in

B(a, b). Hence, B(a, b) in general consists of three parts: two axis-parallel half-lines with

a segment in the middle. Suppose both a and b are below the line ℓ and x(a) ≤ x(b).

Define Bh(a, b) = B(a, b)∩ h. Then either Bh(a, b) = ∅ or Bh(a, b)∩ h is a vertical half-line

16

b

a

B(a, b)

(a)

b

a

B(a, b)

(b)

b

a

B(a, b)

(c)

Fig. 2.3: Possible cases for the bisector B(a, b) of two weighted points a and b.

grounded on ℓ; in the latter case x(a) ≤ x(Bh(a, b)) ≤ x(b). Note that if x(a) = x(b), then

B(a, b) is a horizontal line between a and b and thus Bh(a, b) = ∅.

Geometric structure of VDh(U
′). Since all points of U are below ℓ, according to the dis-

cussion above, for any two points ui and uj of U , Bh(ui, uj) is either ∅ or a vertical half-line

grounded on ℓ (and the vertical half-line is between ui and uj). These properties guarantee

that VDh(U
′) consists of a set of O(|U ′|) vertical half-lines grounded on ℓ (e.g., see Fig. 2.2),

and between each pair of adjacent half-lines is the portion of the Voronoi cell of a vertex

u ∈ U ′. As such, we can use a balanced binary search tree T (U ′) to store the x-coordinates

of the vertical half-lines of VDh(U
′). Given a query point v ∈ V , we can use T (U ′) to find

the cell of VDh(U
′) containing v and thus obtain qv in O(log |U ′|) time, which is O(log k) as

|U ′| ≤ |U | ≤ k. In the following, we will discuss how to update VDh(U
′) after a point of U

is inserted to U ′. We first prove some properties about the geometric structure of VDh(U
′).

For each point u ∈ U ′, let R(u) denote the Voronoi cell of u in VD(U ′) and let Rh(u) =

R(u) ∩ h. The above shows that if Rh(u) is not empty, then it is bounded by two vertical

half-lines from the left and right; let lu and ru denote these two half-lines, respectively. We

call lu the left bounding half-line and ru the right bounding half-line of Rh(u). Note that if

Rh(u) is the leftmost (resp., rightmost) cell of VDh(U
′), then we let lu (resp., ru) refer to

the vertical half-line grounded on ℓ with x-coordinate −∞ (resp., +∞).

We say that a point u ∈ U ′ is relevant if Rh(u) ̸= ∅ and irrelevant otherwise. The

following lemma proves several properties about the geometric structure of VDh(U
′), which

17

will be useful for processing insertions.

Lemma 2.1. Suppose u1, u2, . . . , ut is the list of relevant vertices of U ′ whose Voronoi cells

intersect h in the order from left to right. Then, the followings hold.

1. x(u1) < x(u2) < · · · < x(ut).

2. For each 1 ≤ i < t, rui is lui+1.

3. For each 1 ≤ i ≤ t, x(lui) ≤ x(ui) ≤ x(rui).

4. For each 1 ≤ i ≤ t, pi is in Rh(u
i), where pi is the vertical projection of ui on ℓ.

Proof. Consider a point ui for any i > 1. By the definition of the list u1, u2, . . . , ut, lui

belongs to the bisector B(ui−1, ui) of ui−1 and ui, i.e., lui = Bh(u
i−1, ui). According to the

properties of bisectors, x(ui−1) ≤ x(lui) ≤ x(ui). Note that x(ui−1) = x(ui) is not possible

since otherwise Bh(u
i−1, ui) would be ∅ (contradicting with lui = Bh(u

i−1, ui)). As such,

x(ui−1) < x(ui) holds. This proves the first lemma statement.

According to our definition of the list u1, u2, . . . , ut, the left bounding half-line of

Rh(u
i+1) must be the right bounding half-line of Rh(u

i). Hence, the second lemma state-

ment holds.

The above shows that x(lui) ≤ x(ui) for i > 1. If i = 1, x(lui) ≤ x(ui−1) also holds, for

x(lui) = −∞. This proves that x(lui) ≤ x(ui) for any 1 ≤ i ≤ t. By a symmetric analysis,

we can show that x(ui) ≤ x(rui) for any 1 ≤ i ≤ t. This proves the third lemma statement.

The fourth lemma statement is an immediate consequence of the third lemma state-

ment.

2.3.2 Processing insertions

We are now in a position to describe our algorithm for processing insertions.

Consider inserting a point u∗ ∈ U \ U ′ into U ′. As u∗ ∈ U , u∗ is below ℓ. Let

U ′′ = U ′∪{u∗}. Our goal is to construct VDh(U
′′) by modifying VDh(U

′), or more precisely,

obtain the tree T (U ′′) by modifying T (U ′). For differentiation, for each vertex u ∈ U ′′, we

18

ui
ui−1 ui+1

`

Rh(u
i, U ′)

Bh(u
i−1, ui) Bh(u

i, ui+1)

p∗

u∗

Bh(u
i, u∗) Bh(u

∗, ui+1)

Fig. 2.4: Illustrating VDh(U
′), and VDh(U

′′) after u∗ is inserted. The two dash dotted blue
segments are new half-lines in VDh(U

′′) while Bh(u
i, ui+1) does not appear in VDh(U

′′).
Rh(u

i, U ′) is the grey area and Rh(u
∗, U ′′) is the region between the two dash dotted blue

segments. Note that Bh(u
i−1, ui) is lui = rui−1 and Bh(u

i, ui+1) is rui = lui+1 .

use R(u, U ′′) to denote the Voronoi cell of u in VD(U ′′) and use R(u, U ′) to denote the

Voronoi cell of u in VD(U ′). We define Rh(u, U
′′) and Rh(u, U

′) similarly. Let u1, u2, . . . , ut

be the list of relevant vertices of U ′ whose Voronoi cells intersect h ordered from left to

right.

We first compute the vertical projection of u∗ on ℓ and let p∗ denote the projection point

(e.g., see Fig. 2.4). Then, using the tree T (U ′), we find the cell Rh(u
i, U ′) of VDh(U

′) that

contains p∗, for some relevant point ui ∈ U ′. For ease of discussion, we assume 1 < i < t and

other cases can be handled similarly. The following lemma is obtained based on Lemma 2.1.

Lemma 2.2. Rh(u
∗, U ′′) ̸= ∅ if and only if d(p∗, ui) + w(ui) ≥ d(p∗, u∗) + w(u∗), and if

Rh(u
∗, U ′′) ̸= ∅, then p∗ ∈ Rh(u

∗, U ′′).

Proof. If Rh(u
∗, U ′′) ̸= ∅, then by Lemma 2.1, p∗ must be in Rh(u

∗, U ′′) and this implies

d(p∗, ui) + w(ui) ≥ d(p∗, u∗) + w(u∗) must hold. On the other hand, suppose d(p∗, ui) +

w(ui) ≥ d(p∗, u∗) + w(u∗). Then, since p∗ ∈ Rh(u
i, U ′), d(p∗, ui) + w(ui) ≤ d(p∗, u) + w(u)

holds for any vertex u ∈ U ′. Therefore, d(p∗, u) + w(u) ≥ d(p∗, u∗) + w(u∗) holds for any

u ∈ U ′′. This implies that u∗ is the nearest neighbor of p∗ in U ′′. As such, the point p∗

must be in Rh(u
∗, U ′′) and Rh(u

∗, U ′′) cannot be empty.

19

With Lemma 2.2, our insertion algorithm proceeds as follows. We check whether

d(p∗, ui) + w(ui) ≥ d(p∗, u∗) + w(u∗). If not, then Rh(u
∗, U ′′) = ∅ by Lemma 2.2 and thus

VDh(U
′′) = VDh(U

′); hence, T (U ′′) = T (U ′) and we are done with processing the insertion

of u∗. In the following, we assume that d(p∗, ui)+w(ui) ≥ d(p∗, u∗)+w(u∗). By Lemma 2.2,

Rh(u
∗, U ′′) ̸= ∅ and thus VDh(U

′′) ̸= VDh(U
′). Below we discuss how to modify VDh(U

′)

to obtain VDh(U
′′).

For each vertex u ∈ U ′, we still use lu and ru to denote the left and right bounding

vertical half-lines of Rh(u, U
′), respectively.

Since p∗ ∈ Rh(u
i, U ′), we have x(u∗) = x(p∗) ∈ [x(lui), x(rui)]. By Lemma 2.1,

x(ui−1) ≤ x(rui−1) = x(lui) and x(rui) = x(lui+1) ≤ x(ui+1). Therefore, x(p∗) ∈ [x(ui−1), x(ui+1)].

Also by Lemma 2.1, x(ui−1) < x(ui) < x(ui+1). Without loss of generality, we assume that

x(ui) ≤ x(p∗) < x(ui+1). We first discuss how to obtain the portion of VDh(U
′′) to the left

of p∗. To this end, we consider the points ui, ui−1, . . . , u1 in this order.

First, for ui, we compute the bisector B(ui, u∗) of ui and u∗. Depending on whether

Bh(u
i, u∗) = B(ui, u∗) ∩ h is ∅, there are two cases.

• If Bh(u
i, u∗) ̸= ∅, then Bh(u

i, u∗) is a vertical half-line grounded on ℓ. Since x(ui) ≤

x(u∗), according to the properties of bisectors, x(ui) ≤ x(Bh(u
i, u∗)) ≤ x(u∗). As

x(lui) ≤ x(ui) and x(u∗) ≤ x(rui), Bh(u
i, u∗) must be in the Voronoi cell Rh(u

i, U ′)

between lui and p∗ (e.g., see Fig. 2.4). Hence, Bh(u
i, u∗) must be the right bounding

half-line of the cell Rh(u
i, U ′′) in VDh(U

′′) as well as the left bounding half-line of

the cell Rh(u
∗, U ′′). We update the tree T (U ′) accordingly (i.e., insert Bh(u

i, u∗) to

T (U ′)) and then halt the algorithm (i.e., the construction of VDh(U
′′) on the left of

p∗ is finished).

• If Bh(u
i, u∗) = ∅, then by our definition of bisectors (including our way for handling

the degenerating case), since d(p∗, ui) +w(ui) ≥ d(p∗, u∗) +w(u∗), d(p, ui) +w(ui) ≥

d(p, u∗) + w(u∗) holds for any point p ∈ h. This implies that ui is dominated by u∗

with respect to the points of h, and thus ui becomes irrelevant in VDh(U
′′). As such,

we remove lui from T (U ′). Note that lui is rui−1 by Lemma 2.2.

20

Next, we consider ui−1 in a way similar to the above for ui. If Bh(u
i−1, u∗) ̸= ∅,

then Bh(u
i−1, u∗) becomes the right bounding half-line of the cell Rh(u

i−1, U ′′) in

VDh(U
′′) as well as the left bounding half-line of Rh(u

∗, U ′′). We insert Bh(u
i−1, u∗)

into T (U ′) and halt the algorithm. If Bh(u
i−1, u∗) = ∅, then since p∗ ∈ Rh(u

∗, U ′′) by

Lemma 2.2, d(p∗, ui−1) + w(ui−1) ≥ d(p∗, u∗) + w(u∗). Further, by our definition of

bisectors (including our way for handling the degenerating case), d(p, ui−1)+w(ui−1) ≥

d(p, u∗)+w(u∗) holds for any point p ∈ h. Therefore, as above, ui−1 becomes irrelevant

in VDh(U
′′). Accordingly, we remove lui−1 from T (U ′). We then proceed to considering

ui−2 in the same way as above.

The above describes the algorithm for constructing VDh(U
′′) to the left of p∗. The

algorithm for constructing VDh(U
′′) to the right of p∗ is similar. One slight difference is

that the algorithm starts with considering ui+1 instead of ui by first removing rui from

T (U ′). Then, we compute the bisector B(u∗, ui+1). If Bh(u
∗, ui+1) ̸= ∅, then Bh(u

∗, ui+1)

becomes the right bounding half-line of Rh(u
∗, U ′′) as well as the left bounding half-line of

Rh(u
i+1, U ′′). We insert Bh(u

∗, ui+1) into T (U ′) and halt the algorithm. If Bh(u
∗, ui+1) = ∅,

then ui+1 becomes irrelevant and we proceed to considering ui+2 in the same way.

The above describes the algorithm for constructing VDh(U
′′) from VDh(U

′). The

resulting tree T (U ′) is T (U ′′). The following lemma summarizes the time complexity of the

insertion algorithm described above and proves the correctness of the algorithm.

Lemma 2.3. After a point u∗ ∈ U is inserted into U ′, VDh(U
′′) can be computed from

VDh(U
′) in O((δ + 1) log k) time, where U ′′ = U ′ ∪ {u∗} and δ is the number of relevant

vertices of VDh(U
′) that become irrelevant in VDh(U

′′).

Proof. The runtime of the insertion algorithm is obvious from our algorithm description.

In the following, we prove the correctness of the algorithm.

If d(p∗, ui) + w(ui) < d(p∗, u∗) + w(u∗), then VDh(U
′′) = VDh(U

′) by Lemma 2.2 and

thus our algorithm is correct in this case. In the following, we assume that d(p∗, ui)+w(ui) ≥

d(p∗, u∗) + w(u∗) and prove that the diagram VDh(U
′′) constructed by our algorithm is

correct.

21

u′′uj = u u∗

`

Rh(u, U
′′)

· · · · · · · · ·

Bh(u
′′, u∗)

Rh(u
∗, U ′′)

p
Rh(u

′′, U ′′)

Fig. 2.5: Illustrating the proof of Lemma 2.3 for the case where u is not adjacent to u∗ in
L.

Let p be any point in h and let u be the point of U ′′ such that p is in the cell of u after

our insertion algorithm for u∗ is finished, i.e., p ∈ Rh(u, U
′′). To prove the correctness of

our algorithm, it suffices to show that d(p, u)+w(u) ≤ d(p, u′)+w(u′) holds for every point

u′ ∈ U ′′. Depending on whether u = u∗, there are two cases. Let uj be the point of U ′ such

that p ∈ Rh(u
j , U ′).

• We first consider the case u = u∗. As p ∈ Rh(u
j , U ′), d(p, uj)+w(uj) ≤ d(p, u′)+w(u′)

holds for any u′ ∈ U ′. As p is in the cell of u∗ after the insertion algorithm finishes,

according to our algorithm, d(p, u∗) +w(u∗) ≤ d(p, uj) +w(uj) must hold. Since u =

u∗, we obtain that d(p, u)+w(u) = d(p, u∗)+w(u∗) ≤ d(p, uj)+w(uj) ≤ d(p, u′)+w(u′)

holds for any u′ ∈ U ′′.

• We then consider the case u ̸= u∗. In this case, according to our algorithm, u must

be uj and u and u∗ define different cells in VDh(U
′′), i.e., Rh(u, U

′′) ̸= Rh(u
∗, U ′′).

Without loss of generality, we assume that Rh(u, U
′′) is to the left of Rh(u

∗, U ′′).

Depending on whether u is adjacent to u∗ in the relevant point list L after the insertion

algorithm (L is defined in the same way as Lemma 2.1 with respect to VDh(U
′′)), there

are two subcases.

If u is adjacent to u∗ in L, then since p is in the cell of u after the insertion algorithm,

it holds that d(p, u) + w(u) ≤ d(p, u∗) + w(u∗). Since u = uj and d(p, uj) + w(uj) ≤

22

d(p, u′)+w(u′) holds for any u′ ∈ U ′, we obtain that d(p, u)+w(u) ≤ d(p, u′)+w(u′)

holds for any u′ ∈ U ′′.

If u is not adjacent to u∗ in L, then let u′′ be the left neighboring relevant point

of u∗ in L (e.g., see Fig 2.5). Since Rh(u, U
′′) is to the left of Rh(u

∗, U ′′) and p ∈

Rh(u, U
′′), p must be to the left of Bh(u

′′, u∗), which is the right bounding half-line

of Rh(u
′′, U ′′). As u′′ is the left neighboring relevant point of u∗ in L, according to

our insertion algorithm, d(p′, u′′) + w(u′′) ≤ d(p′, u∗) + w(u∗) for any point p′ ∈ h to

the left of Bh(u
′′, u∗). Because p is in h to the left of Bh(u

′′, u∗), d(p, u′′) + w(u′′) ≤

d(p, u∗)+w(u∗) holds. As d(p, uj)+w(uj) ≤ d(p, u′)+w(u′) for any u′ ∈ U ′, we have

d(p, uj)+w(uj) ≤ d(p, u′′)+w(u′′). We thus derive d(p, uj)+w(uj) ≤ d(p, u∗)+w(u∗).

Since u = uj , we obtain that d(p, u) + w(u) ≤ d(p, u′) + w(u′) for any u′ ∈ U ′′.

In summary, d(p, u) + w(u) ≤ d(p, u′) + w(u′) holds for every point u′ ∈ U ′′. This

proves the correctness of our algorithm.

Note that once a relevant point becomes irrelevant after an insertion, it will never be-

come relevant again for any insertions in future. Therefore, the total sum of δ in Lemma 2.3

for processing all insertions of U is at most k. As such, by Lemma 2.3, the total time for

processing all insertions is O(k log k).

Recall that all query operations can be performed in overall O(k log k) time by using

the tree T (U ′). Note that the space of our algorithm is bounded by O(k). Therefore, we

obtain the following result.

Lemma 2.4. The bottleneck subproblem on U and V can be solved in O(k log k) time and

O(k) space, where k = |U |+ |V |.

23

CHAPTER 3

REVERSE SHORTEST PATH PROBLEM FOR UNIT-DISK GRAPHS

3.1 Introduction

We consider the reverse shortest path (RSP) problem for L2 unit-disk graphs in both

unweighted and weighted cases. The results in this chapter have been published in two

conferences [17, 18] and one journal [19]. In particular, the paper [18] received the Best

Student Paper Award from the conference.

3.1.1 Problem definitions and our results

Given a set P of n points in the plane and a parameter r, the unit-disk graph Gr(P) is

an undirected graph whose vertex set is P such that an edge connects two points p, q ∈ P

if the (Euclidean) distance between p and q is at most r. The weight of each edge of Gr(P)

is defined to be one in the unweighted case and is defined to be the distance between the

two vertices of the edge in the weighted case. Alternatively, Gr(P) can be viewed as the

intersection graph of the set of congruent disks centered at the points of P with radii equal

to r/2, i.e., two vertices are connected if their disks intersect. The length of a path in Gr(P)

is the sum of the weights of the edges of the path.

Computing shortest paths in unit-disk graphs with different distance metrics and dif-

ferent weights assigning methods has been extensively studied, e.g., [1,6–10,13]. Although a

unit-disk graph may have Ω(n2) edges, geometric properties allow to solve the single-source-

shortest-path problem (SSSP) in sub-quadratic time. Roditty and Segal [10] first proposed

an algorithm of O(n4/3+ϵ) time for unit-disk graphs for both unweighted and weighted

cases, for any ϵ > 0. Cabello and Jejčič [6] gave an algorithm of O(n log n) time for the

unweighted case. Using a dynamic data structure for bichromatic closest pairs [46], they

also solved the weighted case in O(n1+ϵ) time [6]. Chan and Skrepetos [13] gave an O(n)

24

time algorithm for the unweighted case, assuming that all points of P are presorted. Kaplan

et al. [9] and Liu [47] developed new randomized results for the dynamic bichromatic closest

pair problem; in particular, applying the result of Liu [47] to the algorithm of [6] leads to

an O(n log9+o(1) n) expected time randomized algorithm for the weighted case. Recently,

Wang and Xue [1] proposed a new algorithm that solves the weighted case in O(n log2 n)

time. Some approximation algorithms for the problem have also been developed [1, 7, 8].

The L1 version of the SSSP problem has also been studied, where the distance of two

points in the plane is measured under the L1 metric when defining Gr(P). Note that in

the L1 version a “disk” is a diamond. The SSSP algorithms of [6,13] for the L2 unweighted

version can be easily adapted to the L1 unweighted version. Wang and Zhao [14] recently

solved the L1 weighted case in O(n log n) time. It is known that Ω(n log n) is a lower bound

for the SSSP problem in both L1 and L2 versions [6,14]. Hence, the SSSP problem in the L1

weighted/unweighted case as well as in the L2 unweighted case has been solved optimally.

In this chapter, we consider the following reverse shortest path (RSP) problem. In

addition to P , given a value λ > 0 and two points s, t ∈ P , the problem is to compute the

smallest value r such that the distance between s and t in Gr(P) is at most λ. There are

four cases for the RSP problem depending on whether L1 or L2 metric is considered and

whether the unit-disk graphs are weighted or not. Throughout the chapter, we let r∗ denote

the optimal value r for any case. The goal is therefore to compute r∗.

Observe that r∗ must be equal to the distance of two points in P in any case (i.e., L1,

L2, weighted, unweighted). In light of this observation, Cabello and Jejčič [6] mentioned a

straightforward solution that can compute r∗ in O(n4/3 log3 n) time for both the unweighted

and the weighted cases in the L2 metric, by using the distance selection algorithm of Katz

and Sharir [30] to perform binary search on all interpoint distances of P . In this chapter,

we give two algorithms for the L2 unweighted case and their time complexities are O(⌊λ⌋ ·

n log n) and O(n5/4 log7/4 n), respectively; we also give an algorithm of O(n5/4 log5/2 n) time

for the L2 weighted case.

The L1 distance selection problem in the plane can be solved in O(n log2 n) time [16].

25

Therefore, one can perform a binary search in the set of all pairwise L1 distances among

n points of P using the algorithm in [16] as well as the corresponding decision algorithm

(i.e., the L1 SSSP algorithm) to solve the L1 RSP problem for both the unweighted and

weighted cases in O(n log3 n) time. Note that the time complexity is dominated by the L1

distance selection algorithm. We focus on the L2 RSP problem in this chapter.

Since the original reporting of our results,1 some exciting progress has been made by

Katz and Sharir [40], who proposed randomized algorithms of O(n6/5+ϵ) expected time for

the L2 RSP problem for both the unweighted and weighted cases, for any arbitrarily small

ϵ > 0. Note that all our results are deterministic.

Note that reverse/inverse shortest path problems have been studied in the literature

under various problem settings. Roughly speaking, the problems are to modify the graph

(e.g., modify some edge weights) so that certain desired constraints related to shortest paths

in the graph can be satisfied, e.g., [48, 49]. Our reverse shortest path problem in unit-disk

graphs may find applications in scenarios like the following. Consider Gr(P) as an L2 unit-

disk intersection graph representing a wireless sensor network in which each disk represents a

sensor and two sensors can communicate with each other (e.g., directly transmit a message)

if there is an edge connecting them in Gr(P). The disk radius is proportional to the energy

of the sensor. For two specific sensors s and t, suppose we want to know the minimum

energy for all sensors so that s and t can transmit messages to each other within λ steps

for a given value λ. It is easy to see that this is equivalent to our L2 RSP problem in the

unweighted case. If the latency of transmitting a message between two neighboring sensors

is proportional to their Euclidean distance and we want to know the minimum energy for

all sensors so that the total latency of transmitting messages between s and t is no more

than a target value λ, then the problem becomes the weighted case.

In addition to the shortest path problem, many other problems of unit-disk graphs have

also been studied, i.e. clique [11], independent set [12], distance oracle [7,8], diameter [7,8,
1Our algorithms for the L2 unweighted case were included in [17]; our results for the L2 weighted case

have been presented in the 29th Fall Workshop on Computational Geometry (FWCG 2021) and has also
been accepted in [18]. Note that the second algorithm for the L2 unweighted case runs in O(n5/4 log2 n)
time in [17]; in this full version, we slightly improve the time to O(n5/4 log7/4 n) by changing the threshold
for defining large cells from n3/4 to (n/ log n)3/4 in Section 3.4.

26

13], etc. Comparing to general graphs, many problems can be solved efficiently in unit-disk

graphs by exploiting their underlying geometric structures, although there are still problems

that are NP-hard for unit-disk graphs and other geometric intersection graphs, e.g., [11,50].

3.1.2 Our approach

We present RSP algorithms for unit-disk graphs in the L2 metric.

As the length of any path in Gr(P) is an integer in the unweighted case, the length of a

path of Gr(P) is at most λ if and only if the length of the path is at most ⌊λ⌋; therefore, we

can replace λ in the unweighted problem by ⌊λ⌋. In the following, we simply assume that λ

is an integer in the unweighted case. Recall that our goal is to compute r∗, which must be

equal to the distance of two points in P in both the unweighted and weighted cases. Given

a value r, the decision problem is to decide whether r ≥ r∗. It is not difficult to see that

r ≥ r∗ if and only if the distance of s and t in Gr(P) is at most λ. Therefore, the decision

problem can be solved efficiently by using the shortest path algorithm for the corresponding

case [6, 13]. More specifically, with O(n log n)-time preprocessing (to sort the points of P),

given any r, whether r ≥ r∗ can be decided in O(n) time for the unweighted unit-disk

graphs by the algorithm of Chan and Skrepetos [13]. For the weighted case, the decision

problem can be solved in O(n log2 n) time by Wang and Xue’s shortest path algorithm [1].

Since r∗ must be equal to the distance of two points of P , we can find r∗ by doing

binary search on the set of pairwise distances of all points of P . Given any 1 ≤ k ≤
(
n
2

)
, the

distance selection algorithm of Katz and Sharir [30] can compute the k-th smallest distance

among all pairs of points of P in O(n4/3 log2 n) time. Using this algorithm, the binary

search can find r∗ in O(n4/3 log3 n) time for both the unweighted and weighted cases. This

is the algorithm mentioned in [6].

Our RSP algorithms are based on parametric search [51, 52], by parameterizing the

decision algorithm of Chan and Skrepetos [13] (which we refer to as the CS algorithm)

in the unweighted case, and parameterizing the decision algorithm of Wang and Xue [1]

(which we refer to as the WX algorithm) in the weighted case. Below is an overview on our

algorithms.

27

The unweighted case. The CS algorithm first builds a grid in the plane and then runs the

breadth-first-search (BFS) algorithm with the help of the grid; in the i-th step of the BFS,

the algorithm finds the set of points of P whose distances from s in Gr(P) are equal to i.

Although we do not know r∗, we run the CS algorithm on a parameter r in an interval (r1, r2]

such that each step of the algorithm behaves the same as the CS algorithm running on r∗.

The algorithm terminates after t is reached, which will happen within λ steps. In each step,

we use the CS algorithm to compare r∗ with certain critical values, and the interval (r1, r2]

will be shrunk based on the results of these comparisons. Once the algorithm terminates, r∗

is equal to r2 of the current interval (r1, r2]. With the linear-time decision algorithm (i.e.,

the CS algorithm [13]), each step runs in O(n log n) time. The total time of the algorithm

is O(λ · n log n).

The above algorithm is only interesting when λ is relatively small. In the worst case,

however, λ can be Θ(n), which would make the running time become O(n2 log n). Next,

by combining the strategies of the parametric search and the L2 distance selection algo-

rithm [30], we derive a better algorithm. The main idea is to partition the cells of the grid

in the CS algorithm into two types: large cells, which contain at least (n/ log n)3/4 points

of P each, and small cells otherwise. For small cells, we process them using the above

binary search algorithm with the L2 distance selection algorithm [30]; for large cells, we

process them using the above parametric search techniques. This works out due to the fol-

lowing observation. On the one hand, the number of large cells is relatively small (at most

O(n1/4 log3/4 n)) and thus the number of steps using the parametric search is also small. On

the other hand, each small cell contains relatively few points of P (at most O((n/ log n)3/4))

and thus the total time we spend on the L2 distance selection algorithm is not big. The

threshold value (n/ log n)3/4 is carefully chosen so that the total time for processing the

two types of cells is minimized. In addition, instead of applying the L2 distance selection

algorithm [30] directly, we find that it suffices to use only a subroutine of that algorithm,

which not only simplifies the algorithm but also reduces the total time by a logarithmic

factor. All these efforts lead to an O(n5/4 log7/4 n) time algorithm to compute r∗.

28

The weighted case. Our algorithm for the L2 weighted case also follows the parametric

search scheme, by parameterizing the WX algorithm [1] instead. Like the unweighted case,

we run the decision algorithm (i.e., the WX algorithm) with a parameter r ∈ (r1, r2] by

simulating the decision algorithm on the unknown r∗. At each step of the algorithm, we call

the decision algorithm on certain critical values r to compare r and r∗, and the algorithm

will proceed accordingly based on the result of the comparison. The interval (r1, r2] will

also be shrunk after these comparisons but is guaranteed to contain r∗ throughout the

algorithm. The algorithm terminates once the point t is reached, at which moment we can

prove that r∗ is equal to r2 of the current interval (r1, r2]. The parametric search algorithm

runs in Ω(n2) time because t may be reached after Θ(n) steps. To further reduce the time,

similarly to the L2 unweighted case, we combine the strategies of the parametric search and

the L2 distance selection techniques [30]. The cells of the grid built in the algorithm are

partitioned into large and small cells, but with a different threshold of n3/4 log3/2 n. With

this approach, the runtime of the algorithm can be bounded by O(n5/4 log5/2 n).

Outline. The rest of the chapter is organized as follows. Section 3.2 defines notation and

reviews the CS algorithm. Our first algorithm for the unweighted case is presented in

Section 3.3 while the second one is described in Section 3.4. Section 3.5 solves the weighted

RSP problem. Section 3.6 concludes with remarks showing that our techniques can be

readily extended to solve a more general “single-source” version of the RSP problem.

3.2 Preliminaries

Throughout the chapter, we will use “points of P” and “vertices of the graph Gr(P)”

interchangeably. For any parameter r, let dr(p, q) denote the distance of two vertices p and

q in Gr(P). It is easy to see that dr(p, q) ≤ dr′(p, q) if r ≥ r′.

For any two points p and q in the plane, let ∥p − q∥ denote their Euclidean distance.

For any subset P ′ of P and any region R in the plane, we use P ′(R) or P ′ ∩ R to refer to

the subset of points P ′ contained in R. For any point p, let x(p) and y(p) denote its x- and

y-coordinates, respectively.

29

C

Fig. 3.1: The grey cells are all neighbor cells of C.

We next review the CS algorithm [13], which will help understand our RSP algorithms

given later. Suppose we have a sorted list of P by x-coordinate and another sorted list of

P by y-coordinate. Given a parameter r and a source point s ∈ P , the CS algorithm can

compute in O(n) time the distances from s to all other points of P in Gr(P).

The first step is to compute a grid Ψr(P) of square cells whose side lengths are r/
√
2.

The grid technique was widely used in algorithms for unit-disk graphs [1, 13, 21]. A cell C ′

of Ψr(P) is a neighbor of another cell C if the minimum distance between a point of C and

a point of C ′ is at most r. Note that the number of neighbors of each cell of Ψr(P) is O(1)

(e.g., see Fig. 3.1) and the distance between any two points in each cell is at most r.

Next, starting from the point s, the algorithm runs BFS in Gr(P) with the help of the

grid Ψr(P). Define Si as the subset of points of P whose distances in Gr(P) from s are

equal to i. Initially, S0 = {s}. Given Si−1, the i-th step of the BFS is to compute Si by

using Si−1 and the grid Ψr(P), as follows. If a point p is not in
∪i−1

j=0 Sj , we say that p

has not been discovered yet. For each cell C that contains at least one point of Si−1, we

need to find points that are not discovered yet and at distances at most r from the points

of Si−1 ∩ C (i.e., the points of Si−1 in C); clearly, these points are either in C or in the

neighbor cells of C. For points of P (C), since every two points of C are within distance r

from each other, we add all points of P (C) that have not been discovered to Si. For each

neighbor cell C ′ of C, we need to solve the following subproblem: find the points of P (C ′)

that are not discovered yet and within distance at most r from the points of Si−1∩C. Since

C ′ and C are separated by either a vertical line or a horizontal line, we essentially have the

30

following subproblem.

Subproblem 3.1. Given a set of nr red points below a horizontal line ℓ and a set of nb

blue points above ℓ, both sorted by x-coordinate, determine for each blue point whether there

is a red point at distance at most r from it.

The subproblem can be solved in O(nr +nb) time as follows. For each red point p, the

circle of radius r centered at p has at most one arc above ℓ (we say that this arc is defined

by p). Let Γ be the set of these arcs defined by all red points. Since all arcs of Γ have the

same radius and all red points are below ℓ, every two arcs intersect at most once and the

arcs above ℓ are x-monotone. Further, as all red points are sorted already by x-coordinate,

the upper envelope of Γ, denoted by U , can be computed in O(nr) time by an algorithm

similar in spirit to Graham’s scan. Then, it suffices to determine whether each blue point is

below U , which can be done in O(nr + nb) time by a linear scan. More specifically, we can

first sort the vertices of U and all blue points. After that, for each blue point p, we know

the arc of U that spans p (i.e., x(p) is between the x-coordinates of the two endpoints of

the arc), and thus we only need to check whether p is below the arc. In summary, solving

the subproblem involves three subroutines: (1) compute U ; (2) sort all vertices of U with

all blue points; (3) for each blue point p, determine whether it is below the arc of U that

spans p.

The above computes the set Si. Note that if Si = ∅, then we can stop the algorithm

because all points of P that can be reached from s in Gr(P) have been computed. For the

running time, notice that points of P in each cell of the grid Ψr(P) can be involved in at

most two steps of the BFS. Further, since each grid cell has O(1) neighbors, the total time

of the BFS algorithm is O(n).

In order to achieve O(n) time for the overall algorithm, the grid Ψr(P) must be im-

plicitly constructed. The CS algorithm [13] does not provide any details about that. There

are various ways to do so. Below we present our method, which will facilitate our algorithm

in the next section.

31

The grid Ψr(P) we are going to build is a rectangle that is partitioned into square

cells of side lengths r/
√
2 by O(n) horizontal and vertical lines. These partition lines will

be explicitly computed. Let P ′ be the subset of points of P located in Ψr(P). P ′ has the

following property: for each p ∈ P \ P ′, p cannot be reached from s in Gr(P), i.e., the

distances from s to the points of P \ P ′ in Gr(P) are infinite. Let C denote the set of cells

of Ψr(P) that contain at least one point of P . For each cell C ∈ C, let N(C) denote the

set of neighbors of C in C. The information computed in the following lemma suffices for

implementing the above BFS algorithm in linear time.

Lemma 3.1. Suppose we have a sorted list of P by x-coordinate and another sorted list of

P by y-coordinate. Both P ′ and C, along with all vertical and horizontal partition lines of

Ψr(P), can be computed in O(n) time. Further, with O(n) time preprocessing, the following

can be achieved:

1. Given any point p ∈ P ′, the cell of C that contains p can be obtained in O(1) time.

2. Given any cell C ∈ C, the neighbor set N(C) can be obtained in O(|N(C)|) time.

3. Given any cell C ∈ C, the subset P (C) of P can be obtained in O(|P (C)|) time.

Proof. Let P1 be the subset of P to the right of s including s. Let s = p1, p2, . . . , pm be

the list of P1 sorted from left to right, with m = |P1|. As the points of P are given in

sorted order, we can obtain the above sorted list in O(n) time. During the algorithm, we

will compute a subset Q ⊆ P . Initially, we set Q = ∅. After the algorithm finishes, we will

have P ′ = P \Q.

We find the smallest index i ∈ [1,m−1] such that x(pi+1)−x(pi) > r (let i = m if such

index does not exist). It is easy to see for any point pj with j ∈ [i+ 1,m], there is no path

from s to pj in Gr(P). We add all points pi+1, pi+2, . . . , pm to Q and let P ′
1 = {p1, . . . , pi}.

Hence, P ′
1 has the following property: x(pj+1) − x(pj) ≤ r for any two adjacent points pj

and pj+1 (see Fig. 3.2). Next, we compute the vertical partition lines of Ψr(P) to the right

of s. We first put a vertical line through s. Then, we keep adding a vertical line to the

right with horizontal distance r/
√
2 from the previous vertical line until the current vertical

32

p1 = s
p2

p3

p4
pi

pi+1

≤ r
≤ r

≤ r

......

> r

......
pm

P ′
1

Q

P1 = {p1, p2, ..., pm}

Fig. 3.2: P1 = {p1 = s, p2, ..., pm} includes all points of P to the right of s sorted from left
to right. i is the smallest index such that x(pi+1)−x(pi) > r. We have P ′

1 = {p1, p2, ..., pi}.
Points of {pi+1, pi+2, ..., pm} are added to the set Q since they can not be reached from s
in Gr(P).

line is to the right of pi. Due to the above property of P ′
1, the number of vertical lines thus

produced is at most 2m.

The above computes a set of vertical partition lines to the right of s by considering

the points of P1 from left to right. Let P2 = P \ P1; we also add s to P2. Symmetrically,

we compute a set of vertical partition lines to the left of s by considering the points of P2

from right to left (also starting from s). Analogously, the algorithm will compute a subset

P ′
2 of P2 and more points may be added to Q. Let Lv be the set of all these vertical lines

produced above for both P1 and P2. Lv is the set of vertical partition lines of our grid

Ψr(P). Clearly, |Lv| = O(n).

Similarly, by considering the points of P in the list sorted by y-coordinate, we can

compute a set Lh of horizontal partition lines of Ψr(P), with |Lh| = O(n). Also, more

points may be added to Q in the process.

Let Ψr(P) be the rectangle bounded by the rightmost and leftmost vertical lines of Lv

as well as the topmost and bottommost horizontal lines of Lh, along with the square cells

inside and partitioned by the lines of Lv ∪ Lh. Let P ′ = P \Q. By our definition of Q, for

each p ∈ Q, p cannot be reached from s in Gr(P), and P ′ is exactly the subset of points of

P located inside Ψr(P).

For each cell C of Ψr(P), we define its grid-coordinate as (i, j) if C is in the i-th row and

33

j-th column of Ψr(P); we say that i is the row-coordinate and j is the column-coordinate.

For each cell, we consider its grid-coordinate as its “ID”.

By scanning the points of P ′ and the vertical lines of Lv from left to right and then

scanning P ′ and the horizontal lines of Lh from top to bottom, we can compute in O(n) time

for each point of P ′ the (grid-coordinate of the) cell of Ψr(P) that contains it (to resolve

the boundary case, if a point p is on a vertical edge shared by two cells, then we assume p

is contained in the right cell only, and if p is on a horizontal edge shared by two cells, then

we assume p is contained in the top cell only). After that, given any point p ∈ P ′, the cell

of Ψr(P) that contains p can be obtained in O(1) time.

To compute the set C, we do the following. Initialize C = ∅. Then, for each point

p ∈ P ′, we add the cell that contains p into C. Note that C may be a multi-set. To remove

the duplicates, we first sort all cells of C by their grid-coordinates in lexicographical order

(i.e., compare row-coordinates first and then column-coordinates). This sorting can be done

in O(n) time by radix sort [53], because both the row-coordinate and the column-coordinate

of each cell are in the range [1, O(n)]. Now we can remove duplicates by simply scanning

the sorted list of all cells, and the resulting set is C. Also, during the scanning process,

we can obtain for each cell C of C the subset P (C) of points of P contained in C (each

occurrence of C in the sorted list corresponds to a point of P that is contained in C). All

these can be done in O(n) time. After that, given each cell C of C, we can output P (C) in

O(|P (C)|) time.

It remains to compute the neighbor set N(C) for each cell C ∈ C. This can be done

in O(n) time by scanning the above sorted list of C (after the duplicates are removed).

Indeed, notice that scanning the sorted list is equivalent to scanning the non-empty cells of

Ψr(P) row by row and from left to right in each row. Recall that the cells of N(C) are in

at most five rows of the grid (e.g., see Fig. 3.1): the row containing C, two rows above it,

and two rows below it; each such row contains at most fives cells of N(C). Based on this

observation, we scan the cells in the sorted list of C. For each cell C under consideration

during the scan, suppose its grid-coordinate is (i, j). During the scan, we maintain a cell

34

(i′, j′) ∈ C in each row i′ for i′ ∈ {i − 2, i − 1, i, i + 1, i + 2} such that j′ is closest to j,

i.e., |j′ − j| is minimized (e.g., for i′ = i, we have j′ = j). Using these cells, we can find

N(C) in O(1) time (indeed, for each row i′ ∈ {i− 2, i− 1, i, i+ 1, i+ 2}, the cells of N(C)

contained in row i′ are within five cells of (i′, j′) in the sorted list of C). The scan can be

implemented in O(n) time. After that, N(C) for all cells C ∈ C are computed. This proves

the lemma.

To make the description concise, in the following, whenever we say “compute the grid

Ψr(P)” we mean “compute the grid information of Lemma 3.1”; similarly, by “using the

grid Ψr(P)”, we mean “using the grid information computed by Lemma 3.1”.

3.3 The unweighted case – the first algorithm

In this section, we present our O(λ · n log n) time algorithm for the unweighted RSP

problem. Given λ and s, t ∈ P , our goal is to compute r∗, the optimal radius of the disks.

As discussed in Section 3.1.2, our algorithm uses parametric search [51,52]. But differ-

ent than the traditional parametric search where parallel algorithms are used, our decision

algorithm (i.e., the CS algorithm for the shortest path problem [13]) is inherently sequen-

tial. We will run the CS algorithm with a parameter r in an interval (r1, r2] by simulating

the algorithm on the unknown r∗; at each step of the algorithm, the decision algorithm will

be invoked on certain critical values r to compare r and r∗, and the algorithm will proceed

accordingly based on the results of the comparisons. The interval (r1, r2] always contains

r∗ and will keep shrinking during the algorithm (note that “shrinking” includes the case

that the interval does not change). Initially, we set r1 = 0 and r2 = ∞. Clearly, (r1, r2]

contains r∗.

Recall that the CS algorithm has two major steps: build the grid and then run BFS

with the help of the grid. Correspondingly, our algorithm also first builds a grid and then

runs BFS accordingly using the grid.

3.3.1 Building the grid

35

The first step is to build a grid Ψ(P). Our goal is to shrink (r1, r2] so that it contains

r∗ and if r∗ ̸= r2 (and thus r∗ ∈ (r1, r2)), then for any r ∈ (r1, r2), Ψr(P) has the same

combinatorial structure as Ψr∗(P), i.e., both grids have the same number of columns and

the same number of rows, and a point of P is in the cell of the i-th row and j-th column of

Ψr∗(P) if and only if it is also in the cell of the i-th row and j-th column of Ψr(P). To this

end, we have the following lemma.

Lemma 3.2. An interval (r1, r2] containing r∗ can be computed in O(n log n) time so that

if r∗ ̸= r2, then for any r ∈ (r1, r2), the grid Ψr(P) has the same combinatorial structure

as Ψr∗(P).

Proof. Let P1 be the subset of P to the right of s including s. Let s = p1, p2, . . . , pm be

the list of P1 sorted from left to right, with m = |P1|. Recall from the proof of Lemma 3.1

that Ψr∗(P) has at most 2m vertical partition lines to the right of s, and there is a vertical

partition line through s.

We first implicitly form a sorted matrix and then apply the sorted-matrix searching

techniques of Frederickson and Johnson [54–56] (specifically, see Theorem 2.1 in [54]) to

shrink (r1, r2]. Specifically, we define an m× 2m matrix M with

M [i, j] =
√
2 · x(pi)− x(p1)

j

for all 1 ≤ i ≤ m and 1 ≤ j ≤ 2m. It can be verified that M [i, j] ≥ M [i, j + 1] and

M [i+ 1, j] ≥ M [i, j] hold. Thus, M is a sorted matrix. Using the sorted-matrix searching

techniques [54–56] with the CS algorithm as the decision algorithm, we can compute in

O(n log n) time the largest value r′1 of M with r′1 < r∗ and the smallest value r′2 of M with

r∗ ≤ r′2. By definition, (r′1, r′2] contains r∗ and (r′1, r
′
2) does not contain any value of M . We

update r1 = max{r′1, r1} and r2 = min{r′2, r2}. Thus, the new interval (r1, r2] shrinks but

still contains r∗. As (r1, r2) ⊆ (r′1, r
′
2), (r1, r2) does not contain any value of M .

According to our algorithm of Lemma 3.1, there is always a vertical partition line

through s in Ψr(P) for any r. Let Ψ1
r(P) and Ψ2

r(P) refer to the half grids of Ψr(P) to the

36

p1 = s
p2

p3

p4

p5

p6

p7

p8

r∗√
2

r√
2

Fig. 3.3: The point p7 (the red point) is in
the 3rd column of Ψ1

r∗(P) while it is in the
4th column of Ψ1

r(P).

p1 = s

p

r∗√
2

r√
2

x(p)− x(p1)

Fig. 3.4: The rightmost line is ℓ when r′ = r∗.
When r′ decreases from r∗ to r, ℓ will move
leftwards and cross p.

right and left of s, respectively; assume that both half grids contain the vertical partition

line through s. We claim that if r∗ ̸= r2, then the following hold for any r ∈ (r1, r2): (1)

a point of P1 is in the j-th column of Ψ1
r∗(P) if and only if it is also in the j-th column of

Ψ1
r(P); (2) the number of columns of Ψ1

r∗(P) is equal to the number of columns of Ψ1
r(P).

We prove the claim below.

Suppose r∗ ̸= r2. Then, r∗ ∈ (r1, r2). Assume to the contrary that a point p of P1 is in

the j-th column of Ψ1
r∗(P) for some j ∈ [1, 2m], but p is not in the j-th column of Ψ1

r(P).

Then, p is either to the left or to the right of the j-th column of Ψ1
r(P). Without loss of

generality, we assume that p is to the right of the j-th column of Ψ1
r(P) (e.g., see Fig. 3.3).

This implies that r < r∗. Further, if we decrease a value r′ gradually from r∗ to r, then the

line ℓ will move monotonically leftwards and cross p at some moment, where ℓ is the (j+1)-

th vertical partition line of Ψ1
r′(P) (i.e., ℓ is the vertical bounding line of the j-th column

of Ψ1
r′(P)); e.g., see Fig. 3.4. This further implies that r/

√
2 < (x(p) − x(p1))/j < r∗/

√
2,

and thus, r <
√
2 · (x(p) − x(p1))/j < r∗. On the other hand, since both r and r∗ are in

(r1, r2), we obtain that
√
2 · (x(p) − x(p1))/j ∈ (r1, r2). Because the interval (r1, r2) does

not contain any values of M , we obtain a contradiction as
√
2 · (x(p) − x(p1))/j is a value

of M .

Assume to the contrary that a point p of P1 is in the j-th column of Ψ1
r(P) for some

j ∈ [1, 2m], but p is not in the j-th column of Ψ1
r∗(P). Then, by a similar analysis as above,

37

we can obtain a contradiction as well. This proves the first part of the claim.

The second part of the claim can actually be derived by the first part. Indeed, assume

to the contrary that the number of columns of Ψ1
r∗(P), denoted by mr∗ , is not equal to

the number of columns of Ψ1
r(P), denoted by mr. Without loss of generality, we assume

mr∗ < mr. By the algorithm of Lemma 3.1, P1 has a point p in the last column of Ψ1
r(P),

which is the mr-th column. In light of the first part of the claim, p is also in the mr-th

column of Ψ1
r∗(P). But this contradicts with that Ψ1

r∗(P) has only mr∗ < mr columns.

The claim is thus proved.

The above processes the subset P1 of P . Let P2 = P \P1; we add s to P2 as well. Next,

we use the same algorithm as above to process the points of P2 and obtain a smaller interval

(r1, r2] containing r∗ such that if r∗ ̸= r2, then the following hold for any r ∈ (r1, r2): (1)

a point of P2 is in the j-th column of Ψ2
r∗(P) if and only if it is also in the j-th column of

Ψ2
r(P); (2) the number of columns of Ψ2

r∗(P) is equal to the number of columns of Ψ2
r(P).

Combining the previous claim for P1, we obtain that the interval (r1, r2] contains r∗ and if

r∗ ̸= r2, then the following hold for any r ∈ (r1, r2): (1) a point of P is in the j-th column

of Ψr∗(P) if and only if it is also in the j-th column of Ψr(P); (2) the number of columns

of Ψr∗(P) is equal to the number of columns of Ψr(P).

The above processes the points of P horizontally. We then process them in a vertical

manner analogously and further shrink the interval (r1, r2] such that it still contains r∗ and

if r∗ ̸= r2, then the following hold for any r ∈ (r1, r2): (1) a point of P is in the i-th row of

Ψr∗(P) if and only if it is also in the i-th row of Ψr(P); (2) the number of rows of Ψr∗(P)

is equal to the number of rows of Ψr(P). As the interval (r1, r2] is shrunk after processing

P vertically, we obtain that if r∗ ̸= r2, then Ψr(P) has the same combinatorial structure as

Ψr∗(P) for any r ∈ (r1, r2). This proves the lemma.

Let (r1, r2] be the interval computed by Lemma 3.2. We pick any value r in (r1, r2)

and compute the grid Ψr(P), i.e., compute the grid information of Ψr(P) by Lemma 3.1.

By Lemma 3.2, these information is the same as that of Ψr∗(P) if r∗ ̸= r2. Below we will

use Ψ(P) to refer to the grid information computed above.

38

3.3.2 Running BFS

For a fixed parameter r, we use Si(r) to denote the set of points of P whose distances

from s is equal to i in Gr(P), which is computed in the i-th step of the BFS algorithm if

we run the CS algorithm with respect to r. Initially, we have S0(r) = {s}. In the following,

using the interval (r1, r2] obtained in Lemma 3.2, we run the BFS algorithm as in the CS

algorithm with a parameter r ∈ (r1, r2), by simulating the algorithm for r∗. The algorithm

maintains an invariant that the i-th step computes a subset Si ⊆ P and shrinks (r1, r2] so

that it contains r∗ and if r∗ ̸= r2 (and thus r∗ ∈ (r1, r2)), then Si = Si(r) = Si(r
∗) for any

r ∈ (r1, r2). Initially, we set S0 = {s} and thus the invariant holds as S0(r) = {s} for any

r. As will be seen later, the algorithm stops within λ steps and each step takes O(n log n)

time.

Consider the i-th step. Assume that we have Si−1 and (r1, r2], and the invariant holds,

i.e., (r1, r2] contains r∗ and if r∗ ̸= r2, then Si−1 = Si−1(r) = Si−1(r
∗) for any r ∈ (r1, r2).

Using the grid Ψ(P), we obtain the grid cells containing the points of Si−1. For each such

cell C, for points of P in C, we have the following observation.

Lemma 3.3. Suppose r∗ ̸= r2. Then, for each point p ∈ P (C) that has not been discovered

by the algorithm yet, i.e., p ̸∈
∪i−1

j=1 Sj, p is in Si(r) for all r ∈ (r1, r2).

Proof. Let q be a point of Si−1 in C. By our algorithm invariant, (r1, r2] contains r∗. Since

r∗ ̸= r2, r∗ ∈ (r1, r2). Let r be any value of (r1, r2). In light of Lemma 3.2, both p and q

are in the same cell of Ψr(P), and thus ∥p− q∥ ≤ r. By our algorithm invariant, Sj = Sj(r)

for all 0 ≤ j ≤ i− 1. Since p ̸∈
∪i−1

j=1 Sj , we have p ̸∈
∪i−1

j=1 Sj(r). Because q ∈ Si−1(r) and

∥p− q∥ ≤ r, we obtain that p ∈ Si(r).

Due to the preceding lemma, we add to Si the points of P (C) that have not been

discovered yet. Next, for each neighbor C ′ of C, we need to solve Subproblem 3.1; we use

I to denote the set of all instances of this subproblem in the i-th step of the BFS. Consider

one such instance. Recall that solving it for a fixed r involves three subroutines. First,

compute the upper envelope U of the arcs of Γ above ℓ of all red points. Second, sort all

vertices of U with all blue points. Third, for each blue point p, determine whether it is

39

h p1

p2

p3

(a) The upper envelope is com-
prised of three arcs centered at
p1, p2 and p3.

h p3

p2

p1

(b) The moment when the three
arcs have a common intersec-
tion, which is a vertex of the up-
per envelope.

h p3p2p1

(c) The middle arc centered at p2
disappears from the upper enve-
lope.

Fig. 3.5: The change of the combinatorial structure of the upper envelope U(r) (the red
solid arcs) as r increases.

below the arc of U that spans p. To solve our problem, we parameterize each subroutine

with a parameter r so that the behavior of the algorithm is consistent with that for r = r∗

if r∗ ̸= r2.

Computing the upper envelope

We use Γ(r) to denote the set of arcs above ℓ defined by the red points with respect to

the radius r; similarly, define U(r) as the upper envelope of Γ(r).

The goal of the first subroutine is to shrink the interval (r1, r2] such that it contains r∗

and if r∗ ̸= r2, then U(r∗) has the same combinatorial structure as U(r) for any r ∈ (r1, r2),

i.e., the set of red points that define the arcs on U(r) is exactly the set of red points that

define the arcs on U(r∗) with the same order. Note that the order of the arcs on U(r) is

consistent with the x-coordinate order of the red points defining these arcs [13].

To this end, we have the following observation. Consider U(r) for an arbitrary r. If r

changes, the combinatorial structure of U(r) does not change until one arc (e.g., defined by

a red point p2) disappears from U(r) (e.g., see Fig. 3.5). Let p1 and p3 be the red points

40

defining neighboring left and right arcs of the arc defined by p2 on U(r), respectively. Then,

at the moment when p2 disappears from U(r), the three arcs defined by p1, p2, and p3

intersect at a common point q, which is equidistant to the three points. Further, since q is

currently on U(r), there is no red point that is closer to q than pi for i = 1, 2, 3, and the

distance from q to each pi, i = 1, 2, 3, is equal to the current value of r. Hence, q is a vertex

of the Voronoi diagram of the red points. This implies that as r changes, the combinatorial

structure of U(r) does not change until possibly when r is equal to the distance ∥q − p∥,

where q is a vertex of the Voronoi diagram of all red points and p is a nearest red point of

q.

Based on the above observation, our algorithm works as follows. We build the Voronoi

diagram for all red points, which takes O(nr log nr) time [57, 58]. For each vertex v of the

diagram, we add ∥v − p∥ to the set Q (initially Q = ∅), where p is a nearest red point of

v (p is available from the diagram). Note that |Q| = O(nr), and we refer to each value of

Q as a critical value. Next, we sort Q, and then do binary search on Q using the decision

algorithm to find the smallest value r′2 of Q with r′2 ≥ r∗ as well as the largest value r′1 of Q

smaller than r∗, which can be done in O(n log nr) time (note that nr ≤ n). By definition,

(r′1, r
′
2] contains r∗ and (r′1, r

′
2) does not contain any value of Q. According to the above

observation, if r∗ ̸= r′2, then the combinatorial structure of U(r∗) is the same as that of

U(r) for any r ∈ (r′1, r
′
2).

We analyze the running time of this subroutine for all instances of I. Clearly, the total

time for all instances is bounded by O(|I| · n log n), which is O(n2 log n) as |I| = O(n). We

can reduce the time to O(n log n) by considering the critical values of all instances of I all

together. Specifically, let Q now be the set of critical values of all instances of I. Then,

|Q| = O(n). We sort Q and do binary search on Q to find r′1 and r′2 as defined above

with respect to the new Q. Now, for each instance of I, if r∗ ̸= r′2, then the combinatorial

structure of U(r∗) is the same as that of U(r) for any r ∈ (r′1, r
′
2). The total time for all

instances of I is now bounded by O(n log n). Finally, we update r1 = max{r1, r′1} and

r2 = min{r2, r′2}. As r∗ ∈ (r′1, r
′
2], the new interval (r1, r2] still contains r∗. Further, as

41

`

p1 p2

v

Fig. 3.6: Illustrating a vertex v of the upper
envelope, which is defined by two red points
p1 and p2. The red solid segment is the bi-
sector of p1 and p2.

`

p2

p1

q

v

Fig. 3.7: Illustrating the scenario where
x(q) = x(v), where v is on the bisector (the
red solid segment) of p1 and p2.

(r1, r2) ⊆ (r′1, r
′
2), for each instance of I, if r∗ ̸= r2, then the combinatorial structure of

U(r∗) is the same as that of U(r) for any r ∈ (r1, r2).

Sorting the upper envelope vertices and blue points

The goal of the second subroutine is to shrink the interval (r1, r2] such that it contains

r∗ and if r∗ ̸= r2, then the sorted list of all vertices of U(r∗) and all blue points by their

x-coordinates is the same as the sorted list of all vertices of U(r) and all blue points for any

r ∈ (r1, r2).

Recall that after the first subroutine, the interval (r1, r2] contains r∗, and if r∗ ̸= r2,

then the combinatorial structure of U(r∗) is the same as that of U(r) for any r ∈ (r1, r2).

To sort all vertices of U(r∗) and all blue points, we apply Cole’s parametric search [51]

with AKS sorting network [59], using the CS algorithm as the decision algorithm; the

running time is bounded by O(n log n) as the number of vertices of U(r∗) is O(nr) and the

number of blue points is O(nb) (and nr + nb = O(n)). To see why this works, it suffices

to argue that the “root” of each comparison involved in the sorting can be obtained in

O(1) time (more specifically, the root refers to the value of r ∈ (r1, r2) at which the two

operands involved in the comparison are equal). Indeed, the comparisons can be divided

into three types based on their operands: (1) a comparison between the x-coordinates of

two blue points; (2) a comparison between the x-coordinates of two vertices of U(r∗); (3) a

comparison between the x-coordinates of a blue point and a vertex of U(r∗). For the first

type, as blue points are fixed, independent of the parameter r, it is trivial to handle. For the

42

second type, as the combinatorial structure of U(r) does not change for all r ∈ (r1, r2), each

such comparison can be resolved by taking any value of r ∈ (r1, r2) and then comparing the

two vertices under r. The third type is a little more involved. Consider the comparison of

the x-coordinates of a blue point q and a vertex v of U(r∗). Note that v is the intersection

of arcs of two circles of radius r and centered at two red points, say p1 and p2, respectively.

Observe that v is on the bisector of p1 and p2 (e.g., see Fig. 3.6). Furthermore, when

r changes, v moves on the bisector of p1 and p2, while the position of the blue point q

does not change. Hence, the root of the comparison, i.e., the value r (if exists) in (r1, r2)

such that x(q) = x(v) can be obtained in constant time by elementary geometry (e.g., see

Fig. 3.7). Note that if such r does not exist in (r1, r2), then either x(q) < x(v) holds for

all r ∈ (r1, r2) or x(q) > x(v) holds for all r ∈ (r1, r2), which can be easily determined. As

such, with Cole’s parametric search [51] and the linear time decision algorithm (i.e., the CS

algorithm), we can obtain a sorted list of the upper envelope vertices and the blue points

by their x-coordinates; the algorithm shrinks the interval (r1, r2] so that the new interval

(r1, r2] contains r∗ and if r∗ ̸= r2, then the above sorted list is fixed for all r ∈ (r1, r2).

Since the running time of the above sorting algorithm is O(n log n), as before for the

first subroutine, the sorting for all problem instances of I takes O(n2 log n) time. To

reduce the time, as before, we sort all elements in all instances of I altogether, which takes

O(n log n) time in total. Specifically, in each problem instance, we need to sort a set of blue

points and vertices of upper envelopes of a set of red points. We put all blue points and

the upper envelopes of all red points of all problem instances of I in one coordinate system

and apply the sorting algorithm as above. One difference is that we now have a new type

of comparisons: compare the x-coordinate of a vertex v1 of the upper envelope from one

problem instance with the x-coordinate of a vertex v2 of the upper envelope from another

problem instance. In this case, when r changes, both v1 and v2 moves on the bisectors of

their defining red points. But we can still find in constant time a root r (if exists) in (r1, r2)

for the comparison by elementary geometry. As such, we can complete the sorting for all

problem instances of I in O(n log n) time in total, for the total number of all blue points

43

and red points in all problem instances of I is O(n). Again, the interval (r1, r2] will be

shrunk. This finishes the second subroutine.

Deciding whether each blue point is below the upper envelope

We now have an interval (r1, r2] containing r∗ such that if r∗ ̸= r2, then each blue point

q is spanned by an arc αq(r) of U(r) defined by the same red point for all r ∈ (r1, r2) (note

that the arc αq(r) moves as r changes, for r is the radius of the arc). Each blue point q is

below the upper envelope U(r) if and only if q is below the arc αq(r). The goal of the third

subroutine is to shrink the interval (r1, r2] so that the new interval (r1, r2] still contains r∗

and if r∗ ̸= r2, then for each blue point q, the relative position of q with respect to αq(r)

(i.e., whether q is above or below αq(r)) is fixed for all r ∈ (r1, r2). To this end, we proceed

as follows.

As r changes in (r1, r2), αq(r) changes while q does not. For each blue point q, we

compute in constant time a critical value r (if exists) in (r1, r2) such that q is on αq, and we

add r to the set Q (Q = ∅ initially). Note that if such value r does not exist in (r1, r2), then

either q is above αq(r) for all r ∈ (r1, r2) or q is below αq(r) for all r ∈ (r1, r2), which can be

easily determined. The size of Q is at most nb. Then, we sort Q, and do binary search on Q

with our decision algorithm to find the smallest value r′2 of Q with r′2 ≥ r∗ and the largest

value r′1 of Q with r′1 < r∗. We then update r1 = max{r1, r′1} and r2 = min{r2, r′2}. The

new interval (r1, r2] still contains r∗ and (r1, r2) does not contain any value of Q. Hence, if

r∗ ̸= r2, then for each blue point q, the relative position of q with respect to αq(r) is fixed

for all r ∈ (r1, r2). As such, the new interval (r1, r2] satisfies the goal of the third subroutine

as mentioned above.

Finally, we pick an arbitrary r ∈ (r1, r2), and for each blue point q, if q is below the

arc αq(r), then we add q to the set Si.

The running time of the above algorithm is O(n log nb). Thus the total time of the

third subroutine is O(n2 log n) for all problem instances of I. To reduce the time, we again

consider the subroutine of all instances of I altogether. More specifically, we put all critical

values r in all problem instances of I in Q. Thus, the size of Q is O(n). We then run the

44

same algorithm as above using the new set Q. The total time is bounded by O(n log n).

Terminating the algorithm

This finishes the i-th step of the BFS, which computes a set Si along with an interval

(r1, r2]. According to the above discussion, (r1, r2] contains r∗ and if r∗ ̸= r2 (and thus

r∗ ∈ (r1, r2)), then Si = Si(r
∗) = Si(r) for all r ∈ (r1, r2).

If the point t is in Si and i ≤ λ, then we stop the algorithm. In this case, we have the

following lemma.

Lemma 3.4. If t ∈ Si and i ≤ λ, then r∗ = r2.

Proof. Assume to the contrary that r∗ ̸= r2. Then, since r∗ ∈ (r1, r2], we have r∗ ∈ (r1, r2).

Let r′ = (r1 + r∗)/2. Clearly, r′ ∈ (r1, r2) and r′ < r∗. As r′ ∈ (r1, r2), Si = Si(r
′) by

our algorithm invariant. Since t ∈ Si(r
′), we obtain that dr′(s, t) = i ≤ λ. This leads to a

contradiction as r′ < r∗ and r∗ is the minimum value r with dr(s, t) ≤ λ.

If t ̸∈ Si and i = λ, then we also stop the algorithm. In this case, we have the following

lemma.

Lemma 3.5. If t ̸∈ Si and i = λ, then r∗ = r2.

Proof. Assume to the contrary that r∗ ̸= r2. Then, r∗ ∈ (r1, r2), for r∗ ∈ (r1, r2]. By our

algorithm invariant, Sj = Sj(r) for all r ∈ (r1, r2) and for all j ≤ i. Hence, Sj = Sj(r
∗) for

all j ≤ i. As t ̸∈ Si, according to our algorithm, t ̸∈
∪i

j=0 Sj . Therefore, t ̸∈
∪i

j=0 Sj(r
∗),

implying that dr∗(s, t) > i = λ. However, by the definition of r∗, dr∗(s, t) ≤ λ holds. We

thus obtain contradiction.

Since initially i = 0 and S0 = {s}, the above implies that the BFS algorithm will stop

in at most λ steps. As each step takes O(n log n) time, the value r∗ can be computed in

O(λ · n log n) time.

Theorem 3.1. The reverse shortest path problem for L2 unweighted unit-disk graphs can

be solved in O(⌊λ⌋ · n log n) time.

45

3.4 The unweighted case – the second algorithm

In this section, we present our second algorithm for the L2 unweighted RSP problem. As

discussed in Section 3.1.2, the main idea is to combine the strategies of the first unweighted

RSP algorithm in Section 3.3 and the naive binary search algorithm using the distance

selection algorithm [30].

First of all, we still build in O(n log n) time the grid Ψ(P) as in Section 3.3.1, and

thus the information of Lemma 3.2 is available for the grid. More specifically, we obtain

an interval (r1, r2] such that if r∗ ̸= r2, then the combinatorial data structure of Ψr(P) is

fixed for all r ∈ (r1, r2), implying that C, P ′, N(C) and P (C) for each C ∈ C are fixed for

all r ∈ (r1, r2). Next, we will run the BFS algorithm, but in a different way than before.

We partition the cells of C into large cells and small cells: a cell C is a large cell if

|P (C)| ≥ (n/ log n)3/4 and is a small cell otherwise. Thus the number of large cells is at

most n1/4 log3/4 n. For all pairs of cells (C,C ′) with C ∈ C and C ′ ∈ N(C), we call (C,C ′) a

small-cell pair if both C and C ′ are small cells and a large-cell pair otherwise (i.e., at least

one cell is a large cell). As |N(C)| = O(1) for each cell C and the number of large cells is

at most n1/4 log3/4 n, the total number of large-cell pairs is O(n1/4 log3/4 n).

Recall that each step of the BFS algorithm of our first algorithm in Section 3.3.2

boils down to solving instances of Subproblem 3.1, and each such instance involves a cell

pair (C,C ′) with C ∈ C and C ′ ∈ N(C). If (C,C ′) is a large-cell pair, we will run the

same algorithm as in Section 3.3.2. Otherwise, we will use the original CS algorithm to

solve it, which takes only linear time. For this, with the help of the L2 distance selection

algorithm [30], we preprocess all these small-cell pairs before starting the BFS algorithm

by the following lemma.

Lemma 3.6. An interval (r′1, r′2] containing r∗ can be computed in O(n5/4 log7/4 n) time

with the following property: if r∗ ̸= r′2, then for any r ∈ (r′1, r
′
2), for any small-cell pair

(C,C ′) with C ∈ C and C ′ ∈ N(C), an edge connects a point p ∈ P (C) and a point

p′ ∈ P (C ′) in Gr(P) if and only if an edge connects p and p′ in Gr∗(P).

46

Proof. Let Π denote the set of all small-cell pairs (C,C ′) with C ∈ C and C ′ ∈ N(C). We

use (Ci, C
′
i) to denote the i-th pair of Π; let Pi denote the set of points of P in the two

cells Ci and C ′
i, and let ni = |Pi|. Let m = |Π|. Note that m = O(n). By the definition of

small cells, we have ni ≤ 2 · (n/ log n)3/4. Since |N(C)| = O(1) for each cell C, it holds that∑m
i=1 ni = O(n). For each Pi, let Di denote the set of distances of all pairs of points of Pi.

Hence, |Di| = ni(ni − 1)/2. Define D =
∪m

i=1Di.

Let r′2 be the smallest value of D with r′2 ≥ r∗ and let r′1 be the largest value of D

smaller than r∗. By definition, (r′1, r′2] contains r∗ and the open interval (r′1, r′2) does not

contain any value of D and thus any value of Di for each i. Therefore, for any two points

p and p′ of Pi, either ∥p − p′∥ < r holds for all r ∈ (r′1, r
′
2) or ∥p − p′∥ > r holds for all

r ∈ (r′1, r
′
2). Thus, (r′1, r′2] satisfies the lemma statement. In the following, we only describe

the algorithm for finding r′2 since the algorithm for finding r′1 is similar.

For convenience, for any r, we say that r is feasible if r ≥ r∗ and infeasible otherwise.

Note that if r is a feasible value, then r′ is also feasible for any r′ > r; symmetrically, if r

is infeasible, then r′ is also infeasible for any r′ < r. Recall that given any r, we can decide

whether r ≥ r∗ in linear time using the decision algorithm (i.e., the CS algorithm).

For each Pi, we wish to do binary search on all distances of Di. However, doing

this on each Pi individually would be time-consuming. Instead, we do binary search for

all Pi’s all together in a “batched” way. Specifically, for each Pi, we use the L2 distance

selection algorithm [30] to compute the median distance of Di, denoted by di, which takes

O(n
4/3
i log2 ni) time. Then, we sort all these medians di’s, for all i = 1, 2, . . . ,m, and do

binary search on the sorted list using the decision algorithm. In O(n log n) time, we can

determine whether each di is feasible. Among all these medians, we keep the smallest

feasible value, denoted by d1. This finishes the first round of the algorithm.

In the second round, for each di, if it is feasible, then any value of Di larger than di is

also feasible; in this case, we compute the (|Di|/4)-th smallest value of Di, denoted by d′i.

If di is infeasible, then any value of Di smaller than di is also infeasible; in this case, we

compute the (3|Di|/4)-th smallest value of Di, denoted by d′i. Next, we determine whether

47

the values d′i are feasible for all 1 ≤ i ≤ m in the same way as above (i.e., doing binary

search using the decision algorithm); we keep the smallest feasible value, denoted by d2.

We then continue the next round in a similar way as above. After O(log n) rounds, the

values of all sets Di are processed and we obtain a set of O(log n) feasible values d1, d2, …;

among all these values, the smallest one is r′2.

For the time analysis, the algorithm has O(log n) rounds and each round takes O(n log n+∑m
i=1 n

4/3
i log2 ni) time. Since ni ≤ 2 ·(n/ log n)3/4 for each 1 ≤ i ≤ m, and

∑m
i=1 ni = O(n),

the sum
∑m

i=1 n
4/3
i achieves maximum when each ni is equal to 2 · (n/ log n)3/4 (and thus

m = O(n1/4 log3/4 n)). Hence,
∑m

i=1 n
4/3
i = O(n5/4/ log1/4 n). Therefore, each round of

the algorithm takes O(n5/4 log7/4 n) time, which is dominated by the L2 distance selection

algorithm [30]. The total time of the algorithm is thus O(n5/4 log11/4 n).

In what follows, we reduce the runtime of the algorithm by a logarithmic factor. The

new algorithm still has O(log n) rounds. The difference is that instead of applying the L2

distance selection algorithm [30] directly, we only use a subroutine of that algorithm. This

also simplifies the overall algorithm. To avoid the lengthy background discussion, we use

concepts from [30] without further explanation (refer to the initial version of the algorithm

in Section 4 [30] for the details).

Each round of our algorithm produces an interval Ij = (aj , bj] which contains r∗.

Initially, we set I0 = (0,∞]; we also add ∞ to D. Given an interval Ij−1 = (aj−1, bj−1] that

contains r∗ with bj−1 ∈ D, the j-th round of the algorithm produces an interval Ij = (aj , bj]

that also contains r∗ with bj ∈ D such that Ij ⊆ Ij−1 and the number of values of D

contained in Ij is only a constant fraction of the number of values of D contained in Ij−1.

Thus, after O(log n) rounds, we are left with a sufficiently small number of distances of D,

from which it is trivial to find r′2.

The j-th round of the algorithm works as follows. For each set Pi, we compute a

compact representation of all pairs of points of Pi whose distances lie in Ii−1, which can be

done in O(n
4/3
i log ni) time [30]. Such a compact representation is a collection of O(n

4/3
i)

complete bipartite graphs {Qk ×Wk}k, where both
∑

k |Qk| and
∑

k |Wk| are bounded by

48

O(n
4/3
i log ni). For each k, the distance between any point in Qk and any point of Wk is

in Ii−1. Next, we replace each complete bipartite graph Qk ×Wk by a set Ek of expander

graphs whose total number of edges is O(|Qk| + |Wk|). Then the total number of edges of

all sets of expander graphs {Ek}k is
∑

k O(|Qk| + |Wk|) = O(n
4/3
i log ni). Each edge of an

expander graph is associated with a distance of two points corresponding to the two nodes

of the graph it connects. Let Li denote the set of distances of all edges in all expander

graphs of {Ek}k; the size of Li is O(n
4/3
i log ni). Let L denote the union of all such Li’s.

Then, |L| =
∑m

i=1 n
4/3
i log ni, which is bounded by O(n5/4 log3/4 n) as discussed above. By

doing binary search with the decision algorithm on L, we can compute the smallest feasible

value bj and the largest infeasible value aj of L. Hence, (aj , bj] contains r∗ and (aj , bj)

does not contain any value of L. Note that when doing binary search on L, we do not need

to sort it first; instead we use the linear time selection algorithm [60]. As such, finding aj

and bj can be done in O(n5/4 log3/4 n) time, which is also the total time of this round. Let

Ij = (aj , bj]. The analysis of [30] shows that the total number of values of D in Ij is a

constant fraction of the total number of values of D in Ij−1.

As the algorithm has O(log n) rounds and each round runs in O(n5/4 log3/4 n) time,

the overall time of the algorithm is O(n5/4 log7/4 n).

With the interval (r′1, r′2] computed by the above lemma, we update r1 = max{r1, r′1}

and r2 = min{r2, r′2}. By definition, r∗ ∈ (r1, r2] ⊆ (r′1, r
′
2]. Hence, the interval (r1, r2] also

has the same property as (r′1, r
′
2] in Lemma 3.6.

Next, we run the BFS algorithm as in Section 3.3.2. To solve each instance of Subprob-

lem 3.1, if one of the two involved cells is a large cell (we refer to this case as the large-cell

instance), then we use the same algorithm as before, i.e., parametric search; otherwise (i.e.,

both involved cells are small cells; we refer to this case as small-cell instance), due to the

preprocessing of Lemma 3.6, we can solve the subproblem directly using the original CS

algorithm by picking an arbitrary value r ∈ (r1, r2). In this way, the time for solving all

small-cell instances in the entire BFS algorithm is O(n). For each large-cell instance, it

can be solved in O(n log n) time as discussed in Section 3.3.2. As the number of large cells

49

of C is at most n1/4 log3/4 n and |N(C)| = O(1) for each cell C ∈ C, the total number of

large-cell instances of Subproblem 3.1 is at most O(n1/4 log3/4 n). Hence, the total time for

solving the large-cell instances in the entire BFS algorithm is O(n5/4 log7/4 n). The proof

of the following lemma presents the details of the new BFS algorithm sketched above.

Lemma 3.7. The BFS algorithm, which computes r∗, can be implemented in O(n5/4 log7/4 n)

time.

Proof. We define Si and Si(r) in the same way as in Section 3.3.2. Initially, we set S0 = {s}.

Before the i-step starts, we have an interval (r1, r2]. Again, the algorithm maintains an

invariant that the i-th step shrinks (r1, r2] so that it contains r∗ and if r∗ ̸= r2, then

Si = Si(r
∗) = Si(r) for any r ∈ (r1, r2). Initially, the invariant trivially holds for S0.

Consider the i-th step. Assume that the invariant holds for Si−1, i.e., we have an

interval (r1, r2] containing r∗ such that if r∗ ̸= r2, then Si−1 = Si−1(r) = Si−1(r
∗) for any

r ∈ (r1, r2), and Si−1 is available to us. Using the grid information of Ψ(P), we obtain the

grid cells containing the points of Si−1. For each such cell C, as before in Section 3.3.2, we

add to Si the points of P ∩ C that have not been discovered yet. Then, for each neighbor

C ′ of C, we need to solve Subproblem 3.1; we use I to denote the set of instances of this

subproblem in this step.

Consider two cells C and C ′ involved in an instance of I. If one of them is a large

cell, then we run the same parametric search algorithm as in Section 3.3.2, i.e., the three

subroutines. As before, the time of the algorithm is bounded by O(n log n) and the algorithm

shrinks the interval (r1, r2] so that the algorithm invariant is maintained. Recall that in

Section 3.3.2 we solve all problem instances in each step of the BFS algorithm all together.

Here instead it suffices to solve each problem instance individually. As the number of large

cells is at most O(n1/4 log3/4 n), the total number of large-cell instances in the entire BFS

algorithm is O(n1/4 log3/4 n). Hence, the total time for solving the large-cell instances of

Subproblem 3.1 in the entire BFS is O(n5/4 log7/4 n).

We now consider the small-cell instance where both C and C ′ are small cells. Note

that in each instance of Subproblem 3.1, all red points are in one cell, say, C, and all blue

50

points are in the other cell C ′. Let PR be the set of red points in C and PB be the set of

blue points in C ′. According to Lemma 3.6, if r∗ ̸= r2 (and thus r∗ ∈ (r1, r2)), then for

any point p ∈ PR and any point p′ ∈ PB, either ∥p − p′∥ < r holds for all r ∈ (r1, r2) or

∥p− p′∥ > r holds for all r ∈ (r1, r2), implying that ∥p− p′∥ > r∗ if and only if ∥p− p′∥ > r

for any r ∈ (r1, r2). Therefore, we can solve the subproblem in the following way. We first

take any r ∈ (r1, r2). Then we run the CS algorithm to solve the subproblem with r as

the radius, which takes O(nr + nb) time. Note that the interval (r1, r2] will not be changed

in this case. Due to the preprocessing in Lemma 3.6, the algorithm invariant still holds

(i.e., (r1, r2] contains r∗ and if r∗ ̸= r2, then Si = Si(r
∗) = Si(r) for any r ∈ (r1, r2)). The

total time for solving the small-cell instances in the entire BFS is O(n) because as in the

CS algorithm each cell will be involved in at most O(1) instances of the subproblem in the

entire BFS algorithm.

After the i-th step, as before, we obtain the set Si and an interval (r1, r2] containing

r∗ such that if r∗ ̸= r2, then Si = Si(r
∗) = Si(r) for any r ∈ (r1, r2). If t ∈ Si and i ≤ λ,

then we can stop the algorithm; by Lemma 3.4, we have r∗ = r2. If t ̸∈ Si and i = λ, we

also stop the algorithm; by Lemma 3.5, we have r∗ = r2.

In summary, the overall time of the BFS algorithm is O(n5/4 log7/4 n).

Combining with the algorithm of Lemma 3.6, the overall time of the algorithm for

computing r∗ is O(n5/4 log7/4 n). We thus obtain the following theorem.

Theorem 3.2. The reverse shortest path problem for L2 unweighted unit-disk graphs can

be solved in O(n5/4 log7/4 n) time.

3.5 The weighted case

We follow the notation introduced in Section 3.1 and Section 3.2, e.g., P , Gr(P),

dr(s, t), and r∗, but now defined for weighted unit-disk graphs. Our goal is to compute r∗.

As discussed in Section 3.1.2, our algorithm utilizes parametric search by parameterizing

the WX algorithm [1]. We begin with a review of the WX algorithm.

51

p

Fig. 3.8: The red cell that contains the point p is □p and the square area bounded by blue
segments is the patch ⊞p. All adjacent vertices of p in Gr(P) must lie in the grey region.

3.5.1 A review of the WX algorithm

Given P , r, and a source point s ∈ P , the WX algorithm can compute shortest paths

from s to all points of P in the weighted unit-disk graph Gr(P), and the algorithm runs in

O(n log2 n) time.

For any point p in the plane, let
⊙

p denote the disk centered at p with radius r.

The first step is to implicitly build a grid Ψr(P) of square cells whose side lengths are

r/
√
2. For simplicity of discussion, we assume that every point of P lies in the interior of a

cell of Ψr(P). A patch of Ψr(P) refers to a square area consisting of 5× 5 cells. For a point

p ∈ P , we use □p to denote the cell of Ψr(P) containing p and use ⊞p to denote the patch

whose central cell is □p (e.g., see Fig. 3.8). We refer to cells of ⊞p \□p as the neighboring

cells of □p. As the side length of each cell of Ψr(P) is r/
√
2, any two points of P in a single

cell of Ψr(P) must be connected by an edge in Gr(P). Moreover, if an edge connects two

points p and q in Gr(P), then q must lie in ⊞p and vice versa. For any subset Q ⊆ P and

a cell □ (resp.,a patch ⊞) of Ψr(P), define Q□ = Q ∩ □ (resp., Q⊞ = Q ∩ ⊞). The step

of implicitly building the grid actually computes the subset P□ for each cell □ of Ψr(P)

that contains at least one point of P as well as associate pointers to each point p ∈ P so

that given any p ∈ P , the list of points of P□p (resp., P⊞p) can be accessed immediately.

Building Ψr(P) implicitly as above can be done in O(n log n) time, e.g., by the algorithm

of Lemma 3.1.

52

The WX algorithm follows the basic idea of Dijkstra’s algorithm and computes an

array dist[·] for each point p ∈ P , where dist[p] will be equal to dr(s, p) when the algorithm

terminates. Different from Dijkstra’s shortest path algorithm, which picks a single vertex

in each iteration to update the shortest path information of other adjacent vertices, the

WX algorithm aims to update in each iteration the shortest path information for all points

within one single cell of Ψr(P) and pass on the shortest path information to vertices lying

in the neighboring cells.

A key subroutine used in the WX algorithm is Update(U , V), which updates the

shortest path information for a subset V ⊆ P of points by using the shortest path informa-

tion of another subset U ⊆ P of points. Specifically, the subroutine finds, for each v ∈ V ,

qv = argminu∈U∩
⊙

v
{dist[u]+∥u−v∥} and update dist[v] = min{dist[v], dist[qv]+∥qv−v∥}.

With the subroutine Update(U , V) in hand, the WX algorithm works as follows (refer

to Algorithm 3.1 for the pseudocode).

Algorithm 3.1: The WX Algorithm [1]
1 Function WX(P , s):
2 for each p ∈ P do
3 dist[p] = ∞
4 end
5 dist[s] = 0
6 Q = P
7 while Q ̸= ∅ do
8 z = argminp∈Q{dist[p]}
9 Update(Q⊞z , Q□z) // first update

10 Update(Q□z , Q⊞z) // second update
11 Q = Q \Q□z

12 end
13 return dist[·]
14 end

Initially, we set dist[s] = 0, dist[p] = ∞ for all other points p ∈ P \ {s}, and Q = P .

Then we enter the main (while) loop. In each iteration, we find a point z with minimum

dist-value from Q, and then execute two update subroutines Update(Q⊞z , Q□z) and Up-

53

date(Q□z , Q⊞z). Next, points of Q□z are removed from Q, because it can be shown that

dist[p] for all points p ∈ Q□z have been correctly computed [1]. The algorithm stops once

Q becomes ∅.

The efficiency of the algorithm hinges on the implementation of the two update sub-

routines. We give some details below, which are needed in our RSP algorithm as well.

The first update

For the first update Update(Q⊞z , Q□z), the crucial step is finding a point qv ∈ Q⊞z ∩⊙
v for each point v ∈ Q□z such that dist[qv] + ∥qv − v∥ is minimized. If we assign dist[q]

as a weight to each point q ∈ Q⊞z , then the problem is equivalent to finding the additively-

weighted nearest neighbor qv from Q⊞z ∩
⊙

v for each v ∈ Q□z . To this end, Wang and

Xue [1] proved a key observation that any point q ∈ Q⊞z that minimizes dist[q] + ∥q − v∥

must lie in
⊙

v. This implies that for each point v ∈ Q□z , its additively-weighted nearest

neighbor in Q⊞z is also its additively-weighted nearest neighbor in Q⊞z ∩
⊙

v. As such, qv

for all v ∈ Q□z can be found by first building an additively-weighted Voronoi Diagram on

points of Q⊞z [57] and then performing point locations for all v ∈ Q□z [44, 45, 61]. In this

way, since
∑

zi
|P⊞zi

| = O(n), where zi refers to the point z in the i-th iteration of the main

loop, the first updates for all iterations of the main loop can be done in O(n log n) time in

total [1].

The second update

The second update Update(Q□z , Q⊞z) is more challenging because the above key

observation no longer holds. Since Q⊞z has O(1) cells of Ψr(P), it suffices to perform

Update(Q□z , Q□) for all cells □ ∈ ⊞z.

If □ is □z, then Q□z = Q□. Since the distance between any two points in □z is at most

r, we can easily implement Update(Q□z , Q□) in O(|Q□z | log |Q□z |) time, by first building

a additively-weighted Voronoi diagram on points of Q□z (each point q ∈ Q□z is assigned a

weight equal to dist[q]), and then using it to find the additively-weighted nearest neighbor

qv for each point v ∈ Q□z .

54

ℓ

⊙
u1 ⊙

u2

⊙
u3

v1

v2

v3v4

Fig. 3.9: Blue arcs are unit-disks centered at points U = {u1, u2, u3} which are sorted by
their dist[·] values. We have V1 = {v3, v4}, V2 = {v1}, and V3 = {v2} in this example. Note
that point v3 is in unit-disk

⊙
u1

and
⊙

u3
at the same time, but v3 is in subset V1 ⊆ V by

the definition of Vi’s, 1 ≤ i ≤ |U |.

If □ is not □z, a useful property is that □ and □z are separated by an axis-parallel

line. The WX algorithm implements Update(Q□z , Q□) with the following three steps (see

Fig. 3.9 for an example). Let U = Q□z and V = Q□.

1. Sort points of U as {u1, u2, ..., u|U |} such that dist[u1] ≤ dist[u2] ≤ ... ≤ dist[u|U |].

2. Compute |U | disjoint subsets {V1, V2, ..., V|U |} with Vi = {v ∈ V | v ∈
⊙

ui
and v /∈⊙

uj
for all 1 ≤ j < i}. Equivalently, for each point v ∈ V , v is in Viv , where iv is the

smallest index i (if exists) such that
⊙

ui
contains v.

3. Initialize U ′ = ∅. Proceed with |U | iterations for i = |U |, |U | − 1, ..., 1 sequen-

tially and do the following in each iteration for i: (1) Add ui to U ′; (2) for each

point v ∈ Vi, compute qv = argminu∈U ′{dist[u] + ∥u − v∥}; (3) update dist[v] =

min{dist[v], dist[qv] + ∥qv − v∥}.

By the definition of Vi, U ∩
⊙

v ⊆ U ′ = {u|U |, u|U |−1, ..., ui} for each v ∈ Vi in the

iteration for i of Step 3. Wang and Xue [1] proved that qv found for each v ∈ Vi in Step 3

must lie in
⊙

v. They gave a method to implement Step 2 in O(k log k) time by making use

of the property that U and V are separated by an axis-parallel line, where k = |U | + |V |.

Step 3 can be considered as an offline insertion-only additively-weighted nearest neighbor

searching problem and the WX algorithm solves the problem in O(k log2 k) time using the

standard logarithmic method [41], with k = |U |+ |V |.

55

As such, the second updates for all iterations in the WX algorithm takes O(n log2 n)

time in total [1], which dominates the entire algorithm (other parts of the algorithm together

takes O(n log n) time).

3.5.2 The RSP algorithm

We now tackle the RSP problem, i.e., given λ and s, t ∈ P , compute r∗. We will

“parameterize” the WX algorithm reviewed above.

Recall that the decision problem is to decide whether r∗ ≤ r for a given r. Notice that

r∗ ≤ r holds if and only if dr(s, t) ≤ λ. The decision problem can be solved in O(n log2 n)

time by running the WX algorithm on r. In the following, we refer to the WX algorithm

as the decision algorithm. We say that r is a feasible value if r∗ ≤ r and an infeasible value

otherwise.

As discussed in Section 3.1.2, to find r∗, we run the decision algorithm with a parameter

r in an interval (r1, r2] by simulating the algorithm on the unknown r∗. The interval always

contains r∗ but will be shrunk during course of the algorithm (for simplicity, when we say

(r1, r2] is shrunk, this also include the case that (r1, r2] does not change). Initially, we set

r1 = 0 and r2 = ∞.

The first step is to build a grid for P . The goal is to shrink (r1, r2] so that it contains

r∗ and if r∗ ̸= r2 (and thus r∗ ∈ (r1, r2)), for any r ∈ (r1, r2), the grid Ψr(P) has the

same combinatorial structure as Ψr∗(P) in the following sense: (1) Both grids have the

same number of rows and columns; (2) for any point p ∈ P , p lies in the i-th row and j-th

column of Ψr(P) if and only if p lies in the i-th row and j-th column of Ψr∗(P). This can

be done by applying the algorithm in Lemma 3.2 but replacing the CS algorithm with the

WX algorithm as the decision algorithm. The runtime becomes O(n log3 n) because the

WX algorithm runs in O(n log2 n) time.

Let (r1, r2] denote the interval after building the grid. We pick any r ∈ (r1, r2) and

compute the grid information of Ψr(P), which has the same combinatorial structure as

Ψr∗(P) if r∗ ̸= r2. Below, we will simply use Ψ(P) to refer to the grid information computed

above, meaning that it does not change with respect to r ∈ (r1, r2).

56

We use distr[·], Q(r), z(r) respectively to refer to dist[·], Q, z in the WX algorithm

running on a parameter r. We start with setting distr[s] = 0, distr[p] = ∞ for all p ∈ P \{s},

and Q(r) = P .

Next we enter the main loop. As long as Q(r) ̸= ∅, in each iteration, we will find a

point z(r) with the minimum distr-value from Q(r) and update distr-values for points in

Q(r)□z(r)
∪Q(r)⊞z(r)

. Points in Q(r)□z(r)
are then removed from Q(r). Each iteration will

shrink (r1, r2] such that the following algorithm invariant is maintained: (r1, r2] contains

r∗ and if r∗ ̸= r2, the following holds for all r ∈ (r1, r2): z(r) = z(r∗), Q(r) = Q(r∗), and

distr[p] = distr∗ [p] for all p ∈ P .

Consider an iteration of the main loop. We assume that the invariant holds before the

iteration on the interval (r1, r2], which is true before the first iteration. In the following,

we describe our algorithm for the iteration and we will show that the invariant holds after

the iteration. We assume that r∗ ̸= r2. According to our invariant, for any r ∈ (r1, r2), we

have z(r) = z(r∗), Q(r) = Q(r∗), and distr[p] = distr∗ [p] for all p ∈ P .

We first find a point z(r) ∈ Q(r) with the minimum distr-value. Since the invariant

holds before the iteration, we have z(r) = argminp∈Q(r) distr[p] = argminp∈Q(r∗) distr∗ [p] =

z(r∗).2 Hence, no “parameterization” is needed in this step, i.e., all involved values in the

computation of this step are independent of r.

Next, we perform the first update Update(Q(r)⊞z(r)
, Q(r)□z(r)

). This step also does

not need parameterization. Indeed, for each point p ∈ Q(r)⊞z(r)
, we assign distr[p] to

p as a weight, and then construct the additively-weighted Voronoi diagram on Q(r)⊞z(r)
.

For each point v ∈ Q(r)□z(r)
, we use the diagram to find its additively-weighted nearest

neighbor qv(r) ∈ Q(r)⊞z(r)
and update distr[v] = min{distr[v], distr[qv(r)] + ∥qv(r) − v∥}.

Since z(r) = z(r∗), and Q(r) = Q(r∗), we have Q(r)⊞z(r)
= Q(r∗)⊞z(r∗) and Q(r)□z(r)

=

Q(r∗)□z(r∗) . Further, since distr[p] = distr∗ [p] for all p ∈ P , for each point v ∈ Q(r)□z(r)
,

qv(r) = qv(r
∗) and each updated distr[v] in our algorithm is equal to the corresponding

2When picking z(r), we break ties following the same way as the WX algorithm. This guarantees
z(r) = z(r∗) even if ties happen.

57

updated distr∗ [v] in the same iteration of the WX algorithm running on r∗. As such, the

invariant still holds after the first update.

Implementing the second update Update(Q(r)□z(r)
, Q(r)⊞z(r)

) is more challenging and

parameterization is necessary. It suffices to implement Update(Q(r)□z(r)
, Q(r)□) for all

cells □ ∈ ⊞z(r).

If □ is □z(r), then Q(r)□z(r)
= Q(r)□. In this case, again no parameterization is

needed. Since the distance between any two points in □z(r) is at most r, we can easily

implement Update(Q(r)□z(r)
, Q(r)□) in O(|Q(r)□z(r)| log |Q(r)□z(r)|) time, by first building

a additively-weighted Voronoi diagram on points of Q(r)□z(r)
(each point p ∈ Q(r)□z(r)

is

assigned a weight equal to distr[p]), and then using it to find the additively-weighted nearest

neighbor qv(r) for each point v ∈ Q(r)□z . By an analysis similar to the above first update,

the invariant still holds.

We now consider the case where □ is not □z(r). In this case, □ and □z(r) are separated

by an axis-parallel line ℓ. Without loss of generality, we assume that ℓ is horizontal and □z(r)

is below ℓ. Since z(r) = z(r∗) and Q(r) = Q(r∗) for all r ∈ (r1, r2), we let U = Q(r)□z(r)

and V = Q(r)□, meaning that both U and V are independent of r ∈ (r1, r2). Recall that

there are three steps in the second update of the decision algorithm. Our algorithm needs to

simulate all three steps. As will be seen later, only the second step needs parameterization.

The first step is to sort points in U by their distr-values. Since distr[p] = distr∗ [p] for

all p ∈ P , the sorted list {u1, u2, ..., u|U |} of U obtained in our algorithm is the same as the

sorted list obtained in the decision algorithm running on r∗.

For any r, we use
⊙

p(r) to denote the disk centered at a point p with radius r.

The second step is to compute |U | disjoint subsets {V1(r), V2(r), ..., V|U |(r)} of V such

that Vi(r) = {v | iv(r) = i, v ∈ V }, where iv(r) is the smallest index such that
⊙

uiv(r)
(r)

contains point v. This step needs parameterization. We will shrink the interval (r1, r2] so

that it still contains r∗ and if r∗ ̸= r2, then for any r ∈ (r1, r2), Vi(r) = Vi(r
∗) holds for all

1 ≤ i ≤ |U | (it suffices to ensure iv(r) = iv(r
∗) for all v ∈ V). Our algorithm relies on the

following observation, which is based on the definition of iv(r).

58

Observation 3.1. For any point v ∈ V , if
⊙

uj
(r) contains v with 1 ≤ j ≤ |U |, then

iv(r) ≤ j.

For a subset P ′ ⊆ P , let Fr(P
′) denote the union of the disks centered at points of P ′

with radius r. We first solve a subproblem in the following lemma.

Lemma 3.8. Suppose (r1, r2] contains r∗ such that if r∗ ̸= r2, then for all r ∈ (r1, r2),

distr[p] = distr∗ [p] for all points p ∈ P . For a subset U ′ ⊆ U and a subset V ′ ⊆ V , in

O(n log2 n · log(|U ′| + |V ′|)) time we can shrink (r1, r2] so that it still contains r∗ and if

r∗ ̸= r2, then for all r ∈ (r1, r2), for any v ∈ V ′, v is contained in Fr(U
′) if and only if v

is contained in Fr∗(U
′).

Proof. Recall that all points of U are below ℓ and all points of V are above ℓ. For any r,

the problem to determine whether v is contained in Fr(U
′) for each v ∈ V ′ is an instance

of Subproblem 3.1 (i.e., consider the points of U ′ as red points and the points of V ′ as blue

points). Recall that solving Subproblem 3.1 for a fixed r involves three subroutines and we

also give a parameterized algorithm for solving it on the unknown r∗ in Section 3.3.2 for the

unweighted case. Here, to achieve the lemma, we can essentially apply the same algorithm

as in Section 3.3.2 but instead use the WX algorithm as the decision algorithm. We sketch

it below.

Let Ur(U
′) denote the upper envelope of the portions of the disks

⊙
u(r) above ℓ for

all u ∈ U ′. A point v ∈ V ′ is in Fr(U
′) if and only if v is below Ur(U

′). The algorithm

has three subroutines. The first subroutine is to shrink (r1, r2] so that it still contains r∗

and if r∗ ̸= r2, then for all r ∈ (r1, r2), Ur(U
′) has the same combinatorial structure as

Ur∗(U
′). This can be done by applying the algorithm of Section 3.3.2 but using the WX

algorithm as the decision algorithm. The second subroutine is to shrink (r1, r2] such that

it still contains r∗ and if r∗ ̸= r2, then for all r ∈ (r1, r2), the sorted list of the vertices

of Ur(U
′) and all points of V ′ is the same as the sorted list of the vertices of Ur∗(U

′) and

all points of V ′. This can be done by applying the algorithm of Section 3.3.2 but using

the WX algorithm as the decision algorithm. The third subroutine is to shrink (r1, r2] so

that (r1, r2] contains r∗ and if r∗ ̸= r2, then for any r ∈ (r1, r2), for any v ∈ V ′, v is below

59

the arc spanning it in Ur(U
′) if and only if v is below the arc spanning it in Ur∗(U

′). This

can be done by applying the algorithm of Section 3.3.2 but using the WX algorithm as the

decision algorithm. Following the analysis of Sections 3.3.2, 3.3.2, and 3.3.2, the total time

of the algorithm is bounded by O(n log2 n · log(|U ′|+ |V ′|)) because the decision algorithm

runs in O(n log2 n) time (and both |U ′| and |V ′| are no more than n).

Recall that we have an interval (r1, r2]. Our goal is to shrink it so that it still contains

r∗ and if r∗ ̸= r2, then for any r ∈ (r1, r2), Vi(r) = Vi(r
∗) holds for all 1 ≤ i ≤ |U |. Based

on Observation 3.1 and using Lemma 3.8, we have the following lemma.

Lemma 3.9. We can shrink the interval (r1, r2] in O(n log4 n) time so that it still contains

r∗ and if r∗ ̸= r2, then for any r ∈ (r1, r2), Vi(r) = Vi(r
∗) holds for all 1 ≤ i ≤ |U |.

Proof. To have Vi(r) = Vi(r
∗) for all 1 ≤ i ≤ |U |, it suffices to ensure iv(r) = iv(r

∗) for all

points v ∈ V . Let M = |U | and N = |V |. Note that M ≤ n and N ≤ n.

As defined in the proof of Lemma 3.8, for any subset U ′ ⊆ U and any r, we use Ur(U
′)

to denote the upper envelope of the portions of
⊙

u(r) above ℓ for all u ∈ U ′.

In light of Observation 3.1, we use the divide and conquer approach. Recall that

U = {u1, u2, . . . , uM}. Consider the following subproblem on (U, V): shrink (r1, r2] so that

it still contains r∗ and if r∗ ̸= r2, then for any r ∈ (r1, r2), the following holds, for any

v ∈ V , v is below Ur(U1) if and only if v is below Ur∗(U1), where U1 is the first half of U ,

i.e., U1 = {u1, u2, ..., u⌊M
2
⌋}. The subproblem can be solved in O(n log3 n) time by applying

Lemma 3.8. Next, we pick any r ∈ (r1, r2) and compute Ur(U1) and find the subset V1 of

the points of V that are below Ur(U1) (e.g., see Fig. 3.10). By Observation 3.1, for each

point v ∈ V , iv(r) ≤ ⌊M2 ⌋ if v ∈ V1 and iv(r) > ⌊M2 ⌋ otherwise. By the above property

of (r1, r2], for each point v ∈ V , we also have iv(r
∗) ≤ ⌊M2 ⌋ if v ∈ V1 and iv(r

∗) > ⌊M2 ⌋

otherwise.

We have determined whether iv(r
∗) ≤ ⌊M2 ⌋ for each point v ∈ V after the first call of

Lemma 3.8 as discussed above. To shrink the range of iv(r
∗) for each v ∈ V further, we

construct two subproblems for sets V1 and V \ V1 with their corresponding subsets of U .

More specifically, we solve two subproblems recursively: one on (U1, V1) and the other on

60

Ur∗(U1)

u1
u3

u2 u5 u4
u7

u6

v4
v7 v5 v1

v3
v6

v2

`

Fig. 3.10: Illustrating U1 and V1, where U1 = {u1, u2, u3} and V1 = {v4, v5, v7}. The solid
arcs are on Ur∗(U1).

(U \ U1, V \ V1). Both subproblems use (r1, r2] as their “input intervals” and solving each

subproblem will produce a new shrunk “output interval” (r1, r2]. Consider a subproblem

on (U ′, V ′) with U ′ ⊆ U and V ′ ⊆ V . If |U ′| = 1, then we solve this problem “directly”

(i.e., this is the base case) as follows. Assume that r∗ ̸= r2 and let r be any value in (r1, r2).

Let uj be the only point of U ′. There are two cases depending on the index j of point

uj ∈ U ′. If j < M = |U | (i.e., uj is not the last point of the sorted list of points in set

U), according to our algorithm and based on Observation 3.1, iv(r) = iv(r
∗) = j holds for

all points v ∈ V ′. If j = M , however, for each point v ∈ V ′, it is possible that v is not

contained in
⊙

u(r
∗) for any point u ∈ U , in which case v is not below Ur∗(U) and thus is

not below Ur∗(U
′). On the other hand, if v is below Ur∗(U

′), then iv(r
∗) = M . To solve

the case of j = M , we can simply apply Lemma 3.8 on U ′ and V ′, after which we obtain

an interval (r1, r2]. Then, we pick any r ∈ (r1, r2) and for any v ∈ V ′ with v contained in⊙
uM

(r), iv(r) = iv(r
∗) = M holds if r∗ ̸= r2.

The above divide-and-conquer algorithm can be viewed as a binary tree structure T

in which each node represents a subproblem. The input of the subproblem for each node

is derived from the result of solving the subproblem represented by its parent node. We

shrink each iv(r
∗) for v ∈ V to a specific value in the end (i.e., subproblems corresponding

to leaves of this binary tree T). Clearly, the height of T is O(logM) and T has Θ(M)

nodes. If we solve each subproblem individually by Lemma 3.8 as described above, then the

algorithm would take Ω(Mn) time because there are Ω(M) subproblems and solving each

61

subproblem by Lemma 3.8 takes Ω(n) time, which would result in an Ω(n2) time algorithm

in the worst case. To reduce the runtime, instead, we solve subproblems at the same level

of T simultaneously (or “in parallel”) by applying the algorithm of Lemma 3.8, as follows.

Consider all subproblems in the same level of T ; let S denote the set of all these

subproblems. There is an input interval (r1, r2] for all subproblems of S, which is true

initially at the root for (U, V). After solving all subproblems in this level, our algorithm

will produce a single shrunk interval (r1, r2], which will be used as the input interval for all

subproblems in the next level of T .

Recall that the algorithm of Lemma 3.8 has three subroutines (which follow the algo-

rithm in Section 3.3.2), each of which involves computing a set of critical values and then

performing binary search on them using the decision algorithm to shrink the interval (r1, r2].

To solve all subproblems of S simultaneously using the algorithm of Lemma 3.8, our idea is

that in each of the three subroutines, we perform binary search on the critical values of all

subproblems of S (this again follows the same way as in Section 3.3.2, where critical values

of all instances of I are considered all together), i.e., we solve all these subproblems “in

parallel”. In this way, solving all subproblems of S together only needs to call the decision

algorithm O(log n) times. The details are given below.

For the first subroutine, the goal is to determine the combinatorial structure of the

upper envelope. The critical values in all three subroutines are defined as in Section 3.3.2.

For each subproblem on (U ′, V ′), we compute the Voronoi diagram for U ′ and then find

the critical values. Notice that the subsets U ′ (resp., V ′) for all subproblems of S form a

partition of U (resp., V), and thus the total time for building the diagram and computing

the critical values for all subproblems of S takes O((M + N) log(M + N)) time in total.

Also, the total number of critical values is O(N). Performing the binary search on these

critical values as before can be done in O(n log2 n · logN) time, after which we obtain a

shrunk interval (r1, r2]. This finishes the first subroutine for all subproblems of S, which

takes O(n log3 n) time (since M ≤ n and N ≤ n).

The second subroutine is to sort all points of V ′ in each subproblem on (U ′, V ′) along

62

with the vertices of the upper envelope Ur∗(U
′). We now put all involved points of all

subproblems of S in one coordinate system and sort them all together (in the same way as

in Section 3.3.2). Since the subsets V ′ (resp., U ′) of all subproblems of S form a partition

of V (resp., U), the total number of points in the subsets V ′ in all subproblems of S is N .

Also, the number of vertices of Ur∗(U
′) is proportional to |U ′|. Hence, the total number

of vertices of the upper envelopes Ur∗(U
′) in all subproblems of S is O(M). As such, the

total number of points we need to sort is O(M + N). We apply the same algorithm as

before to sort them, i.e., Cole’s parametric search [51] with AKS sorting network [59] and

our decision algorithm. Sorting all involved points can be done in O(n log2 n · log(M +N))

time, after which a shrunk interval (r1, r2] is obtained. This finishes the second subroutine

for all subproblems of S, which takes O(n log3 n) time.

For the third subroutine, we collect the critical values in each subproblem of S in the

same way as before. The total number of critical values for all subproblems is N . We

perform binary search on these critical values in the same way as before, after which a

shrunk interval (r1, r2] is obtained. The total time is O(n log2 n · logN). This finishes the

third subroutine for all subproblems, which takes O(n log3 n) time. The final interval (r1, r2]

will be used as the input interval for all subproblems in the next level of T .

In summary, solving all subproblems in the same level of T can be done in O(n log3 n)

time. As T has O(logM) levels, the total time of the overall algorithm is O(n log4 n).

With Lemma 3.9, we obtain subsets {V1(r), V2(r), ..., V|U |(r)} and an interval (r1, r2]

containing r∗ such that if r∗ ̸= r2, for any r ∈ (r1, r2), Vi(r) = Vi(r
∗) holds for all 1 ≤ i ≤ |U |.

Note that neither the array distr[·] nor Q(r) is modified during the algorithm of Lemma 3.9.

Hence, if r∗ ̸= r2, for all r ∈ (r1, r2], we still have Q(r) = Q(r∗) and distr[p] = distr∗ [p] for

all points p ∈ P . Thus, our algorithm invariant still holds. This finishes the second step of

the second update.

The third step of the second update is to solve the offline insertion-only additively-

weighted nearest neighbor searching problem. This step does not need parameterization.

Similar to the first update, we pick any r ∈ (r1, r2) and apply the WX algorithm directly.

63

Indeed, the algorithm on r∗ only relies on the following information: U and its sorted list

by distr∗ [·] values and the subsets V1(r
∗), . . . , V|U |(r

∗). Recall that if r∗ ̸= r2, then for all

r ∈ (r1, r2), distr[p] = distr∗ [p] for all p ∈ P , and Vi(r) = Vi(r
∗) for all 1 ≤ i ≤ |U |. As

such, if we pick any r ∈ (r1, r2) and apply the WX algorithm directly, distr[v] = distr∗ [v]

holds for all points v ∈ V after this step. Therefore, as in the WX algorithm, this step can

be done in O(k log2 k) time, where k = |U |+ |V |.

This finishes the second update of the algorithm. As discussed above, the algorithm

invariant holds for the interval (r1, r2].

The final step of the iteration is to remove points in Q(r)□z(r)
from Q(r). Since if

r∗ ̸= r2, for all r ∈ (r1, r2), Q(r) = Q(r∗), z(r) = z(r∗), and Q(r)□z(r)
= Q(r∗)□z(r∗) ,

Q(r) = Q(r∗) still holds after this point removal operation. Therefore, our algorithm

invariant holds after the iteration.

In summary, each iteration of our algorithm takes O(n log4 n) time. If the point t

is contained in □z(r) (i.e., t is reached) in the current iteration, then we terminate the

algorithm. The following lemma shows that we can simply return r2 as r∗.

Lemma 3.10. Suppose that t is contained in □z(r) in an iteration of our algorithm and

(r1, r2] is the interval after the iteration. Then r∗ = r2.

Proof. Assume to the contrary that r∗ ̸= r2. Then we have r∗ ∈ (r1, r2) since r∗ ∈ (r1, r2].

Let r′ = (r1 + r∗)/2, and thus r′ ∈ (r1, r2) and r′ < r∗. By our algorithm invariant and

the correctness of the WX algorithm (distr[p] = dr(s, p) for all points p ∈ P□z(r)
after

the iteration), we have dr′(s, t) = distr′ [t] = distr∗ [t] = dr∗(s, t). By the definition of r∗,

dr∗(s, t) ≤ λ. Therefore, dr′(s, t) ≤ λ. But this contradicts with the definition of r∗ since

r∗ = argminr{dr(s, t) ≤ λ}. The lemma thus holds.

The algorithm may take Ω(n2) time because t may be reached in Ω(n) iterations. A

further improvement is discussed in the next subsection.

64

3.5.3 A further improvement

To further reduce the runtime of the algorithm, we borrow a technique from Section 3.4

to partition the cells of the grid into large and small cells.

As before, we first compute the grid information Ψ(P) and obtain an interval (r1, r2].

Let C denote the set of all non-empty cells of Ψ(P) (i.e., cells that contain at least one

point of P). For each cell C ∈ C, let N(C) denote the set of non-empty neighboring cells

of C in C and P (C) the set of points of P contained in cell C. We have |N(C)| = O(1)

and |C| = O(n). A cell C of C is a large cell if it contains at least n3/4 log3/2 n points of P ,

i.e., |P (C)| ≥ n3/4 log3/2 n, and a small cell otherwise. Clearly, C has at most n1/4/ log3/2 n

large cells. For all pairs of non-empty neighboring cells (C,C ′), with C ∈ C and C ′ ∈ N(C),

(C,C ′) is a small-cell pair if both C and C ′ are small cells, and a large-cell pair otherwise,

i.e., at least one cell is a large cell. Since N(C) = O(1) for each cell C ∈ C, there are

O(n1/4/ log3/2 n) large-cell pairs.

We follow the algorithmic framework in Section 3.4. Notice that in each iteration

of the main loop in our previous algorithm, only the second step of the second update

parameterizes the WX algorithm (i.e., the decision algorithm is called on certain critical

values); in that step, we need to process O(1) pairs of cells (C,C ′) with C ∈ C and C ′ ∈

N(C). No matter how many points of P are contained in the two cells, we need O(n log4 n)

time to perform the parametric search due to Lemma 3.9. To reduce the time, we preprocess

all small-cell pairs so that the algorithm only needs to perform the parametric search for

large-cell pairs. Since there are only O(n1/4/ log3/2 n) large-cell pairs, the total time we

spend on parametric search can be reduced to O(n5/4 log5/2 n). For those small-cell pairs,

the preprocessing provides sufficient information to allow us to simply run the original

WX algorithm without parametric search. Specifically, before we enter the main loop of

the algorithm (and after the grid information Ψ(P) is computed, along with an interval

(r1, r2]), we preprocess all small-cell pairs using the following lemma.

Lemma 3.11. In O(n5/4 log5/2 n) time we can shrink the interval (r1, r2] so that it still

contains r∗ and if r∗ ̸= r2, then for any r ∈ (r1, r2), for any small-cell pair (C,C ′) with

65

C ∈ C and C ′ ∈ N(C), an edge connects a point p ∈ P (C) and a point p′ ∈ P (C ′) in Gr(P)

if and only if an edge connects p and p′ in Gr∗(P).

Proof. Lemma 3.6 essentially solves the same problem for the unweighted case. Here we

follow the same algorithm as in Lemma 3.6 but replace their decision algorithm by our de-

cision algorithm for the weighted case. The algorithm has O(log n) iterations, and following

the same analysis as in Lemma 3.6 and using the new threshold n3/4 log3/2 n for defining

large cells, one can show that each iteration takes O(n5/4 log3/2 n) time. More specifically,

if we use the same notation as in the proof of Lemma 3.6, then we have ni ≤ 2 ·n3/4 log3/2 n,

and thus |L| =
∑m

i=1 n
4/3
i log ni is bounded by O(n5/4 log3/2 n). Therefore, the total running

time of the algorithm is O(n5/4 log5/2 n).

Let (r1, r2] denote the interval obtained after the preprocessing for all small-cell pairs

in Lemma 3.11. Lemma 3.11 essentially guarantees that if r∗ ̸= r2, then for any r ∈ (r1, r2),

the adjacency relation of points in any small-cell pair in Gr(P) is the same as that in Gr∗(P).

Note that if (r1, r2] is shrunk so that it still contains r∗, then the above property still holds

for the shrunk interval. Based on this property, combining with our previous algorithm, we

have the following theorem.

Theorem 3.3. The reverse shortest path problem for L2 weighted unit-disk graphs can be

solved in O(n5/4 log5/2 n) time.

Proof. The goal is to compute r∗. We first build a grid Ψ(P) along with an interval (r1, r2]

in O(n log3 n) time. Then we classify all non-empty cells in Ψ(P) to large cells and small

cells. Next, we use Lemma 3.11 to shrink the interval (r1, r2] in O(n5/4 log5/2 n) time.

We proceed to the main loop of the algorithm. In each iteration, we proceed in the

same way as before except that the second step of the second update Update(Q(r)□z(r)
,

Q(r)⊞z(r)
) is now executed as follows. Recall that it suffices to perform Update(Q(r)C ,

Q(r)C′) with C = □z(r) and C ′ ∈ N(C). If (C,C ′) is a large-cell pair, then we apply our

parametric search procedure in the same way as before. Since the number of large-cell pairs

is O(n1/4/ log3/2 n) and implementing the second step of Update(Q(r)C , Q(r)C′) with the

66

parametric search takes O(n log4 n) time by Lemma 3.9. Thus the total time we spend on all

large-cell pairs is O(n5/4 log5/2 n). If (C,C ′) is a small-cell pair, according to the property of

(r1, r2] in the statement of Lemma 3.11, we can simply pick any value r ∈ (r1, r2) and then

apply the WX algorithm directly. Following the time complexity of the WX algorithm,

the second step of Update(Q(r)C , Q(r)C′) of all small-cell pairs (C,C ′) together takes

O(n log n) time. The remaining parts of our algorithm together take the same running time

as the WX algorithm, which is O(n log2 n).

We thus conclude that the total time of our algorithm is bounded by O(n5/4 log5/2 n).

3.6 Concluding remarks

In this chapter, we propose two algorithms for the RSP problem in unweighted unit-disk

graphs with time complexities of O(⌊λ⌋ ·n log n) and O(n5/4 log7/4 n), respectively. We also

give an algorithm for the RSP problem in weighted unit-disk graphs with a time complexity

of O(n5/4 log5/2 n). Interestingly, our second unweighted RSP algorithm and the weighted

RSP algorithm break the O(n4/3) time barrier for certain geometric problems [62,63].

Our RSP problem is defined with respect to a pair of points (s, t). Our techniques

can be extended to solve a more general “single-source” version of the problem: Given a

source point s ∈ P and a value λ, compute the smallest value r∗ such that the lengths of

shortest paths from s to all vertices of Gr(P) are at most λ, i.e., maxt∈P dr∗(s, t) ≤ λ. The

decision problem (i.e., deciding whether r ≥ r∗ for any r) now becomes deciding whether

maxt∈P dr(s, t) ≤ λ. The algorithm of Chan and Skrepetos [13], the algorithm of Wang

and Xue [1], and the algorithm of Wang and Zhao [14] are actually for finding shortest

paths from s to all vertices of Gr(P). Thus we can solve the decision problem by using

the algorithm of Chan and Skrepetos [13] for the unweighted case, and the algorithm of

Wang and Xue [1] for the weighted case. As such, to compute r∗, we can follow the same

algorithm scheme as before but instead use the above new decision algorithm. In addition,

for the unweighted case, we make the following changes to the first algorithm (the second

algorithm is changed accordingly). After the i-th step of the BFS, which computes a set Si

67

along with an interval (r1, r2]. If all points of P have been discovered after this step and

i ≤ ⌊λ⌋, then we have r∗ = r2 and stop the algorithm; the proof is similar to Lemma 3.4. We

also stop the algorithm with r∗ = r2 if i = ⌊λ⌋ and not all points of P have been discovered;

the proof is similar to Lemma 3.5. As before, the algorithm will stop in at most ⌊λ⌋

steps. In this way, the first algorithm can compute r∗ in O(⌊λ⌋ ·n log n) time. Analogously,

the second algorithm can compute r∗ in O(n5/4 log7/4 n) time. For the weighted case, our

original algorithm terminates once t is reached but now we instead halt the algorithm once

all points of P are reached, which does not affect the running time asymptotically. As such,

the “single-source” version of the weighted RSP problem can be solved in O(n5/4 log5/2 n)

time.

68

CHAPTER 4

COMPUTING THE MINIMUM BOTTLENECK MOVING SPANNING TREE

4.1 Introduction

We consider the computation of the Euclidean minimum bottleneck moving spanning

tree for a set of moving points in the plane. The results in this chapter have been published

in a conference [21].

4.1.1 Problem definitions

Given a set P of n points in the plane, let GP be the complete graph whose vertex

set is P such that the weight of each edge connecting two points p and q of P is the

Euclidean distance between p and q. The Euclidean minimum spanning tree (EMST) of P

is the spanning tree of GP with minimum sum of edge weights. The Euclidean minimum

bottleneck spanning tree (EMBST) of P is the spanning tree of GP whose largest edge weight

is minimized. It is well known that a Delaunay triangulation of P contains an EMST of

P [64] and thus an EMST of P can be computed in O(n log n) time by constructing a

Delaunay triangulation of P first. This is also the case for the bottleneck problem.

In this chapter, motivated by visualizations of time-varying spatial data [20], we con-

sider a moving version of the EMBST problem where every point of P is moving during a

time interval. Without loss of generality, we assume that the time interval is [0, 1]. A mov-

ing point p ∈ P is a continuous function p : [0, 1] → R2. Let p(t) denote the location of p at

time t ∈ [0, 1]. We assume that p moves on a straight line segment with a constant velocity,

i.e., p(t) is linear in t and points of {p(t)| t ∈ [0, 1]} form a straight line segment in the

plane (see Fig. 4.1; different points may have different velocities). A moving spanning tree

T of P connects all points of P and does not change its connection during the whole time

interval (i.e., for any two points p, q ∈ P , the path connecting p and q in T always contains

69

Fig. 4.1: Each pair of red and blue points connected by a black arrow represents a moving
point. Blue points denote locations at t = 0 and red points are locations at t = 1. Black
boxes are locations of these moving points at certain time and the dashed segments form a
spanning tree.

the same set of edges). We use T (t) to denote the tree at the time t. The instantaneous

bottleneck bT (t) at time t is the maximum length of all edges in T (t). The bottleneck b(T) of

the moving spanning tree T is defined to be the maximum instantaneous bottleneck during

the whole time interval, i.e., b(T) = maxt∈[0,1] bT (t). The Euclidean minimum bottleneck

moving spanning tree (or moving-EMBST for short) T ∗ refers to the moving spanning tree

of P with minimum bottleneck.

In this chapter, we study the problem of computing the moving-EMBST T ∗ for a set

P of n moving points in the plane as defined above. Previously, this problem was solved in

O(n2) time by Akitaya, Biniaz, Bose, De Carufel, Maheshwari, Silveira, and Smid [20]. To

solve the problem, the authors of [20] first proved the following key property: The function

of the distance between two moving points over time is convex (this is because each point

moves linearly with constant velocity), implying that the maximum distance between two

moving points is achieved at t = 0 or t = 1 (note that this does not mean T ∗ is attained

at either t = 0 or t = 1; a counterexample is provided in [20]). Using the above property,

the authors of [20] proposed the following simple algorithm to compute T ∗. First, compute

a complete graph G with P as the vertex set such that the weight of each edge connecting

two points p and q of P is defined as the maximum length of their distances at t = 0 and at

70

t = 1. Then the authors of [20] showed that a minimum bottleneck spanning tree (MBST)

of G is also a moving-EMBST of P and thus it suffices to compute an MBST in G. Since an

MBST of a graph can be computed in linear time in the graph size [65], the entire algorithm

for computing T ∗ runs in O(n2) time in total [20].

4.1.2 Our result

We present an algorithm of O(n4/3 log3 n) time to compute T ∗. We sketch the main

idea below.

For any two points p and q in the plane, let |pq| denote their Euclidean distance. Due

to the above key property from [20], we observe that b(T ∗) must be equal to |pq|max for

two moving points p and q of P , where |pq|max = max{|p(0)q(0)|, |p(1)q(1)|}, i.e., b(T ∗) ∈

{|pq|max | p, q ∈ P}. As such, our main idea is to find b(T ∗) in {|pq|max | p, q ∈ P} by

binary search. To this end, we first solve a decision problem: Given any value λ > 0,

decide whether b(T ∗) ≤ λ. We reduce the decision problem to the problem of finding a

common spanning tree in two unit-disk graphs. Specifically, the unit-disk graph Gλ(Q) for

a set Q of points in the plane with respect to a parameter λ is an undirected graph whose

vertex set is Q such that an edge connects two points p, q ∈ Q if |pq| ≤ λ (alternatively,

Gλ(Q) can be viewed as the intersection graph of the set of congruous disks centered at

the points of Q with radius λ/2, i.e., two vertices are connected if their disks intersect; see

Fig. 4.2). Observe that b(T ∗) ≤ λ if and only if the unit-disk graph Gλ(P) for P at time

t = 0 and the unit-disk graph Gλ(P) for P at time t = 1 share a common spanning tree.

To determine whether the two unit-disk graphs share a common spanning tree, we apply

breadth-first-search (BFS) on the two graphs simultaneously. To avoid quadratic time, we

do not compute these unit-disk graphs explicitly. Instead, we use a batched range searching

technique of Katz and Sharir [30] to obtain a compact representation for searching one

graph. For searching the other graph, we derive a semi-dynamic data structure for the

following deletion-only unit-disk range emptiness query problem: Preprocess a set Q of n

points in the plane with respect to λ so that the following two operations can be performed

efficiently: (1) given a query point p, determine whether Q has a point q such that |pq| ≤ λ,

71

λ/2

Fig. 4.2: Illustrating a unit-disk graph. Two points are connected (by a blue segment)
if their distance is less than or equal to λ. In other words, two points are connected if
congruent disks centered at them with radius λ/2 intersect.

and if yes, return such a point q; (2) delete a point from Q. We refer to the first operation

as unit-disk range emptiness query (or UDRE query for short). We build a data structure

of O(n) space in O(n log n) time such that each UDRE query can be answered in O(log n)

time while each deletion can be performed in O(log n) amortized time. This result might

be interesting in its own right. Combining this result with the batched range searching [30],

we implement the BFS simultaneously on the two unit-disk graphs in O(n4/3 log2 n) time,

which solves the decision problem.

Next, equipped with the above decision algorithm, we find b(T ∗) from the set {|pq|max | p, q ∈

P} by binary search. Computing the set explicitly would take Ω(n2) time. We avoid doing

so by resorting to the distance selection algorithm of Katz and Sharir [30], which can com-

pute the k-th smallest distance among all interpoint distances of a set of n points in the

plane in O(n4/3 log2 n) time for any k with 1 ≤ k ≤
(
n
2

)
. Combining with our decision algo-

rithm, b(T ∗) can be computed in O(n4/3 log3 n) time. Applying the value λ = b(T ∗) to the

decision algorithm can produce the optimal spanning tree T ∗ in additional O(n4/3 log2 n)

time.

4.1.3 Related work

Similar to the moving-EMBST problem, one can consider the Euclidean minimum mov-

ing spanning tree (moving-EMST) for a set of moving points (i.e., minimizing the total sum

72

of the edge weights instead). The authors of [20] proved that the moving-EMST problem is

NP-hard and they gave an O(n2) time 2-approximation algorithm and another O(n log n)

time (2+ ϵ)-approximation algorithm for any ϵ > 0. These spanning tree problems for mov-

ing points are relevant in the realm of moving networks that is motivated by the increase

in mobile data consumption and the network architecture containing mobile nodes [20].

Geometric problems for moving objects have been studied extensively in the literature,

e.g., [66,67]. In particular, kinetic data structures were proposed to maintain the minimum

spanning tree for moving points in the plane [66, 68]. Different from our problem, research

in this domain focuses on bounds of the number of combinatorial changes in the minimum

spanning tree during the point movement [67].

For solving the deletion-only UDRE query problem, by the standard lifting transfor-

mation, one can reduce the problem to maintaining the lower envelope of a dynamic set

of planes in R3, which has been extensively studied [9, 69–71]. Applying Chan’s recent

work [72] for the problem can achieve the following result: With O(n log n) preprocessing

time, each UDRE query can be answered in O(log2 n) time and each point deletion can

be handled in O(log4 n) amortized time (the data structure is actually fully-dynamic and

can also handle each point insertion in O(log2 n) amortized time). The same problem in

2D (whose dual problem becomes maintaining the convex hull for a dynamic set of points)

is easier and has also been studied extensively, e.g., [73–76]. In addition, Wang [33] stud-

ied the unit-disk range counting query problem for a static set of points in the plane, by

extending the techniques for half-plane range counting query problem [77–79].

Our algorithm for the decision problem uses some techniques for unit-disk graphs.

Many problems on unit-disk graphs have been studied, i.e., shortest paths and reverse

shortest paths [1,6,7,13,14,17,18], clique [11], independent set [12], diameter [7,8,13], etc.

Although a unit-disk graph of n vertices may have Ω(n2) edges, many problems can be solved

in subquadratic time by exploiting its underlying geometric structures, e.g., computing

shortest paths [1,6]. Our O(n4/3 log2 n) time algorithm for finding a common spanning tree

in two unit-disk graphs adds one more problem to this category.

73

Outline. In the following, we present our algorithm for the moving-EMBST problem in

Section 4.2. The algorithm uses our data structure for the deletion-only unit-disk range

emptiness query problem, which is given in Section 4.3. Section 4.4 concludes.

4.2 Algorithm for moving-EMBST

We follow the notation in Section 4.1, e.g., P , t, b(T), bT (t), T ∗, |pq|, |pq|max, Gλ(P),

etc. Given a set P of n points in the plane, our goal is to compute b(T ∗). As discussed

in Section 4.1.2, we first consider the decision problem: Given any λ > 0, decide whether

b(T ∗) ≤ λ. We refer to the original problem for computing b(T ∗) as the optimization

problem. In what follows, we solve the decision problem in Section 4.2.1 and the algorithm

for the optimization problem is described in Section 4.2.2.

4.2.1 The decision problem

Given any λ > 0, the decision problem is to decide whether b(T ∗) ≤ λ.

For any time t ∈ [0, 1], we use P (t) to denote the set of points of P at their locations

at time t, i.e., P (t) = {p(t) | p ∈ P}. Consider the two unit-disk graphs Gλ(P (0)) and

Gλ(P (1)). To simplify the notation, we use Gλ(t) to refer to Gλ(P (t)) for any t ∈ [0, 1].

For every point p ∈ P , we consider p(0) in Gλ(0) and p(1) in Gλ(1) as the same vertex p,

and thus define Gλ = Gλ(0) ∩Gλ(1) as the intersection graph of Gλ(0) and Gλ(1), i.e., the

vertex set of Gλ is P and Gλ has an edge connecting two vertices p and q if and only Gλ(0)

has an edge connecting p(0) and q(0) and Gλ(1) has an edge connecting p(1) and q(1). A

spanning tree of Gλ is called a common spanning tree of Gλ(0) and Gλ(1).

The following observation has been proved in [20].

Observation 4.1. ([20]) maxt∈[0,1] |p(t)q(t)| = max{|p(0)q(0)|, |p(1)q(1)|} holds for every

pair of points p, q ∈ P .

Using the above observation, the following lemma reduces the decision problem to the

problem of finding a common spanning tree of Gλ(0) and Gλ(1).

74

Lemma 4.1. Given any λ > 0, b(T ∗) ≤ λ if and only if Gλ(0) and Gλ(1) have a common

spanning tree.

Proof. Suppose Gλ(0) and Gλ(1) have a common spanning tree T in Gλ. Then for any edge

of T connecting two points p, q ∈ P , since the edge appears in both Gλ(0) and Gλ(1), it

holds that |p(0)q(0)| ≤ λ and |p(1)q(1)| ≤ λ, and thus max{|p(0)q(0)|, |p(1)q(1)|} ≤ λ. By

Observation 4.1, we have b(T) = maxt∈[0,1] bT (t) ≤ λ. Since b(T ∗) ≤ b(T) by the definition

of T ∗, we obtain b(T ∗) ≤ λ.

Now suppose b(T ∗) ≤ λ. We argue that T ∗ must be a common spanning tree of Gλ(0)

and Gλ(1). Indeed, since b(T ∗) = maxt∈[0,1] bT ∗(t) ≤ λ, for any edge of T ∗ connecting two

points p, q ∈ P , |p(t)q(t)| ≤ λ for any t ∈ [0, 1], and in particular, |p(0)q(0)| ≤ λ and

|p(1)q(1)| ≤ λ, implying that Gλ(0) has an edge connecting p and q and so does Gλ(1). As

such, T ∗ must be a common spanning tree of Gλ(0) and Gλ(1).

In light of Lemma 4.1, to solve the decision problem, it suffices to determine whether

Gλ(0) and Gλ(1) have a common spanning tree, or alternatively, whether the intersection

graph Gλ has a spanning tree, which is true if and only if the graph is connected. To

determine whether Gλ is connected, we perform a breadth-first search (BFS) in Gλ, or

equivalently, we perform a BFS on Gλ(0) and Gλ(1) simultaneously; we do so without

computing the two unit-disk graphs explicitly to avoid the quadratic time. Our algorithm

relies on the following lemma for the deletion-only UDRE query problem, which will be

proved in Section 4.3.

Theorem 4.1. Given a value λ and a set Q of n points in the plane, we can build a

data structure of O(n) space in O(n log n) time such that the following first operation can

be performed in O(log n) worst case time while the second operation can be performed in

O(log n) amortized time.

1. Unit-disk range emptiness (UDRE) query: Given a point p, determine whether there

exists a point q ∈ Q such that |pq| ≤ λ, and if yes, return such a point q.

2. Deletion: delete a point from Q.

75

In the following, we begin with an algorithm overview and then flesh out the details.

Algorithm overview. Starting from an arbitrary point s ∈ P , we run BFS in the graph

Gλ. For each i = 0, 1, 2, . . ., let Pi be the set of points whose shortest path lengths from s

in Gλ are equal to i. In each i-th iteration, the algorithm computes Pi. Initially, P0 = {s}.

The algorithm stops once we have Pi = ∅, after which we check whether all points of P

have been discovered. If yes, then the BFS tree is a spanning tree of Gλ; otherwise, Gλ is

not connected. Consider the i-th iteration. Suppose Pi−1 is already known. For each point

p ∈ Pi−1, we wish to find the set S(p) of all points q ∈ P such that (1) q has not been

discovered yet, i.e., q ̸∈
∪i−1

j=0 Pj ; (2) |p(0)q(0)| ≤ λ; (3) |p(1)q(1)| ≤ λ. To implement this

step efficiently, we use two techniques. First, we use a batched range searching technique of

Katz and Sharir [30] to obtain a compact representation of all points of P (0). The compact

representation can provide us with a collection N (p) of canonical subsets of P whose union

is exactly the subset of points q of P such that |p(0)q(0)| ≤ λ. Second, for each subset Q

of N (p), a data structure of Theorem 4.1 is constructed for Q(1) = {q(1) | q ∈ Q}, i.e.,

the set of points of Q at their locations at time t = 1. Then, we apply the UDRE query

with p(1) as the query point; if the query returns a point q(1), then we know that q is in

S(p) and we delete q from Q (we also delete q from other canonical subsets of the compact

representation that contain q; the deletion guarantees that points of P already discovered

by the BFS have been removed from the canonical subsets of the compact representation)

and applying the UDRE query with p(1) again. We keep doing this until the UDRE query

does not return any point, and then we process the next subset of N (p) in the same way.

In this way, S(p) will be computed, which is a subset of Pi. Processing every point p ∈ Pi−1

as above will produce Pi. The details of the algorithm are given below.

Preprocessing. Before running BFS, we conduct some preprocessing work.

First, using a batched range searching technique [30], we have the following lemma

(which is essentially Theorem 3.3 in [30]) for computing a compact representation of all

pairs (p, q) of points of P with |p(0)q(0)| ≤ λ.

76

Lemma 4.2. (Theorem 3.3 [30]) We can compute a collection {Xr × Yr}r of complete

edge-disjoint bipartite graphs in O(n4/3 log n) time and space, where Xr, Yr ⊆ P , with the

following properties.

1. For any r, |p(0)q(0)| ≤ λ holds for any point p ∈ Xr and any point q ∈ Yr.

2. The number of these complete edge-disjoint bipartite graphs is O(n4/3), and both∑
r |Xr| and

∑
r |Yr| are bounded by O(n4/3 log n).

3. For any two points p, q ∈ P with |p(0)q(0)| ≤ λ, there exists a unique r such that

p ∈ Xr and q ∈ Yr.

We refer to each Xr (resp., Yr) as a canonical subset of P . After the collection {Xr×Yr}r

is computed, we further do the following. For each point p ∈ P , if p is in Xr, then we add

(the index of) Yr to N (p). By Lemma 4.2(3), subsets of N (p) are pairwise disjoint and the

union of them is exactly the subset of points q ∈ P with |p(0)q(0)| ≤ λ. Similarly, for each

point p ∈ P , if p is in Yr, then we add (the index of) Yr to M(p). The purpose of having

M(p) is that after a point p is identified in Pi, we will need to remove p from all subsets Yr

that contain p (so M(p) helps us to keep track of these subsets Yr). We can compute N (p)

and M(p) for all points p ∈ P in O(n4/3 log n) time since both
∑

r |Xr| and
∑

r |Yr| are

O(n4/3 log n) by Lemma 4.2(2). For the same reason, both
∑

p∈P |N (p)| and
∑

p∈P |M(p)|

are bounded by O(n4/3 log n).

In addition, for each canonical subset Yr, we construct the data structure of Theo-

rem 4.1 for Yr(1) = {q(1) | q ∈ Yr}, denoted by D(Yr). Since
∑

r |Yr| = O(n4/3 log n), con-

structing the data structures for all Yr can be done in O(n4/3 log2 n) time and O(n4/3 log n)

space.

This finishes our preprocessing work, which takes O(n4/3 log2 n) time in total.

Implementing the BFS algorithm. We next implement the BFS algorithm as overviewed

above (we follow the same notation).

For each point p ∈ Pi−1, the key step is to compute the subset S(p) of P . We implement

this step as follows. For each Yr ∈ N (p), we perform a UDRE query with p(1) on the data

77

structure D(Yr). If the query returns a point q(1), then we add q to S(p) and delete q(1)

from the data structure D(Y ′
r) for every Y ′

r ∈ M(q). Next, we perform a UDRE query with

p(1) on D(Yr) again and repeat the same process as above until the query does not return

any point. According to the definitions of N (p) and M(p) and also due to the deletions on

D(Y ′
r) for all Y ′

r ∈ M(q), the union of S(p) thus computed for all p ∈ Pi−1 is exactly Pi.

This finishes the i-th iteration of the BFS algorithm.

For the time analysis, since both
∑

p∈P |N (p)| and
∑

p∈P M(p) are O(n4/3 log n), the

total number of UDRE queries and deletions on the data structures D(Yr) in the entire

algorithm is O(n4/3 log n), which together take O(n4/3 log2 n) time. Therefore, the BFS

algorithm runs in O(n4/3 log2 n) time.

The following theorem summarizes our result for the decision problem.

Theorem 4.2. Given any value λ > 0, we can decide whether b(T ∗) ≤ λ in O(n4/3 log2 n)

time, and if yes, a moving spanning tree T of P with b(T) ≤ λ can be found in O(n4/3 log2 n)

time.

4.2.2 The optimization problem

As discussed in Section 4.1, by Observation 4.1, b(T ∗) is equal to |p(0)q(0)| or |p(1)q(1)|

for two moving points p, q ∈ P . As such, we can compute b(T ∗) by searching the two

sets S(0) and S(1) using our decision algorithm in Theorem 4.2, where S(t) is defined as

{|p(t)q(t)| | p, q ∈ P} for any t ∈ [0, 1]. To avoid explicitly computing S(0) and S(1),

which would take Ω(n2) time, we resort to the distance selection algorithm of Katz and

Sharir [30], which can compute the k-th smallest distance among all interpoint distances

of a set of n points in the plane in O(n4/3 log2 n) time for any k with 1 ≤ k ≤
(
n
2

)
.

Combining the distance selection algorithm and our decision algorithm, we can compute

b(T ∗) in O(n4/3 log3 n) time by doing binary search on the values of S(0) and S(1). The

details are given in the proof of the following theorem.

Theorem 4.3. Given a set P of n moving points in the plane, we can compute a Euclidean

minimum bottleneck moving spanning tree for them in O(n4/3 log3 n) time.

78

Proof. We provide the details on searching b(T ∗) from S(0) ∪ S(1). We first search S(0),

which consists of interpoint distances of the points of P (0).

An interval (a0, b0], which is initialized to (0,∞], is maintained throughout the algo-

rithm. Applying the distance selection algorithm on the points of P (0), we can find the k-th

smallest distance d of S(0) in O(n4/3 log2 n) time, with k = 1/2 ·
(
n
2

)
. Applying our decision

algorithm of Theorem 4.2 with λ = d, we can decide whether b(T ∗) ≤ d in O(n4/3 log2 n)

time. Depending on the result, we update the interval (a0, b0] accordingly and choose an

appropriate value k for the next iteration. In this way, after O(log n) iterations, we can

obtain an interval (a0, b0] containing b(T ∗) with a0, b0 ∈ S(0) such that no value of S(0) is

in (a0, b0). The total running time is O(n4/3 log3 n).

Following the same idea we search S(1) using the point set P (1), which will produce

in O(n4/3 log3 n) time an interval (a1, b1] containing b(T ∗) with a1, b1 ∈ S(1) such that no

value of S(1) is in (a1, b1).

It is not difficult to see that b(T ∗) = min{b0, b1}. Applying our decision algorithm

with λ = b(T ∗) can produce an optimal moving spanning tree T ∗. The total time of the

algorithm is thus O(n4/3 log3 n).

4.3 Deletion-only unit-disk range emptiness query data structure

In this section, we prove Theorem 4.1. We follow the notation in the theorem, e.g., Q,

λ.

We use a unit-disk to refer to a disk with radius λ. For any point p in the plane, we use

Ap to denote the unit-disk centered at p. With this notation, a unit-disk range emptiness

(UDRE) query with query point p becomes the following: Determine whether Ap ∩ Q is

empty, and if not, return a point from Ap ∩Q.

We use a grid Ψλ to capture the neighboring information of the points of Q, which

partitions the plane into square cells of side length λ/
√
2 by horizontal and vertical lines,

so that the distance of any two points in each cell is at most λ. For ease of discussion, we

assume that each point of Q is in the interior of a cell of Ψλ. Define Q(C) as the subset of

points of Q lying in a cell C. A cell C ′ of Ψλ is a neighbor of another cell C if the minimum

79

C

Fig. 4.3: The cells in the gray region bounded by the blue curve are all neighbors of the red
cell.

distance between a point of C and a point of C ′ is at most λ (see Fig. 4.3). For each cell

C, we use N(C) to denote the set of neighbors of C in Ψλ; for convenience, we let N(C)

include C itself. Note that the number of neighbors of each cell of Ψλ is O(1) and each cell

is a neighbor of O(1) cells (since C ′ ∈ N(C) if and only if C ∈ N(C ′)). Let C denote the

set of cells of Ψλ that contain at least one point of Q as well as their neighbors. Note that

C has O(n) cells. By the definition of C, the following observation is self-evident.

Observation 4.2. For any point p in the plane, if p is not in any cell of C, then Ap∩Q = ∅.

The grid technique was widely used in algorithms for unit-disk graphs [1, 13, 17, 18].

The following lemma has been proved in [33].

Lemma 4.3. ([33])

1. The set C, along with the subsets Q(C) and N(C) for all cells C ∈ C, can be computed

in O(n log n) time and O(n) space.

2. With O(n log n) time and O(n) space preprocessing, given any point p in the plane,

we can do the following in O(log n) time: Determine whether p is in a cell C of C,

and if yes, return C and the set N(C).

Note that we do not compute the entire grid Ψλ but only compute the information in

Lemma 4.3. We next prove Theorem 4.1 using the information computed in Lemma 4.3.

80

Consider a UDRE query with a query point p. By Lemma 4.3(2), we can determine

whether p is in a cell C ∈ C. If not, by Observation 4.2, we are done with the query. Below

we assume that p is in a cell C ∈ C. In this case, Ap∩Q ̸= ∅ if and only if Ap∩Q(C ′) ̸= ∅ for

a cell C ′ ∈ N(C). As such, as |N(C)| = O(1), it suffices to check for each cell C ′ ∈ N(C),

whether Ap ∩ Q(C ′) = ∅. In this way, we reduce our original problem for Q to Q(C ′). As

such, below we construct a data structure DC(C
′) for Q(C ′) with respect to C. Note that

we also need to handle deletions for Q(C ′). Depending on whether C ′ = C, there are two

cases.

If C ′ = C, then all points of Q(C ′) are in the disk Ap and thus we can return an

arbitrary point of Q(C ′) as the answer to the UDRE query. To support the deletions on

Q(C ′), we build a balanced binary search tree T (C ′) for all points of Q(C ′) sorted by their

indices (we can arbitrarily assign indices to points of Q) as our data structure DC(C
′). In

this way, deleting a point from DC(C
′) can be done in O(log n) time. Therefore, in the case

where C ′ = C, we can perform each UDRE query and each deletion in O(log n) time.

In what follows, we assume that C ′ ̸= C, which is our main focus. In this case, C ′

and C are separated by an axis-parallel line. Without loss of generality, we assume that

they are separated by a horizontal line ℓ such that C ′ is above ℓ and C is below ℓ. We

further assume that ℓ contains the upper edge of C. The rest of this section is organized

as follows. In Section 4.3.1, we first present some observations which our approach is based

on. We describe our preprocessing algorithm for Q(C ′) in Section 4.3.2 while handling the

UDRE queries and deletions is discussed in Section 4.3.3. Section 4.3.4 finally summarizes

everything. In the following, we let m = |Q(C ′)|.

4.3.1 Observations

Our basic idea is to maintain the portion U inside C of the lower envelope of the

unit-disks centered at points of Q(C ′). Then, Ap ∩ Q(C ′) ̸= ∅ if and only if p is above

U . Determining whether p is above U can be easily done by binary search because U is

x-monotone. To handle deletions, we borrow an idea from Hershberger and Suri [75] for

maintaining the convex hull of a semi-dynamic (deletion-only) set of points in the plane.

81

ℓ

C

l∗ r∗

a

b

Fig. 4.4: Illustrating the lower envelope (the
red curve).

ℓ

C

l∗ r∗

Fig. 4.5: Illustrating a lower envelope (the
red curve) that has two connected compo-
nents.

To make our approach work, we first present some observations in this subsection.

Recall that Aq denotes a unit-disk centered at point q. We use ∂Aq to denote the

boundary of Aq, which is a unit-circle. Let ξq = ∂Aq ∩ C, i.e., the portion of the circle

∂Aq inside C. Note that it is possible that ξq = ∅, in which case either Aq ∩ C = ∅ or

C ⊆ Aq. If Aq ∩ C = ∅, then |pq| > λ holds for all points p ∈ C and thus q can be ignored

from constructing our data structure DC(C
′). If C ⊆ Aq, then |pq| ≤ λ always holds for

all points p ∈ C and thus we can process all such points q in the same way as the above

case C ′ = C. As such, in the following we assume that ξq ̸= ∅ for every point q ∈ Q(C ′).

Because the radius of Aq is λ while the side-length of C is λ/
√
2, ξq consists of at most two

arcs of ∂Aq. Further, ξq has exactly two arcs only if ∂Aq intersects the lower edge of C. For

simplicity of discussion, we remove the lower edge from C and make C a bottom-unbounded

rectangle (i.e., C’s upper edge does not change, its two vertical edges extend downwards

to the infinity, and its lower edge is removed); so now C has three edges. In this way,

ξq = ∂Aq ∩ C is always a single arc.

Since q is above the horizontal line ℓ, which contains the upper edge of C, ξq must be

x-monotone. This means the lower envelope U of Ξ = {ξq | q ∈ Q(C ′)} is also x-monotone

(see Fig. 4.4). We will show that U can be computed in linear time by a Graham’s scan

style algorithm once the arcs of Ξ are ordered in a certain way. To define this special order,

we first introduce some notation below.

Recall that the boundary ∂C consists of three edges. Let l∗ denote the lower endpoint

82

of the left edge of C at −∞; similarly, let r∗ denote the lower endpoint of the right edge

of C (see Fig. 4.4). For any two points a and b on ∂C, we say that a is left of b if a is

counterclockwise from b around C (i.e., if we traverse from l∗ to r∗ along ∂C, a will be

encountered earlier than b). For each arc ξq, if a and b are its two endpoints and a is left of

b (see Fig. 4.4), then we call a the left endpoint of ξq and b the right endpoint. For ease of

exposition, we make a general position assumption that no two arcs of Ξ share a common

endpoint. The special order mentioned above for the Graham’s scan style algorithm is the

order of arcs of Ξ by their right endpoints on ∂C, called right-endpoint left-to-right order.

To justify the correctness, we prove some properties for the lower envelope U below.

Suppose we traverse on ∂C from l∗ until we meet U , and then we traverse on U until

we come back on ∂C again. We keep traversing. We may meet U again if U has multiple

connected components (see Fig. 4.5). We continue in this way until we arrive at r∗. The

order of the arcs of Ξ that appear on U encountered during the above traversal is called the

traversal order of U . The following is a crucial lemma that our algorithm relies on.

Lemma 4.4. Every arc of Ξ has at most one portion on U and the traversal order of U

is consistent with the right-endpoint left-to-right order of Ξ (i.e., if an arc ξ appears in the

front of another arc ξ′ in the traversal order of U , then the right endpoint of ξ is to the left

of that of ξ′).

Proof. We prove the lemma by induction. Let ξ1, ξ2, . . . , ξm be the arcs of Ξ following the

right-endpoint left-to-right order. For each i = 1, 2, . . . ,m, let Ξi = {ξ1, ξ2, . . . , ξi} and Ui

denote the lower envelope of Ξi. We assume that the lemma statement holds for Ξi−1 and

Ui−1, i.e., every arc of Ξi−1 has at most one portion on Ui−1 and the traversal order of Ui−1

is consistent with the right-endpoint left-to-right order of Ξi−1, which is true when i = 2.

Next we prove that the lemma statement holds for Ξi and Ui. For each ξi, we use Ai to

denote the unit-disk that has ξi on its boundary.

We add ξi to Ui−1 since Ui is the lower envelope of ξi and Ui−1. Let a and b be the left

and right endpoints of ξi, respectively. Because the right endpoints of all arcs of Ξi−1 are

83

ℓ

C

l∗ r∗

a

b
ξi

Fig. 4.6: Illustrating the first case in the
proof of Lemma 4.4.

ℓ

C

l∗ r∗
ξi

a

b

c
ξj

Fig. 4.7: Illustrating the second case in the
proof of Lemma 4.4.

left of b, b must be on Ui and actually is the last point of Ui in the traversal order. Imagine

that we move on ξi from b until we encounter either Ui−1 or a, whichever first.

1. If we encounter a first, then ξi does not intersect Ui−1 and thus the entire ξi is on Ui

(see Fig. 4.6). Also, ξi is the last arc in the traversal order of Ui because b is the last

point in the traversal. Therefore, the lemma statement holds for Ξi and Ui. Note that

it is possible that some components of Ui−1 are covered by ξi, i.e., they are inside the

disk Ai, in which case those components are not part of Ui anymore (see Fig. 4.6).

2. If we encounter Ui−1 first, say, at a point c (see Fig. 4.7), then let ξj be the arc of Ξi−1

that contains c. This means that ξi and ξj intersect at c. Due to our general position

assumption, c is not an endpoint of either arc. As the two arcs have the same radius,

ξi and ξj cross each other at c. Also, the portion of ξi between a and c is covered by

ξj , i.e., they are inside the disk Aj , and thus cannot be on Ui (see Fig. 4.7). On the

other hand, by the definition of c, the portion of ξi between c and b is part of Ui and

is actually the last arc in the traversal order of Ui because b is the last point in the

traversal. Therefore, the lemma statement holds for Ξi and Ui. Note that the portion

of Ui−1 between c and its last point is covered by ξi, i.e., inside the disk Ai, and thus

is not part of Ui anymore (see Fig. 4.7).

The above proves that the lemma holds for Ξi and Ui.

4.3.2 Preprocessing

84

We perform the following preprocessing algorithm for Q(C ′). Due to Lemma 4.4, we are

able to extend to our problem a technique from Hershberger and Suri [75] for maintaining

the convex hull for a semi-dynamic (deletion-only) set of points in the plane (in the dual

plane, the problem is to maintain the lower/upper envelope for a semi-dynamic set of lines).

Recall that m = |Q(C ′)|.

We first compute the arcs of Ξ and sort them by their right endpoints from left to right

on ∂C. Let T be a complete binary tree whose leaves correspond to arcs in the above order.

For each node v, let Ξ(v) denote the subset of arcs in the leaves of the subtree of T rooted

at v.

For any subset Ξ′ of Ξ, let U(Ξ′) denote the lower envelope of the arcs of Ξ′. We use

a tree T (Ξ′) (which can be considered as a subtree of T) to represent U(Ξ′). Initially, we

have the tree T (Ξ), and later T (Ξ) is modified due to point deletions from Q(C ′) (and

correspondingly arc deletions from Ξ). The tree T (Ξ′) is defined as follows. For each arc

ξ ∈ Ξ′, we copy the leaf of T storing ξ along with all ancestors of the leaf into T (Ξ′). If

we define Ξ′(v) = Ξ(v) ∩ Ξ′ for any node v of T , then v is copied into T (Ξ′) if and only if

Ξ′(v) ̸= ∅. Later we will add some additional node-fields to T (Ξ′) to represent the lower

envelope U(Ξ′). We call T (Ξ′) an envelope tree.

We wish to have each node v of T (Ξ′) represent the lower envelope U(Ξ′(v)) of arcs of

Ξ′(v), i.e., arcs stored in the leaves of the subtree of T (Ξ′) rooted at v. We add a node-

field arcs(v) for that purpose. Storing the entire lower envelope U(Ξ′(v)) at each arcs(v)

of T (Ξ′) leads to superlinear total space. To achieve O(m) space, we use the following

standard approach (which has been used elsewhere, e.g., [75, 76]): For each arc ξ stored in

a leave v ∈ T (Ξ′), ξ is stored only at arcs(u) for the highest ancestor u of v in T (Ξ′) such

that ξ contributes an arc in the lower envelope U(Ξ′(u)). Arcs of arcs(v) in each node v of

T (Ξ′) are stored in a doubly linked list. Note that if v is the root of T (Ξ′), then arcs(v)

stores the whole lower envelope U(Ξ′) of Ξ′.

The following lemma, which can be easily obtained from Lemma 4.4, is crucial to the

success of our approach.

85

ℓ

C

U(Ξ′(u)) U(Ξ′(w))

Fig. 4.8: Illustrating Lemma 4.5: The red (resp., blue) arcs are those from Ξ′(u) (resp.,
Ξ′(w)). There is only one intersection between U(Ξ′(u)) and U(Ξ′(w)).

Lemma 4.5. For each node v ∈ T (Ξ′), the lower envelopes U(Ξ′(u)) and U(Ξ′(w)) have at

most one intersection, where u and w are the left and right children of v, respectively (see

Fig. 4.8).

Proof. Note that U(Ξ′(v)) is also the lower envelope of U(Ξ′(u)) and U(Ξ′(w)). Assume to

the contrary that U(Ξ′(u)) and U(Ξ′(w)) have two or more intersections. Then, U(Ξ′(v))

has three arcs ξ1, ξ2, and ξ3 following the traversal order such that both ξ1 and ξ3 are from

one of the two subsets Ξ′(u) and Ξ′(w) while ξ2 is from the other. This implies that the

traversal order of U(Ξ′(v)) is not consistent with the right-endpoint left-to-right order of

Ξ′(v) because right endpoints of all arcs of Ξ′(u) are left of the right endpoints of all arcs

of Ξ′(w), a contradiction to Lemma 4.4.

By Lemma 4.5, we add another node-field X(v) for each node v ∈ T (Ξ′) to store the

two arcs that define the intersection of U(Ξ′(u)) and U(Ξ′(w)), where u and w are the left

and right children of v in T (Ξ′), respectively. If U(Ξ′(u)) and U(Ξ′(w)) do not intersect,

then X(v) stores the rightmost arc of U(Ξ′(u)) and the leftmost arc of U(Ξ′(w)). As will

be seen later in Section 4.3.3, the two node-fields X(v) and arcs(v) in T (Ξ′) allow us to

efficiently maintain the envelope tree T (Ξ′) subject to deletions of arcs. We next have the

following lemma for constructing T (Ξ) initially.

Lemma 4.6. Given the set Ξ of m arcs, we can build the envelope tree T (Ξ) in O(m logm)

time.

86

Proof. First of all, we can construct the tree T in O(m logm) time by sorting the arcs of Ξ

by their right endpoints on ∂C. The rest of the work is thus to compute the fields arcs(v)

and X(v) for all nodes v of T . This can be done in a bottom-up manner as follows.

At the outset, we have arcs(v) = Ξ(v) = {ξ} for each leaf node v ∈ T , where ξ is the

arc stored at v. We also set X(v) to null. Next, we compute arcs(·) and X(·) for other

nodes by merging the lower envelopes of their children. Specifically, consider a node v whose

left and right children are u and w, respectively. We assume that arcs(u) and arcs(w) store

the lower envelopes U(Ξ(u)) and U(Ξ(w)) in their traversal orders, respectively. The first

thing is to compute the lower envelope U(Ξ(v)). By Lemma 4.5, U(Ξ(u)) and U(Ξ(w))

have at most one intersection. Since each lower envelope is x-monotone, U(Ξ(v)), which

is also the lower envelope of U(Ξ(u)) and U(Ξ(w)), can be computed by a standard line

sweep procedure. Specifically, a vertical sweeping line ℓ′ sweeps the plane from left to

right. During the sweeping, we maintain the two arcs of U(Ξ(u)) and U(Ξ(w)) intersecting

ℓ′, respectively. An event happens if ℓ′ hits a vertex of either U(Ξ(u)) or U(Ξ(w)). The

sweeping procedure takes O(|Ξ(v)|) time (note that Ξ(v) = Ξ(u) ∪ Ξ(w)).

• If U(Ξ(u)) and U(Ξ(w)) do not have any intersection, then U(Ξ(v)) is just the con-

catenation of U(Ξ(u)) and U(Ξ(w)), i.e., we concatenate arcs(u) and arcs(w) and

store the result at arcs(v); we also need to reset both arcs(u) and arcs(w) to null. In

addition, X(v) is set to including the rightmost arc of U(Ξ(u)) and the leftmost arc

of U(Ξ(w)).

• If U(Ξ(u)) and U(Ξ(w)) have an intersection, say, a∗, then let ξu ∈ U(Ξ(u)) and

ξv ∈ U(Ξ(v)) be the two arcs that intersect at a∗. We concatenate the part of U(Ξ(u))

left to a∗ and the part of U(Ξ(w)) right to a∗ (ξu and ξw are cut off at a∗); the result is

U(Ξ(v)) and we store it into arcs(v). Further, arcs left to a∗ (including ξu) in U(Ξ(u))

and arcs right to a∗ (including ξw) in U(Ξ(w)) are removed from arcs(u) and arcs(w),

respectively. In addition, X(v) is set to {ξu, ξw}.

As such, computing the node-fields of v takes O(|Ξ(v)|) time. Doing this for all nodes

v in the same level of the tree takes O(m) time as the union of Ξ(v) of all nodes v in the

87

same level is exactly Ξ. Therefore, the construction of the envelope tree T (Ξ) can be done

in O(m logm) time in total.

The above finishes our preprocessing for the points Q(C ′), which takes O(m logm)

time and O(m) space. Our preprocessing builds the envelope tree T (Ξ), which is our data

structure DC(C
′). Once points from Q(C ′) are deleted we use Ξ′ to refer to the subset of Ξ

defined by the remaining points and use T (Ξ′) to refer to the corresponding envelope tree.

4.3.3 Handling UDRE queries and point deletions

We now discuss how to handle the UDRE queries and point deletions.

UDRE queries. Handling the UDRE queries is relatively easy. Consider a query point p

in the cell C. We wish to determine whether Ap ∩ Q(C ′) = ∅, and if not, return a point

q ∈ Ap ∩ Q(C ′). Let Ξ′ be the set of arcs defined by the points in the current set Q(C ′).

As discussed before, it suffices to determine whether p is above the lower envelope U(Ξ′).

To this end, since U(Ξ′) is x-monotone, let a and b be the two adjacent vertices of U(Ξ′)

such that p’s x-coordinate is between those of a and b. Let ξq be the arc that contains the

portion of U(Ξ′) between a and b, where q is the center of the arc (and thus q ∈ Q(C ′)).

As such, p is above U(Ξ′) if and only if p is above ξq (i.e., p is inside the unit-disk Aq). If

yes, then q ∈ Ap ∩Q(C ′) and thus we can return q as the answer to the query. Therefore,

it suffices to compute the arc ξq. To this end, one may attempt to perform binary search

on the vertices of U(Ξ′) to find a and b first. However, although the whole U(Ξ′) is stored

in arcs(v) at the root v, arcs of arcs(v) are stored in a doubly linked list, which does not

support binary search. To circumvent the issue, we can actually perform binary search

using the node-fields X(·) of T (Ξ′) as follows.

Observe that each vertex of U(Ξ′) appears as the intersection of the two arcs of X(v)

for some node v ∈ T (Ξ′). The subtree of T (Ξ′) rooted at any node v represents U(Ξ′(v))

by the intersections of the arcs of X(·) stored at its nodes. To find ξq, starting from the

root, for each node v of T (Ξ′), we compute the intersection a∗ of the arcs of X(v). If the

x-coordinate of p is smaller or equal to that of a∗, we proceed on the left subtree of v

88

recursively; otherwise, we proceed on the right subtree. At the end we will reach a leaf and

the arc stored at the leaf is ξq. As such, ξq can be found in O(logm) time.

Therefore, each UDRE query can be answered in O(logm) time.

Deletions. Next, we discuss point deletions. To delete a point q from Q(C ′), it boils down

to deleting the arc ξq defined by q from the envelope tree T (Ξ′). The next lemma provides

an algorithm for this.

Lemma 4.7. Deleting an arc from the envelope tree T (Ξ′) can be done in O(logm) amortized

time.

Proof. Let ξ be the arc we wish to delete from T (Ξ′) and let z be the leaf node of the tree

storing ξ. To delete ξ, we need to update arcs(·) and X(·) for all ancestors of z.

The algorithm is recursive. Starting from the root, for each node v, we process it by

calling Delete(ξ, v) as follows. We assume that arcs(v) now stores the whole lower envelope

U(Ξ′(v)), which is true initially when v is the root. Let u and w denote the left and right

children of v, respectively. We assume that the leaf z is in the right subtree of v since the

other case is symmetric. Let X(v) = {ξu, ξw}, with ξu ∈ U(Ξ′(u)) and ξw ∈ U(Ξ′(w)),

i.e., the intersection of ξu and ξw, denoted by a∗, is the intersection between U(Ξ′(u)) and

U(Ξ′(w)). We first restore U(Ξ′(u)), by concatenating the part of arcs(v) left to a∗ and

arcs(u). Restoring U(Ξ′(w)) can be done in a similar way. Depending on whether w = z,

there are two cases.

If w is the leaf z (which is the base case of our recursive algorithm), then arcs(w) = {ξ}

and we reset the right child of v and field X(v) to null. We also reset arcs(v) = arcs(u)

and arcs(u) = null.

If w is not z, then to update arcs(v) and X(v), observe that if ξ ̸∈ X(v), then deleting ξ

does not affect the intersection between U(Ξ′(u)) and the new lower envelope U(Ξ′(w)\{ξ}),

i.e., X(v) does not change. Hence, if ξ ̸∈ X(v), we proceed on w by calling Delete(ξ, w).

After Delete(ξ, w) is returned, the new U(Ξ′(w) \ {ξ}) is stored in arcs(w) and we cut

U(Ξ′(u)) and U(Ξ′(w) \ {ξ}) using X(v) to obtain arcs(v) in the same way as the tree

89

ξu ξw ξu ξw

ξ′u

ξ′w

Before deleting ξ = ξw After deleting ξ = ξw

Fig. 4.9: Illustrating the deletion of ξ = ξw. The red (resp., blue) arcs are those from Ξ′(u)
(resp., Ξ′(w)).

construction algorithm in Lemma 4.6, which takes O(1) time as each arcs(·) is stored by a

doubly linked list. In the following, we discuss the case where ξ ∈ X(v) = {ξu, ξw}.

Since ξ is in the right subtree of v, ξ must be ξw. In this case, X(v) will be changed

after the deletion of ξ and thus we need to compute the new arcs that define the intersection

of U(Ξ′(u)) and the new lower envelope U(Ξ′(w) \ {ξ}) (see Fig. 4.9). We proceed on w

by calling Delete(ξ, w). After Delete(ξ, w) is returned, the new U(Ξ′(w) \ {ξ}) is stored in

arcs(w). Let {ξ′u, ξ′w} be the new X(v) to be computed, with ξ′v and ξ′w in U(Ξ′(u)) and

U(Ξ′(w) \ {ξ}), respectively. Observe that ξ′u cannot lie to the left of ξu in arcs(u) while ξ′w

must lie on the part of the new U(Ξ′(w) \ {ξ}) between the two old neighbors of ξ (=ξw)

on U(Ξ′(w)) (see Fig. 4.9). As such, we compute ξ′u and ξ′w using a line sweep procedure

that is similar to the algorithm in Lemma 4.6, but to make the algorithm faster, due to

the above observation it suffices to start the sweeping line from the left of the following two

arcs: ξu and the left neighbor of ξ in the original lower envelope U(Ξ′(w)). We stop the

sweeping once the intersection of U(Ξ′(u)) and U(Ξ′(w)\{ξ}) is found, after which, we reset

arcs(v) as well as arcs(u) and arcs(w) in constant time in a way similar to the algorithm

in Lemma 4.6.

The pseudocode in Algorithm 4.1 summarizes the algorithm.

For the time analysis, the time we spend on each node v is O(1) except the line sweep

procedure for computing ξ′u and ξ′w in the case where ξ ∈ X(v). The procedure takes time

O(1 + ku + kw), where ku is the number of arcs between ξu and ξ′u in U(Ξ′(u)) and kw is

the number of arcs between ξw and ξ′w in U(Ξ′(w)). Observe that the arcs between ξu and

90

Algorithm 4.1: Deleting an arc ξ from the envelope tree T (Ξ′).
1 Function Delete(ξ, v):

// Initially, v is the root of the envelope tree T (Ξ′).
// Let z be the leaf that stores ξ. We assume that z is in the

right subtree of v; the other case is symmetric.
// In the beginning of this procedure, arcs(v) stores U(Ξ′(v)); at

the end arcs(v) stores U(Ξ′(v) \ {ξ}).
2 u = v.left_child
3 w = v.right_child
4 Restore U(Ξ′(u)) and U(Ξ′(w)) using arcs(u), arcs(w), arcs(v), and X(v).
5 if w = z then
6 v.right_child = NULL
7 arcs(v) = arcs(u)
8 X(v) = NULL
9 arcs(u) = NULL

10 end
11 else
12 if ξ ∈ X(v) = {ξu, ξw} then
13 ξ1 = ξu and ξ2 is set to the left neighbor of ξw in arcs(w)
14 Delete(ξ, w)
15 Using the line sweep procedure of Lemma 4.6 (but starting from the left

arc of ξ1 and ξ2) to find the intersection of arcs(u) and arcs(w), and
then set X(v).

16 Cut off arcs(u) and arcs(w) at the intersection and concatenate the
corresponding parts to produce arcs(v) (similar to the algorithm of
Lemma 4.6)

17 end
18 else
19 Delete(ξ, w)
20 Cut off arcs(u) and arcs(w) at the intersection and concatenate the

corresponding parts to produce arcs(v) (similar to the algorithm of
Lemma 4.6).

21 end
22 end
23 end

91

ξ′u in U(Ξ′(u)) are moved up from node u to node v after the deletion of ξ (i.e., they were

originally stored at arcs(u) but are stored at arcs(v) after the deletion). Similarly, the arcs

between ξw and ξ′w in U(Ξ′(w)) are moved up to w from some lower levels after the deletion

(see Fig. 4.9). Because each arc can be moved up at most O(logm) times for all m point

deletions of Q(C ′), the total sum of ku + kw for all deletions is bounded by O(m logm). As

such, each deletion takes O(logm) amortized time.

4.3.4 Putting everything together

The above shows that we can build a data structure DC(C
′) for the points of Q(C ′)

with respect to C in O(m logm) time and O(m) space, such that each UDRE query with

a query point in C can be answered in O(logm) time and deleting a point from Q(C ′) can

be handled in O(logm) amortized time.

To solve our original problem on Q, i.e., proving Theorem 4.1, for each cell C ∈ C, we

build data structures DC(C
′) for all cells C ′ ∈ N(C). Because |N(C)| = O(1) for every

C ∈ C and each cell C ′ is in N(C) for a constant number of cells C ∈ C, the total space for

all these data structures DC(C
′) is O(n) and the total preprocessing time is O(n log n).

For each UDRE query with a query point p, we first use Lemma 4.3(2) to determine

whether p is in a cell of C. If not, then by Observation 4.2, Ap ∩ Q = ∅ and thus we are

done with the query. Otherwise, Lemma 4.3(2) will return the cell C that contains p as well

as N(C). Then, for each C ′ ∈ N(C), we solve the query using the data structure DC(C
′).

The total query time is O(log n) as |N(C)| = O(1).

To delete a point q from Q, using Lemma 4.3(2) we first find the cell C ′ that contains

q as well as N(C ′). Notice that N(C ′) exactly consists of those cells C with C ′ ∈ N(C).

We then delete q from the data structure DC(C
′) for each C ∈ N(C ′). As |N(C ′)| = O(1),

the total deletion time is O(log n) amortized time.

This proves Theorem 4.1.

4.4 Concluding remarks

92

In this chapter, we presented an O(n4/3 log3 n) time algorithm for computing a Eu-

clidean minimum bottleneck moving spanning tree for a set of n moving points in the plane,

which significantly improves the previous O(n2) time solution [20]. To solve the problem,

we first solved the decision problem in O(n4/3 log2 n) time. This is done by reducing it

to the problem of computing a common spanning tree in two unit-disk graphs. To avoid

computing the unit-disk graphs explicitly, which would cost Ω(n2) time, we used a batched

range searching technique [30] to obtain a compact representation for searching one graph,

and derived a semi-dynamic (deletion-only) unit-disk range emptiness query data structure

for searching the other graph. We believe our data structure is interesting in its own right

and will certainly find applications elsewhere. We finally remark that although in our prob-

lem each moving point is required to move linearly with constant velocity, our algorithm

still works for other types of point movements as long as Observation 4.1 holds.

93

CHAPTER 5

A SIMPLE ALGORITHM FOR UNIT-DISK RANGE REPORTING

5.1 Introduction

We design a simple but optimal algorithm for unit-disk range reporting. The result in

this chapter has been submitted to a conference and is now still under review.

5.1.1 Problem definitions and our results

Given a set P of n points in the plane and a value r, we consider the following unit-disk

range reporting problem (or UDRR for short): Construct a data structure such that given

any query disk of radius r, all points of P in the disk can be reported efficiently. Without

loss of generality, we assume r = 1 and thus each query disk is a unit disk.

The UDRR problem is also known as the fixed-radius neighbor problem in the litera-

ture [22–25]. Chazelle and Edelsbrunner [25] constructed a data structure of O(n) space

that can answer each query in O(log n + k) time, where k is the output size; their data

structure can be constructed in O(n2) time. By a standard lifting transformation [80],

the problem can be reduced to the half-space range reporting queries in 3D; this reduc-

tion also works if the radius of the query disk is arbitrary. Using Afshani and Chan’s 3D

half-space range reporting data structure [26], one can construct a data structure of O(n)

space with O(k+ log n) query time, while the preprocessing takes O(n log n) expected time

since it invokes Ramos’ algorithm [81] to construct shallow cuttings for a set of planes in

3D, which is the only randomized part of the whole algorithm. Chan and Tsakalidis [27]

later presented an O(n log n)-time deterministic algorithm for the shallow cutting problem.

Therefore, combining the framework in [26] with the shallow cutting algorithm [27], one

can build a data structure of O(n) space in O(n log n) deterministic time that can answer

each UDRR query in O(k + log n) time; note that this result also works for query disks of

94

arbitrary radii.

By exploiting special properties of unit disks, we present a new UDRR data structure

with the same complexity as above. Our algorithm is much simpler than the algorithm of [26,

27]. Indeed, the algorithm of [26,27] involves relatively advanced geometric techniques like

shallow partition theorem and shallow cuttings in 3D, planar graph separators, computing

ϵ-net and ϵ-approximations, etc. Our algorithm, in contrast, only relies on elementary

techniques (the most complicated one might be a fractional cascading data structure [28,

29]). One may consider our algorithm a generalization of the classical 2D half-plane range

reporting algorithm of Chazelle, Guibas, and Lee [82].

A closely related problem is the unit-disk range counting problem, which is to compute

the number of points of P in the query disk. By the standard lifting transformation,

the problem can be reduced to 3D half-space range counting [77–79]. One can also solve

the problem using the algorithms for general semialgebraic range counting, e.g., [83, 84].

Wang [33] recently presented various algorithms by extending the classical techniques for

2D half-plane range counting [77–79]. Refer to [85–87] for surveys on range searching in

general and some recent progress on semialgebraic range reporting [88,89].

Our approach. We first build a grid to capture the proximity information for points of P .

The side length of each grid cell is 1/
√
2 so that the distance between any two points in the

same grid cell is at most 1. For any query unit disk Dq whose center is q, points of P in the

grid cell C that contains q can be reported immediately. The critical part is to handle other

cells containing points of P ∩Dq. The number of such cells is constant and each of them is

separated from C (and thus from q) by an axis-parallel line. The problem thus boils down

to the following subproblem: Given a set Q of points in a grid cell C ′ above a horizontal line

ℓ, report points of Q in any query unit disk whose center is below ℓ. A point p ∈ Q is in Dq

if and only if q lies in the unit disk Dp centered at p, or equivalently, q is above the arc of the

boundary of Dp below ℓ. Let A denote the set of all such arcs for all points p ∈ Q. To find

the points of Q in Dq, it suffices to determine the arcs of A below q. To tackle this problem,

we follow the same framework as that for the 2D half-plane range reporting algorithm [82].

95

More specifically, in the preprocessing, we construct layers of lower envelopes of A and then

build a fractional cascading data structure on them [28,29]. Using the fractional cascading

data structure, the arcs of A below each query point q can be reported in O(k + log |Q|)

time, where k is the output size. The success of our method hinges on computing the layers

of lower envelopes of A in O(|Q| log |Q|) time. To this end, we consider its dual problem

that is to compute the layers of the α-hull [90] of Q with α = −1. By generalizing Chazelle’s

algorithm [91] for computing convex hull layers, we show that the α-hull layers of Q can be

computed in O(|Q| log |Q|) time. Our algorithm is actually simpler than Chazelle’s original

algorithm [91] since we do not need to handle cross deletions in our problem.

Outline. We present our algorithm for the UDRR problem in Section 5.2. The algorithm

uses a subroutine that computes layers of lower envelopes of circular arcs as discussed

above; the subroutine is described in Section 5.3. Section 5.4 concludes the chapter as well

as demonstrates that our techniques may be used to solve other related problems (e.g.,

outside-unit-disk range reporting and unit-disk range emptiness queries).

5.2 The UDRR algorithm

Let P be a set of n points in the plane. We wish to construct a data structure on P so

that given any query unit disk, the points of P in the query disk can be reported efficiently.

For any point q, let Dq denote the unit disk centered at q. For any region R and

any set Q of points in the plane, let Q(R) denote the subset of points of Q inside R, i.e.,

Q(R) = Q ∩ R. Unless otherwise stated, a circular arc or an arc refers to a circular arc of

radius 1. For a circular arc A, we call the disk whose boundary contains A the underlying

disk of A.

For any region R in the plane, we use ∂R to denote its boundary. For any point p in

the plane, we use x(p) to denote the x-coordinate of p.

5.2.1 Constructing a grid

Our preprocessing algorithm starts with implicitly building a grid Ψ, which partitions

96

C

Fig. 5.1: Illustrating the grid Ψ, where P consists of the three black points and C consists
of all gray square cells. Any point whose distance to q is at most 1 must lie in the region
bounded by blue segments, which contains 21 cells (those cells constitute N(C)).

the plane into square cells of side length 1/
√
2 by axis-parallel lines. This guarantees that

the distance of any two points in each cell of Ψ is at most 1. For ease of exposition, we

assume that every point of P lies in the interior of a cell of Ψ. We say that a cell C ′ is a

neighbor of another cell C if the minimum distance between points of C and points of C ′ is

at most 1. We use N(C) to denote the set of all neighbors of cell C in Ψ. We also let N(C)

contain cell C itself. Note that |N(C)| = O(1) and C ′ ∈ N(C) if and only if C ∈ N(C ′).

Observe that for any point q in a cell C, any point whose distance to q is at most 1 must

lie in a cell of N(C). Define C to be the set of cells of Ψ that contain at least one point of

P along with their neighbors, i.e., C =
∪

C∩P ̸=∅N(C); see Fig. 5.1. Note that C has O(n)

cells. The following observation follows the definition of C.

Observation 5.1. For any point q in the plane, if q is not in any cell of C, then P ∩Dq = ∅.

The technique of using grids has been widely used in various algorithms for solving

problems in unit-disk graphs [1,13,14,17,18,21,33]. The following lemma has been proved

in [33].

Lemma 5.1. ([33])

1. The set C, along with the sets P (C) and N(C) for all cells C ∈ C, can be computed

in O(n log n) time and O(n) space.

97

2. With O(n log n) time and O(n) space preprocessing, given any point q, we can do the

following in O(log n) time: Determine whether q is in a cell C of C, and if yes, return

C and the set N(C).

Note that we only need to compute the information in Lemma 5.1 rather than the

entire grid Ψ. With Lemma 5.1(2) and Observation 5.1, for any query unit disk Dq whose

center is q, if q is not in a cell of C, then P (Dq) = ∅ and thus we simply return null. In

the following, we assume that q lies in a cell C ∈ C. Our goal is to report P (Dq). To this

end, it suffices to report P (C ′) ∩Dq for all cells C ′ ∈ N(C). In the case of C ′ = C, since

the distance between any two points in C is at most 1, we can simply report all points of

P (C). In what follows, we focus on the case C ′ ̸= C.

Since C ′ ̸= C, C and C ′ are separated by an axis-parallel line. Without loss of gener-

ality, we assume that C and C ′ are separated by a horizontal line ℓ with C ′ above ℓ and C

below ℓ. As q ∈ C, q is below ℓ, i.e., q is separated from C ′ by ℓ. Our target is to report

points of P (C ′) ∩ Dq. We formulate the problem as the following subproblem, called the

line-separable UDRR problem:

Problem 5.1. (Line-separable UDRR) Given a set Q of m points above a horizontal line

ℓ such that all points of Q are contained in a unit disk, build a data structure so that for

any query unit disk Dq centered at a point q below ℓ, the points of Q in Dq can be reported

efficiently.

For solving our problem, we can set Q = P (C ′) since all points of P (C ′) are in C ′,

which is contained in a unit disk. In what follows, we will prove Lemma 5.2.

Lemma 5.2. For the line-separable UDRR, we can build a data structure of O(m) space

in O(m logm) time that can answer each query in O(k+ logm) time, where k is the output

size.

Before proving Lemma 5.2, we prove the following main result for UDRR using Lemma 5.2.

98

Theorem 5.1. Given a set P of n points in the plane, we can build a data structure of

O(n) space in O(n log n) time such that given any query unit disk, the points of P in the

disk can be reported in O(log n+ k) time, where k is the output size.

Proof. We first compute the information in Lemma 5.1. Then, for each cell C ∈ C, for each

C ′ ∈ N(C), we construct the line-separable UDRR data structure of Lemma 5.2 for P (C ′)

with respect to C (i.e., by rotating the plane so that C ′ and C are separated by a horizontal

line and C ′ is above the line), which takes O(|P (C ′)|) space and O(|P (C ′)| · log |P (C ′)|)

time. This finishes the preprocessing. Since
∪

C′∈C P (C ′) = P and each cell C ′ belongs

to N(C) for a constant number of cells C ∈ C, the preprocessing takes O(n) space and

O(n log n) time in total.

Given a query unit disk Dq centered at a point q, we first check whether q is in a cell

of C and if yes find such a cell, which can be done in O(log n) time by Lemma 5.1(2). If no

cell of C contains q, then by Observation 5.1 we can simply return null. Otherwise, let C be

the cell of C that contains q. We first report all points of P (C). Next, for each C ′ ∈ N(C),

using the line-separable UDRR data structure we built for P (C ′) with respect to C, we

report all points of P (C ′) inside Dq. As |N(C)| = O(1), the total query time is O(k+log n)

by Lemma 5.2.

5.2.2 Line-separable UDRR: Proving Lemma 5.2

We now prove Lemma 5.2.

Consider a query unit disk Dq whose center q is below ℓ. The goal of the query is to

report Q ∩Dq. Observe that a point p ∈ Q is in Dq if and only if q is in the unit disk Dp.

The portion of ∂Dp below ℓ is a circular arc, denoted by Ap. Since p is above ℓ, Ap is on the

lower half circle of ∂Dp and thus is x-monotone. As such, p is in Dq if and only if q is above

the arc Ap. Since all our query disk centers are below ℓ, if Ap = ∅, then p can be ignored

since it is either in all query disks or not in any query disk. Without loss of generality, we

assume that Ap ̸= ∅ for all p ∈ Q. Define A to be the set of arcs Ap for all points p ∈ Q.

As such, reporting the points of Q in Dq becomes reporting the arcs of A that are below q.

99

`

U1

q1

q2

Fig. 5.2: Illustrating the lower envelope U1.
Black dotted arcs are boundaries of unit
disks centered at points of Q. The point
q1 is below U1 while q2 is above U1.

`

U1

Fig. 5.3: Illustrating a lower envelope U1

with two connected components.

Define U1 as the lower envelope of the arcs of A (see Fig. 5.2). Since each arc of A is

x-monotone, U1 is also x-monotone. Note that U1 may have several connected components

(see Fig. 5.3). Observe that q is above an arc of A if and only if q is above U1 (see Fig. 5.2).

It has been proved by Wang and Zhao [21] that each arc of A can contribute at most

one arc in U1. Suppose we traverse arcs of U1 from left to right; the order of these arcs

encountered during our traversal is called the traversal order. The following lemma shows

that the traversal order is consistent with the order of the arcs of U1 sorted by their centers

from left to right.

Lemma 5.3. The centers of arcs in U1 following the traversal order are sorted in ascending

order by x-coordinate.

Proof. Consider two consecutive arcs U1 following the traversal order and let Ai and Ai+1

be the two arcs of A containing them, respectively. Let pi and pi+1 are the centers of Ai

and Ai+1, respectively. Our goal is to prove that x(pi) ≤ x(pi+1).

Let aj and bj be the left and right endpoints of Aj , for j ∈ {i, i + 1}. It has been

proved in [21] that x(bi) ≤ x(bi+1) because the subarc of Ai on U1 appears in the front of

that of Ai+1 in the traversal order. There are two cases depending on whether Ai and Ai+1

intersect. If they do not intersect, then since x(bi) ≤ x(bi+1), it holds that x(bi) ≤ x(ai+1).

As such, x(pi) ≤ x(pi+1) must hold since x(pj) = (x(aj) + x(bj))/2 for j ∈ {i, i+ 1}. If Ai

and Ai+1 intersect, then they intersect exactly once since their underlying disks are unit

100

`

U1

q

A1

A2

A3
A4

A5

Fig. 5.4: The three blue arcs are below q
while the two red arcs are above q.

`

U1

qAj−1

Aj
Aj+1

Aj+2

u

aj aj+1

Fig. 5.5: Illustrating the case where A′
j and

A′
j+1 intersect at a vertex u of U1.

disks. As such, since x(bi) ≤ x(bi+1), we have x(ai) ≤ x(ai+1). Therefore, x(pi) ≤ x(pi+1)

must hold since x(pj) = (x(aj) + x(bj))/2 for j ∈ {i, i+ 1}.

Define Q1 to be the set of centers of all arcs of U1. We say that an arc A of U1 spans

a point p, if x(p) is between the x-coordinates of the two endpoints of A.

Lemma 5.4. Suppose q is a point below ℓ and the arc of U1 spanning q is known; then the

points of Q1∩Dq can be reported in O(|Q1∩Dq|) time (assuming that U1 is stored in a data

structure so that one can access from each arc of U1 its neighboring arcs in O(1) time).

Proof. Let A′
1, A

′
2, . . . , A

′
t be the arcs of U1 following their traversal order, where t is the

number of arcs of U1. For each 1 ≤ i ≤ t, let pi be the center of A′
i and Ai be the arc of A

containing A′
i. By definition, Q1 = {p1, p2, . . . , pt}.

If no arc of U1 spans q, then it is not difficult to see that Q1∩Dq = ∅. In the following,

we assume that U1 has an arc spanning q, denoted by A′
i.

If q is below A′
i, then q is below U1 and thus Q1 ∩ Dq = ∅. We thus assume that

q is above A′
i (see Fig. 5.4, where A′

i is A′
3). In this case, pi is in Dq and we report it.

Next, starting from A′
i, we traverse on the arcs of U1 rightwards (resp., leftwards) until the

distance between q and the center of an arc is larger than 1. Specifically, for the rightwards

case, we check the arcs of {A′
i+1, A

′
i+2, ...} in this order and for each arc A′

j , j ≥ i+ 1, if pj

is in Dq, then we report pj and proceed on j + 1; otherwise, we halt the procedure. The

leftwards case is symmetric. To see the correctness, we only argue the rightwards case as

the other case is symmetric.

101

Suppose pj is outside Dq. Our goal is to show that ph is not in Dq for any j+1 ≤ h ≤ t.

Consider the arc A′
j+1. There are two cases depending on whether A′

j and A′
j+1 intersect.

Let ai and bi be the left and right endpoints of Ai, respectively, for i ∈ {j, j + 1}.

• If A′
j and A′

j+1 intersect, say, at a point u, then u is a vertex of U1 (see Fig. 5.5). As

q is spanned by A′
i and i < j, it holds that x(q) < x(u). Since pj is outside Dq, q is

not above Aj , and more specifically, not above the portion of Aj between aj and u.

Since A′
j and A′

j+1 intersect and both arcs have the same radius, the portion of Aj

between aj and u is below the portion of Aj+1 between aj+1 and u. Since q is not

above the portion of Aj between aj and u, q cannot be above the portion of Aj+1

between aj+1 and u. As x(q) < x(u), this implies that q cannot be above Aj+1 and

thus pj+1 cannot be in Dq.

• If A′
j and A′

j+1 do not intersect, then both the right endpoint bj of Aj and the left

endpoint aj+1 of Aj+1 are vertices of U1 and x(bj) < x(aj+1). As q is spanned by A′
i

and i < j, x(q) ≤ x(bj), and thus x(q) < x(aj+1). Hence, q cannot be above Aj+1

and therefore pj+1 cannot be in Dq.

The above proves that pj+1 cannot be in Dq. Following the same analysis, we can show

that ph cannot be in Dq for all h = j + 2, j + 3, . . . , t.

Clearly, the algorithm runs in O(k) time, where k = |Q1 ∩ Dq|. This proves the

lemma.

By Lemma 5.4, if we store arcs of U1 by a balanced binary search tree, given a query

point q below ℓ, the arc of U1 spanning q can be computed in O(logm) time and consequently

Q1 ∩Dq can be reported in additional O(|Q1 ∩Dq|) time. Recall that our goal is to report

Q ∩ Dq. To report the remaining points, i.e., those of Q \ Q1 in Dq, we apply the idea

recursively on Q \ Q1. Specifically, define U2 as the lower envelope of the arcs of A after

the arcs defined by the points of Q1 are removed; let Q2 denote the set of centers of the

arcs of U2. In general, define Ui as the lower envelope of the arcs of A after the arcs defined

by the points of
∪i−1

j=1Qj are removed for i = 2, 3, . . . (see Fig. 5.6); let Qi denote the set

102

q

U1

U2

U3

Fig. 5.6: Illustrating layers of lower envelopes U1,U2,U3.

of centers of the arcs of Ui. We call {Ui} the lower envelope layers of A. The following

theorem, which will be proved in Section 5.3, computes the lower envelope layers.

Theorem 5.2. The lower envelope layers of A can be computed in O(m logm) time and

O(m) space, where m = |A|.

Proving Lemma 5.2. We now have all ingredients to prove Lemma 5.2. We compute the

lower envelope layers of A by Theorem 5.2. Then, we construct a fractional cascading data

structure on the vertices of the lower envelope layers [28,29]. This finishes the preprocessing,

which takes O(m) space and O(m logm) time in total. Given a query unit disk Dq centered

at a point q below the line ℓ, using the fractional cascading data structure, we can compute

the arc of U1 spanning q in O(logm) time and compute the arc of the next layer U2,U3, . . .

spanning q in O(1) time each. We compute the arc A′
i of Ui that spans q for all i = 1, 2, . . .

until an index j such that q is below A′
j (and thus Qj does not have any point in Dq, which

is also the case for Qj+1, Qj+2, · · ·). Then, for each Ui with 1 ≤ i ≤ j − 1, using the arc

A′
i, we apply Lemma 5.4 to report the points of Qi ∩ Dq. Because q is above Ui for each

1 ≤ i ≤ j−1, Qi has at least one point in Dq. As such, the total time of the query algorithm

is bounded by O(k + logm), where k = |Q ∩Dq|. This proves Lemma 5.2.

5.3 Computing layers of lower envelopes

In this section, we prove Theorem 5.2. We follow the same notation as before, e.g., Q,

A, Ui, Qi, except that we now use n to denote |Q| for convenience. Recall that all points

of Q are contained in a unit disk and thus the distance of every two points of Q is at most

103

Fig. 5.7: Illustrating the α-hull of Q,
for α = −1.

h1 H1

U1

h2

h3

h4

u1
u2

u3

Fig. 5.8: Illustrating the lower α-hull H1 of Q and
the lower envelope U1 of A. Black dotted arcs are
boundaries of underlying disks of arcs of U1. Ver-
tices of H1 are centers of arcs of U1, and vice versa.

1. For ease of exposition, we assume that no two points of Q have the same x-coordinate.

For any subset Q′ ⊆ Q, define A(Q′) = {Ap | p ∈ Q′}.

Our goal is to compute the lower envelope layers {Ui}. Instead of computing them

directly, we consider a dual problem. We borrow a concept α-hull from [90], which is a

generalization of the convex hull. For a real number α, a generalized disk of radius 1/α

is defined to be a disk of radius 1/α if α > 0, the complement of a disk of radius −1/α

if α < 0, and a halfplane if α = 0. The α-hull of Q is the intersection of all generalized

disks with radius 1/α that contain all points of Q (see Fig. 5.7). For our problem, we are

interested in the case α = −1. Henceforth, unless other stated, α = −1.

It is known that the leftmost (resp., rightmost) point of Q must be the leftmost (resp.,

rightmost) vertex of the α-hull of Q [90]. The lower α-hull of Q, denoted by H1, is defined

as the portion of the boundary of the α-hull counterclockwise from its leftmost vertex to

its rightmost vertex (similar concepts have been used elsewhere, e.g., [92]).

For any two points p and p′ of Q, as their distance is at most 1, there are two circular

arcs of radius 1 connecting them. One of these arcs having its center below the line through

p and p′ while the other having its center above the line (recall that x(p) ̸= x(p′) due to our

assumption); we call the former arc the concave arc of p and p′, denoted by A(p, p′). Note

that the lower α-hull H1 comprises of concave arcs [90].

We observe the following duality between the lower hull H1 of Q and the lower envelope

104

H1

H2

H3

Fig. 5.9: Illustrating lower α-hull layers {H1,H2,H3}.

U1 of A (see Fig. 5.8): The center of each arc in H1 is a vertex of U1 while the center of

each arc of U1 is a vertex of H1. Due to this duality, Q1 is exactly the set of vertices of H1.

Like lower envelope layers of A, we can correspondingly define lower α-hull layers of

Q. Specifically, define H2 as the lower α-hull of Q \Q1, i.e., the remaining points of Q after

vertices of H1 are removed; Hi is defined similarly for i = 3, 4, . . .; see Fig. 5.9. As above,

each Hi is dual to Ui, and thus Qi is the set of vertices of Hi. As such, to compute layers

of lower envelopes {Ui} of A, it suffices to compute layers of lower α-hulls {Hi} of Q, which

is our focus below.

We present an algorithm to compute the lower α-hull layers {Hi} in O(n) space and

O(n log n) time. We follow the scheme of Chazelle’s algorithm [91] for computing convex

hull layers of a set of points in the plane. Our algorithm is actually simpler since cross

deletions are not needed in our algorithm. The main idea is to construct a tree graph G

embedded in the plane such that each edge is a circular arc. H1 can be produced in O(|H1|)

time by using G. Then, vertices of H1 are removed from G and G is updated so that H2

can be produced in O(|H2|) time. Repeating this process until G becomes ∅ will produce

the lower α-hull layers {Hi}. In what follows, we first define the graph G in Section 5.3.1

and then describe an algorithm to construct it in Section 5.3.2. Finally in Section 5.3.3 we

compute lower α-hull layers using G.

5.3.1 Defining the tree graph G

Let p1, p2, ..., pn be the list of the points of Q sorted from left to right. Let T be a

complete binary tree whose leaves store p1, p2, ..., pn from left to right, respectively. For

each node v of T , let Q(v) ⊆ Q be the set of points that are stored at the leaves of the

105

G

p1

p2

p3

p4

p5

p6
p7

p8

Fig. 5.10: Illustrating the graph G for a set
Q = {p1, p2, ..., p8} of 8 points.

p1 p8p2

A(p1, p3) A(p6, p7)
A(p3, p6)

......

Fig. 5.11: Illustrating T for the example in
Fig. 5.10. Internal nodes store common tan-
gent arcs, which are edges of G.

subtree rooted at v and let A(v) = A(Q(v)). Let H(v) denote the lower α-hull of points in

Q(v) and U(v) the lower envelope of A(v). Hence, H(v) and U(v) are dual to each other.

The graph G is defined as follows: Its vertex set is Q and its edge set consists of arcs

of H(v) of all nodes v of T (see Fig. 5.10). As such, each edge of G is a concave arc.

For any vertex p of the lower α-hull H of a subset Q′ of Q, we say that a circular arc

A containing p is tangent to H at p if no point of Q′ is contained in the interior of the

underlying disk of A. Note that A is tangent to H if and only if the two adjacent vertices

of p on H are outside the underlying disk of A.

Consider a node v ∈ T . Let u and w be v’s left and right children, respectively. A

concave arc A(pi, pj) connecting a vertex pi of H(u) and a vertex pj of H(w) is called a

common tangent arc of H(u) and H(w) if A(pi, pj) is tangent to H(u) at pi and tangent to

H(w) at pj . By duality, A(pi, pj) corresponds to the intersection a between U(u) and U(w)

(i.e., a is the center of A(pi, pj)). It has been proved in [21] that U(u) and U(w) have at

most one intersection, and thus H(u) and H(w) have at most one common arc tangent. In

fact, since all points of Q are contained in a unit disk, H(u) and H(w) have exactly one

common tangent arc, say, A(pi, pj), connecting a vertex pi of H(u) and a vertex pj of H(w).

Then H(v) consists of the following three portions in order from left to right: the portion of

H(u) between its leftmost vertex and pi, the arc A(pi, pj), and the portion of H(w) between

pj and its rightmost vertex. We store A(pi, pj) at v, denoted by A(v); see Fig. 5.11. The

common tangent arcs A(v) for all internal nodes v of T form exactly the edge set of G.

We store the graph G in an adjacency-list structure as follows. Each vertex p of G is

associated with two doubly linked lists Ll(p) and Lr(p) such that Ll(p)∪Lr(p) contains all

106

p

Ll(p) Lr(p)

q

Fig. 5.12: Illustrating the adjacency lists Ll(p) and Lr(p) at p. The two red arcs are bottom
edges. The red dashed segment with arrow is the tangent ray of A(p, q) at p and the tangent
angle is shown.

adjacent vertices of p in G, where Ll(p) (resp., Lr(p)) stores adjacent vertices of p that are to

the left (resp., right) of p. For each adjacent vertex q of p, we define the tangent angle of the

concave arc A(p, q) of G connecting p and q as the acute angle of the tangent ray of A(p, q)

at p following the direction toward q with the horizontal line through p (see Fig. 5.12).

Vertices of Ll(p) (resp., Lr(p)) are sorted by the tangent angles of their corresponding arcs.

The bottom edge of Ll(p) (resp., Lr(p)) is defined as the arc with the minimum tangent

angle in Ll(p) (resp., Lr(p)); see Fig. 5.12. We add two pointers at p to access the two

bottom edges in Ll(p) and Lr(p).

5.3.2 Constructing the tree graph G

The following lemma will be used as a subroutine in our algorithm for constructing G.

Lemma 5.5. Given the lower α-hull H′ of a subset Q′ ⊆ Q and the lower α-hull H′′ of

another subset Q′′ ∩ Q such that Q′ and Q′′ are separated by a vertical line, the common

tangent arc of H′ and H′′ can be computed in O(|H′|+ |H′′|) time.

Proof. Without loss of generality, we assume that H′ is to the left of H′′. Our goal is to

compute a vertex u ∈ H′ and a vertex v ∈ H′′ such that the arc A(u, v) is tangent to both

H′ and H′′. The algorithm is similar to that for computing a common tangent of two lower

convex hulls that are separated by a vertical line; we briefly discuss it below.

Initially we set u to the rightmost vertex of H′ and v the leftmost vertex of H′′. We

keep moving u leftwards on H′ until A(u, v) is tangent to H′ at u. Then we check whether

107

A(u, v) is tangent to H′′ at v. If yes, then we are done. Otherwise, we keep moving v

rightwards on H′′ until A(u, v) is tangent to H′′ at v. Next we check whether A(u, v) is

tangent to H′ at u. If yes, we are done. Otherwise, we move u leftwards again. We repeat

this process and eventually a common tangent arc will be found. Clearly, the runtime is

O(|H′|+ |H′′|).

With Lemma 5.5, the next lemma constructs the graph G.

Lemma 5.6. The graph G can be constructed in O(n log n) time and O(n) space.

Proof. As the vertex set of G is Q, our goal is to construct all edges and store them in the

adjacent-list structure, i.e., for each point p ∈ Q, construct the lists Ll(p) and Lr(p). To

this end, our algorithm proceeds following the tree T in a bottom-up manner.

For each vertex v ∈ T , we define G(v) as the graph G but only on the points of Q(v).

As such, G(v) is G if v is the root and G(v) = ∅ if v is a leaf.

Consider an internal node v of T , with u and w as its left and right children, respectively.

We assume that G(u) and G(w) have been computed, i.e., for each point p of Q(u) (resp.,

Q(v)), we have two corresponding lists Ll(p) and Lr(p) with respect to G(u) (resp., G(v)).

Next, we construct G(v) using G(u) and G(w).

Observe that G(v) is the union of G(u), G(w), and the common tangent arc of H(u)

and H(w), denoted by A(p, q), with p ∈ H(u) and q ∈ H(w). Since Q(u) and Q(w) are

separated by a vertical line, we can compute the arc A(p, q) in O(|Q(u)|+ |Q(w)|) time by

Lemma 5.5. Note that we can traverse on H(u) (resp., H(w)) in constant time per vertex

using the bottom edge pointers of vertices in G(u) (resp., G(w)). Observe that the arc

A(p, q) must be the bottom edge in Lr(p) as well as Ll(q) in G(v). As such, we simply

add q to the bottom of the current list Lr(p) and add p to the bottom of the current list

Ll(q), and also update the bottom edge pointers of p and q accordingly. In this way, G(v)

can be computed in O(|Q(u)|+ |Q(w)|) time, or in O(|Q(v)|) time as Q(v) = Q(u)∪Q(w).

Hence, the total time for constructing the graph G is O(n log n) and the space complexity

is O(n).

108

5.3.3 Computing lower α-hull layers

We next use the graph G to compute the lower α-hull layers {Hi}.

First of all, H1 can be obtained in O(|H1|) time by using bottom edge pointers of G,

say, starting from the leftmost point of Q, which is the leftmost vertex of H1, since arcs of

H1 must be bottom edges of vertices of H1. Then, we remove vertices of H1 (along with

their incident edges) from G. Using the new G, the second layer lower α-hull H2 can be

computed in O(|H2|) time similarly. We repeat this process until G becomes empty. The

following lemma shows that removing a vertex from G can be done in O(log n) amortized

time.

Lemma 5.7. All point deletions in the entire algorithm can be done in O(n log n) time and

O(n) space.

Proof. Suppose we want to delete a point p from G and p is a vertex of the lower α-hull of

G. The deletion of p will result in the removal of all arcs of G connecting p. In addition,

new arcs may be computed as well.

Let {v1, v2, ..., vt} be the list of the nodes of T encountered when traversing from the

leaf node storing the point p to the root of T . The deletion of p may affect lower α-hulls

H(vi), for i = 1, 2, ..., t. We will update G(vi) (and thus H(vi)) for i = 1, 2, ..., t in this

order.

Consider a node vi with 2 ≤ i ≤ t. Note that vi−1 is a child of vi. Let v refer to

the child of vi other than vi−1. Depending on whether p is an endpoint of the arc A(vi)

stored at vi, i.e., the common tangent arc of H(vi−1) and H(v), there are two cases. If p

is not an endpoint of A(vi), then removing p does not affect A(vi) as well as A(vj) for any

i + 1 ≤ j ≤ t. Hence, in this case, we are done with deleting p. In the following, we focus

on the case where p is an endpoint of A(vi) (see Fig. 5.13). Below we only discuss the case

where p is the left endpoint of A(vi) since the other case is symmetric. Let c be the other

endpoint of A(vi) and to be more informative we use A(p, c) to refer to A(vi).

Note that each arc of Ll(p) ∪ Lr(p) is A(vj) for some j ∈ [1, t]. Let A(a, p) be the last

arc that has been processed due to the deletion of p with p as the right endpoint of the arc,

109

p

a
b

c

H(vi−1) H(v)

Fig. 5.13: p is an endpoint of A(vi), i.e., the common tangent arc (the red arc) of the new
H(vi−1) and H(v).

p

a

b

c

H(vi−1)
H(v)a′ b′ c′β1 β2 β3

ε1

ε2

Fig. 5.14: Illustrating points a′, b′ and c′,
angles {β1, β2, β3} and {ϵ1, ϵ2}.

x

y1

y2

6 (xy1, xy2)

Fig. 5.15: Illustrating angle ∠(xy1, xy2) of
arcs A(x, y1) and A(x, y2). Blue rays with
arrows are tangent rays of A(x, y1) and
A(x, y2) at x.

and A(p, b) the last arc that has been processed with p as the left endpoint of the arc (see

Fig. 5.13). We assume that both a and b are well-defined (otherwise the algorithm is similar

but simpler). Note that A(a, p) and A(p, b) are actually arcs of the old H(vi−1) before vi−1

is processed. Since we process nodes of T in a bottom-up matter, a and b can be accessed

from Ll(p) and Lr(p) in constant time. Observe that the portion of the new lower α-hull

H(vi−1) between a and b must lie above the “wedge” formed by A(a, p) and A(p, b) (see

Fig. 5.13). Our goal is to compute a new common tangent arc A(s, t) of the new H(vi−1)

and H(v), with s ∈ H(vi−1) and t ∈ H(v), as follows.

Observe that s must lie between a and b on H(vi−1) and t is to the left of c on H(v).

We define a′ as the right adjacent vertex of a and b′ as the left adjacent vertex of b on

H(vi−1) (see Fig. 5.14). Let c′ be the left adjacent vertex of c on H(v). The degenerate

case in which a′ = b′, or a′ = b and b′ = a can be handled trivially. Since p is a vertex of

the current lower α-hull of G, arcs A(a, p), A(b, p), and A(c, p) are bottom edges of Lr(a),

110

p

a

b

c

H(vi−1)

L(v)
a′

b′

c′

Fig. 5.16: Illustrating the case of pulling up
p in which ϵ1 becomes null.

p

a

b

c

H(vi−1)

L(v)
a′ b′

c′

Fig. 5.17: Illustrating the case of pulling up
p in which ϵ2 becomes null.

Ll(b), and Ll(c), respectively. We can also access a′, b′, and c′ in constant time.

To describe our algorithm for computing A(s, t), we define the angle ∠(xy1, xy2) of

two arcs A(x, y1) and A(x, y2) as follows. For each j = 1, 2, define ρj as the ray from x

toward yj and tangent to the underlying disk of A(x, yj) at x. ∠(xy1, xy2) is defined as the

angle between ρ1 and ρ2 (see Fig. 5.15). Our algorithm considers the following five angles,

β1 = ∠(aa′, ap), β2 = ∠(bb′, bp), β3 = ∠(cc′, cp), ϵ1 = ∠(pa′′, pc), and ϵ2 = ∠(pb, pc), where

a′′ is a point on the extension of arc A(a, p) (see Fig. 5.14).

Our algorithm for computing A(s, t) can be viewed as a process of “pulling up” p

vertically until p disappears in the new lower α-hull H(vi). This happens when one of

{ϵ1, ϵ2} becomes null (see Fig. 5.16 and 5.17). If one of the angles of {β1, β2, β3} becomes

null, then we will update x and x′, x ∈ {a, b, c} accordingly to obtain new β-angles. More

specifically, if ∠(xx′, xp), x ∈ {a, b, c} becomes null, then we reset x to x′, and reset x′ to

the left (if x ∈ {b, c}) or right (if x ∈ {a}) neighbor of the old x′. For the purpose of time

analysis, we say that the old x is wrapped. We can avoid calculating those five angles by

computing the intersections a∗, b∗, and c∗ of the vertical line through p with extensions of

arcs A(a, a′), A(b, b′) and A(c, c′), respectively (see Fig. 5.18). The lowest point of a∗, b∗,

and c∗ is the next candidate location of p. Before moving p to the next location, we check

whether {a, p, c} or {p, b, c} will be on the same unit circle during the movement of p, and

a positive answer implies that either ϵ1 or ϵ2 is null. We iterate this process until one of ϵ1

and ϵ2 is null. Once the common tangent arc A(s, t) is computed, we proceed on processing

vi+1. Note that p is in Ll(c) and is actually the bottom edge since p is a vertex of the lower

111

p

a

b

c

H(vi−1)

H(v)a′ b′ c′
a∗

b∗

c∗

Fig. 5.18: Illustrating the definitions of a∗, b∗, and c∗.

α-hull of G; as such, we can remove p from Ll(c) and reset its bottom edge in constant time.

The running time of the algorithm is linear in the number of wrapped vertices on

H(vi−1) and H(v). If a vertex u is wrapped by a or c, then u becomes a vertex on the new

H(vi). We call this wrapping step a promotion (because u used to be a vertex of H(vi−1)

and not a vertex of H(vi), but now is “promoted” to be a vertex of H(vi)). Since the height

of T is O(log n), the total number of promotions for deleting all points p ∈ G is bounded

by O(n log n). On the other hand, if a vertex u is wrapped by b, we call it a confirmation.

A critical observation is that the previous wrapping on u during the deletion of p must be

a promotion (i.e., during processing vi−1, u was wrapped as a promotion). Consequently,

any confirmation must be immediately preceded by a promotion. As such, the total number

of confirmations for deleting all points p ∈ G is no more than that of promotions, which

is O(n log n). Therefore, the overall time of the algorithm for deleting all points p ∈ G is

bounded by O(n log n). The space complexity of the algorithm is O(n).

With Lemma 5.7, Theorem 5.2 is proved.

5.4 Concluding remarks

In this chapter, we proposed a simple algorithm for the unit-disk range reporting prob-

lem and the performance of our algorithm matches that of the previously best result. Our

techniques may be extended to solve other related problems. We demonstrate two exem-

plary problems below.

112

Outside-unit-disk range reporting queries. This is a symmetric problem to the unit-disk

range reporting problem and the problem aims to report all points of P that are outside of

a query unit disk. To solve this outside version of the problem, we modify our approach as

follows. We also build a grid as in Section 5.2. Given a query unit disk Dq whose center is

q, we first identify the cell C of the grid which contains q. Then points of P that lie in cells

of C \ N(C) can be reported directly since these points cannot be in Dq. Next, we solve

the line-separable version of this problem within a cell of N(C) and follow the notation in

previous sections. The target is to report all arcs of A that are above q. The basic idea is

to consider all layers of upper envelopes of arcs of A. We construct these layers of upper

envelopes by computing upper α-hull layers of points of Q, where α = 1. This is symmetric

to the algorithm of computing lower α-hull layers in Section 5.3, where α = −1. Then we

build a fractional cascading data structure on the layers of upper envelopes similarly to our

method for layers of lower envelopes. To answer the query for Dq, we perform a binary

search on layers of upper envelopes and find out the arc that spans point q in each upper

envelope. We start from the highest upper envelope and move downwards one by one until

q is above a layer of upper envelopes. For each layer that is above point q, we traverse from

the arc that spans q and move leftwards and rightwards, respectively, to check whether each

arc is also above q. Once an arc is encountered that is below q, we stop traversing along

this direction. Points of P corresponding to the arcs that are above q are reported. The

total query time is O(log n + k), where k is the output size. As before, the preprocessing

takes O(n log n) time and O(n) space.

Unit-disk range emptiness queries. The problem is to determine whether there is at least

one point of P lying in a query unit disk. We follow our method for the original unit-disk

range reporting queries but only maintain the lower envelope of A (i.e., no need to compute

all layers of lower envelopes and thus the algorithm becomes much simpler). A point of

P is in the query unit disk if and only if the disk center q is above the lower envelope,

which can be determined by performing binary search with q on the lower envelope of A.

The query time is thus O(log n). The preprocessing still takes O(n log n) time and O(n)

113

space. In addition, following the similar approach (e.g., maintaining the upper envelope

of A instead), we can also solve outside-unit-disk range emptiness queries, i.e., deciding

whether a point of P is outside a query unit disk. The complexities are the same as above.

114

CHAPTER 6

IMPROVED ALGORITHMS FOR DISTANCE SELECTION AND RELATED

PROBLEMS

6.1 Introduction

We improve the distance selection algorithm and give two algorithmic frameworks that

can solve geometric optimization problems involving interpoint distances in a point set in

the plane, e.g., two-sided and one-sided discrete Fréchet distance with shortcuts. The result

in this chapter has been submitted to a conference and is now still under review.

6.1.1 Problem definitions and our results

We propose new techniques for solving geometric optimization problems involving in-

terpoint distances in a point set in the plane. More specifically, the optimal objective value

of these problems is equal to the (Euclidean) distance of two points in the set. Our tech-

niques usually yield improvements over the previous work by at least a logarithmic factor

(and sometimes a polynomial factor).

The first problem we consider is the distance selection problem: Given a set P of n

points in the plane and an integer 1 ≤ k ≤
(
n
2

)
, the problem asks for the k-th smallest

interpoint distance among all pairs of points of P . The problem can be easily solved in

O(n2) time. The first subquadratic time algorithm was given by Chazelle [93]; the algo-

rithm runs in O(n9/5 log4/5 n) time and is based on Yao’s technique [94]. Later, Agarwal,

Aronov, Sharir, and Suri [95] gave a better algorithm of O(n3/2 log5/2 n) time and subse-

quently Goodrich [96] solved the problem in O(n4/3 log8/3 n) time. Katz and Sharir [30]

finally presented an O(n4/3 log2 n) time algorithm. All above are deterministic algorithms.

Several randomized algorithms have also been proposed for the problem. The random-

ized algorithm of [95] runs in O(n4/3 log8/3 n) expected time. Matousek [97] gave another

115

randomized algorithm of O(n4/3 log2/3 n) expected time. Very recently, Chan and Zheng

proposed a randomized algorithm of O(n4/3) expected time (see the arXiv version of [31]).

Also, the time complexity can be made as a function of k. In particular, Chan’s random-

ized techniques [32] solved the problem in O(n log n+ n2/3k1/3 log5/3 n) expected time and

Wang [33] recently improved the algorithm to O(n log n + n2/3k1/3 log n) expected time;

these algorithms are particularly interesting when k is relatively small.

In this chapter, we present a new deterministic algorithm that solves the distance

selection problem in O(n4/3 log n) time. Albeit slower than the randomized algorithm of

Chan and Zheng [31], our algorithm is the first progress on the deterministic solution since

the work of Katz and Sharir [30] published 25 years ago (30 years if we consider their

conference version in SoCG 1993).

One technique we introduce is an algorithm for solving the following partial batched

range searching problem.

Problem 6.1. (Partial batched range searching) Given a set A of m points and a set

B of n points in the plane and an interval (α, β], one needs to construct two collections

of edge-disjoint complete bipartite graphs Γ(A,B, α, β) = {At × Bt | At ⊆ A,Bt ⊆ B} and

Π(A,B, α, β) = {A′
s × B′

s | A′
s ⊆ A,B′

s ⊆ B} such that the following two conditions are

satisfied.

1. For each pair (a, b) ∈ At × Bt ∈ Γ(A,B, α, β), the (Euclidean) distance ∥ab∥ between

points a ∈ At and b ∈ Bt is in (α, β].

2. For any two points a ∈ A and b ∈ B with ∥ab∥ ∈ (α, β], either Γ(A,B, α, β) has a

unique graph At×Bt that contains (a, b) or Π(A,B, α, β) has a unique graph A′
s×B′

s

that contains (a, b).

In other words, the two collections Γ and Π together record all pairs (a, b) of points a ∈ A

and b ∈ B whose distances are in (α, β]. While all pairs of points recorded in Γ have their

distances in (α, β], this may not be true for Π. For this reason, we sometimes call the point

pairs recorded in Π uncertain pairs.

116

Note that if context is clear, we sometimes use Γ and Π to refer to Γ(A,B, α, β) and

Π(A,B, α, β), respectively. Also, for short, we use BRS to refer to batched range searching.

In the traditional BRS, which has been studied with many applications, e.g., [18,36,40],

the collection Π is ∅ (and thus Γ itself satisfies the two conditions in Problem 6.1); for

differentiation, we refer to this case as the complete BRS. The advantage of the partial

problem over the complete problem is that the partial problem can usually be solved faster,

with a sacrifice that some uncertain pairs (i.e., those recorded in Π) are left unresolved. As

will be seen later, in typical applications the number of those uncertain pairs can be made

small enough so that they can be handled easily without affecting the overall runtime of the

algorithm. More specifically, we derive an algorithm to compute a solution for the partial

BRS, whose runtime is controlled by a parameter (roughly speaking, the runtime increases

as the graph sizes of Π decreases). Previously, Katz and Shair [30] gave an algorithm for the

complete problem. Our solution, albeit for the more general partial problem, even improves

their algorithm by roughly a logarithmic factor when applied to the complete case.

On the one hand, our partial BRS solution helps achieve our new result for the distance

selection problem. On the other hand, combining some techniques for the latter problem,

we propose a general algorithmic framework that can be used to solve any geometric opti-

mization problems that involve interpoint distances of a set of points in the plane. Consider

such a problem whose optimal objective value (denoted by δ∗) is equal to the distance of

two points of a set P of n points in the plane. Assume that the decision problem (i.e.,

given δ, decide whether δ ≥ δ∗) can be solved in TD time. A straightforward algorithm

for computing δ∗ is to use the distance selection algorithm and the decision algorithm to

perform binary search on interpoint distances of all pairs of points of P ; the algorithm runs

in O(log n) iterations and each iteration takes O(n4/3 log n + TD) time (if we use our new

distance selection algorithm). As such, the total runtime is O((n4/3 log n+TD) log n). Using

our new framework, the runtime can be bounded by O((n4/3 + TD) log n), which is faster

when TD = o(n4/3 log n).

One application of this new framework is the two-sided discrete Fréchet distance with

117

shortcuts problem, or two-sided DFD for short. Fréchet distance is used to measure the

similarity between two curves and many of its variations have been studied, e.g., [34–39].

To reduce the impact of outliers between two (sampled) curves, discrete Fréchet distance

with shortcuts was proposed [36,39]. If outliers of only one curve need to be taken care of, it

is called one-sided DFD; otherwise it is two-sided DFD. Avraham, Filtser, Kaplan, Katz, and

Sharir [36] solved the two-sided DFD in O((m2/3n2/3+m+n) log3(m+n)), where m and n

are the numbers of vertices of the two input curves, respectively. Using our new framework,

we improve their algorithm to O((m2/3n2/3 · 2O(log∗(m+n)) +m log n+ n logm) log(m+ n))

time, an improvement of roughly O(log2(m+ n)).

For the one-sided DFD, the authors [36] gave a randomized algorithm of O((m+n)6/5+ϵ)

expected time, for any constant ϵ > 0. Using our solution to the partial BRS, we improve

their algorithm to O((m + n)6/5 log8/5(m + n)) expected time. Based on the techniques

of [36], Katz and Sharir [40] proposed an algorithmic framework for solving geometric

optimization problems that involve interpoint distances in a point set. Consider such a

problem whose optimal objective value (denoted by δ∗) is equal to the distance of two

points of a set P of n points in the plane. The framework has two main procedures. The

first procedure is to compute an interval that contains δ∗ and with high probability at most

L interpoint distances of P . Using the interval and a bifurcation tree technique, the second

main procedure finally computes δ∗. Assuming that the decision problem can be solved in

TD time, the first main procedure takes O(n4/3+ϵ/L1/3+TD · log n · log log n) expected time

and the second one runs in O(L1/2·TD ·log n) time, resulting an algorithm of O(n4/3+ϵ/L1/3+

TD · log n · log log n+L1/2 ·TD · log n) expected time in total [36,40]. Using our partial BRS

solution, we improve the first main procedure to O(n4/3/L1/3 · log2 n+ TD · log n · log log n)

expected time, which eliminates the O(nϵ) factor. Thus, the total expected time of the

framework becomes O(n4/3/L1/3 · log2 n+TD · log n · log log n+L1/2 ·TD · log n). Our result

for the one-sided DFD is a direct application of this framework. More specifically, since

TD = O(m+ n) [36], we set L = (m+ n)2/5 log6/5(m+ n) and replace n by (m+ n) in the

above time complexity as there are two parameters m and n in the problem.

118

We demonstrate two more applications of the framework where our new techniques

lead to improved results over the previous work: the reverse shortest paths in unit-disk

graphs and its weighted case. Given a set P of n points in the plane and a parameter δ > 0,

the unit-disk graph Gδ(P) is an undirected graph whose vertex set is P such that an edge

connects two points p, q ∈ P if the (Euclidean) distance between p and q is at most δ. In the

unweighted (resp., weighted) case, the weight of each edge is equal to 1 (resp., the distance

between the two vertices). Given set P , two points s, t ∈ P , and a parameter λ, the problem

is to compute the smallest δ∗ such that the shortest path length between s and t in Gδ∗(P)

is at most λ.

Deterministic algorithms of O(n4/3 log7/4 n) and O(n4/3 log5/2 n) times are known for

the unweighted and weighted problems, respectively [17, 18]. The decision problem for the

unweighted case can be solved in O(n) time (after points of P are sorted) [13] while the

weighted case can be solved in O(n log2 n) time [1]. As such, using their framework, Katz

and Sharir [40] solved both problems in O(n6/5+ϵ) expected time (by setting L = n2/5).

With our improvement to the framework, we can now solve the unweighted problem in

O(n6/5 log8/5 n) expected time (by setting L = n2/5 log6/5 n) and solve the weighted case in

O(n6/5 log12/5 n) expected time (by setting L = n2/5/ log6/5 n).

In summary, we propose two algorithmic frameworks for solving geometric optimization

problems that involve interpoint distances in a set of points in the plane. The first frame-

work is deterministic while the second one is randomized. The first framework is mainly

useful when the decision algorithm time TD is relatively large (e.g., close to O(n4/3)) while

the second one is more interesting when TD is relatively small (e.g., near linear). Both

frameworks rely on our solution to the partial BRS problem. As optimization problems

involving interpoint distances are very common in computational geometry, we believe our

techniques will find more applications in future.

Outline. The rest of the chapter is organized as follows. Section 6.2 presents our algo-

rithm for the partial BRS. The algorithm for the distance selection problem is described in

Section 6.3. The two-sided DFD problem is solved in Section 6.4, where we also propose

119

our first algorithmic framework. The one-sided DFD problem and our second algorithmic

framework are discussed in Section 6.5.

6.2 Partial batched range searching

In this section, we present our solution to the partial BRS problem, i.e., Problem 6.1.

We follow the notation in the statement of Problem 6.1. In particular, m = |A| and n = |B|.

For any set P of points and a compact region R in the plane, let P (R) denote the

subset of points of P in R, i.e., P (R) = P ∩R. For any point p in the plane, with respect to

the interval (α, β] in Problem 6.1, let Dp denote the annulus centered at p and having radii

α and β (e.g., see Fig. 6.1); so Dp has an inner boundary circle of radius α and an outer

boundary circle of radius β. We assume that Dp includes its outer boundary circle but not

its inner boundary circle. In this way, a point q is in Dp if and only if ∥pq∥ ∈ (α, β]. Define

D as the set of all annuli Dp for all points p ∈ A. Define C to be the set of boundary circles

of all annuli of D. Hence, C consists of 2m circles. For any compact region R in the plane,

let CR denote the subset of circles of C that intersect the relative interior of R.

An important tool we use is the cuttings [98]. For a parameter 1 ≤ r ≤ n, a (1/r)-

cutting Ξ of size O(r2) for C is a collection of O(r2) constant-complexity cells whose union

covers the plane such that the interior of each cell σ ∈ Ξ is intersected by at most m/r

circles in C, i.e., |Cσ| ≤ m/r.

We actually use hierarchical cuttings [98]. We say that a cutting Ξ′ c-refines a cutting

Ξ if each cell of Ξ′ is contained in a single cell of Ξ and every cell of Ξ contains at most c

cells of Ξ′. Let Ξ0 denote the cutting whose single cell is the whole plane. Then we define

cuttings {Ξ0,Ξ1, ...,Ξk}, in which each Ξi, 1 ≤ i ≤ k, is a (1/ρi)-cutting of size O(ρ2i) that

c-refines Ξi−1, for two constants ρ and c. By setting k = ⌈logρ r⌉, the last cutting Ξk is a

(1/r)-cutting. The sequence {Ξ0,Ξ1, ...,Ξk} of cuttings is called a hierarchical (1/r)-cutting

of C. For a cell σ′ of Ξi−1, 1 ≤ i ≤ k, that fully contains cell σ of Ξi, we say that σ′ is the

parent of σ and σ is a child of σ′. Thus the hierarchical (1/r)-cutting can be viewed as a

tree structure with Ξ0 as the root.

A hierarchical (1/r)-cutting of C can be computed in O(mr) time, e.g., by the algorithm

120

α

β

p

Fig. 6.1: Illustrating an annulus Dp (the grey re-
gion).

Fig. 6.2: Illustrating a pseudo-trapezoid.

in [33], which adapts Chazelle’s algorithm [98] for hyperplanes. The algorithm also produces

the subset Cσ for all cells σ ∈ Ξi for all i = 0, 1, . . . , k, implying that the total size of these

subsets is bounded by O(mr). In particular, each cell of the cutting produced by the

algorithm of [33] is a pseudo-trapezoid that is bounded by two vertical line segments from

left and right, an arc of a circle of C from top, and an arc of a circle of C from bottom (e.g.,

see Fig. 6.2).

Using the cutting, we obtain the following solution to the partial BRS problem.

Lemma 6.1. For any r with 1 ≤ r ≤ min{m1/3, n1/3}, we can compute in O(mr log r+nr)

time two collections Γ(A,B, α, β) = {At×Bt | At ⊆ A,Bt ⊆ B} and Π(A,B, α, β) = {A′
s×

B′
s | A′

s ⊆ A,B′
s ⊆ B} of edge-disjoint complete bipartite graphs that satisfy the conditions

of Problem 6.1, with the following complexities: (1) |Γ| = O(r4); (2)
∑

t |At|,
∑

t |Bt| =

O(mr log r + nr); (3) |Π| = O(r4); (4) |A′
s| = O(m/r3) and |B′

s| = O(n/r3) for each

A′
s × B′

s ∈ Π; (5) the number of pairs of points recorded in Π is O(r4 · m/r3 · n/r3) =

O(mn/r2).

Proof. We begin with constructing a hierarchical (1/r)-cutting {Ξ0,Ξ1, ...,Ξk} for C, which

takes O(mr) time as discussed above. We use Ξ to refer to the set of all cells σ in all

cuttings Ξi, 0 ≤ i ≤ k. Next we compute the set B(σ) for each cell σ in the cutting (recall

that B(σ) refers to the subset of points of B inside σ; we call B(σ) a canonical subset).

This can be done in O(n log r) time in a top-down manner by processing each point of B

individually. Specifically, for each point p ∈ B, suppose we know that p is in σ′ for a cell σ′

in Ξi−1 (which is true initially when i = 1 as Ξ0 has a single cell that is the entire plane).

121

By examining each child of σ′ we can find in O(1) time the cell σ of Ξi that contains p and

then we add p to B(σ). Since k = Θ(log r), each point of B is stored in O(log r) canonical

subsets and the total size of all canonical subsets B(σ) for all cells σ ∈ Ξ is O(n log r).

Next, for each cell σ of Ξ, we compute another canonical subset Aσ ⊆ A. Specifically,

a point p ∈ A is in Aσ if the annulus Dp contains σ but not σ’s parent. The subsets Aσ for

all cells σ of Ξ can be computed in O(mr) time. Indeed, recall that the cutting algorithm

already computes Cσ for all cells σ ∈ Ξ. For each Ξi−1, 1 ≤ i ≤ k, for each cell σ′ of Ξi−1, we

consider each circle C ∈ Cσ′ . Let p be the point of A such that C is a bounding circle of the

annulus Dp. For each child σ of σ′, if Dp fully contains σ, then we add p to Aσ. In this way,

Aσ for all cells σ of Ξ can be computed in O(mr) time since
∑

0≤i≤k

∑
σ′∈Ξi

|Cσ′ | = O(mr)

and each cell σ′ has O(1) children. As such, the total size of Aσ for all cells σ ∈ Ξ is O(mr).

By definition, for each cell σ ∈ Ξ, for any point a ∈ Aσ and any point b ∈ B(σ),

we have ∥ab∥ ∈ (α, β]. As such, we return {Aσ × B(σ) | σ ∈ Ξ} as a subcollection of

Γ(A,B, α, β) to be computed for the lemma. Note that the complete bipartite graphs

of {Aσ × B(σ) | σ ∈ Ξ} are edge-disjoint. The size of the subcollection is equal to the

number of cells of the hierarchical cutting, which is O(r2). Also, we have shown above that∑
σ∈Ξ |Aσ| = O(mr) and

∑
σ∈Ξ |B(σ)| = O(n log r).

For each cell σ of the last cutting Ξk, we have |Cσ| ≤ m/r. Let Âσ denote the subset

of points p ∈ A such that Dp has a bounding circle in Cσ. We do not know whether

distances between points of Âσ and points of B(σ) are in (α, β] or not. If |B(σ)| > n/r2,

then we arbitrarily partition B(σ) into subsets of size between n/(2r2) and n/r2. We call

these subsets standard subsets of B(σ). Since |B| = n and we have O(r2) cells in cutting

Ξk, the number of standard subsets of all cells of Ξk is O(r2). For each standard subset

B̂(σ) ⊆ B(σ), we form a pair (Âσ, B̂(σ)) as an “unsolved” subproblem. Then we have O(r2)

subproblems. Note that |Âσ| ≤ m/r and |B̂(σ)| ≤ n/r2. If we apply the same algorithm

recursively on each subproblem, then we have the following recurrence relation (which holds

122

for any 1 ≤ r ≤ m):

T (m,n) = O(mr + n log r) +O(r2) · T (m
r
,
n

r2
) (6.1)

Note that if we use T (m,n) to represent the total size of At and Bt of all complete

bipartite graphs At × Bt in the subcollection of Γ(A,B, α, β) that have been produced as

above, then we have the same recurrence as above. If N(m,n) denotes the number of these

graphs, then we have the following recurrence:

N(m,n) = O(r2) +O(r2) ·N(
m

r
,
n

r2
)

We now solve the problem in a “dual” setting by switching the roles of A and B,

i.e., define annuli centered at points of B and compute the hierarchical cutting for their

bounding circles. Then, symmetrically we have the following recurrences (which holds for

any 1 ≤ r ≤ n):

T (m,n) = O(nr +m log r) +O(r2) · T (m
r2

,
n

r
) (6.2)

N(m,n) = O(r2) +O(r2) ·N(
m

r2
,
n

r
)

By applying (6.2) to each subproblem of (6.1) using the same parameter r and we can

obtain the following recurrence:

T (m,n) = O(mr log r + nr) +O(r4) · T (m
r3

,
n

r3
)

Similarly, we have

N(m,n) = O(r4) +O(r4) ·N(
m

r3
,
n

r3
)

The above recurrences tell us that in O(mr log r+nr) time we can compute a collection

123

of O(r4) edge-disjoint complete bipartite graphs At×Bt with At ⊆ A and Bt ⊆ B such that

for any two points a ∈ At and b ∈ Bt their distance ∥ab∥ lies in (α, β]. Further, the size of

all such At’s and Bt’s is bounded by O(mr log r + nr). We return the above collection as

Γ(A,B, α, β) for the lemma.

In addition, we have also O(r4) graphs A′
s×B′

s with A′
s ⊆ A and B′

s ⊆ B corresponding

to the unsolved subproblems T (m/r3, n/r3) and we do not know whether ∥ab∥ ∈ (α, β] for

points a ∈ A′
s and b ∈ B′

s. We return the collection of all such graphs as Π(A,B, α, β) for

the lemma. Hence, |Π(A,B, α, β)| = O(r4), and |A′
s| ≤ m/r3 and |B′

s| ≤ n/r3 for each

graph A′
s ×B′

s in the collection. The number of pairs of points recorded in Π(A,B, α, β) is

O(|Π(A,B, α, β)| ·m/r3 · n/r3), which is O(mn/r2). This proves the lemma.

The following theorem solves the complete BRS problem by running the algorithm of

Lemma 6.1 recursively until the problem size becomes O(1).

Theorem 6.1. We can compute in O(m2/3n2/3 · 2O(log∗(m+n)) +m log n + n logm) time a

collection Γ(A,B, α, β) = {At × Bt | At ⊆ A,Bt ⊆ B} of edge-disjoint complete bipartite

graphs that satisfy the conditions of Problem 6.1 (with Π(A,B, α, β) = ∅), with the following

complexities: (1) |Γ| = O(m2/3n2/3·log∗(m+n)+m+n); (2)
∑

t |At|,
∑

t |Bt| = O(m2/3n2/3·

2O(log∗(m+n)) +m log n+ n logm).

Proof. To solve the complete BRS problem, the main idea is to apply the recurrence (6.2)

recursively until the size of each subproblem becomes O(1). We first consider the symmetric

case where m = n. By setting r = n1/3/ log n and applying (6.2) with m = n, we obtain

the following

T (n, n) = O(n4/3) +O(n4/3/ log4 n) · T (log3 n, log3 n) (6.3)

Similarly, we have

N(n, n) = O(n4/3/ log4 n) +O(n4/3/ log4 n) ·N(log3 n, log3 n) (6.4)

124

The recurrences solve to T (n, n) = n4/3 · 2O(log∗ n) and N(n, n) = O(n4/3 · log∗ n). This

means that in n4/3 · 2O(log∗ n) time we can compute a collection Γ(A,B, α, β) = {At ×

Bt | At ⊆ A,Bt ⊆ B} of O(n4/3 log∗ n) edge-disjoint complete bipartite graphs, with∑
t |At|,

∑
t |Bt| = n4/3 · 2O(log∗ n), and it satisfies the conditions of Problem 6.1 with

Π(A,B, α, β) = ∅.

We now consider the asymmetric case, i.e., m ̸= n. We first assume m ≤ n. Depending

on whether n < m2, there are two cases.

1. If n < m2, we set r = n/m so that m/r = n/r2. We apply recurrence (6.1) and

solve each subproblem of size (m/r, n/r2) = (m2/n,m2/n) by our above algorithm

for the symmetric case, which results in T (m,n) = O(n logm+m2/3n2/3 · 2O(log∗ n)).

Similarly, the number of graphs in the produced collection is O(m2/3n2/3 log∗ n) and

the total size of vertex sets of these graphs is O(n logm+m2/3n2/3 · 2O(log∗ n)).

2. If n ≥ m2, then we simply apply recurrence (6.1) with r = m and obtain T (m,n) =

O(m2+n logm)+O(m2)·T (1, n/m2). Note that T (1, n/m2) can be solved in O(n/m2)

time by brute force. Therefore, the recurrence solves to T (m,n) = O(m2 + n logm),

which is O(n logm) as n ≥ m2. Similarly, the number of of complete bipartite graphs

in the generated collection is O(n), and the total size of vertex sets of these graphs is

O(n logm).

In summary, if m ≤ n, we can solve the complete BRS problem in O(n logm +m2/3n2/3 ·

2O(log∗ n)) time, by generating O(m2/3n2/3 log∗ n+n) complete bipartite graphs whose vertex

set size is bounded by O(n logm+m2/3n2/3 · 2O(log∗ n)).

If m > n, then the analysis is symmetric with the notation m and n flipped in the

above complexities. The theorem is thus proved.

For comparison, Katz and Shair [30] solved the complete BRS problem in O((m2/3n2/3+

m + n) logm) time by producing O(m2/3n2/3 + m + n) complete bipartite graphs whose

total vertex set size is O((m2/3n2/3+m+n) logm)). Our result improves their runtime and

vertex set size by almost a logarithmic factor with slight more graphs produced. One may

125

wonder whether Chan and Zheng’s recent techniques [31] could be used to reduce the factor

2O(log∗ n). It is not clear to us whether this is possible. Indeed, Chan and Zheng’s techniques

are mainly for solving point locations in line arrangements and in their problem they only

need to locate a single cell of the arrangement that contains a point. In the point location

step of our problem (i.e., computing the canonical sets B(σ) in Lemma 6.1), however, we

have to use hierarchical cutting and construct the canonical sets B(σ) for each cell σ that

contains the point in every cutting Ξi, 1 ≤ i ≤ k (i.e., our problem needs to locate O(log r)

cells per point).

6.3 Distance selection

In this section, we present our algorithm for the distance selection problem. Let P be

a set of n points in the plane. Define E(P) as the set of distances of all pairs of points of

P . Given an integer 1 ≤ k ≤
(
n
2

)
, the problem is to find the k-th smallest value in E(P),

denoted by δ∗.

Given any δ, the decision problem is to determine whether δ ≥ δ∗. Wang [33] recently

gave an O(n4/3) time algorithm that can compute the number of values of E(P) at most

δ, denoted by kδ. Observe that δ ≥ δ∗ if and only if kδ ≥ k. Thus, using Wang’s algo-

rithm [33], the decision problem can be solved in O(n4/3) time. We should point out that

the O(n4/3 log2 n) time algorithm of Katz and Shair [30] for computing δ∗ utilizes a decision

algorithm of O(n4/3 log n) time. However, even if we replace their decision algorithm by

Wang’s O(n4/3) time algorithm, the runtime of the overall algorithm for computing δ∗ is

still O(n4/3 log2 n) because other parts of the algorithm dominate the total time. To reduce

the overall time to O(n4/3 log n), new techniques are needed, in addition to using the faster

O(n4/3) time decision algorithm. These new techniques include, for instance, Lemma 6.1

for the partial BRS problem, as will be seen below.

Before presenting the details of our algorithm, we first prove the following lemma,

which is critical to our algorithm and is obtained by using Lemma 6.1.

Lemma 6.2. Given an interval (α, β], Problem 6.1 with A = P and B = P can be

126

solved in O(n4/3) time by computing two collections Γ(P, P, α, β) = {At × Bt | At, Bt ⊆

P} and Π(P, P, α, β) = {A′
s × B′

s | A′
s, B

′
s ⊆ P} with the following complexities: (1)

|Γ| = O(n4/3/ log4 log n); (2)
∑

t |At|,
∑

t |Bt| = O(n4/3); (3) |Π| = O(n4/3/ log4 log n); (4)

|A′
s|, |B′

s| = O(log3 log n), for each A′
s ×B′

s ∈ Π.

Proof. We first apply Lemma 6.1 with A = P , B = P , and r = n1/3/ log n. This constructs

a collection Γ1 = {At × Bt | At, Bt ⊆ P} of O(n4/3/ log4 n) edge-disjoint complete bipar-

tite graphs in O(n4/3) time. The total size of vertex sets of these graphs is O(n4/3), i.e.,∑
t |At|,

∑
t |Bt| = O(n4/3). We also have a collection Π1 = {A′

s × B′
s | A′

s, B
′
s ⊆ P} of

O(n4/3/ log4 n) edge-disjoint complete bipartite graphs that record uncertain point pairs,

with |A′
s|, |B′

s| = O(log3 n).

Hence, the number of uncertain pairs of points of P (i.e., we do not know whether their

distances are in (α, β]) is
∑

s |A′
s| · |B′

s| = O(n4/3 log2 n). To further reduce this number,

we apply Lemma 6.1 on every pair (A′
s, B

′
s) of Π1. More specifically, for each pair (A′

s, B
′
s)

of Π1, we apply Lemma 6.1 with A = A′
s, B = B′

s, and r = log n/ log log n. This computes

a collection Γs of O(log4 n/ log4 log n) edge-disjoint complete bipartite graphs in O(log4 n)

time; the total size of vertex sets of all graphs in Γs is O(log4 n). We also have a collection

Πs of O(log4 n/ log4 log n) edge-disjoint complete bipartite graphs. The size of each vertex

set of each graph of Πs is bounded by O(log3 log n). The total time for Lemma 6.1 on all

pairs (A′
s, B

′
s) of Π1 as above is O(n4/3). We return Γ1 ∪

∪
s Γs as collection Γ, and

∪
sΠs

as collection Π in the lemma statement. As such, the complexities in the lemma statement

hold.

In what follows, we describe our algorithm for computing δ∗. Like Katz and Sharir’s

algorithm [30], our algorithm proceeds in stages. Initially, we have I0 = (0,+∞]. In each

j-th stage, an interval Ij = (αi, βj] is computed from Ij−1 such that Ij must contain δ∗

and the number of values of E(P) in Ij is a constant fraction of that in Ij−1. Specifically,

we will prove that |E(P) ∩ Ij | = O(n2ρj) holds for each j, for some constant ρ < 1. Once

|E(P)∩Ij | is no more than a threshold (to be given later; as will be seen later, this threshold

is not constant, which is a main difference between our algorithm and Katz and Sharir’s

127

algorithm [30]), we will compute δ∗ directly. In the following we discuss the j-th stage of

the algorithm. We assume that we have an interval Ij−1 = (αj−1, βj−1] containing δ∗.

We first apply Lemma 6.2 with (α, β] = (αj−1, βj−1]. This is another major difference

between our algorithm and Katz and Sharir’s algorithm [30], where they solved the complete

BRS problem, while we only solve a partial problem (this saves time by a logarithmic

factor). Applying Lemma 6.2 produces a collection Γj−1 = {At × Bt | At, Bt ⊆ P} of

O(n4/3/ log4 log n) edge-disjoint complete bipartite graphs, with
∑

t |At|,
∑

t |Bt| = O(n4/3),

as well as another collection Πj−1 of O(n4/3/ log4 log n) graphs. By Lemma 6.2 (3) and (4),

the number of pairs of points of P in Πj−1 is O(n4/3 log2 log n).

If
∑

t |At| · |Bt| ≤ n4/3 log n, which is our threshold, then this is the last stage of the

algorithm and we compute δ∗ directly by the following Lemma 6.3. Each edge of the graph

in Γj−1 ∪ Πj−1 connects two points of P ; we say that the distance of the two points is

induced by the edge.

Lemma 6.3. If
∑

t |At| · |Bt| ≤ n4/3 log n, then δ∗ can be computed in O(n4/3 log n) time.

Proof. We first explicitly compute the set S of distances induced from edges of all graphs of

Γj−1 and Πj−1. Since
∑

t |At|·|Bt| ≤ n4/3 log n and the number of edges of all graphs of Πj−1

is O(n4/3 log2 log n), we have |S| = O(n4/3 log n) and S can be computed in O(n4/3 log n)

time by brute force.

Then, we compute the number kαj−1 of values of E(P) that are at most αj−1, which

can be done in O(n4/3) time [33]. Observe that δ∗ is the (k − kαj−1)-th smallest value in

S. Hence, using the linear time selection algorithm, we can find δ∗ in O(|S|) time, which is

O(n4/3 log n).

We now assume that
∑

t |At| · |Bt| > n4/3 log n. The rest of the algorithm for the j-th

iteration takes O(n4/3) time. For each graph At ×Bt ∈ Γj−1, if |At| < |Bt|, then we switch

the name of At and Bt, i.e., At now refers to Bt and Bt refers to the original At. Note that

this does not change the solution of the partial BRS produced by Lemma 6.2 and it does

not change the complexities of Lemma 6.2 either. This name change is only for ease of the

128

exposition. Now we have |At| ≥ |Bt| for each graph At × Bt ∈ Γj−1. Let mt = |At| and

nt = |Bt|.

We partition each At into g = ⌊mt/nt⌋ subsets At1, At2, . . . , Atg so that each subset

contains nt elements except that the last subset Atg contains at least nt but at most 2nt−1

elements. Each pair (Ati, Bt), 1 ≤ i ≤ g, can be viewed as a complete bipartite graph.

We construct a d-regular LPS-expander graph Gti on the vertex set Ati ∪ Bt [30, 99], for a

constant d to be fixed later. The expander Gti has O(|Ati|+|Bt|) edges and can be computed

in O(|Ati|+ |Bt|) time [30,99]. Let Gt be the union of all these expander graphs Gti over all

i = 1, 2, . . . , g. The construction of Gt takes
∑g

i=1O(|Ati|+ |Bt|) = O(|At|+ ⌊mt
nt
⌋ · |Bt|) =

O(|At|) time. Hence, computing all graphs {Gt}t for all O(n4/3/ log4 log n) pairs At×Bt in

Γj−1 takes
∑

tO(|At|) = O(n4/3) time. The number of edges in Gt is O(|At| + |Bt|), and

thus the number of edges in all graphs {Gt}t is
∑

tO(|At|+ |Bt|) = O(n4/3).

For each edge (a, b) in graph Gt that connects a point a ∈ At and a point b ∈ Bt, we

associate it with the interpoint distance ∥ab∥. We compute all these distances for all graphs

{Gt}t to form a set S. The size of S is bounded by the number of edges in all graphs {Gt}t,

which is O(n4/3). Note that all values of S are in the interval Ij−1.

One way we could proceed from here is to find the largest value δ1 of S with δ1 < δ∗

and the smallest value δ2 with δ∗ ≤ δ2, and then return (δ1, δ2] as the interval Ij and finish

the j-th stage of the algorithm. Finding δ1 and δ2 could be done by binary search on S

using the linear time selection algorithm and the O(n4/3) time decision algorithm. Then the

runtime of this step would be O(n4/3 log n), resulting in a total of O(n4/3 log2 n) time for

the overall algorithm for computing δ∗ since there are O(log n) stages. To improve the time,

as in [30], we use the “Cole-like” technique to reduce the number of calls to the decision

algorithm to O(1) in each stage, as follows.

We assign a weight to each value of S. Note that since each graph Gti ∈ Gt is a d-

regular LPS-expander, the degree of Gti is d [30]. Hence, Gti has at most (|Ati|+ |Bt|) · d/2

edges and thus it contributes at most (|Ati|+ |Bt|) ·d/2 values to S. We assign each distance

induced from Gti a weight equal to |Ati| · |Bt|/(|Ati| + |Bt|). As such, the total weight of

129

the values of S is at most

∑
t,i

(|Ati|+ |Bt|) ·
d

2
· |Ati| · |Bt|
|Ati|+ |Bt|

=
d

2
·
∑
t,i

|Ati| · |Bt| =
d

2
·mj−1,

where mj−1 =
∑

t |At| · |Bt|. Recall that mj−1 > n4/3 log n and |Bt| ≤ |Ati| in each Gti. We

can assume n ≥ 16 so that mj−1 ≥ 16. As such, we have the following bound for the weight

of each value in S: |Ati| · |Bt|/(|Ati|+ |Bt|) ≤ |Bt| ≤
√

|Bt| · |Ati| ≤
√
mj−1 ≤ mj−1/4.

We partition the values of S into at most 2d intervals {I ′1, I ′2, ..., I ′h}, 1 ≤ h ≤ 2d, such

that the total weight of values in every interval is at least mj−1/4 and but at most mj−1/2.

The partition can be done in O(|S|) time, which is O(n4/3), using the linear time selection

algorithm. Then, we invoke the decision algorithm log(2d) = O(1) times to find the interval

I ′l that contains δ∗, for some 1 ≤ l ≤ h. We set Ij = I ′l . Since the decision algorithm is

called O(1) times, this step takes O(n4/3) time. This finishes the j-th stage of the algorithm.

The following Lemma 6.4 shows that the number of values of E(P) in Ij is a constant

portion of that in Ij−1. This guarantees that the algorithm will finish in O(log n) stages

since |E(P)| = O(n2). As each stage runs in O(n4/3) time (except that the last stage takes

O(n4/3 log n) time), the total time of the algorithm is O(n4/3 log n).

Lemma 6.4. There exists a constant ρ with 0 < ρ < 1 such that the number of values of

E(P) in Ij is at most ρ times the number of values of E(P) in Ij−1.

Proof. Define nj (resp., nj−1) as the number of values of E(P) in Ij (resp., Ij−1). Our goal

is to find a constant ρ ∈ (0, 1) so that nj ≤ ρ · nj−1 holds.

Recall that mj−1 is the number of distances induced from the graphs of Γj−1. Define

m′
j−1 as the number of distances induced from the graphs of Πj−1. Define qj (resp., q′j)

as the number of interpoint distances of E(P) ∩ Ij whose point pairs are recorded in Γj−1

(resp., Πj−1). Note that all interpoint distances induced from graphs of Γj−1 are in Ij−1.

Hence, mj−1 ≤ nj−1. By definition, nj = qj + q′j and q′j ≤ m′
j−1. By Lemma 6.2 (3) and

(4), we have m′
j−1 = O(n4/3 log2 log n).

130

We make the following claim: there exists a constant γ ∈ (0, 1/3) such that qj ≤

γ ·mj−1. Before proving the claim, we prove the lemma using the claim.

As this is not the last stage of the algorithm (since otherwise δ∗ would have already

been computed without producing interval Ij), it holds that mj−1 > n4/3 log n. Since

m′
j−1 = O(n4/3 log2 log n), there exists a constant c′ ∈ (0, 1/3) such that m′

j−1

mj−1
≤ c′ when

n is sufficiently large. As nj = qj + q′j , q′j ≤ m′
j−1, and mj−1 ≤ nj−1, we can obtain the

following using the above claim:

nj = qj + q′j ≤ qj +m′
j−1 ≤ γ ·mj−1 + c′ ·mj−1 ≤ (γ + c′) ·mj−1 ≤ (γ + c′) · nj−1.

Set ρ = γ+c′. Since both γ and c′ are in (0, 1/3), we have ρ ∈ (0, 2/3) and nj ≤ ρ·nj−1.

This proves the lemma.

Proof of the claim. We now prove that there exists a constant γ ∈ (0, 1/3) such that

qj ≤ γ ·mj−1. The proof is similar to that in [30].

Consider a pair (Ati, Bt), 1 ≤ i ≤ g, obtained in our algorithm. Some edges of the

graph Gti induce interpoint distances in S, which may be in Ij . We partition all such

graphs Gti into two sets. Let G1 denote the set of those graphs Gti that contribute fewer

than 3(|Ati|+ |Bt|) interpoint distances in S ∩ Ij , and G2 the set of the rest of such graphs

(each of them contributes at least 3(|Ati|+ |Bt|) interpoint distances in S ∩ Ij).

The set G1. We first consider set G1. For a graph Gti ∈ G1 built on pair (Ati, Bt), let Dti

be the set of annuli centered at points of Ati with radii αj and βj (recall that Ij = (αj , βj]).

For the purpose of analysis only, we construct a 1/r-cutting Ξ for the boundary circles of

the annuli in Dti, where r is a constant to be specified later. This partitions the plane into

O(r2) cells such that each cell intersects at most O(|Dti|/r) boundary circles of annuli in

Dti.

For each cell σ ∈ Ξ, let Bt(σ) denote the set of points of Bt inside σ, Dti(σ) the set of

annuli of Dti that fully contains σ, and D′
ti(σ) the set of annuli of Dti that have at least one

131

boundary circle intersecting σ. Let Nti denote the number of interpoint distances between

points of Ati and points of Bt that are in Ij . Then we have

Nti ≤
∑
σ∈Ξ

|Dti(σ)| · |Bt(σ)|+
∑
σ∈Ξ

|D′
ti(σ)| · |Bt(σ)|

Since the number of annuli of Dti that intersect a cell σ ∈ Ξ is O(|Dti|/r) and |Dti| = |Ati|,

we have |D′
ti(σ)| = O(|Ati|/r). Using

∑
σ∈Ξ |Bt(σ)| = |Bt|, we can derive

∑
σ∈Ξ

|D′
ti(σ)| · |Bt(σ)| = O

(
|Ati| · |Bt|

r

)

Now we consider
∑

σ∈Ξ |Dti(σ)| · |Bt(σ)|. Let Ati(σ) ⊆ Ati denote the set of centers of

the annuli of Dti(σ). For any point a ∈ Ati(σ) and b ∈ Bt(σ), their distance ∥ab∥ is in Ij by

the definition of Dti(σ). If an edge connecting a and b exists in graph Gti, then ∥ab∥ must

be in S and thus is in Ij as well, i.e., such an edge of Gti contributes a value in S∩ Ij . Since

Gti is in G1, it has fewer than 3(|Ati| + |Bt|) edges whose induced interpoint distances are

in Ij , which implies that the number of edges of Gti connecting points of Ati(σ) and points

of Bt(σ) in Gti is smaller than 3(|Ati|+ |Bt|). According to Corollary 2.5 in [30], if X and

Y are two vertex subsets of a d-regular expander graph of M vertices and there are fewer

than 3M edges connecting points of X and points of Y , then |X| · |Y | ≤ 9M2/d. Applying

this result (with X = Ati(σ), Y = Bt(σ), and M = |Ati|+ |Bt|), we can derive the following

∑
σ∈Ξ

|Dti(σ)| · |Bt(σ)| ≤ O(r2) · 9(|Ati|+ |Bt|)2

d
= O

(
r2(|Ati|+ |Bt|)2

d

)

In summary, we have,

Nti = O

(
|Ati| · |Bt|

r

)
+O

(
r2(|Ati|+ |Bt|)2

d

)
.

132

Since |Bt| ≤ |Ati| ≤ 2|Bt| by our partition of set At, we have (|Ati| + |Bt|)2 ≤ 5|Ati| · |Bt|,

which leads to

Nti = O

([
1

r
+

r2

d

]
· |Ati| · |Bt|

)

By setting r = d1/3 and c to be appropriately proportional to 1/d1/3, we obtain Nti ≤

c · |Ati| · |Bt|. Summing up all these inequalities for all graphs Gti in set G1 leads to N(G1) ≤

c·
∑

Gti∈G1
|Ati|·|Bt|, where N(G1) is the number of distances between points of Ati and points

of Bt that are in Ij for all graphs Gti ∈ G1. Since
∑

Gti∈G1
|Ati| · |Bt| ≤

∑
t |At| · |Bt| = mj−1,

we obtain N(G1) ≤ c ·mj−1.

The set G2. We now consider the set G2. Since each graph Gti ∈ G2 contributes at least

3(|Ati|+ |Bt|) interpoint distances in S ∩ Ij , Gti contributes at least 3|Ati| · |Bt| to the total

weight of distances in S ∩ Ij . Recall that the total weight of distances in S ∩ Ij is at most

mj−1/2 by our algorithm, thus we have
∑

Gti∈G2
|Ati| · |Bt| ≤ mj−1/6. Let N(G2) denote

the number of distances between points of Ati and points of Bt that are in Ij for all graphs

Gti ∈ G2. We have N(G2) ≤
∑

Gti∈G2
|Ati|·|Bt| since Ij ⊆ Ij−1. Therefore, N(G2) ≤ mj−1/6.

Summary. By definition, qj = N(G1)+N(G2). As N(G1) ≤ c ·mj−1 and N(G2) ≤ mj−1/6,

we can derive

qj = N(G1) +N(G2) ≤ c ·mj−1 +
1

6
·mj−1 = (c+

1

6
) ·mj−1.

Let γ = c+ 1/6. Then γ < 1/3 if d is sufficiently large. As such, we have qj ≤ γ ·mj−1 for

a constant γ ∈ (0, 1/3). The claim is thus proved.

We conclude with the following result.

Theorem 6.2. Given a set P of n points in the plane and an integer 1 ≤ k ≤
(
n
2

)
, the k-th

smallest interpoint distance of P can be computed in O(n4/3 log n) time.

133

Note that once δ∗ is computed, one can find a pair of points of P whose distance is

equal to δ∗ in additional O(n4/3) time [33].

A bipartite version. Our algorithm can be easily extended to the following bipartite version

of the distance selection problem: Given a set A of m points and a set B of n points in the

plane, and an integer 1 ≤ k ≤ mn, compute the k-th smallest interpoint distance δ∗ in the set

{∥ab∥ | a ∈ A, b ∈ B}. The decision problem can be solved in O(m2/3n2/3+m log n+n logm)

time [33]. To adapt our algorithm to compute δ∗, each stage of the algorithm still computes

an interval Ij as before. In the j-th stage, we solve the partial BRS problem for A and

B with respect to the interval Ij−1. We can obtain a result similar to Lemma 6.2 (by

using Lemma 6.2 as a subroutine in an analogous way to Theorem 6.1 for dealing with the

asymmetric case). More specifically, if m ≤ n < m2 (resp. n ≤ m < n2), we construct a

hierarchical cutting and process those unsolved subproblems by applying Lemma 6.2 with

r = n/m (resp. r = m/n). If n ≥ m2 or m ≥ n2, we construct a hierarchical cutting and

process those unsolved subproblems in a straightforward manner. As such, we can obtain a

collection Γ of O(m2/3n2/3/ log4 log(m2/n)+m2/3n2/3/ log4 log(n2/m)+m+n) edge-disjoint

complete bipartite graphs that record some pairs of A×B whose interpoint distances are in

Ij−1. The total size of vertex sets of all graphs in Γ is O(m2/3n2/3 +m log n+n logm). We

also have another collection Π of edge-disjoint complete bipartite graphs that record a total

of O(m2/3n2/3 log2 log(m+n)) uncertain pairs of A×B, i.e., we do not know whether their

distances are in Ij−1. The total runtime is O(m2/3n2/3 +m log n + n logm). We compute

the number of interpoint distances induced from collection Γ. If this number is at most

(m2/3n2/3 +m log n + n logm) log(m + n), then this is the last stage of the algorithm and

we compute δ∗ directly. Otherwise, we use the “Cole-like” technique to perform a binary

search on the interpoint distances induced from the expander graphs that are built on vertex

sets of the graphs in Γ, which calls the decision algorithm O(1) times. The algorithm will

finish within O(log(m+n)) stages by similar analysis to Lemma 6.4. As such, the bipartite

distance selection problem can be solved in O((m2/3n2/3 + m log n + n logm) log(m + n))

time.

134

6.4 Two-sided discrete Fréchet distance with shortcuts

In this section, we show that our techniques in Section 6.3 can be used to solve the

two-sided DFD problem. Let A = {a1, a2, ..., am} and B = {b1, b2, ..., bn} be two sequences

of points in the plane. Consider two frogs connected by an inelastic leash, initially placed

at a1 and b1, respectively. Each frog is allowed to jump forward at most one step in one

move, i.e., if the first frog is currently at ai, then in the next move it can either jump to

ai+1 or stay at ai. Note that frogs are not allowed to go backwards. The discrete Fréchet

distance (or DFD for short) is defined as the minimum length of the inelastic leash that

allows two frogs to reach their destinations, i.e., am and bn, respectively.

Because the Fréchet distance is very sensitive to outliers, to reduce the sensitivity, DFD

with outliers have been proposed [36]. Specifically, if we allow the A-frog to jump from its

current point to any of its succeeding points in each move but B-frog has to traverse all

points in B in order plus one restriction that only one frog is allowed to jump in each move

(i.e., in each move one of the frogs must stay still), then this problem is called one-sided

discrete Fréchet distance with shortcuts (or one-sided DFD for short), where the goal is

to compute the minimum length of the inelastic leash that allows two frogs to reach their

destinations. If we allow both frogs to skip points in their sequences (but again with the

restriction that only one frog is allowed to jump in each move), then problem is called

two-sided DFD.

We focus on the two-sided DFD in this section while the one-sided version will be

treated in the next section. Let δ∗ denote the optimal objective value, i.e., the minimum

length of the leash. Avraham, Filtser, Kaplan, Katz, and Sharir [36] presented an algorithm

that can compute δ∗ in O((m2/3n2/3+m+n) log3(m+n)) time. In what follows, we show that

our techniques in Section 6.3 can improve their algorithm to O((m2/3n2/3 · 2O(log∗(m+n)) +

m log n+ n logm) log(m+ n)) time, roughly a factor of O(log2(m+ n)) faster.

To solve the problem, the authors of [36] first proposed an algorithm to solve the deci-

sion problem, i.e., given any δ, decide whether δ∗ ≤ δ; the algorithm runs in O((m2/3n2/3+

m + n) log2(m + n)) time. Then, to compute δ∗, the authors of [36] used the bipartite

135

version of the distance selection algorithm from Katz and Sharir [30] for point sets A and

B together with their decision algorithm to do binary search on the interpoint distances

between points in A and those in B, i.e., in each iteration, using the distance selection al-

gorithm to find the k-th smallest distance δk for an appropriate k and then call the decision

algorithm on δk to decide which way to search. As both the distance selection algorithm [30]

and the decision algorithm run in O((m2/3n2/3 +m + n) log2(m + n)) time, computing δ∗

takes O((m2/3n2/3 +m+ n) log3(m+ n)) time.

In what follows, we first show that the runtime of their decision algorithm can be

reduced by a factor of roughly O(log2(m + n)) using our result in Theorem 6.1 for the

complete BRS problem, and then discuss how to improve the optimization algorithm for

computing δ∗.

Improving the decision algorithm. The basic idea of the decision algorithm in [36] is to

consider a matrix M whose rows and columns correspond to points in sequences A and B,

respectively. Each entry M(i, j) of M is 1 if ∥aibj∥ ≤ δ, and 0 otherwise. One can determine

whether there exists a path from M(1, 1) to M(m,n) in M that only consists of value 1 by

performing “upward” and “rightward” moves. The matrix M is not computed explicitly.

The algorithm first performs a complete BRS with α = 0 and β = δ using a result from [30]

on A and B, which generates a collection Γ = {At ×Bt}t of complete bipartite graphs that

record all pairs of A × B whose interpoint distances are at most δ in O((m2/3n2/3 + m +

n) log(m+ n)) time, with
∑

t |At|,
∑

t |Bt| = O((m2/3n2/3 +m+ n) log(m+ n)). Each edge

of these graphs corresponds to an entry of value 1 in M . Then for each graph At ×Bt ∈ Γ,

points of At and Bt are sorted by their index order into lists LAt and LBt , respectively. The

sorting takes O((m2/3n2/3 +m+ n) log2(m+ n)) time in total. With these information in

hand, the rest of the algorithm runs in time linear in the total size of vertex sets of graphs

in Γ, which is O((m2/3n2/3 +m+ n) log(m+ n)).

We can improve their decision algorithm by applying our complete BRS result in The-

orem 6.1. Specifically, applying Theorem 6.1 will produce in O(m2/3n2/3 · 2O(log∗(m+n)) +

m log n + n logm) time a collection Γ of complete bipartite graphs that record all pairs of

136

A×B whose interpoint distances are at most δ. To reduce the time on the sorting step, when

computing the canonical subsets B(σ) in Lemma 6.1, we process points of B following their

index order. Similarly, when computing the canonical sets of Aσ, we process the circles of

Cσ′ following the index order of their centers in A. This ensures that points in each At and

each Bt are sorted automatically during the construction, i.e., lists LAt and LBt are available

once the algorithm of Theorem 6.1 is done. The rest of the algorithm follows exactly the

same as the algorithm in [36], which takes time proportional to the total size of vertex sets

of graphs in Γ, i.e., O(m2/3n2/3 ·2O(log∗(m+n))+m log n+n logm) by Theorem 6.1. As such,

the total time of the new decision algorithm is O(m2/3n2/3 ·2O(log∗(m+n))+m log n+n logm).

Improving the optimization algorithm. With our new O((m2/3n2/3+m log n+n logm) log(m+

n)) time bipartite distance selection algorithm in Section 6.3 and the above faster decision

algorithm, following the same binary search scheme as discussed above, δ∗ can be computed

in O((m2/3n2/3+m log n+n logm) log2(m+n)) time, a logarithmic factor improvement over

the result of [36]. Notice that the time is dominated by the calls to the bipartite distance

selection algorithm.

To further improve the algorithm, an observation is that we do not have to call the

distance selection algorithm as an oracle and instead we can use that algorithm as a frame-

work and replace the decision algorithm of the distance selection problem by the decision

algorithm of the two-sided DFD problem. This will roughly reduce another logarithmic

factor. The proof of the following theorem provides the details about this idea.

Theorem 6.3. Given two sequences of points A = (a1, a2, ..., am) and B = (b1, b2, ..., bn)

in the plane, the two-sided DFD problem can be solved in O((m2/3n2/3 · 2O(log∗(m+n)) +

m log n+ n logm) log(m+ n)) time.

Proof. Following our distance selection algorithm, we run in stages and each j-th stage will

compute an interval Ij that contains δ∗. In the j-th stage, we first perform the partial

BRS on point sets A and B with respect to interval Ij−1, in the same way as before. This

produces a collection Γ of (m2/3n2/3/ log4 log(m2/n) +m2/3n2/3/ log4 log(n2/m) +m + n)

137

edge-disjoint complete bipartite graphs that record some pairs of A × B whose interpoint

distances are in Ij−1. The total size of vertex sets of all graphs in Γ is O(m2/3n2/3 +

m log n + n logm). In addition, we also have a collection Π of complete bipartite graphs

representing O(m2/3n2/3 log2 log(m + n)) uncertain pairs of A × B. The total runtime is

O(m2/3n2/3 +m log n+ n logm).

We next compute the number nΓ of distances induced from the graphs of Γ. If nΓ is

larger than the threshold τ = (m2/3n2/3 + m log n + n logm) log(m + n), then we use the

“Cole-like” technique to perform a binary search on the interpoint distances induced from

the expander graphs that are built on the vertex sets of the graphs in Γ, which calls the

decision algorithm O(1) times. The runtime for this stage is O(m2/3n2/3 · 2O(log∗(m+n)) +

m log n + n logm). If nΓ ≤ τ , then we reach the last stage of the algorithm and we can

compute δ∗ as follows. We compute the interpoint distances induced from the graphs in Γ

and Π. The total number of such distances is O((m2/3n2/3+m log n+n logm) log(m+n)).

Using the decision algorithm and the linear time selection algorithm, a binary search on these

interpoint distances is performed to compute δ∗, which takes O((m2/3n2/3 · 2O(log∗(m+n)) +

m log n+n logm) log(m+n)) time as the decision algorithm is called O(log(m+n)) times.

The algorithm finishes within O(log(m + n)) stages by an analysis similar to Lemma 6.4

(indeed, the proof of Lemma 6.4 does not rely on which decision algorithm is used).

In summary, the total runtime for computing δ∗ is bounded by O((m2/3n2/3·2O(log∗(m+n))+

m log n+ n logm) log(m+ n)).

A general (deterministic) algorithmic framework. The algorithm of Theorem 6.3 can be

made into a general algorithmic framework for solving geometric optimization problems

involving interpoint distances in the plane. Specifically, suppose we have an optimization

problem P whose optimal objective value δ∗ is equal to ∥ab∥ for a point a ∈ A and a point

b ∈ B, with A as a set of m points and B as a set of n points in the plane. The goal is to

compute δ∗. Suppose that we have a decision algorithm that can determine whether δ ≥ δ∗

in TD time for any δ. Then, we can compute δ∗ by applying exactly the same algorithm

of Theorem 6.3 except that we use the decision algorithm for P instead. The total time of

138

the algorithm is O((m2/3n2/3 +m log n+ n logm+ TD) · log(m+ n)). Note that in the case

TD = o((m2/3n2/3 +m log n+n logm) log(m+n)) this is faster than the traditional binary

search approach by repeatedly invoking the distance selection algorithm.

Theorem 6.4. Given two sets A and B of m and n points respectively in the plane, any

geometric optimization problem whose optimal objective value is equal to the distance between

a point of a ∈ A and a point of b ∈ B can be solved in O((m2/3n2/3 +m log n + n logm +

TD) · log(m+n)) time, where TD is the time for solving the decision version of the problem.

6.5 One-sided discrete Fréchet distance with shortcuts

In this section, we consider the one-sided DFD problem, defined in Section 6.4. Let

δ∗ denote the optimal objective value. Avraham, Filtser, Kaplan, Katz, and Sharir [36]

proposed an a randomized algorithm of O((m + n)6/5+ϵ) expected time. We show that

using our result in Lemma 6.1 for the partial BRS problem the runtime of their algorithm

can be reduced to O((m+ n)6/5 log8/5(m+ n)).

Define E(A,B) = {∥ab∥ | a ∈ A, b ∈ B}. It is known that δ∗ ∈ E(A,B) [36]. The

decision problem is to decide whether δ ≥ δ∗ for any δ. The authors [36] first solved the

decision problem in O(m+n) (deterministic) time. To compute δ∗, their algorithm has two

main procedures.

The first main procedure computes an interval (α, β] that is guaranteed to contain δ∗,

and in addition, with high probability the interval contains at most L values of E(A,B),

given any 1 ≤ L ≤ mn; the algorithm runs in O((m + n)4/3+ϵ/L1/3 + (m + n) log(m +

n) log log(m+n)) time, for any ϵ > 0. More specifically, during the course of the algorithm,

an interval (α, β] containing δ∗ is maintained; initially α = 0 and β = ∞. In each iteration,

the algorithm first determines, through random sampling, whether the number of values of

E(A,B) in (α, β] is at most L with high probability. If so, the algorithm stops by returning

the current interval (α, β]. Otherwise, a subset R of O(log(m + n)) values of E(A,B) is

sampled which contains with high probability an approximate median (in the middle three

quarters) among the values of E(A,B) in (α, β]. A binary search guided by the decision

139

algorithm is performed to narrow down the interval (α, β]; the algorithm then proceeds

with the next iteration. As such, after O(log(m + n)) iterations, the algorithm eventually

returns an interval (α, β] with the property discussed above.

The second main procedure is to find δ∗ from E(A,B)∩ (α, β]. This is done by using a

bifurcation tree technique (Lemma 4.4 [36]), whose runtime relies on L′, the true number of

values of E(A,B) in (α, β]. As it is possible that L′ > L, if the algorithm detects that case

happens, then the first main procedure will run one more round from scratch. As L′ < L

holds with high probability, the expected number of rounds is O(1). If L′ ≤ L, the runtime

of the second main procedure is bounded by O((m+ n)L1/2 log(m+ n)).

As such, the expected time of the algorithm is O((m+n)4/3+ϵ/L1/3+(m+n) log(m+

n) log log(m+n)+(m+n)L1/2 log(m+n)). Setting L to O((m+n)2/5+ϵ) for another small

ϵ > 0, the time can be bounded by O((m+ n)6/5+ϵ).

Our improvement. We can improve the runtime of the first main procedure by a factor of

O((m + n)ϵ), which leads to the improvement of overall algorithm by a similar factor. To

this end, by applying Lemma 6.1 with r = (m+n
L)1/3, we first have the following corollary,

which improves Lemma 4.1 in [36] (which is needed in the first main procedure).

Corollary 6.5. Given a set A of m points and a set B of n points in the plane, an interval

(α, β], and a parameter 1 ≤ L ≤ mn, we can compute in O((m + n)4/3/L1/3 · log(m+n
L))

time two collections Γ(A,B, α, β) = {At × Bt | At ⊆ A,Bt ⊆ B} and Π(A,B, α, β) =

{A′
s × B′

s | A′
s ⊆ A,B′

s ⊆ B} of edge-disjoint complete bipartite graphs that satisfy the

conditions of Problem 6.1, with the following complexities: (1) |Γ| = O((m+n
L)4/3); (2)∑

t |At|,
∑

t |Bt| = O((m + n)4/3/L1/3 · log(m+n
L)); (3) |Π| = O((m+n

L)4/3); (4) |A′
s| =

O(mL
m+n) and |B′

s| = O(nL
m+n) for each A′

s × B′
s ∈ Π; (5) the number of pairs of points

recorded in Π is O((m+ n)4/3L2/3).

Replacing Lemma 4.1 in [36] by our results in Corollary 6.5 and following the rest of

the algorithm in [36] leads to an algorithm to compute δ∗ in O((m + n)6/5 log2(m + n))

time. To make the chapter more self-contained, we present some details below. Also, we

140

put the discussion in the context of a more general algorithmic framework (indeed, a recent

result of Katz and Sharir [40] already gave such a framework; here we improve their result

by a factor of O((m+ n)ϵ) due to Corollary 6.5).

A general (randomized) algorithmic framework. Suppose we have an optimization problem

P whose optimal objective value δ∗ is equal to ∥ab∥ for a point a ∈ A and a point b ∈ B,

with A as a set of m points and B as a set of n points in the plane. The goal is to compute

δ∗. Suppose that we have a decision algorithm that can determine whether δ ≥ δ∗ in TD

time for any δ. With the result from Corollary 6.5, we have the following lemma. Define

E(A,B) in the same way as above.

Lemma 6.5. Given any 1 ≤ L ≤ mn, there is a randomized algorithm that can compute

an interval (α, β] that contains δ∗ and with high probability contains at most L values of

E(A,B); the expected time of the algorithm is O((m+n)4/3/L1/3 · log2(m+n)+TD · log(m+

n) · log log(m+ n)).

Proof. We maintain an interval (α, β] (which is initialized to (0,+∞]) containing δ∗ and

shrink it iteratively. In each iteration, we first invoke Corollary 6.5 to obtain two collections

Γ(A,B, α, β) and Π(A,B, α, β) of complete bipartite graphs in O((m+n)4/3/L1/3·log(m+n
L))

time. In particular, the graphs of Π(A,B, α, β) record uncertain point pairs of A×B that

we do not know whether their distances are in (α, β]. The total number of these uncertain

pairs is M = O((m+ n)4/3L2/3).

Let S1 (resp., S2) denote the set of interpoint distances recorded in collection Γ(A,B, α, β)

(resp., Π(A,B, α, β)). Note that |S2| = M and all values of S1 are in (α, β] while some val-

ues of S2 may not be in (α, β]. Define S′
2 to be the subset of distances of S2 that lie

in (α, β]. We need to determine the number of distances of S1 ∪ S2 that lie in (α, β],

i.e., determine |S1| + |S′
2|. To this end, as |S1| =

∑
t |At| · |Bt| and

∑
t |At|,

∑
t |Bt| =

O((m+n)4/3/L1/3 · log(m+n
L)), |S1| can be easily computed in O((m+n)4/3/L1/3 · log(m+n

L))

time. It remains to determine |S′
2|. A method is proposed in Lemma 4.2 of [36] to deter-

mine with high probability whether |S′
2| ≤ L/2. This is done by generating a random

141

sample R2 of c2(M/L · log(m+ n)) values from S2, for a sufficiently large constant c2 > 0,

and then check how many of them lie in (α, β]. The runtime of this step is O(|R2|), i.e.,

O(M/L · log(m+ n)) = O((m+ n)4/3/L1/3 · log(m+ n)).

If |S1| ≤ L/2 and the above approach determines that |S′
2| ≤ L/2, then with high

probability the total number of distances of E(A,B) ∩ (α, β] is at most L and we are done

with the lemma. Otherwise, an approach is given in Lemma 4.3 of [36] to generate a sample

R of O(log(m + n)) distances from S1 ∪ S2, so that with high probability R contains an

approximate median (in the middle three quarters) among the values of E(A,B) in (α, β];

this step takes O((m+ n)4/3/L1/3 · log(m+ n)) time.

We now call the decision algorithms to do binary search on the values of R to find

two consecutive values α′, β′ in R such that δ∗ ∈ (α′, β′]. Note that (α′, β′] ⊆ (α, β],

and (α′, β′] contains with high probability at most 7/8 distances of E(A,B) in (α, β]. As

|R| = O(log(m + n)), we need to call the decision algorithm O(log log(m + n)) times, and

thus computing (α′, β′] takes O(TD · log log(m+ n)) time. This finishes one iteration of the

algorithm, which takes O((m+ n)4/3/L1/3 · log(m+ n) + TD · log log(m+ n)) time in total.

We then proceed with the next iteration with (α, β] = (α′, β′]. The exptected number

of iterations of the algorithm is O(log(m + n)). Hence, the expected time of the overall

algorithm is O((m+ n)4/3/L1/3 · log2(m+ n) + TD · log(m+ n) · log log(m+ n)).

With the interval (α, β] computed by Lemma 6.5, the next step is to compute δ∗ from

E(A,B)∩(α, β]. This is done using bifurcation tree technique (Lemma 4.4 [36]) as discussed

before; see also Section 2.2 of [40] for a discussion on more general problems. The runtime

of this step is O(TD · L1/2 · log(m+ n)) (see Proposition 2.6 [40]).

In summary, the total time of the algorithm is O((m+ n)4/3/L1/3 · log2(m+ n) + TD ·

log(m+ n) · log log(m+ n) + TD · L1/2 · log(m+ n)). We thus have the following theorem.

Theorem 6.6. Given two sets A and B of m and n points respectively in the plane,

any geometric optimization problem whose optimal objective value is equal to the distance

between a point of a ∈ A and a point of b ∈ B can be solved by a randomized algorithm of

142

O((m+ n)4/3/L1/3 · log2(m+ n) + TD · log(m+ n) · log log(m+ n) + TD ·L1/2 · log(m+ n))

expected time, for any parameter 1 ≤ L ≤ mn.

For the one-sided DFD problem, we have TD = O(m + n). Setting L = (m +

n)2/5 log6/5(m+ n) leads to the following result.

Corollary 6.7. Given a sequence A of m points and another sequence B of n points in

the plane, the one-sided discrete Fréchet distance with shortcuts problem can be solved by a

randomized algorithm of O((m+ n)6/5 log8/5(m+ n)) expected time.

As discussed in Section 6.1, another immediate application of Theorem 6.6 is the reverse

shortest path problem in unit-disk graphs.

143

CHAPTER 7

FUTURE WORK

In this chapter, we discuss several future works that are natural extensions of the

problems we studied before.

7.1 Euclidean minimum moving spanning tree

The Euclidean minimum moving spanning tree (moving-EMST for short) for a set of

moving points can be defined in a similar way to the definition of the Euclidean minimum

bottleneck moving spanning tree as we discussed in Chapter 4. It has been proved that

the problem of computing a moving-EMST is NP-hard by a reduction from the Partition

problem. An O(n2)-time 2-approximation algorithm was proposed by computing the EMST

of a complete graph defined on the moving points [20]. Note that such an approximation

ratio is tight. Moreover, the moving-EMST is equivalent to the minimum spanning tree of

a point set in R4 with a non-Euclidean metric. An O(n log n)-time (2 + ϵ)-approximation

algorithm was presented [20] by following this observation.

I plan to study approximation algorithms for the moving-EMST problem. Considering

the potential connections between the moving spanning tree and unit-disk graphs, I expect

that the underlying geometric properties of unit-disk graphs may help us discover more

essential observations and develop more efficient approximation algorithms for this problem

further.

7.2 Reverse shortest path problem in unit-ball graphs

Similar to the definition of unit-disk graphs as we discussed earlier, the unit-ball graph

can be defined in 3D space. Specifically, given a set P of n points in 3-dimensional space

and a parameter r > 0, a unit-ball graph G(P) uses P as its vertex set, and any two points

of P are connected if their distance is no larger than r. In the reverse shortest path problem

144

for unit-ball graphs, we are given two points s, t ∈ P and another parameter λ > 0, and

the target is to compute the smallest r such that the distance between s and t is at most λ.

This problem has a preliminary randomized solution of O(n17/12+ϵ), ϵ > 0 expected running

time in the literature [40]. This solution is based on a framework that adopts semi-algebraic

range searching and bifurcation-tree techniques.

I plan to exploit additional properties of 3D unit-ball graphs and adapt the methodology

(parametric search) of our solution for the 2D case to this 3D case. The critical part

is choosing a decision algorithm to parameterize. One decision algorithm (single-source

shortest path algorithm) for unit-ball graphs was presented in the previous work which

extends the solution in the 2D case to the 3D case. This involves a modified version of the

problem of “unit-ball range searching”, i.e., the query points and input points are separated

by a plane parallel to xy-plane. This property may allow us to finish the query in a more

efficient manner.

7.3 Single-source shortest path problem in weighted unit-disk graphs

This problem was solved in O(n log2 n) time [1] and was used as the decision algorithm

of our solution to the RSP problem. The previous work has a bottleneck subproblem:

2D offline insertion-only (additively) weighted nearest neighbor (OIWNN). An instance of

OIWNN problem with n operations (insertions and queries) can be solved in O(n log2 n)

time and O(n) space. The SSSP algorithm for unit-disk graphs can be improved immediately

if this OIWNN problem can be improved. However, we have another property that may

be helpful in the SSSP algorithm for unit-disk graphs, i.e., all query points and insertion

points are separated by an axis-parallel line. We have used this property to improve this

framework to O(n log n) running time for the L1 unit-disk graphs.

I plan to improve the modified OIWNN problem so that the total time complexity of

the SSSP algorithm for weighted L2 unit-disk graphs can be improved to O(n log n). One

direction is to maintain the part of the planar Voronoi diagram above the axis-parallel line

dynamically.

145

REFERENCES

[1] H. Wang and J. Xue, “Near-optimal algorithms for shortest paths in weighted unit-disk

graphs,” Discrete and Computational Geometry, vol. 64, pp. 1141–1166, 2020.

[2] J. Dall and M. Christensen, “Random geometric graphs,” Physical review E, vol. 66,

no. 1, p. 016121, 2002.

[3] M. L. Huson and A. Sen, “Broadcast scheduling algorithms for radio networks,” in

Proceedings of Military Communications Conference (MILCOM’95), vol. 2. IEEE,

1995, pp. 647–651.

[4] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-vector

routing (DSDV) for mobile computers,” in Proceedings of the Conference on Commu-

nications Architectures, Protocols and Applications (SIGCOMM), 1994, pp. 234–244.

[5] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” in Pro-

ceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications

(WMCSA), 1999, pp. 90–100.

[6] S. Cabello and M. Jejčič, “Shortest paths in intersection graphs of unit disks,” Com-

putational Geometry: Theory and Applications, vol. 48, no. 4, pp. 360–367, 2015.

[7] T. M. Chan and D. Skrepetos, “Approximate shortest paths and distance oracles in

weighted unit-disk graphs,” in Proceedings of the 34th International Symposium on

Computational Geometry (SoCG), 2018, pp. 24:1–24:13.

[8] J. Gao and L. Zhang, “Well-separated pair decomposition for the unit-disk graph metric

and its applications,” SIAM Journal on Computing, vol. 35, no. 1, pp. 151–169, 2005.

[9] H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth, and M. Sharir, “Dynamic planar

Voronoi diagrams for general distance functions and their algorithmic applications,”

146

in Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), 2017, pp. 2495–2504.

[10] L. Roditty and M. Segal, “On bounded leg shortest paths problems,” Algorithmica,

vol. 59, no. 4, pp. 583–600, 2011.

[11] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit disk graphs,” Discrete Mathe-

matics, vol. 86, pp. 165–177, 1990.

[12] T. Matsui, “Approximation algorithms for maximum independent set problems and

fractional coloring problems on unit disk graphs,” in Proceedings of the Japanese Con-

ference on Discrete and Computational Geometry (JCDCG), 1998, pp. 194–200.

[13] T. M. Chan and D. Skrepetos, “All-pairs shortest paths in unit-disk graphs in slightly

subquadratic time,” in Proceedings of the 27th International Symposium on Algorithms

and Computation (ISAAC), 2016, pp. 24:1–24:13.

[14] H. Wang and Y. Zhao, “An optimal algorithm for L1 shortest paths in unit-disk

graphs,” in Proceedings of the 33rd Canadian Conference on Computational Geom-

etry (CCCG), 2021, pp. 211–218.

[15] ——, “An optimal algorithm for L1 shortest paths in unit-disk graphs,” Computational

Geometry: Theory and Applications, vol. 110 (101960), pp. 1–9, 2023.

[16] J. S. Salowe, “L-infinity interdistance selection by parametric search,” Information

processing letters, vol. 30, no. 1, pp. 9–14, 1989.

[17] H. Wang and Y. Zhao, “Reverse shortest path problem for unit-disk graphs,” in

Proceedings of the 17th International Symposium of Algorithms and Data Structures

(WADS), 2021, pp. 655–668.

[18] ——, “Reverse shortest path problem in weighted unit-disk graphs,” in Proceedings

of the 16th International Conference and Workshops on Algorithms and Computation

(WALCOM), 2022, pp. 135–146.

147

[19] ——, “Reverse shortest path problem for unit-disk graphs,” Journal of Computational

Geometry, vol. 14(1), pp. 14–47, 2023.

[20] H. A. Akitaya, A. Biniaz, P. Bose, J.-L. D. Carufel, A. Maheshwari, L. F. S. X. d.

Silveira, and M. Smid, “The minimum moving spanning tree problem,” in Proceedings

of the 17th Workshop on Algorithms and Data Structures (WADS), 2021, pp. 15–28.

[21] H. Wang and Y. Zhao, “Computing the minimum bottleneck moving spanning tree,”

in Proceedings of the 47th International Symposium on Mathematical Foundations of

Computer Science (MFCS), 2022, pp. 82:1–82:15.

[22] J. L. Bentley and H. A. Maurer, “A note on Euclidean near neighbor searching in the

plane,” Information Processing Letters, vol. 8, pp. 133–136, 1979.

[23] B. Chazelle, “An improved algorithm for the fixed-radius neighbor problem,” Informa-

tion Processing Letters, vol. 16, no. 4, pp. 193–198, 1983.

[24] B. Chazelle, R. Cole, F. P. Preparata, and C.-K. Yap, “New upper bounds for neighbor

searching,” Information and control, vol. 68, no. 1-3, pp. 105–124, 1986.

[25] B. Chazelle and H. Edelsbrunner, “Optimal solutions for a class of point retrieval

problems,” Journal of Symbolic Computation, vol. 1, no. 1, pp. 47–56, 1985.

[26] P. Afshani and T. M. Chan, “Optimal halfspace range reporting in three dimensions,”

in Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), 2009, pp. 180–186.

[27] T. M. Chan and K. Tsakalidis, “Optimal deterministic algorithms for 2-d and 3-d

shallow cuttings,” Discrete and Computational Geometry, vol. 56, no. 4, pp. 866–881,

2016.

[28] B. Chazelle and L. J. Guibas, “Fractional cascading: I. A data structuring technique,”

Algorithmica, vol. 1, no. 1, pp. 133–162, 1986.

148

[29] ——, “Fractional cascading: II. Applieacations,” Algorithmica, vol. 1, no. 1, pp. 163–

191, 1986.

[30] M. J. Katz and M. Sharir, “An expander-based approach to geometric optimization,”

SIAM Journal on Computing, vol. 26, no. 5, pp. 1384–1408, 1997.

[31] T. M. Chan and D. W. Zheng, “Hopcroft’s problem, log-star shaving, 2D fractional

cascading, and decision trees,” in Proceedings of the 33rd Annual ACM-SIAM Sympo-

sium on Discrete Algorithms (SODA), 2022, pp. 190–210, full version with new results

available at https://arxiv.org/pdf/2111.03744.pdf.

[32] T. M. Chan, “On enumerating and selecting distances,” International Journal of Com-

putational Geometry and Application, vol. 11, pp. 291–304, 2001.

[33] H. Wang, “Unit-disk range searching and applications,” in Proceedings of the 18th

Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), 2022, pp.

32:1–32:17.

[34] P. K. Agarwal, R. B. Avraham, H. Kaplan, and M. Sharir, “Computing the discrete

Fréchet distance in subquadratic time,” SIAM Journal on Computing, vol. 43, pp.

429–449, 2014.

[35] H. Alt and M. Godau, “Computing the Fréchet distance between two polygonal curves,”

International Journal of Computational Geometry and Applications, vol. 5, pp. 75–91,

1995.

[36] R. B. Avraham, O. Filtser, H. Kaplan, M. J. Katz, and M. Sharir, “The discrete and

semicontinuous Fréchet distance with shortcuts via approximate distance counting and

selection,” ACM Transactions on Algorithms, vol. 11, no. 4, p. Article No. 29, 2015.

[37] K. Buchin, M. Buchin, and Y. Wang, “Exact algorithms for partial curve matching via

the Fréchet distance,” in Proceedings of the 20th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA), 2009, pp. 645–654.

https://arxiv.org/pdf/2111.03744.pdf

149

[38] M. Buchin, A. Driemel, and B. Speckmann, “Computing the Fréchet distance with

shortcuts is NP-hard,” in Proceedings of the 30th Annual Symposium on Computational

Geometry (SoCG), 2014, pp. 367–376.

[39] A. Driemel and S. Har-Peled, “Jaywalking your dog: computing the Fréchet distance

with shortcuts,” SIAM Journal on Computing, vol. 42, no. 5, pp. 1830–1866, 2013.

[40] M. J. Katz and M. Sharir, “Efficient algorithms for optimization problems involving

semi-algebraic range searching,” arXiv:2111.02052, 2021.

[41] J. L. Bentley, “Decomposable searching problems,” Information Processing Letters,

vol. 8, pp. 244–251, 1979.

[42] M. de Berg, K. Buchin, B. Jansen, and G. Woeginger, “Fine-grained complexity anal-

ysis of two classic TSP variants,” ACM Transactions on Algorithms, vol. 17, no. 1, pp.

5:1–5:29, 2021.

[43] R. Klein, “Concrete and abstract Voronoi diagrams,” volume 400 of Lecture Notes in

Computer Science, Springer-Verlag, 1989.

[44] H. Edelsbrunner, L. J. Guibas, and J. Stolfi, “Optimal point location in a monotone

subdivision,” SIAM Journal on Computing, vol. 15, no. 2, pp. 317–340, 1986.

[45] D. Kirkpatrick, “Optimal search in planar subdivisions,” SIAM Journal on Computing,

vol. 12, no. 1, pp. 28–35, 1983.

[46] P. K. Agarwal, A. Efrat, and M. Sharir, “Vertical decomposition of shallow levels in 3-

dimensional arrangements and its applications,” SIAM Journal on Computing, vol. 29,

pp. 912–953, 1999.

[47] C. Liu, “Nearly optimal planar k nearest neighbors queries under general distance

functions,” in Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), 2020, pp. 2842–2859.

150

[48] D. Burton and P. L. Toint, “On an instance of the inverse shortest paths problem,”

Mathematical Programming, vol. 53, pp. 45–61, 1992.

[49] J. Zhang and Y. Lin, “Computation of the reverse shortest-path problem,” Journal of

Global Optimization, vol. 25, no. 3, pp. 243–261, 2003.

[50] M. de Berg, H. L. Bodlaender, S. Kisfaludi-Bak, D. Marx, and T. C. van der Zanden,

“A framework for ETH-tight algorithms and lower bounds in geometric intersection

graphs,” in Proceedings of the 50th Annual ACM Symposium on Theory of Computing

(STOC), 2018, pp. 574–586.

[51] R. Cole, “Slowing down sorting networks to obtain faster sorting algorithms,” Journal

of the ACM, vol. 34, no. 1, pp. 200–208, 1987.

[52] N. Megiddo, “Applying parallel computation algorithms in the design of serial algo-

rithms,” Journal of the ACM, vol. 30, no. 4, pp. 852–865, 1983.

[53] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,

3rd ed. MIT Press, 2009.

[54] G. Frederickson, “Parametric search and locating supply centers in trees,” in Proc. of

the 2nd International Workshop on Algorithms and Data Structures (WADS), 1991,

pp. 299–319.

[55] G. N. Frederickson and D. B. Johnson, “Generalized selection and ranking: Sorted

matrices,” SIAM Journal on Computing, vol. 13, no. 1, pp. 14–30, 1984.

[56] ——, “Finding kth paths and p-centers by generating and searching good data struc-

tures,” Journal of Algorithms, vol. 4, no. 1, pp. 61–80, 1983.

[57] S. Fortune, “A sweepline algorithm for Voronoi diagrams,” Algorithmica, vol. 2, pp.

153–174, 1987.

[58] M. I. Shamos and D. Hoey, “Closest-point problems,” in Proc. of the 16th Annual

Symposium on Foundations of Computer Science, 1975, pp. 151–162.

151

[59] M. Ajtai, J. Komlós, and E. Szemerédi, “An O(n log n) sorting network,” in Proceedings

of the 15th Annual ACM Symposium on Theory of Computing (STOC), 1983, pp. 1–9.

[60] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan, “Time bounds for

selection,” Journal of Computer and System Sciences, vol. 7, pp. 448–461, 1973.

[61] N. Sarnak and R. E. Tarjan, “Planar point location using persistent search trees,”

Communications of the ACM, vol. 29, pp. 669–679, 1986.

[62] J. Erickson, “On the relative complexities of some geometric problems.” in Proceedings

of the 7th Canadian Conference on Computational Geometry (CCCG), 1995, pp. 85–90.

[63] ——, “New lower bounds for hopcroft’s problem,” Discrete and Computational Geom-

etry, vol. 16, pp. 389–418, 1996.

[64] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction. New

York: Springer-Verlag, 1985.

[65] P. M. Camerini, “The min-max spanning tree problem and some extensions,” Infor-

mation Processing Letters, vol. 7, pp. 10–14, 1978.

[66] M. J. Atallah, “Dynamic computational geometry,” in Proceedings of 24th Annual IEEE

Symposium on Foundations of Computer Science (FOCS), 1983, pp. 92–99.

[67] J. Basch, L. J. Guibas, and J. Hershberger, “Data structures for mobile data,” Journal

of Algorithms, vol. 31, pp. 1–28, 1999.

[68] Z. Rahmati and A. Zarei, “Kinetic Euclidean minimum spanning tree in the plane,”

Journal of Discrete Algorithms, vol. 16, pp. 2–11, 2012.

[69] P. K. Agarwal and J. Matoušek, “Dynamic half-space range reporting and its applica-

tions,” Algorithmica, vol. 13, no. 4, pp. 325–345, 1995.

[70] T. M. Chan, “A dynamic data structure for 3-D convex hulls and 2-D nearest neighbor

queries,” Journal of the ACM, vol. 57, pp. 16:1–16:15, 2010.

152

[71] D. Eppstein, “Dynamic Euclidean minimum spanning trees and extrema of binary

functions,” Discrete and Computational Geometry, vol. 13, pp. 111–122, 1995.

[72] T. M. Chan, “Dynamic geometric data structures via shallow cuttings,” Discrete and

Computational Geometry, vol. 64, pp. 1235–1252, 2020.

[73] G. S. Brodal and R. Jacob, “Dynamic planar convex hull,” in Proceedings of the 43rd

IEEE Symposium on Foundations of Computer Science (FOCS), 2002, pp. 617–626.

[74] T. M. Chan, “Dynamic planar convex hull operations in near-logarithmaic amortized

time,” Journal of the ACM, vol. 48, pp. 1–12, 2001.

[75] J. Hershberger and S. Suri, “Applications of a semi-dynamic convex hull algorithm,”

BIT Numerical Mathematics, vol. 32, no. 2, pp. 249–267, 1992.

[76] M. H. Overmars and J. van Leeuwen, “Maintenance of configurations in the plane,”

Journal of Computer System Sciences, vol. 23, no. 2, pp. 166–204, 1981.

[77] T. M. Chan, “Optimal partition trees,” Discrete and Computational Geometry, vol. 47,

pp. 661–690, 2012.

[78] J. Matoušek, “Efficient partition trees,” Discrete and Computational Geometry, vol. 8,

pp. 315–334, 1992.

[79] ——, “Range searching with efficient hierarchical cuttings,” Discrete and Computa-

tional Geometry, vol. 10, pp. 157–182, 1993.

[80] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry

– Algorithms and Applications, 3rd ed. Berlin: Springer-Verlag, 2008.

[81] E. A. Ramos, “On range reporting, ray shooting and k-level construction,” in Proceed-

ings of the 15th Annual Symposium on Computational Geometry (SoCG), 1999, pp.

390–399.

[82] B. Chazelle, L. J. Guibas, and D. Lee, “The power of geometric duality,” BIT, vol. 25,

pp. 76–90, 1985.

153

[83] P. K. Agarwal, J. Matoušek, and M. Sharir, “On range searching with semialgebraic

sets. ii,” SIAM Journal on Computing, vol. 42, no. 6, pp. 2039–2062, 2013.

[84] J. Matoušek and Z. Patáková, “Multilevel polynomial partitions and simplified range

searching,” Discrete and Computational Geometry, vol. 54, no. 1, pp. 22–41, 2015.

[85] P. K. Agarwal, Range searching, in Handbook of Discrete and Computational Geometry,

C.D. Tóth, J. O’Rourke, and J.E. Goodman (eds.), 3rd ed. CRC Press, 2017, pp.

1057–1092.

[86] ——, Simplex range searching and its variants: a review. In A Journey Through Dis-

crete Mathematics. Springer, 2017, pp. 1–30.

[87] J. Matoušek, “Geometric range searching,” ACM Computing Survey, vol. 26, pp. 421–

461, 1994.

[88] P. Afshani and P. Cheng, “Lower bounds for semialgebraic range searching and stab-

bing problems,” in Proceedings of the 37th International Symposium on Computational

Geometry (SoCG), 2021, pp. 8:1–8:15.

[89] ——, “On semialgebraic range reporting,” in Proceedings of the 38th International

Symposium on Computational Geometry (SoCG), 2022, pp. 3:1–3:14.

[90] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel, “On the shape of a set of points in the

plane,” IEEE Transactions on Information Theory, vol. 29, no. 4, pp. 551–559, 1983.

[91] B. Chazelle, “On the convex layers of a planar set,” IEEE Transactions on Information

Theory, vol. 31, no. 4, pp. 509–517, 1985.

[92] A. Dumitrescu, A. Ghosh, and C. D. Tóth, “Sparse hop spanners for unit disk graphs,”

Computational Geometry: Theory and Applications, vol. 100, pp. 101 808: 1–14, 2022.

[93] B. Chazelle, “New techniques for computing order statistics in Euclidean space,” in

Proceedings of the 1st Annual Symposium on Computational Geometry (SoCG), 1985,

pp. 125–134.

154

[94] A. C.-C. Yao, “On constructing minimum spanning trees in k-dimensional spaces and

related problems,” SIAM Journal on Computing, vol. 11, no. 4, pp. 721–736, 1982.

[95] P. K. Agarwal, B. Aronov, M. Sharir, and S. Suri, “Selecting distances in the plane,”

Algorithmica, vol. 9, no. 5, pp. 495–514, 1993.

[96] M. T. Goodrich, “Geometric partitioning made easier, even in parallel,” in Proceedings

of the 9th Annual Symposium on Computational Geometry (SoCG), 1993, pp. 73–82.

[97] J. Matoušek, “Randomized optimal algorithm for slope selection,” Information Pro-

cessing Letters, vol. 39, pp. 183–187, 1991.

[98] B. Chazelle, “Cutting hyperplanes for divide-and-conquer,” Discrete and Computa-

tional Geometry, vol. 9, no. 2, pp. 145–158, 1993.

[99] A. Lubotzky, R. Phillips, and P. Sarnak, “Explicit expanders and the Ramanujan con-

jectures,” in Proceedings of the 18th Annual ACM Symposium on Theory of Computing

(STOC), 1986, pp. 240–246.

155

CURRICULUM VITAE

Yiming Zhao

Education

• Ph.D. Computer Science. Utah State University, Logan, Utah, USA. August 2019 -

April 2023.

• B.E. Software Engineering. South China University of Technology, Guangzhou, Guang-

dong, China. September 2015 - June 2019.

Research Interests

Computational Geometry, Algorithms and Data Structures, Combinatorial Optimiza-

tion, Theoretical Computer Science, etc.

Published Journal Articles

• Haitao Wang and Yiming Zhao. “Computing the Minimum Bottleneck Moving Span-

ning Tree”, submitted to Algorithmica, under review.

• Haitao Wang and Yiming Zhao. “Reverse Shortest Path Problem for Unit-Disk

Graphs”, Journal of Computational Geometry, Vol. 14(1), pages 14–47, 2023.

• Haitao Wang and Yiming Zhao. “An Optimal Algorithm for L1 Shortest Paths in

Unit-Disk Graphs”, Computational Geometry: Theory and Applications, Vol. 110,

Article No. 101960, pages 1–9, 2023.

• Haitao Wang and Yiming Zhao. “Algorithms for Diameters of Unicycle Graphs and

Diameter-Optimally Augmenting Trees”, Theoretical Computer Science, Vol. 890,

pages 192–209, 2021.

156

• Haitao Wang and Yiming Zhao. “A Linear-Time Algorithm for Discrete Radius Opti-

mally Augmenting Paths in a Metric Space”, International Journal of Computational

Geometry and Applications, Vol. 30, pages 167–182, 2020.

Published Conference Papers

• Haitao Wang and Yiming Zhao. “Improved Algorithms for Distance Selection and

Related Problems”, under review.

• Haitao Wang and Yiming Zhao. “A Simple Algorithm for Unit-Disk Range Report-

ing”, under review.

• Haitao Wang and Yiming Zhao. “Computing the Minimum Bottleneck Moving Span-

ning Tree”, Proceedings of the 47th International Symposium on Mathematical Foun-

dations of Computer Science (MFCS), pages 82:1–82:15, 2022.

• Haitao Wang and Yiming Zhao. “Reverse Shortest Path Problem in Weighted Unit-

Disk Graphs”, Proceedings of the 16th International Conference and Workshops on

Algorithms and Computation (WALCOM), pages 135–146, 2022. (Best Student

Paper Award)

• Haitao Wang and Yiming Zhao. “An Optimal Algorithm for L1 Shortest Paths in

Unit-Disk Graphs”, Proceedings of the 33rd Canadian Conference on Computational

Geometry (CCCG), pages 211–218, 2021.

• Haitao Wang and Yiming Zhao. “Reverse Shortest Path Problem for Unit-Disk

Graphs”, Proceedings of the 17th Algorithms and Data Structures Symposium (WADS),

pages 655–668, 2021.

• Haitao Wang and Yiming Zhao. “Algorithms for Diameters of Unicycle Graphs and

Diameter-Optimally Augmenting Trees”, Proceedings of the 15th International Con-

ference and Workshops on Algorithms and Computation (WALCOM), pages 27–39,

2021.

157

• Haitao Wang and Yiming Zhao. “A Linear-Time Algorithm for Discrete Radius Op-

timally Augmenting Paths in a Metric Space”, Proceedings of the 32nd Canadian

Conference on Computational Geometry (CCCG), pages 174–180, 2020.

	Algorithms for Unit-Disk Graphs and Related Problems
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	
	Unit-disk graphs
	Overview of our problems
	L1 shortest paths in unit-disk graphs
	Reverse shortest path problem for unit-disk graphs
	Computing the minimum bottleneck moving spanning tree
	A simple algorithm for unit-disk range reporting
	Improved algorithms for distance selection and related problems

	Dissertation outline

	
	Introduction
	Problem definitions and our results
	Related work

	The main algorithm
	The bottleneck subproblem
	Observations
	Processing insertions

	
	Introduction
	Problem definitions and our results
	Our approach

	Preliminaries
	The unweighted case – the first algorithm
	Building the grid
	Running BFS

	The unweighted case – the second algorithm
	The weighted case
	A review of the WX algorithm
	The RSP algorithm
	A further improvement

	Concluding remarks

	
	Introduction
	Problem definitions
	Our result
	Related work

	Algorithm for moving-EMBST
	The decision problem
	The optimization problem

	Deletion-only unit-disk range emptiness query data structure
	Observations
	Preprocessing
	Handling UDRE queries and point deletions
	Putting everything together

	Concluding remarks

	
	Introduction
	Problem definitions and our results

	The UDRR algorithm
	Constructing a grid
	Line-separable UDRR: Proving Lemma 5.2

	Computing layers of lower envelopes
	Defining the tree graph G
	Constructing the tree graph G
	Computing lower -hull layers

	Concluding remarks

	
	Introduction
	Problem definitions and our results

	Partial batched range searching
	Distance selection
	Two-sided discrete Fréchet distance with shortcuts
	One-sided discrete Fréchet distance with shortcuts

	
	Euclidean minimum moving spanning tree
	Reverse shortest path problem in unit-ball graphs
	Single-source shortest path problem in weighted unit-disk graphs

	REFERENCES
	CURRICULUM VITAE

