1,266 research outputs found

    Coordination and Self-Adaptive Communication Primitives for Low-Power Wireless Networks

    Get PDF
    The Internet of Things (IoT) is a recent trend where objects are augmented with computing and communication capabilities, often via low-power wireless radios. The Internet of Things is an enabler for a connected and more sustainable modern society: smart grids are deployed to improve energy production and consumption, wireless monitoring systems allow smart factories to detect faults early and reduce waste, while connected vehicles coordinate on the road to ensure our safety and save fuel. Many recent IoT applications have stringent requirements for their wireless communication substrate: devices must cooperate and coordinate, must perform efficiently under varying and sometimes extreme environments, while strict deadlines must be met. Current distributed coordination algorithms have high overheads and are unfit to meet the requirements of today\u27s wireless applications, while current wireless protocols are often best-effort and lack the guarantees provided by well-studied coordination solutions. Further, many communication primitives available today lack the ability to adapt to dynamic environments, and are often tuned during their design phase to reach a target performance, rather than be continuously updated at runtime to adapt to reality.In this thesis, we study the problem of efficient and low-latency consensus in the context of low-power wireless networks, where communication is unreliable and nodes can fail, and we investigate the design of a self-adaptive wireless stack, where the communication substrate is able to adapt to changes to its environment. We propose three new communication primitives: Wireless Paxos brings fault-tolerant consensus to low-power wireless networking, STARC is a middleware for safe vehicular coordination at intersections, while Dimmer builds on reinforcement learning to provide adaptivity to low-power wireless networks. We evaluate in-depth each primitive on testbed deployments and we provide an open-source implementation to enable their use and improvement by the community

    Signal Processing and Learning for Next Generation Multiple Access in 6G

    Full text link
    Wireless communication systems to date primarily rely on the orthogonality of resources to facilitate the design and implementation, from user access to data transmission. Emerging applications and scenarios in the sixth generation (6G) wireless systems will require massive connectivity and transmission of a deluge of data, which calls for more flexibility in the design concept that goes beyond orthogonality. Furthermore, recent advances in signal processing and learning have attracted considerable attention, as they provide promising approaches to various complex and previously intractable problems of signal processing in many fields. This article provides an overview of research efforts to date in the field of signal processing and learning for next-generation multiple access, with an emphasis on massive random access and non-orthogonal multiple access. The promising interplay with new technologies and the challenges in learning-based NGMA are discussed

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Agile wireless transmission strategies

    Get PDF

    Reliable Communication in Wireless Networks

    Get PDF
    Wireless communication systems are increasingly being used in industries and infrastructures since they offer significant advantages such as cost effectiveness and scalability with respect to wired communication system. However, the broadcast feature and the unreliable links in the wireless communication system may cause more communication collisions and redundant transmissions. Consequently, guaranteeing reliable and efficient transmission in wireless communication systems has become a big challenging issue. In particular, analysis and evaluation of reliable transmission protocols in wireless sensor networks (WSNs) and radio frequency identification system (RFID) are strongly required. This thesis proposes to model, analyze and evaluate self-configuration algorithms in wireless communication systems. The objective is to propose innovative solutions for communication protocols in WSNs and RFID systems, aiming at optimizing the performance of the algorithms in terms of throughput, reliability and power consumption. The first activity focuses on communication protocols in WSNs, which have been investigated, evaluated and optimized, in order to ensure fast and reliable data transmission between sensor nodes. The second research topic addresses the interference problem in RFID systems. The target is to evaluate and develop precise models for accurately describing the interference among readers. Based on these models, new solutions for reducing collision in RFID systems have been investigated

    Reinforcement Learning-based Optimization of Multiple Access in Wireless Networks

    Get PDF
    In this thesis, we study the problem of Multiple Access (MA) in wireless networks and design adaptive solutions based on Reinforcement Learning (RL). We analyze the importance of MA in the current communications scenery, where bandwidth-hungry applications emerge due to the co-evolution of technological progress and societal needs, and explain that improvements brought by new standards cannot overcome the problem of resource scarcity. We focus on resource-constrained networks, where devices have restricted hardware-capabilities, there is no centralized point of control and coordination is prohibited or limited. The protocols that we optimize follow a Random Access (RA) approach, where sensing the common medium prior to transmission is not possible. We begin with the study of time access and provide two reinforcement learning algorithms for optimizing Irregular Repetition Slotted ALOHA (IRSA), a state-of-the-art RA protocol. First, we focus on ensuring low complexity and propose a Q-learning variant where learners act independently and converge quickly. We, then, design an algorithm in the area of coordinated learning and focus on deriving convergence guarantees for learning while minimizing the complexity of coordination. We provide simulations that showcase how coordination can help achieve a fine balance, in terms of complexity and performance, between fully decentralized and centralized solutions. In addition to time access, we study channel access, a problem that has recently attracted significant attention in cognitive radio. We design learning algorithms in the framework of Multi-player Multi-armed Bandits (MMABs), both for static and dynamic settings, where devices arrive at different time steps. Our focus is on deriving theoretical guarantees and ensuring that performance scales well with the size of the network. Our works constitute an important step towards addressing the challenges that the properties of decentralization and partial observability, inherent in resource-constrained networks, pose for RL algorithms

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts
    • …
    corecore