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Abstract

The Internet of Things (IoT) is a recent trend where objects are augmented with
computing and communication capabilities, often via low-power wireless radios.
The Internet of Things is an enabler for a connected and more sustainable
modern society: smart grids are deployed to improve energy production and
consumption, wireless monitoring systems allow smart factories to detect faults
early and reduce waste, while connected vehicles coordinate on the road to
ensure our safety and save fuel. Many recent IoT applications have stringent re-
quirements for their wireless communication substrate: devices must cooperate
and coordinate, must perform efficiently under varying and sometimes extreme
environments, while strict deadlines must be met. Current distributed coordi-
nation algorithms have high overheads and are unfit to meet the requirements
of today’s wireless applications, while current wireless protocols are often best-
effort and lack the guarantees provided by well-studied coordination solutions.
Further, many communication primitives available today lack the ability to
adapt to dynamic environments, and are often tuned during their design phase
to reach a target performance, rather than be continuously updated at runtime
to adapt to reality.

In this thesis, we study the problem of efficient and low-latency consensus in
the context of low-power wireless networks, where communication is unreliable
and nodes can fail, and we investigate the design of a self-adaptive wireless
stack, where the communication substrate is able to adapt to changes to its
environment. We propose three new communication primitives: Wireless Pazos
brings fault-tolerant consensus to low-power wireless networking, STARC' is
a middleware for safe vehicular coordination at intersections, while Dimmer
builds on reinforcement learning to provide adaptivity to low-power wireless
networks. We evaluate in-depth each primitive on testbed deployments and we
provide an open-source implementation to enable their use and improvement
by the community.

Keywords
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Reinforcement Learning, DQN
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Introduction

Today, most aspects of our society are interwined with the digital world. From
the first interconnection of few computers six decades ago for military and
scientific purposes, the Internet has now spread all over the globe. Whether
through optic fiber backbones covering the ocean floors, copper wires spanning
entire buildings, or via radio waves, information continuously flows around us.
This digital world first took over our working places with computers, then our
living spaces, before it followed us everywhere through the wide adoption of
smartphones.

However, this interconnection between the real, physical world and the
Internet did not stop at the palm of our hands. For the last decade, a new trend
of connecting even more devices has emerged. By adding sensing and networking
capabilities to everyday’s objects, it is believed that the Internet of Things
(IoT) will make our lives more efficient and more sustainable [1]. We can cite,
as examples of IoT devices, the current adoption wave of smartwatches, which
incorporate heart rate sensors to monitor our health. Connected thermostats
and window shutters, which are components of smart homes, aim to reduce
our energy consumption in our living places. Soon, connected and autonomous
vehicles will free us from the corvee of driving to and from work: cars will
communicate together and over the Internet to find the best route, saving us
both time and fuel, as well as improving our safety on the road.

The Internet of Things will also play an important part outside of the
consumers’ houses. Electricity providers can optimize their electrical grid by
collecting energy consumption in real-time [2]. Factories can greatly improve
efficiency by monitoring their production processes, and reduce waste by
detecting faults early [3]. Furthermore, sensors can be deployed in remote
places to monitor the wildlife and the environment [4,5], or up the mountains
and volcanoes, collecting precious data that can help us predict avalanches or
eruptions [6,7]. Upon natural disasters, drones can be deployed to help us find
survivors quicker [8].
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Figure 1.1. Cyber-physical system: monitoring and control can be
done via the wireless medium. Sensors send their measurements to
controllers, that affect the environment through actuators.

Cyber-physical Systems & Low-power Networking

This pervasive paradigm led to the birth of cyber-physical systems [9]. In such
structures, the physical and digital worlds not only cohabit but also interact,
as depicted in Fig. 1.1. Sensors, installed practically everywhere, periodically
collect measurements from physical processes. As example, smart meters
deployed in consumer homes locally record electricity consumption. This data
produced, sometimes at high velocity, is then securely collected, aggregated,
and sent to a central intelligence. Through Big Data analytics or traditional
methods, this vast amount of information is processed to obtain a real-time
view of the electricity consumption at a city-scale. An electricity provider is
then able to adapt energy production to match the needs of its consumers, by
issuing commands to production sites, where devices called Actuators act to
alter the physical world.

However, in many scenarios, these sensors and actuators can not be wired
for power and communication. Sensors deployed across mountain ranges must
rely on solar panels and batteries as power sources [7]. Wireless-based sensing
systems have been deployed to monitor aging water pipelines when wiring
the entire pipeline network was deemed too expensive [10]. When such sensor
nodes are not easily accessible for maintenance, the operational lifetime of the
network becomes important. Such wireless systems must operate as long as
possible, based on their available source of power. Energy consumption must be
minimized: low-power, resource-constrained platforms are selected, where the
computation power is traded for an energy-efficient hardware. Communication
must also be kept to a minimum; the wireless radios are turned off when they
are not used [11,12]. We refer to these deployments as low-power wireless
networks [13]. In this thesis, we limit the scope of our work to wireless
communication in such low-power networks.

1.1 Overview

Context. The Internet of Things is seen as an enabler for a connected and more
sustainable modern society. Low-power wireless sensors are deployed in facto-



1.1. OVERVIEW 3

ries to control production processes [3], in vehicles to improve road utilisation
and safety [14,15], and outdoors to monitor extreme environments [7]. For two
decades, the scientific and industrial communities have proposed solutions to
provide communication over low-power and lossy multi-hop deployments. Stan-
dards have been published (e.g., IEEE 802.15.4 [16], Bluetooth Low Energy [17],
LoRa [18]), platforms have been designed (e.g., nRF52 [19], STM32Wx [20]),
and competitions have been held to push the field to its limits [21]. Through
communication scheduling with Orchestra [22] or synchronous transmissions
with Glossy [23], it is possible to obtain high message delivery, in the order of
1 lost packet every 1000 messages, with low radio and energy usage.

Challenges. Many recent applications for the Internet of Things have
stringent requirements for their wireless communication substrate: devices
must cooperate and coordinate, must perform efficiently under varying and
sometimes extreme environments, while strict deadlines must be met. On the
road, connected vehicles coordinate to form platoons and cross intersections [15,
24]. In factories, monitoring systems must detect faults early to allow quick
reaction [25].

Current distributed coordination algorithms are unfit to solve the require-
ments of today’s wireless applications: solutions borrowed from wired topolo-
gies often induce a significant overhead due to mismatched assumptions of
the underlying model [26]. While the scientific community has provided a
large body of efficient communication primitives for low-power wireless net-
works [23,27,28], few works set to combine their performance with guarantees
usually achieved in distributed wired systems and required in mission-critical
IoT applications [29, 30].

In addition, the wireless medium is inherently unreliable: external inter-
ference can quickly and transiently disturb the medium [31]. If a system is
to perform for a decade, its underlying communication primitive must be
tuned to ensure performance at a reduced energy cost. Many designers solve
this performance-energy tradeoff during the design phase, in a cradle-to-grave
fashion, e.g., by selecting Glossy for normal deployments, while favoring Ro-
bust Glossy in interfered environments [23,32]. To ensure energy efficiency
in varying environments, a communication primitive must adapt not only to
traffic changes, but also to the dynamics of the wireless medium.

Goals. From these starting observations, our goals are two-fold: (a) we
want to provide complex coordination on top of unreliable low-power wireless
networks, including the case of vehicle-to-vehicle coordination, and (b) we
want to design self-adaptive communication primitives, that are able to react
to disturbances to their environment.

Approach. In this thesis, we use experimental computer science methods.
We design, implement and evaluate systems, typically network protocols, as
a first step towards bringing this vision of pervasive IoT to a state of reality.
We make our design and source code freely accessible to enable their use and
improvement by the community.

Outline. This thesis is organized into two parts. The first part begins
with this high-level introduction to the topic, followed by necessary background
notions, a presentation of related work, and a brief summary of the results.
The second part of the thesis is a collection of three papers covering the aspects
of coordination and adaptiveness in low-power wireless networks.
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Table 1.1. Conditions for successful synchronous transmissions in
802.15.4-2.4 GHz.

Effect ‘ Constructive Interf. ‘ Capture Effect
Identical Data? Identical Possibly different
Power difference - >3dB
Time difference < 0.5 us < 160 us

1.2 Background

In this section, we introduce the core concepts that we build upon. We divide
this section into four pillars: (a) a brief introduction to low-power wireless
networking technologies; (b) the concept of synchronous transmissions; (c) the
problem of consensus in distributed systems, and some well-known solutions;
and finally, (d) the core concept of reinforcement learning, as well as Q-learning.

1.2.1 Low-power Wireless Networking

With limited energy available to communicate, low-power networking restricts
communication to low datarates and limited coverage. Low-power technolo-
gies are classified into long- and short-range solutions. Low-power wide area
networks (LPWAN), such as LoRa [18] and Sigfox [33], aim to connect battery-
powered devices over large areas. They provide ranges up to a few kilometers,
but severely limit datarates to tens of kB/s [18]. In contrast, wireless personal
area networks (WPAN) provide short-range communication (tens of meters),
with higher available datarates (up to few Mb/s). IEEE 802.15.4 [16] and
Bluetooth Low Energy (BLE) [17] are two prominent standards for narrowband
short-range networking, and both use the 2.4 GHz ISM band, while IEEE
802.15.4 is also able to operate in sub-GHz bands.

Due to their limited energy budget and transmit power, usually around
1 mW, IEEE 802.15.4 devices form mesh topologies to provide multi-hop
communication, where some nodes act as relays. Multi-hop communication is
usually done with routing, or flooding. In contrast, BLE’s main mode is to
form single-hop star topologies, with a master and one or more slave platforms.
In addition, BLE introduces Bluetooth Mesh, a multi-hop mesh networking
mode based on flooding. In the remainder of this thesis, we focus on IEEE
802.15.4 networks operating in the 2.4 GHz band. Moreover, we rely on the
flooding principle to communicate over multiple hops.

1.2.2 Synchronous Transmissions

Wireless radios are broadcast-oriented: any antenna in the vicinity receives a
radio transmission if the physical channel is good enough. When two transmis-
sions overlap, their physical radio waves add up, often leading to an illegible
signal at the receptive end. We refer to this physical behavior as destructive
interference. For long, the consensus was that overlapping transmissions are
destructive, and should be avoided at all costs. CSMA/CA, the access control
used in WiFi and Zigbee, relies on this philosophy.
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Constructive interference. However, it turned out that not all inter-
ference are destructive. If two transmitters transmit the same data at the
same time, the radio waves, which are then identical, superpose in what is
called constructive interference. Ringwald and Rémer showed the first use of
such interference in low-power wireless networks with BitMAC, by superposing
On-Off Keying (OOK) symbols [34]. Later, A-MAC extended the concept
from bits to small packets, by concurrently acknowledging request messages
[35]. Glossy goes a step beyond and provides network-wide, fast floods sup-
porting mobile nodes, without the need for expensive routing [23]. Ferrari
et al. also showed that, in order to work, Glossy and IEEE 802.15.4-based
constructive interference require a synchronisation error smaller than 0.5 us,
which corresponds to a IEEE 802.15.4 chip period.

Further works softened these claims of constructive interference. Wilhehm
et al., as well as Liao et al., argue that what we observe is rather non-destructive
interference: the received signal can be decoded, but is nonetheless degraded
by the collision [36,37]. The coding scheme used in the physical layer of IEEE
802.15.4, Direct Sequence Spread Spectrum (DSSS), is hypothesised as the
reason packets survive such interference.

Other technologies. Al Nahas et al. empirically show that BLE-based
synchronous transmissions are also possible, although BLE uses Gaussian
Frequency Shift Keying (GFSK) as modulation scheme and does not rely on
DSSS [38]. Their results are confirmed by Baddeley et al. In their paper, the
authors show that the coded BLE modes offer similar reliabilities as IEEE
802.15.4 in the absence of interference [39]. Lobba et al. demonstrate the
feasability of synchronous transmissions using IEEE 802.15.4 ultra-wideband
(UWB) radios [40].

Capture effect. Constructive interference is not the only physical behavior
in IEEE 802.15.4 we can use to successfully communicate when multiple
transmissions overlap. In the case of two overlapping transmissions, if a signal
is much stronger than the second at the receiver, the strongest signal can be
decoded with high probability. We then speak of the capture effect. This effect
has been observed long ago for FM transceivers [41]. Dutta et al. found that,
for IEEE 802.15.4, a power difference of +3 dB is sufficient to correctly decode
a packet consistently [35]. Chaos uses the capture effect to relax the identical
data and tight synchronisation requirements of Glossy [42]. By concurrently
transmitting different data and relying on the capture effect, Chaos provides
all-to-all aggregation with low-latency. Codecast and Mixer go beyond and add
network coding to provide concurrent many-to-many communication [43,44].

Table 1.1 summarizes the necessary conditions to obtain constructive inter-
ference and utilize the capture effect. In the remainder of this thesis, we use the
term Concurrent Transmissions when the sole capture effect is used (i.e., when
we transmit different data). Synchronous Transmissions is used for situations
where both constructive interference and capture effect are at play (i.e., we
transmit the same data). We refer the interested reader to an extensive, recent
survey on synchronous transmissions by Zimmerling et al. [45].
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1.2.3 Consensus

The field of distributed computing focuses on systems in which participants,
distributed across a network, interact to achieve a common goal. One of the
most fundamental problems of distributed systems is known as consensus [46].
To have a consensus, a group of participants must reach an agreement on a
single data value. Coordination of drones, distributed databases, leader election,
and state-machine replication are few examples of applications where consensus
is required. In fact, many problems in distributed systems can be reformulated
as consensus problems, and thus solved if we solve consensus [47]. A correct
solution to the consensus problem must have the following properties:

e Validity: the agreed value has been initially proposed;
e Agreement: all correct processes agree on the same, unique value;

e Termination: every process decides in a bounded time; and

Integrity: if all correct processes choose value v, then any correct process
must choose v.

FLP and CAP. One of the most influential results in distributed systems
is known as the FLP impossibility [46]. Fischer et al. prove that in an
asynchronous system, no solution can provide consensus with all the above
properties. In few words, their paper shows that if a message can be infinitely
delayed, e.g., because of retransmissions, then one participant will never be
able to communicate, although it is a correct process. Consensus, as described
above, is thus impossible in a fully asynchronous system.

Another impossibility result is known as the CAP theorem [48]. While the
CAP theorem is not targeting consensus, but rather read-write storages, its
result is nonetheless important to keep in mind during the design of distributed
systems. Brewer, the author of the CAP theorem, states that, in a shared-data
system, no more than two out of these three properties can be satisfied at
the same time: Availability: the system will eventually respond to a request;
Consistency: the response is consistent with the latest state; and Partition
tolerance: the system sustains losses of communication.

Distributed commit. In a distributed system, the commit problem
refers to the coordination of a group of participants to agree or reject a given
transaction. A transaction is committed if and only if all participants agree to
accept it. 2-Phase Commit (2PC) and 3-Phase Commit (3PC) are two notable
protocols for distributed commit [49,50]. Both protocols handle failures in
drastically opposite approaches: 2PC is blocking, meaning that no further
transactions are accepted unless the current is finalized, while 3PC relies on
timeouts to avoid blocking. However, in certain cases, 3PC might lead to
inconsistencies in the system, where some participants commit, while other
abort the transaction.

Fault-tolerant consensus. Commit is a specialized type of consensus:
in the consensus problem, multiple values are initially proposed, and the
participants must agree on a single value. Paxos is a solution for fault-tolerant
consensus: as long as a majority of nodes are running and are reachable, Paxos
eventually achieves consensus [51,52]. Paxos assumes an asynchronous, non-
Byzantine system with crash-recovery: messages can be dropped and delayed,
but not tampered with; the network can be partitioned; nodes can crash and
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Figure 1.2. Solving consensus with Paxos. A proposer sends a Pre-
pare request with proposal number n. Acceptors reply with the last
accepted proposal m with value V. After a majority of Prepared(),
the proposer adopts V and sends an Accept request. Proposal n is
then accepted by the acceptors.

recover, and have access to persistent storage. However, Paxos requires eventual
synchrony to terminate: eventually, a majority of nodes will have bounded
message delays.

Processes are classified as follows: (a) proposers propose a value to agree
on, and act as coordinators for the protocol’s execution. Unlike 2PC and
3PC, where at most one coordinator must be present, Paxos supports the
presence of multiple proposers. (b) acceptors reply to proposers requests by
accepting proposals. They informally act as the system’s distributed memory.
(c) learners do not participate in the consensus: they only learn the agreed
value once a consensus is met.

The protocol consists of two phases: the Prepare phase and the Accept
phase. The protocol, depicted in Fig. 1.2, is executed as follows:

1. Prepare Phase

a. A proposer starts a consensus by generating a unique proposal number n.
The proposer broadcasts a Prepare(n) request to the acceptors.

b. Upon reception of Prepare(n), an acceptor saves the highest proposal
number received so far (mProposal). The acceptor replies with the last
proposal accepted, if any, and the corresponding accepted value.

2. Accept Phase

a. Once hearing from a majority of acceptors, the proposer adopts the value
with the highest proposal received, if any. Thus, Paxos ensures that at
most one value can be chosen. The proposer broadcasts an Accept(n, V)
request to all acceptors.

b. Upon reception of Accept(n,V) and if n > mProposal, an acceptor accepts
the proposal and associated value, and saves n as new mProposal. The
acceptor replies with the highest proposal received.

c. If a response with mProposal > n is received, the proposal is rejected.
If a majority of replies are received and the proposal is not rejected, the
value is chosen.
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Figure 1.3. The basic Reinforcement Learning (RL) model.

The proposer can therefore inform the learners that a consensus is reached.
Using mProposal ensures that only the most recent proposal can be accepted,
and Step 1.b. ensures that at most one value can be chosen.

In this thesis, we investigate both fault-tolerant consensus and distributed
commits in low-power wireless networks.

1.2.4 Reinforcement Learning

The recent advances in artificial intelligence and machine learning have helped
reshape the landscape of many scientific and technical fields. First in computer
vision, followed by natural language processing and speech recognition, deep
learning has been shown to outperform many traditional methods formerly
considered as state-of-the-art [53].

Types of learning. Learning techniques can be divided into three broad
families, where some algorithms can be classified in more than one (e.g., semi-
supervised learning) [53]:

e Supervised learning: a dataset of features and labels is available, the goal
is to find a generalized mapping function;

e Unsupervised learning: an unlabeled dataset is available, the goal is to
find if a hidden structure exists within; and

e Reinforcement learning: an environment, simulator, or traces are available,
the goal is to find a sequence of interactions (a policy) leading to a desired,
final state.

In this thesis, we focus on reinforcement learning.

Reinforcement learning. Reinforcement Learning (RL) involves prob-
lems where learning is done through interaction [54]. The goal of an RL solution
is to learn what to do, i.e., select the best action, in the current situation.
Unlike supervised learning, the correct action is unknown both to the system
and to the designer: the input data is often unlabeled. However, a RL solver
is guided by a reward signal. This numerical value quantifies how beneficial
the new situation is. The reward signal is used to reinforce the belief of the
system whether the chosen action was beneficial or detrimental to the system
progress. In some problems, the reward is not immediate. Several consecutive
actions are needed to obtain a positive reinforcement. Thus, the goal of an
RL solver is to maximize the reward function over time. Sutton and Barto
summarize the three main characteristics of RL problems as follows: (a) the
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problem is a closed-loop system, (b) there is a lack of prior knowledge, and
(c) the consequences of actions play out over extended time periods [54].

Agent and environment. Fig. 1.3 illustrates the basic interaction in
RL problems. We refer to the learning method as the agent. The agent is
surrounded and interacts with its environment. The agent can observe the
current state of the environment: these observations represent the input features
of the system. The agent computes the best action and act. The environment
is affected by the action, and new observations and a reward reflect its new
state.

Exploration and exploitation. The main challenge faced in RL is the
exploration-exploitation trade-off. The goal of an agent is to maximize its
reward signal. To do so, the agent chooses actions tried in the past and known
to be rewarding. However, to discover such beneficial actions, the agent must
also try actions that were never tested before. By exploring the environment
and trying random actions, the agent can accumulate experiences and build
an internal model of how its actions affect the environment. By exploiting its
accumulated knowledge, the agent can construct a sequence of actions that
maximizes the reward.

Markov Decision Processes. Most RL problems can be represented as
Markov Decision Processes (MDPs) [55]. MDPs extend Markov chains: in
Markov chains, the transition from a state to a new state is represented as a
probabilistic distribution. In contrast, in an MDP, the transition is affected
both by a decision and by randomness. Formally, a MDP is represented by the
tuple (S, A, P,R), where S is the set of possible states, A the set of possible
actions, P the transition probability function and R a reward function. The
MDP is said to be finite if S is finite. Most RL results suppose a finite MDP.

Q-Learning. Finding the best sequence of actions requires an agent to
estimate future rewards. The agent seeks to maximize the cumulative reward
R, £ Z:O:t ~™~tr,, where r; is the reward obtained when transitioning at time
7, and v € [0,1) a constant called the discount factor. A small discount factor
will force the agent to maximize short-term, immediate rewards, while a high
discount factor will allow the agent to maximize long-term expected rewards.

Q-learning is one of the most popular ways to solve RL problems [54]. In
Q-learning, an agent learns an action-value function Q(s,a). This function
represents the expected cumulative reward the agent should get when starting
in state s, using action a such as:

Q(s,a) £E[R; | st = s,a; = a (1.1)

In simple terms, the Q-function evaluates how valuable it is to choose action a
in state s in terms of expected reward. If the environment can be modeled as
an MDP, then we can find an optimal function Q*(s, a) that follows Bellman’s
principle of optimality [56]:

Q*(s,a) = E[r, + ymax, Q*(s',a’) | s, = s,a; = a (1.2)

where 1; is the immediate reward received, v the discount factor presented
above, and s’ the state achieved after the state s. By iteratively trying actions
and receiving rewards, we can update a Q-function that ultimately converges
to the optimal Q*(s, a).
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Deep Q-learning. While Q-learning algorithms have historically used a
tabular approach in estimating the Q-function [54], deep neural networks have
been recently proposed as Q-function approximators [57]. Deep Q-networks
(DQN) have been successfully used to solve various problems: Datacenter
cooling [58], wireless modulation [59], CSMA/CA optimization [60], etc. The
advantage of DQN over tabular approaches is the ability to solve problems with
continuous states and the generalization property of neural networks. While
RL is not limited to Q-learning and DQNs, we focus on DQNs in the second
part of this thesis.

1.3 Related Work

In this section, we present a curated selection of works that represent the
current state of the literature in the field of this thesis. We categorize related
work in the following aspects: (a) providing guarantees in wireless networking,
(b) adapting communication to external factors, and (c) the use of Al and
reinforcement-learning methods applied to wireless communication.

1.3.1 Guarantees in Low-power Wireless

Wireless systems are unreliable by nature; external factors such as interference
degrade communication, while battery-powered devices are prone to failures.
Although a substantial body of work came to term with the situation, designing
best-effort solutions, other works focused on providing guarantees to wireless
communication.

Failure detection. Node failure can degrade performance. This is partic-
ularly true for routing-based solutions, where an unresponsive node can affect
the packet delivery of an entire subset of a network. However, communication
faults and node failures are sometimes hard to differentiate [61]. Ruiz et al. pro-
pose MANNA, a self-diagonistic and self-healing solution to fault management
using active requests [62]. In contrast, Miao et al. use correlation patterns
to detect possible silent faults in wireless sensor networks [63]. Jhumka and
Mottola combine theoretical and systems approaches to tackle the problem of
neighborhood view consistency, i.e., the accuracy and correctness of localized
neighbor information [30,64]. While they prove that it is impossible to design
a localized solution to strong neighborhood view consistency, they propose
a localized algorithm for weak view consistency. By aggregating the 2-hop
neighbor information, their solution is able to raise a signal whenever a transient
fault or node crash has occured in the vicinity.

Reliable delivery. Even when assuming that nodes do not fail, message
delivery is not guaranteed in wireless systems. To tackle this problem, reliable
transport protocols, some sharing similarities with TCP, have been proposed.
To provide reliable data acquisition for a structural monitoring deployment,
Xu et al. propose Wisden, a data transport protocol combining end-to-end as
well as hop-by-hop recovery mechanisms [65]. Paek et al. go further with RCRT,
and incorporate congestion control in addition to reliable delivery in low-power
wireless networks [66]. Kumar et al. endowed TCP with several optimization
to fit it to resource-constrained wireless nodes [67]. Building on synchronous
transmissions and LWB [27], VIRTUS brings virtual synchrony to low-power
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wireless networks [29]. Virtual synchrony provides reliable atomic multicast,
i.e., VIRTUS is able to guarantee the message delivery to all recipients of the
multicast, while guaranteeing that messages are delivered in order.

Delay-bounded delivery. Time-critical cyber physical systems, such as
industrial control systems, have stringent requirements in terms of latency,
but often can survive few message losses [68]. Thus, reliable data delivery
is not imperative in such deployments. Instead, bounded-delivery protocols
fulfill the requested time requirements. Chipara et al. propose a centralized
deadline-based scheduler to ensure on-time delivery [69]. Li et al. extend it for
emergency alarms over wireless [25]. With TTW, Jacob et al. show that wireless
solutions can replace wired field buses in industrial settings [68]. By building
on synchronous transmissions, TTW provides end-to-time timing predictability,
high reliability and low-latency.

Coordination. Agreement has also been studied in opportunistic and ad-
hoc networks [70,71]. Turquois provide consensus in the presence of Byzantine
faults in single-hop networks [72]. Kopke investigates the performance 2-
Phase Commit (2PC) for WSNs [26]. The author shows that both low-latency
and high-reliability MAC and routing layers are necessary to provide commit
semantics with sufficient performance in sensor networks. With RedMAC
and the routing protocol Net, Kopke provides a wireless stack able to run
the original 2PC for 16 participants under 2 min. However, the author only
hints at additional improvements, such as multicast and aggregation, but does
not provide a dedicated 2PC design tailored to wireless communication. In
contrast, Borran et al. extends Paxos with a new communication layer for
802.11 opportunistic networks [73]. The authors build a tree to route and
collect acceptor responses. With JAG, Boano et al. take full advantage of the
destructive behavior of jamming signals, as JAG uses jamming to acknowledge
one-hop agreement requests [74].

Building on top of synchronous transmissions and reusing concepts from
Chaos [42], Agreement in the Air (A?) introduces 2-Phase Commit (2PC) and 3-
Phase Commit (3PC) to low-power lossy networks, providing commit guarantees
with low-latency and high reliability [75]. Later, Spina et al. propose a new
approach to 2&3PC named XPC [76], this time combining Chaos with Glossy
floods. Compared to A2, their approach has the advantage of terminating
faster during aborts, while providing similar latencies for successful commits.
Independently of Paper A of this thesis (see Chapter 2), Spina worked on a
Paxos implementation, reusing the approach used in XPC, called WISP [77].
The author obtained performance of the same order as the one provided in
our Paper A for Paxos, but higher latency variation in their Multi-Paxos
implementation.

Vehicle coordination. Vehicle-to-vehicle communication usually relies on
cellular technologies (e.g., LTE or 5G) or IEEE 802.11p to communicate [78].
In contrast, in Chapter 3, we argue that using low-power radios allow more
participants (e.g., bikes, pedestrians) to coordinate. In the case of a road
intersection, a coordination protocol must ensure the safety of its participants,
while minimizing the delay a vehicle (or pedestrian) must observe before being
able to cross. Dresner and Stone propose AIM, a centralized intersection
management protocol relying on the cellular infrastructure [79]. Ferreira et
al. propose Virtual Traffic Lights, a decentralized solution where cars elect a
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leader mimicking traffic lights to control the intersection [15]. In contrast, we
propose in Chapter 3 a leader-based solution using commit semantics, where
access to the intersection is based on the waiting time of the participating
vehicles.

1.3.2 Adaptive Low-power Wireless

In this thesis, we use the term adaptivity to refer to the ability of a system to
adapt to external changes in the environment. However, adaptivity has also
been used in the literature as the ability for a solution to adapt to changing
data traffic. In this section, we present protocols in low-power wireless that
adapt to either changes in traffic or their environment.

Traffic-oriented. LWB is the de-facto protocol for many-to-many low-
power wireless communication [27]. LWB works in communication rounds,
and embeds a central scheduler. Based on the requested bandwidth, the
scheduler adapts its round interval and slot attribution, thus minimizing energy
consumption while fulfilling required traffic demands. Blink builds on top of
LWB and goes a step beyond, providing delivery guarantees to deadline-based
flows while maintaining adaptivity to changing traffic demands [80]. Because
LWB, and thus Blink, are based on network-wide Glossy floods [23], they are
impervious to node mobility and, to some extent, link quality. However, we
show in our Paper C (see Chapter 4), that interference nonetheless degrades
the performance of LWB.

Environment-oriented. Collision avoidance through channel assessment
is a common approach to adapt to the medium in wireless communication and
is standard in IEEE 802.15.4 [16], although channel assessment has limited
capabilities. Several works propose new metrics to measure and quantify link
quality, and its evolution through time. Srinivasan et al. as well as Munir et
al. propose to use link burstiness as routing metric [31,81]. Noda et al. propose
the Channel Quality metric as a measure of channel availability over time [82].
MUSTER provides time-adaptive routing for data collection where multi-sink
are present [83]. In MUSTER, the available energy is taken into account in the
routing process in addition to the link quality.

1.3.3 Al-enabled Wireless

For long, heavy computation processes such as Big Data analytics and machine
learning training and inference have been offloaded to powerful servers hosted
in the Cloud. However, a recent trend has pushed back computation closer to
the data source, in a bid to reduce network congestion and improve application
performance [84]. As a result, a body of work investigates the performance of
machine learning inference, sometimes even training, from the network edge
up to the sensor nodes themselves. In this section, we focus on the different
techniques used to embed neural networks onto resources-scarce platforms, as
well as the current deployment of reinforcement learning methods for wireless
communication.

Embedding neural networks. Neural networks are notorious for being
compute-intensive as well as memory-intensive. Deep CNNs for image recogni-
tion often feature several million parameters. With their SparseSep framework,
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Bhattacharya and Lane optimize a sound recognition deep network containing
1.8 M parameters on a Cortex-MO constrained platform featuring 8 kB of
memory only [85]. The authors use sparse factorization of weights between
layer, formulating the factorization as a sparse dictionary learning problem.
Additionally, the use of separable filters allow CNNs to also be executable on
constrained devices. DeepX, a software accelerator for inference on mobile
devices, uses singular value decomposition to reduce weight representation in
memory [86]. In addition, DeepX is able to segment the model into subparts,
that are distributed to the several compute centers (e.g., CPU, GPU, LPU...)
available on the platform, thus greatly improving inference time. The same
year, Han et al. combine sparse representation with pruning to save further
resources [87]. First, the authors prune weights with negligible impact on
performance, using a threshold, thus obtaining a sparse representation of the
original weights. Then, the remaining parameters are quantized into a lighter
representation. Finally, a Huffman coding for lossless compression is applied
on top of the two previous steps to minimize further the memory footprint of
the deep neural architecture.

In contrast, DeeploT uses dropout to minimize the number of elements per
layer, thus keeping a dense matrix representation [88]. DeeploT iteratively
searches the optimal per-neuron dropout probability using a so-called com-
pressor neural network. The compressor network, implemented as a recurrent
neural network using LSTMs, takes as input the layer weights, and outputs the
dropout probability, by searching for redundancy. FastDeeploT investigates
the non-linear relationship between neural architecture and inference time [89].
By evaluating certain architectures on the target device, FastDeeploT produces
a tree of requirements that leads to a shorter inference time, and is able to
compress any given neural network to meet these constraints. While all those
solutions focus on fitting neural networks to embedded platforms, Bonsai is a
tree learner that produces a shallow and sparse non-linear tree with minimal
memory impact [90]. Using only 0.5 kB, Bonsai is able to obtain up to 94%
accuracy on the MNIST-2 dataset.

RL-enabled wireless. Recently, some works have started to investigate
how to apply reinforcement learning to wireless protocol control. Amuru et al. as
well as Mastronarde et al. learn contention for 802.11 CSMA /CA, both using
post-decision state-based learning [60,91]. At the physical layer, Vrieze et al. set
out to entirely learn a modulation scheme [59]. Using a known preamble, policy-
gradient methods, and two independent agents, their system iteratively tries
to modulate and demodulate the transmitted preamble over a noisy channel,
until both agents are able to reconstruct the message. The agents are able
to converge to a rotated version of 16-QAM, without any prior knowledge of
modulation techniques. Dakdouk et al. propose a channel selection scheme
for IEEE 802.15.4-TSCH [92]. Using multi-armed bandits, their model selects
the channel where the next transmission is most likely to succeed. Closer to
our work, Zhang et al. use multi-armed bandits to optimize Glossy floods [93].
in their work, each IoT platform runs Exp3 independently, where an arm
represent the number of retransmission in a flood. However, they assume that
the wireless medium does not suffer any sudden changes, while we assume
sudden interference in our Chapter 4.

Like us, Restuccia and Melodia argue that deep-RL can be used to recon-
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figure the wireless stack to adapt to changes to the wireless medium [94]. They
propose DeepWiERL, a hardware-software framework to execute and train
DRL on IoT platforms. By using FPGAs, they are able to execute inference in
a timely manner, and use transfer learning to bootstrap training on new tasks.
In contrast, we do not rely of additional hardware such as FPGAs in our work,
but share the vision of using RL to reconfigure the network stack at runtime.
Joseph et al. go a step further and argue for self-driving radios, a paradigm
where the wireless stack learns its optimal configuration from high-level only
specifications of the scenario [95]. However, they simply create and train a new
DQN whenever a new scenario is defined. However, using a DQN per scenario
is memory-intensive, and requires a training environment and a specification of
each scenario. In contrast, our self-adaptive network stack updates its internal
parameters to adapt to a changing environment.

1.4 Research Problems

The Internet of Things is a paradigm in which objects are getting augmented
with sensing and networking capabilities. Within the IoT ecosystem, low-power
wireless networks stand out for their use of resource-constrained hardware, their
strong energy limitations and their reliance on low-power, short-range unreliable
wireless communication. Many applications foreseen for such networks, such
as drone control, wireless closed-loop industrial systems, and safety-critical
monitoring infrastructures, require complex coordination between devices.

Solutions borrowed from distributed wired settings are unfit to solve wireless
coordination and cause a high overhead due to mismatched assumptions on the
underlying communication model. In contrast, many energy-efficient primitives
developed for low-power wireless networks lack the guarantees required by
mission-critical applications. Consequently, this thesis first focuses on answering
the following question:

RQ1: How can we provide safe, low-latency consensus primitives for low-power
wireless networks where connectivity is unreliable and nodes can fail?

We provide our answer to this question in Papers A and B. Note that Paper
A provides an approach to fault-tolerant consensus, while Paper B focuses on
safe vehicle-to-vehicle coordination at intersections.

Once the case of complex coordination is settled, we decide to take a
broader look at the landscape of communication primitives for low-power
wireless networks. We notice that many solutions are static by design, and
can be categorized into two classes: either (a) protocols are optimized for the
normal case, and break once harmful interference comes in, or (b) protocols are
over-provisioned for the worst-case scenario, thus wasting precious resources
the rest of the time.

In the remainder of this thesis, we set out to answer this second question:

RQ2: How can we design efficient communication primitives able to react and
adapt to changes to the wireless medium?

Paper C gives our first insights regarding adaptiveness in low-power wireless
networks.
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1.5 Contributions

We summarize in this section the papers that constitute the second part of this
thesis.

Paper A - Paxos Made Wireless: Consensus in the Air

In this paper, we address the problem of fault-tolerant consensus in low-power
wireless networks. While consensus is a mature field of research in traditional,
wired networks, we argue that the solutions proposed there do not satisfy the
requirements of resource-constrained wireless networking.

We introduce Wireless Pazos, a new flavor of Paxos fitted to the characteris-
tics of low-power wireless networking: we show that Paxos can be transformed
from a unicast scheme to a many-to-many scheme, which can be efficiently
executed in low-power wireless networks. We co-design the consensus algorithm
along with the lower layers of the network stack to greatly improve the latency
of consensus and have a tighter control on the transmission policy. The overall
result is a broadcast-driven consensus primitive using in-network processing
to compute intermediate results in Paxos. Our solution builds on top of Syn-
chrotron [75], a kernel for concurrent transmissions inspired by Chaos [42],
providing a basis for highly reliable and low-latency networking in low-power
wireless with support for in-network processing.

Our results show that Wireless Paxos requires only 289 ms to complete a
consensus between 188 nodes in testbed experiments. Furthermore, we show
that Wireless Paxos stays consistent even when injecting failures.

Personal contribution. I am the lead designer and implementer of
Wireless Paxos and its extension, Wireless Multi-Paxos. Additionally, I am the
main designer of its evaluation, and the main author of the paper. The chapter
was published as a paper in the Proceedings of the International Conference on
Embedded Wireless Systems and Networks (EWSN), 2019 [96], and its source
code is available on GitHub!. This paper was nominated as candidate to the
best paper award at the conference.

Paper B - STARC: Low-power Decentralized Coordination Primitive
for Vehicular Ad-hoc Networks

This paper revisits the network-wide consensus with a focus on vehicle-to-
vehicle (V2V) communication. V2V communication is expected to improve
road usage efficiency through cooperative driving, platooning, and autonomous
intersection management. By deploying V2V solutions, it is possible to reduce
the infrastructure cost of the road network, e.g., by replacing traffic lights and
traffic signs by their digital counterparts. However, such V2V coordination
protocols must ensure the safety of all road users, as well as perform timely,
and offer the possibility for all road users to participate.

We introduce STARC, a decentralized reservation-based protocol that uses
cheap, low-power wireless radios to enable energy-efficient vehicle-to-vehicle
communication. We build our coordination protocol on top of Synchrotron,

I Available at https://github.com /iot-chalmers/wireless-paxos
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a low-latency and energy-efficient communication primitive for all-to-all com-
munication [75]. With STARC, traffic participants reserve lanes to cross the
intersection. We provide transaction semantics, and all participants coordinate
to commit on a shared access pattern jointly. As a result, vehicles have unique
access to different parts, i.e., lanes, of the intersection, ensuring that at most,
one car can use a given lane. Once a car has crossed the intersection, it releases
its reservation and leaves the communication network, freeing its resources
for other vehicles. Our design and implementation for IEEE 802.15.4 radios
allows STARC to operate on energy-restricted devices to support all road users,
including cyclists and pedestrians.

We show that STARC reduces average waiting times by up to 50% compared
to a fixed traffic light schedule in traffic volumes with less than 1000 vehicles
per hour. Moreover, we show that the protocol supports dynamic priority
strategies and illustrate a platoon extension that allows STARC to outperform
traffic lights even with traffic loads of over 1000 vehicles per hour.

Personal contribution. I am a co-designer of STARC, and acted as a
supervisor during the implementation and evaluation. Additionally, I partici-
pated in the write-up of the paper. The chapter was published as a workshop
paper in the Third International Workshop on Intelligent Transportation and
Connected Vehicles Technologies (ITCVT), 2020 [97], and its source code is
available on GitHub?.

Paper C - Dimmer: Self-Adaptive Network Floods with Reinforce-
ment Learning

In this paper, we observe that many low-power protocols are invariant to their
environment dynamics and deal with interference through over-provisioning.
Instead, we argue that low-power wireless networking should adapt to the
wireless medium to meet a target performance, even under varying conditions,
while still ensuring energy efficiency.

We introduce Dimmer as a self-adaptive, all-to-all communication primitive.
We build Dimmer on top of LWB and we use deep Reinforcement Learning to
tune the flooding parameters to match the current properties of the medium.
By learning how to behave from unlabeled traces, Dimmer adapts to different
interference types and patterns, and is even able to tackle previously unseen
interference. Through Dimmer, we share insights on how to efficiently design
Al-based systems for constrained devices, and evaluate our protocol on two
deployments of 18 and 48 resource-constrained sensor nodes (4 MHz CPU,
10 kB RAM), showing it improves reliability under WiFi interference and IEEE
802.15.4 jamming.

We show that Dimmer obtains similar performance as LWB in the absence of
interference, while maintaining 80% reliability under 30% interference. Further,
we demonstrate the generality of Dimmer by evaluating our DQN on a second
testbed, featuring previously unseen WiFi interference.

Personal contribution. I am the lead designer and implementer of
Dimmer. Additionally, I am the main designer of its evaluation, and the main
author of the paper. The chapter is under submission, and the code will be
released after publication.

2 Available at https://github.com/ds-kiel /starc
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1.6 Conclusions and Future Work

Throughout this thesis, we set out to study the problems of coordination and
adaptivity in low-power wireless communication. As cyber-physical systems
are being deployed across the globe for a variety of new and ever more complex
tasks, some critical applications require stronger communication guarantees
than the current state of the art provides, while others rely on smart primitives
to operate under all conditions, at reduced energy costs. We propose three new
communication primitives: Wireless Paxos brings low-latency fault-tolerant
consensus to low-power wireless, STARC is a middleware for vehicular inter-
section management with safety guarantees, while Dimmer is an Al-enabled,
adaptive many-to-many communication substrate.

Personal Reflections. With this thesis, we take a step towards providing
guarantees to low-power wireless networking. Although Wireless Paxos is a
general solution to consensus, we agree that not all coordination applications
can be solved with a majority-based approach, as we demonstrate it with
STARC. Similarly, recent work published after Wireless Paxos show that other
approaches are also worth investigating [77]. Furthermore, synchronous trans-
missions bring us a step toward the synchronous model studied in distributed
systems, as discussed by Zimmerling et al. [45]. Solutions for the asynchronous
model, e.g., Paxos, are typically more expensive than their synchronous coun-
terparts. Thus, it is possible to leverage synchronous transmissions to design
more efficient coordination primitives.

Adaptivity has played an important role in communication engineering
for decades, as the numerous TCP and WiFi rate control approaches demon-
strate. In contrast, the low-power networking community prefers to focus
on dependability, the ability for communication to survive under strong RF
interference, as showcased by the EWSN dependability competitions [21]. We
believe that there is a need for adaptive low-power networking: communication
should be both energy-efficient, i.e., not waste energy under good conditions,
and dependable, i.e., not suffer losses under strong RF interference. With
Dimmer, we take the first steps to reconcile these two, often antagonistic, goals.
Furthermore, we argue that artificial intelligence, and specifically reinforcement
learning, is a possible enabler for adaptive low-power networking. Few works
investigate the applicability of RL in the wireless setting. Dimmer is a first
milestone towards proving the possible benefits and downfalls of RL in adaptive
wireless networking, but many challenges are still ahead.

Future Work. In the future, we set out to investigate further the aspect
of adaptivity in low-power wireless networks. Channel diversity has been
shown to improve dependability of wireless communication, and we want
to investigate the advantages of channel blacklisting and adaptive frequency
hopping in improving further energy efficiency. Additionally, autonomous,
self-forming, and self-configuring networks is a desirable goal of low-power
networking, and is achievable once coordination is possible. Finally, a recent
work by Al Nahas et al. empirically demonstrate the feasibility of synchronous
transmissions over Bluetooth Low Energy [38]. This opens a new promising
research direction, that we believe is worth investigating further.
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Abstract

Many applications in low-power wireless networks require complex coordination
between their members. Swarms of robots or sensors and actuators in industrial
closed-loop control need to coordinate within short periods of time to execute
tasks. Failing to agree on a common decision can cause substantial consequences,
like system failures and threats to human life. Such applications require
consensus algorithms to enable coordination. While consensus has been studied
for wired networks decades ago, with, for example, Paxos and Raft, it remains
an open problem in multi-hop low-power wireless networks due to the limited
resources available and the high cost of established solutions.

This paper presents Wireless Pazos, a fault-tolerant, network-wide consensus
primitive for low-power wireless networks. It is a new flavor of Paxos, the
most-used consensus protocol today, and is specifically designed to tackle the
challenges of low-power wireless networks. By building on top of concurrent
transmissions, it provides low-latency, high reliability, and guarantees on the
consensus. Our results show that Wireless Paxos requires only 289 ms to
complete a consensus between 188 nodes in testbed experiments. Furthermore,
we show that Wireless Paxos stays consistent even when injecting controlled
failures.
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2.1 Introduction

Context. Many applications in low-power wireless networks need to reach an
agreement among themselves before an action can be performed. Mission critical
systems are one typical example of such applications, since conflicting commands
can have important and possibly harmful consequences. For instance, a swarm
of Unmanned Aerial Vehicles (UAVs) must agree on a common destination [98];
while centrally computed transmission schedules in wireless sensor networks
(WSNs) have to be agreed on and distributed by the nodes in the network [99].

However, not all faults can be avoided in wireless networks. Message loss
and devices running out of battery are common failures seen in deployments.
Thus, an agreement ensures that at most one action is chosen, even if some
devices cannot participate. UAVs operating on limited batteries must agree on
a common trajectory, even if some UAV ran out of power along the way; and
an updated schedule must be agreed upon and used in a WSN, even if some
nodes disappeared since the last agreement.

Efficient and highly reliable dissemination protocols have been proposed
in the literature [23,100]. However, they do not provide the same guarantees
ensured by an agreement. A Glossy initiator cannot detect network segmenta-
tion, for instance, and would be unaware that its command was received by
a small subset of the network only. In a swarm of UAVs, it is preferable that
as many drones as possible continue on their agreed trajectory, rather than
only the few that managed to receive the disseminated command. Reaching a
consensus is therefore primordial to ensure the correct and optimal behavior of
such applications.

Consensus refers to the process of reaching an agreement. A consensus is
achieved once participants agree on a single, common decision, from a set of
initial values. Consensus is challenging in the presence of failures (node crashes,
message losses, network partitions, etc.). It is even proven that consensus is
impossible in a fully asynchronous setting [46], where one node might never be
able to communicate.

Many solutions to the consensus problem have been proposed in the lit-
erature [51,101,102]. Paxos was one of the first protocols to provide con-
sensus [51,52]. It is (non-Byzantine) fault-tolerant and proven to be correct:
Paxos will lead to a correct consensus as long as a majority of nodes are
participating. Due to the properties of Paxos, all nodes will eventually learn
the correct value as long as a majority accepted the decision. Paxos is often
used in an extended and optimized form, Multi-Paxos [51], which allows nodes
to agree on a continuous stream of values and enables state machine replication.
For example, UAVs can continuously coordinate their next destination with
Multi-Paxos.

Today, Paxos and Multi-Paxos have become the default protocols to en-
sure consistent data replication within data-centers. They are used in many
modern deployments, for instance Google’s Chubby locking mechanism [103]
and their globally distributed database Spanner [104], Microsoft’s data-center
management Autopilot [105], and IBM’s data-store Spinnaker [106].

Challenges. The complexity of Paxos and its many required interactions
pose key challenges in low-power wireless networks. Devices in WSNs have
strong resource-constraints in terms of bandwidth, energy, and memory. Ra-
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dios are, for example, commonly duty-cycled to save energy [11,12,107]. In
contrast, Paxos requires many message exchanges and a high bandwidth to
reach consensus.

In addition, links are highly dynamic and unreliable in low-power wireless
communication [31]. Paxos is resilient to these network faults by design, but
many of its implementations use end-to-end routing, which induces an overhead
to the consensus. Paxos has been initially designed for wired networks, and
is therefore heavily influenced by its unicast structure. Later work shows
that Paxos can be partially executed with multicast [73], or by introducing
an additional logical ring to reduce communications [108]. However, these
approaches rely on unicast for parts of the algorithm.

In contrast, low-power wireless networks are broadcast-oriented networks
where each transmission can be received by all neighboring nodes. Executing
unicast-based schemes in wireless networks usually induces higher costs, es-
pecially in multi-hop networks. Moreover, multi-hop networks also provide
opportunities for data-aggregation and computation of intermediate results,
which are not part of Paxos’ design rationale.

Approach. In this paper, we bring fault-tolerant consensus to low-power
wireless networks. We propose Wireless Paxos, a new flavor of Paxos fitted to
the characteristics of low-power wireless networking: we show that Paxos can be
transformed from a unicast (or multicast) scheme to a many-to-many scheme,
which can be efficiently executed in low-power wireless networks. We co-design
the consensus algorithm along with the lower layers of the network stack to
greatly improve the latency of consensus and have a tighter control on the
transmission policy. The overall result is a broadcast-driven consensus primitive
using in-network processing to compute intermediate results in Paxos. Our
solution builds on top of Synchrotron [75], a kernel for concurrent transmissions
inspired by Chaos [42], providing a basis for highly reliable and low-latency
networking in low-power wireless with support for in-network processing.

Contributions. This paper makes the following contributions:

e By distributing parts of the proposer logic, we show that Paxos can
be expressed as a many-to-many communication scheme, rather than a
partially multicast scheme;

e We present Wireless Paxos, a new flavor of Paxos specifically designed
to address the challenges of low-power wireless networks, and Wireless
Multi-Paxos, an optimized extension of Wireless Paxos for continuous
streams of agreed values for constrained devices;

e Both primitives are ready to use by any application as an open-source
library on GitHub?;

e We implement and evaluate our contributions on two testbeds, composed
of 27 and 188 nodes, and compare our results to solutions from the
literature.

The remainder of the paper is organized as follows. Sec. 2.2 introduces
consensus, Paxos, and concurrent transmissions. Sec. 2.3 gives an overview of
our design. Next, Sec. 2.4 dives into Wireless Paxos and Sec. 2.5 evaluates our
contributions. We discuss related work in Sec. 2.6 and conclude in Sec. 2.7.

L Available at: https://www.github.com/iot-chalmers/wireless-paxos
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2.2 Background

This section introduces the necessary background on consensus and concurrent
transmissions. We begin with an overview of consensus. Then, we present
Paxos and Multi-Paxos. Finally, we introduce concurrent transmissions and
Synchrotron.

2.2.1 Agreement and Consensus

In distributed systems, a consensus refers to the problem of reaching agreement
among a set of participants. A consensus is complete if, in the end, nodes
agree on the same decision. To be correct, a consensus algorithm must fulfill
certain properties: the final value must be valid, i.e., it was proposed at the
beginning of the algorithm (Validity); each node must eventually make a decision
(Termination); and at most one value can be agreed upon, i.e., the result of
the agreement must be consistent among the participants (Agreement) [109].

Dissemination is no consensus. Dissemination allows a node to share
a value with the entire network, often (but not always) in a best-effort manner.
As such, dissemination does not — and is not meant to — solve consensus. For
example, Glossy [23] provides high reliability, and a unique value is present if
at most one flood initiator is in the system. However, even if a node missing a
value is aware of the failed flood, it will never be able to recover the correct
command.

2 and 3-Phase Commit. Common algorithms for agreement (but not
consensus) are 2-Phase Commit (2PC) and 3-Phase Commit (3PC) [49, 50].
Both algorithms are used to solve the problem of commit, i.e., whether a trans-
action should be executed by all nodes, or none. 2PC works by first requesting
and collecting votes from all nodes in the network, and then disseminating
the result of the decision; while 3PC adds an intermediary phase to dissociate
the decision from the commit. Both protocols handle failures by aborting or
blocking, i.e., by delaying the decision to maintain consistency. However, 3PC
might lead to inconsistencies.

Fault-tolerant consensus. Paxos provides consensus. While many values
can be initially proposed, it ensures that at most one value is chosen. Eventually,
all nodes will learn the decision if progress is not impeded. To do so, Paxos
relies on a majority of responses to make the decision, rather than from the
entire network, thus handling (non-Byzantine) failures (e.g., message losses,
network segmentation, node crashes).

2.2.2 The Paxos Basics

Paxos is a fault-tolerant protocol for consensus. It assumes an asynchronous,
non-Byzantine system with crash-recovery, i.e., it handles both process crash
and recovery (a persistent storage is needed), but not misbehaving nodes or
transient faults; delayed or dropped messages, but not corrupted messages; and
network segmentation. The protocol guarantees that, if a majority of nodes
runs for long enough without failures, all running processes will agree on the
same proposed value. For example, the value can be the destination point for
UAVs, or the network configuration in WSNs.
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Figure 2.1. Executing Paxos: a proposer wants to propose the value
V=10 to four acceptors. It sends a Prepare request to all acceptors
(1.a) with proposal number n=2. An acceptor replies with a Pre-
pared message (1.b) with the most recently accepted proposal, here
proposal aP=1 with value aV=>5. Once a majority of replies are
received by the proposer, it adopts the highest value received, and
sends an Accept request (2.a). Upon reception, an acceptor accepts
the value (2.b) and replies with an Accepted message and the high-
est proposal received so far. After a majority of Accept messages,
the value is chosen.

Roles. A node can act as three different roles: Proposer, Acceptor, and
Learner. Nodes can implement more than one role. Proposers propose a value
to agree on and act as coordinators for the protocol’s execution. Acceptors,
unlike in 2PC, don’t “vote”, but act, in a very informal manner, as the system’s
“fault-tolerant memory”: they reply to proposers requests by accepting proposals.
Learners do not participate in the consensus: they only learn which value has
been chosen by the acceptors once a consensus is met. Unlike 2PC and 3PC,
where at most one coordinator must be present, Paxos can tolerate the presence
of multiple proposers, at the cost of impeding the progress of the agreement.

Execution. The protocol consists of two phases: the Prepare phase and
the Accept phase, as depicted in Fig. 2.1. The protocol is executed as follows:

1. Prepare Phase

a. Any proposer starts the protocol by choosing a value V' to agree upon
and a unique proposal number n (i.e., no other proposer can choose the
same proposal number n). A Prepare(n) request is sent to every acceptor.

b. Upon reception of a Prepare(n) request, an acceptor will save the proposal
number n if and only if it has never heard any higher proposal number
minProposal before; i.e., if n > minProposal, then minProposal < n.
The acceptor only replies to the request if the precedent condition is met,
meaning that the node is promising not to reply to any request with
a lower proposal number anymore. The acceptor returns both the last
proposal accepted by that process, noted acceptedProposal, if any has
been accepted so far, and the corresponding value, noted accepted Value.

2. Accept Phase
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a. Upon hearing from a majority of acceptors, the proposer adopts the value
with the highest proposal number, such as V < acceptedV alue, if any
has been received. This condition ensures that at most one value can be
chosen by the system. The proposer switches to the Accept phase and
sends an Accept(n, V) request to all acceptors.

b. Upon receiving an Accept(n, V), an acceptor accepts the value V' if and only
if the proposal number n is higher or equal to the proposal number the
process has prepared for, namely minProposal. If the condition is true, the
acceptor saves the proposal number n as its highest proposal number heard
and as its accepted proposal, and the value V as its accepted value, i.e.,
if n > minProposal, then minProposal < n, acceptedProposal < n
and acceptedValue <— V. Regardless of the result of the condition,
the acceptor replies to the request with the highest proposal heard
(minProposal).

c. Upon receiving at least one reply with minProposal > n, the proposer
knows that its value has been rejected. This also means at least one other
proposer is present, and the process can either restart the protocol with
a higher proposal number n to compete or let the other proposer win. If
the proposer received a majority of replies and no rejection, the value is
chosen.

The proposer can therefore inform the learners that a value has been chosen
by the consensus algorithm. Using minProposal ensures that only the most
recent proposal can be accepted and the data returned at step 1.b. ensures
that at most one value can be chosen.

2.2.3 Multi-Paxos

Using the protocol described above leads to the agreement and dissemination of
a single value. Due to the properties of the protocol, any additional execution
will lead to the same value being adopted. Being able to agree on a sequence of
values is a desirable property that Paxos, in its simple form, cannot satisfy. We
can, however, run several rounds of Paxos to achieve this result. A multi-round
version of Paxos is called Multi-Pazxos. More importantly, Multi-Paxos allows
state machine replication, i.e., replicating operations across processes such
as all replicas are identical. For example, the stream of values can represent
intermediary waypoints towards the final destination for UAVs, or the evolution
of the network configuration over time for WSNs. For details on Multi-Paxos,
we refer the reader to the original paper [51].

Executing multiple rounds. A Paxos execution is now identified by its
round number. Many rounds can be executed simultaneously or sequentially.
In the former case, messages of multiple rounds can be merged into one unique
message in order to save network resources.

Using a unique proposer. In many applications, nodes are stable enough
to keep a unique proposer for a relatively long period of time. In doing so, the
Paxos execution can be simplified to its sole Accept phase, the Prepare phase
being used only to prepare acceptors to listen to that specific proposer. The
Prepare phase is executed at the beginning of Multi-Paxos or after a crash of
the proposer, and successive rounds execute only the Accept phase for value
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Figure 2.2. Synchrotron Overview: Synchrotron schedules flooding
rounds for network-wide dissemination, collection or aggregation, as
requested by the application. A round is composed of consecutive
slots, during which a node can either transmit, receive, or sleep, and
processes the data following a per-application logic.

adoption. The protocol does not break in the presence of multiple proposers
since acceptors will only accept the highest proposal and inform lower proposals
of their rejection.

Executing Multi-Paxos. Fig. 2.1 shows the execution of Paxos. With
Multi-Paxos, the Prepare phase (blue) is executed once at the beginning, and
is followed by many Accept phases (orange), until the proposer fails.

2.2.4 Synchrotron

Due to the broadcast nature of wireless communications, concurrent transmis-
sions of nearby nodes inherently interfere with each other. However, when such
transmissions are precisely timed, one of them can be received, nonetheless.
We briefly introduce the concept of capture effect, and present Synchrotron,
the communication primitive used in this work.

Capture effect. Nodes overhearing concurrent transmissions of different
data can receive the strongest signal under certain conditions; this is known as
the capture effect [41]. To achieve capture at the receiver with IEEE 802.15.4
radios, the strongest signal must arrive no later than 160 us after the first
signal and be 3 dBm stronger than the sum of all other signals [35].

Synchrotron. Agreement in the Air (A?) [75] extends the concepts of
Chaos, a primitive for all-to-all aggregation [42], to network-wide agreement.
A? introduces Synchrotron, a new transmission kernel using high-precision
synchronization. Like Chaos, Synchrotron operates periodically within rounds,
which we refer to as “flooding” rounds to distinguish from Paxos rounds. A
(flooding) round is composed of slots, in which nodes concurrently transmit
different data, while the reception relies on the capture effect. In-network pro-
cessing is applied after a successful reception and the result of the computation
is then transmitted during the following slot, until all progress flags are set,
denoting the participation of the different nodes. Fig. 2.2 presents an overview
of Synchrotron’s inner working.

Our solution reuses the Synchrotron layer of A%, and provides fault-tolerant
consensus with Paxos, while A% provides agreement with 2&3PC.
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2.3 Design Rationale

In this section, we discuss why Paxos is too expensive for low-power wireless
networks. We then observe that, in fact, Paxos does not require unicast
communications but can be represented as a many-to-many scheme, which
makes it suitable for low-power wireless networks. Finally, we explain how
the broadcast-oriented wireless medium provides opportunities to develop an
efficient and low-latency version of Paxos.

2.3.1 Cost of Paxos

The goal of Paxos is to provide a solution to the consensus problem that is
resilient against both node failures and network faults. It does so by relying
on the responses of a majority of nodes only, and by providing semantics that
force all nodes to agree on the exact same decision. It is proven to be correct
and has become one of the default protocols for consistent data replication
within data-centers.

Paxos is an expensive protocol to run, especially in resource-constrained
wireless networks. To achieve consensus, Paxos requires 2N + 2 messages, IV
being the number of nodes. For example, the public and multi-hop deployment
of Euratech [110] is composed of 188 nodes. Paxos would therefore need to
transmit 378 messages to achieve a consensus, usually by relying on end-to-end
routing.

While data-centers networks can easily sustain this cost, it becomes im-
practical in low-power wireless networks with strong resource constraints, as
bandwidth and memory are limited, and nodes must keep their duty cycle to a
minimum to save energy.

2.3.2 Paxos Beyond Unicast?

We observe that, indeed, unicasts are not needed when Paxos is executed
outside of wired networks.

Paxos with multicast. A phase of Paxos can be divided into two steps:
a proposer sharing its request with acceptors, and acceptors responding to the
proposer. The first step can be assimilated to a broadcast, or a dissemination.
Using unicast to disseminate a request is expensive, and several approaches
use multicast communication instead (e.g., [73,108]).

The second step can be assimilated to a collection, where each response
might be different. Multicast cannot be used here, as Paxos requires many
acceptors to communicate towards one proposer. To solve this, Ring Paxos [108]
builds a logical ring composed of acceptors. An accept response traverses the
ring if no higher proposal is present, and the proposal is chosen once a response
traversed back to the proposer. By doing so, Ring Paxos minimizes the number
of unicasts needed, but heavily relies on a stable topology.

Many-to-many. We make the observation that the majority of acceptors
does not need to be statically defined in advance (e.g., by constructing a
ring), but instead can be composed on the fly. By exploiting the broadcast
nature of the wireless medium, acceptors (locally) broadcast their response,
and aggregate responses heard from their neighbors. Eventually, aggregation
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leads to a majority of responses combined. Additionally, we explain in §2.4.1
that a proposer is not dependent on each response individually, but rather
on the application of the maximum function over those responses. We can
therefore distribute this logic to all acceptors, thus completely removing the
need for unicast.

The execution of Paxos therefore becomes a disseminate-and-aggregate
scheme (many-to-many), which ideally maps to the concept of Chaos [42].
Fig. 2.3 shows how an execution of Wireless Paxos looks like when using concur-
rent transmissions and an aggregation function, in contrast to the traditional
execution of Paxos (Fig. 2.1). In conclusion, it is possible to express Paxos as a
many-to-many scheme, which can be efficiently executed in low-power wireless
networks.

2.3.3 Basic Idea: Wireless Paxos

Based on §2.3.2, we have a mapping between Paxos and Chaos, a protocol for
many-to-many communication that is highly reliable and low-latency. Therefore,
it is possible to design an efficient version of Paxos for low-power wireless
networks. We co-design Paxos with the lower layers of the network stack to
provide network-wide consensus at low-latency. Specifically, we base the design
of Wireless Paxos on three principles:

e Broadcast-Oriented Communication: We take advantage of the
broadcast properties of the wireless medium to disseminate requests and
collect responses efficiently from all nodes.

e Concurrent Transmissions: Like Chaos and A2, we build on top of
concurrent transmissions to provide low-latency and high reliability.

e Local Computing and Aggregation: We distribute the decision logic
of the proposer to all nodes through an aggregation function to convert
Paxos to a many-to-many scheme.

2.4 Designing Wireless Paxos

In this section, we dive deep into the design of Wireless Paxos. We begin by
breaking down our solution. Next, we extend our concepts to its Wireless
Multi-Paxos counter-part. Finally, we explain key mechanisms of our work.

2.4.1 Wireless Paxos

We present the design of Wireless Paxos, its phases and the effect of flooding
on the protocol.

Failure model. Wireless Paxos uses a partially-synchronous communication-
model and a non-Byzantine failure-model with crash recovery (see §2.2.2).
Partial synchrony is given by the use of Synchrotron.

Flooding rounds and slots. As Wireless Paxos builds on Synchrotron,
it follows a similar nomenclature, as depicted in Fig. 2.2. Wireless Paxos is
executed within “flooding” rounds. A round is divided into slots. At each slot,
a node either transmits, tries to receive a message, or sleeps. The node then
has time for computation before the next slot starts.



28 CHAPTER 2. WIRELESS PAXOS

o) Prepare Phase Accept Phase
(2]
O gl Value< V=10 1 Value —aV=5 |
8— \\Proposal «n=2 : Value = 5
— 1 1 1
D_ 1 1 1
' ' aP «n=2 !
q| minP«n=2 I aVeV=35 |
TVallie — s : Value = 5
o ! ! !
S | :
Q'.E L L >
8 "Waie 5 \ : Value = 5
Q! 1 1
<\ | |
1 1 1
L L
‘: Value — ¢ ' , Value = 5
replies > 50% replies > 50%

Figure 2.3. Executing Wireless Paxos: the proposer broadcasts a
Prepare request. Upon reception, acceptors add their response to
the message and retransmit it concurrently. Once the proposer re-
ceives a majority of participation, it switches the phase and sends
an Accept request. Messages are propagated in the network and the
value is adopted.

Prepare phase. In the original protocol, a proposer broadcasts its proposal
number to a majority of acceptors, which reply with their accepted proposal
and value if any. The proposer then selects the result with the highest proposal
number and reuses the value associated.

In Wireless Paxos, the proposer starts to disseminate a prepare request with
its proposal number and two additional fields for the acceptors to fill in. Upon
reception, an acceptor applies the maximum function between its accepted
proposal and the one received. If the local variable is higher, it replaces both
the proposal and the value by the ones in memory. In addition, an acceptor
always indicates its participation to the message by setting a corresponding bit
in the flag field of Synchrotron.

The phase finishes as soon as the proposer receives back its proposal with
at least more than half of the flags set. Applying locally the maximum function
will always lead to the highest proposal number of the majority because the
maximum is a commutative and idempotent function.

Accept phase. We follow a similar principle for the Accept phase. In the
original protocol, the proposer broadcasts the value to agree on, as well as its
proposal number. The acceptors reply with the highest proposal they prepared
for. If the proposer receives a reply with any proposal higher than its own, the
proposal is rejected.

In our implementation, the proposer broadcasts its proposal number, the
value to agree on and an additional empty field for the responses. Upon
reception, an acceptor returns the highest proposal it heard of. The proposer
can therefore learn if it lost the consensus, i.e., there is a proposal higher
than its own, or that the value was chosen once that a majority participated
in the agreement. Again, we use the maximum function here. While it is
not mandatory for the proposer to learn which proposal is the highest, this
information can be used in the case of competition between multiple proposers.

Optional dissemination. Paxos guarantees that a majority of nodes, but
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Figure 2.4. Wireless Paxos in action: all nodes act as an acceptor
and node A acts additionally as a proposer. Node A wants an agree-
ment on value W. It initiates at slot 1 a Prepare phase with proposal
number n. The value and proposal fields are left empty. At slot 2,
B informs the network that it has previously accepted value V with
proposal number m. At slot 5, A learns that a majority of nodes
have participated, it adopts value V as its own and switches to Ac-
cept phase in slot 6. At slot 7, B informs that the highest proposal it
prepared for is n, and accepts the value V. At slot 8, A learns that a
majority of nodes have accepted the value since no higher proposal
than n was reported, the value V is therefore chosen by the network.
RX failures happen due to concurrent transmissions. Transmissions
continue afterwards until all nodes receive all the flags set.

not all, are aware of a value being proposed (but not chosen). It also guarantees
that no other value can be shared in the network afterwards. The proposer
must contact the learners to disseminate the final decision. Since our design
is based on flooding, Wireless Paxos provides a built-in dissemination of the
decision.

Any node receiving an Accept phase with a majority of participation and
no higher proposal included knows that the value is chosen, and can learn
this value as the final decision. In addition, the network-wide flooding of
Synchrotron will force all nodes available to hear about the decision, therefore
providing a network-wide dissemination of the result with high probability.

A typical execution. Fig. 2.4 represents an execution of the Paxos
primitive with four nodes. All nodes act as acceptors while A is the only node
with a proposer behavior. A starts the flooding round with the objective of
agreeing on value K. However, node B has accepted a proposal with value V'
in the past. This example shows how Paxos avoids inconsistencies by adopting
previously accepted values.

2.4.2 Wireless Multi-Paxos

Next, we design a primitive that provides the functionality of Multi-Paxos for
agreement on a continuous stream of values and state machine replication. The
optimization of Multi-Paxos over Paxos results in a lower duty-cycle, as we
now only execute the Accept phase most of the time. We highlight selected
mechanisms of Wireless Multi-Paxos.

Bounded memory. The original Multi-Paxos specification requires both
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unbounded memory and message size. Like other implementations, we relax
those requirements and limit the memory space available. A memory buffer, or
log, is used to save the last values agreed upon, with a predefined log size. A
message length is fixed to accommodate multiple values in one flooding round.
A large log size allows nodes to recover from past failures.

Multi-Paxos allows multiple (Paxos) rounds to be executed at once, by
aggregating all the requests into one message. Our design also allows to agree
on multiple values at once, but requires that those rounds are consecutive in
order to reduce the amount of data transmitted (see §2.2.3).

Prepare-phase specifics. Multi-Paxos requires proposers to learn the
outcome of all previous rounds since the start of the system. The goal is to
avoid inconsistencies and allow nodes with missing values to recover, or insert
a special no-operation token to maintain state machine replication if no value
was chosen. Wireless Multi-Paxos provides the same behavior. Proposers must
learn all previous values in memory before agreeing on any new value.

However, a proposer will not be able to learn all previous values at once
if the message length is smaller than the log of values. We use an iterative
learning process, that allows the proposer to iterate back-and-forth between
the prepare and accept phase until all previous values have been learned.

A new proposer starts the prepare phase to learn old values, disseminates
them with the accept phase, and iterates back to the prepare phase to learn
the next values, until all values have been learned.

Ordering messages. With Wireless Paxos, it is easy to compare two
messages to decide which one is newer. The tuple (proposal, phase) is sufficient,
since a higher proposal is always newer, and the Accept phase is a newer message
if both requests have the same proposal number.

However, with Wireless Multi-Paxos, the comparison of the phase does not
hold anymore. We extend it with the tuple (proposal, round, phase). Since
the round number increases with the iteration process, messages are correctly
ordered once again.

Leader lease. For the optimization to hold, Multi-Paxos requires that
at most one proposer is present in the system for a prolonged period of time.
The literature refers to this proposer as the leader. To avoid unnecessary
competition between self-proclaimed leaders, we implement a leader lease.
Each node implicitly acknowledges the proposer with the highest proposal as
the leader, and promises not to compete until it believes the leader has crashed.

Once it believes the leader has crashed, a node throws a coin before pro-
claiming itself as the new leader.

2.4.3 System Details

In this section, we list key mechanisms at play in Wireless Paxos that do not
depend on a specific phase or protocol.

Proposer and acceptor. In Wireless Paxos, all nodes in the network act
as acceptors. In addition, any node can act as proposer. If this is the case, the
node will first execute the acceptor logic, and then the proposer within the
same slot. Due to the properties of the protocol, all nodes are also learners, at
no additional computing cost.

Proposal cohabitation. We explain in §2.4.1 how to order messages.
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Table 2.1. Estimating the Cost of Feedback in Euratech with 188
nodes. By repeating the flood multiple times, reliability is improved
but no feedback is available (Repeated Glossy). Each node can
report its status with a new flood (Glossy with Feedback) at a very
high cost. Wireless Multi-Paxos provides consensus at a lower cost.

Protocol  Repeated Glossy with ~ Wireless
Glossy  Feedback Multi-Paxos

Latency [ms] 100 3760 500

Paxos requires acceptors to discard any request older than the minProposal
request. We supplement this requirement by transmitting the newest message
every time an older request is received. We therefore reduce the risk and cost
of propagating outdated data.

Phase cohabitation. Due to the flooding mechanism of Synchrotron,
both phases will co-exist during a transitional period. We reduce this transition
period by two means: (a) The proposer (and all acceptors) will always transmit
the new phase if they receive an older phase transmission; and (b) All other
nodes will reduce their transmission rate if they receive a prepare phase message
with a majority of flags and resume at the normal rate once an accept phase is
received.

2.4.4 Design Discussions

In this section, we explain why building consensus with Glossy is more costly
than Wireless Paxos.

Cost of Feedback. Glossy offers an ultra-low latency and highly reliable
(> 99.99%) dissemination. It means that, under normal conditions, most of
the nodes in the network will receive the value. It is however not guaranteed,
since Glossy does not use explicit feedback. For example, an initiator will never
detect a network segmentation, or high message losses, or node failures. An
initiator only knows if at least one node received the flood (due to the semantics
of Glossy), and nodes implicitly detect missed floods, but cannot recover the
value. Repeating multiple times the flood increases further reliability, but still
doesn’t provide additional guarantees. To provide explicit feedback, each node
would be required to start its own flood to report its status (e.g., see [29]).

Small example. For example, in the Euratech testbed, with N = 188
nodes, a flood takes 20 ms. Table 2.1 gives a back-of-the-envelope calculation
of the cost of feedback with Glossy. Repeating 5 times a flood takes 100 ms.
Receiving feedback from all nodes requires 3760 ms. In contrast, we show in
§2.5.3 that 193 ms are needed with Wireless Multi-Paxos to get a majority of
replies, and 500 ms for all nodes to hear about all other nodes.

2.4.5 On the Correctness of Wireless Paxos

In this section, we give a short and informal walk-through of why Wireless
Paxos does not break the correctness of Paxos (see [52] for the original proofs).



32 CHAPTER 2. WIRELESS PAXOS

Table 2.2. Statistics and parameters of testbeds used in the evalu-
ation. They represent a very dense and a low-density deployment,
respectively. Both are collocated with Wi-Fi and Bluetooth deploy-
ments.

Testbed Size Coord. Dens. Diam. Chann. TX Puw.
[#] ID  [#] [hops] [#] [dBm]

Euratech 188 3 106 2 16 0
Flocklab 27 3 7 4 2 0

Table 2.3. Slot length of each protocol. Due to their complexity,
WPaxos and WMulti-Paxos require more computation time.

Protocol  Glossy, 2&3PC WPaxos WMulti-Paxos
Slot Length 4 ms 5 ms 6 ms

The main difference between Paxos and its wireless counterpart lies in the
mazimum function being distributed from the proposer to all nodes. While
Paxos requires a majority of replies, Wireless Paxos requires an aggregate from
these replies.

As both the mazimum and the (set) union functions — used to compute
the number of replies — are commutative and idempotent, the local execution
by all nodes of both functions is equivalent to the execution of the functions
by the proposer alone. As such, Wireless Paxos maintains the safety properties
of Paxos.

2.5 Evaluation

Paxos is a notoriously complex protocol to implement, and even tougher to
evaluate [102,103]. Wireless Paxos is no different from that perspective. Proving
that an implementation of more than a thousand lines is correct is often an
extremely delicate and cumbersome task. We instead decide to use an extensive
testing approach (like [103]), during which we evaluate our system on physical
deployments of different topology and density.

We begin by discussing our setup. We then follow a bottom-up approach,
and present how a node’s state evolves during a round. Then, we compare
both the cost and fault resilience of Wireless Paxos with related network-wide
primitives.

2.5.1 Evaluation Setup

In this section, we lay out how we implement Wireless Paxos and what scenarios
are executed for the evaluation. We then list the different metrics and testbeds
used.
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Implementation. We implement Wireless Paxos in C, on top of Syn-
chrotron [75], for the Contiki OS. We target wireless sensor nodes equipped
with a low-power radio such as TelosB and WSN430 platforms which feature a
16bit MSP430 CPU @ 4 MHz, 10 kB of RAM, 48 kB of firmware storage and
a CC2420 [111] radio compatible with 802.15.4.

Testbeds. We use two publicly available testbeds for our evaluation:
Flocklab [112] and the Euratech deployment of FIT-IoT Lab [110]. Flocklab is
composed of 27 nodes while Euratech contained up to 214 nodes, with around
188 active during our evaluation. Table 2.2 summarizes properties of both
deployments. Due to the closure of the Euratech testbed, some parts of the
evaluation are carried in Flocklab only.

Scenarios. We evaluate the following applications:

e The Wireless Paxos primitive (WPazos): one proposer starts a consensus
on a l-byte data item, leading to a total payload of 31 bytes in Euratech
and 10 bytes in Flocklab. Both phases are executed at every flooding
round. We refer the reader to [42] for the effect of varying payload size
over the system;

e The Wireless Multi-Paxos primitive ( WMulti-Pazos): one proposer starts
a series of consensus on 1-byte data items. Each flooding round corre-
sponds to one value. Acceptors keep a log of the last four values they
agreed on. The Prepare phase is executed during the first flooding round
and is skipped afterward;

e WPaxos with multiple proposers: a pre-defined number of proposers are
competing at each flooding round on different data items;

e Consistency: At each slot, a node has a pre-defined probability to enter
in failure mode. A failed node stops to use its radio. At the end of a
flooding round, we compare each node’s state to detect any inconsistency
in the consensus.

Metrics. We focus on the following indicators:

e Progress and State: the progress of a node represents the number of
participants that node heard of. Its state represents the phase of the
protocol (prepare, accept);

e Latency is refined into two notions: the Paxos latency, representing the
time when a value is chosen, and the full completion latency, representing
the time when the lower layer Synchrotron converged (see §2.4.1 and
§2.5.3);

e Radio-on time: the total time the radio is active during a flooding round.
It is used as a proxy for the energy consumed during a round;

e Consistency: from a network-wide perspective, it represents if nodes agree
on the same final value.

Slot Length. Different protocols have different complexity, and require
a different amount of execution time. Table 2.3 contains the different slot
length used during the evaluation. Due to their complexity, both WPaxos and
WDMulti-Paxos require additional computation time compared to the literature.
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Figure 2.5. A snapshot of a typical WPaxos round: the upper fig-
ure represents the progress of each node (proposer is the thick red
line) while the lower represents their state. It takes 21 slots for the
proposer to receive a majority of replies and switch to the Accept
phase. It takes an additional 35 slots for the Accept phase to com-
plete with a majority of flags. Results converged after 115 slots and
the flood finishes.

Note that the hardware used features a 4 MHz CPU. The computation time
would be reduced on newer hardware with a faster CPU.

2.5.2 Dissecting Wireless Paxos

We evaluate how a consensus is handled with Wireless Paxos. We first analyze
a representative instance of the protocol through the different node states.
Then, we compare the execution of WPaxos and WMulti-Paxos.

Basic Round. Fig. 2.5 depicts a representative execution of Wireless
Paxos in Euratech with 188 nodes. All nodes start in the initial, empty state.

At slot 0, the proposer (represented by a red thick line) starts the round
with a Prepare request. Since the proposer also acts as an acceptor, the node
transitions into the Prepared state. Due to the high density of Euratech, it
takes around 10 slots (50 ms), for all nodes to hear the request and enter the
prepared state.

After 21 slots (105 ms), the proposer detects that a majority of nodes
participated and replied with a promise. It starts the accept phase, resets
back the progress to 0 and switches into the Accepted state. Due to the
prepare phase still spreading, a transition period of roughly 20 slots (100 ms) is
necessary for the acceptors to learn about the new phase. At slot 56 (280 ms),
the proposer learns that a majority of the nodes accepted the value (referred
as Pazos latency). The value is therefore chosen and the consensus succeeded.

The results naturally converge and at slot 115 (575 ms), the 188 nodes
learned that the entire network agreed on the value (full completion latency).
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Figure 2.6. Executing Wireless Paxos (WPaxos) and Wireless Multi-
Paxos (WMulti-Paxos) in Euratech with 188 nodes. (a) WMulti-
Paxos requires only one phase and finishes in roughly 83 slots, while
WPaxos requires around 127 slots for its two phases. (b) In Eurat-
ech, 248 ms and 94 ms are necessary for a dissemination to all 188
nodes for WPaxos and WMulti-Paxos respectively. 289 ms and 133
ms are needed for the proposer to hear a majority, and it takes 633
ms and 500 ms for a network-wide knowledge of the result. (c¢) A line
represents the number of nodes that locally prepared or accepted a
proposal, but not the progress seen by a proposer. Proposals are
initially competing but quickly ruled out by the highest proposal,
and only P; sees a majority of replies.

Note. It takes exactly the same time if another value is present in the
system. The proposer would simply replace its own value by the one reported
at the end of the first phase, and disseminate it during the accept phase.

WPaxos and WMaulti-Paxos. Paxos is not an efficient protocol. The
prepare phase is necessary only if multiple proposers are present or the node
just started as proposer. The first phase is therefore superfluous the rest of the
time. Multi-Paxos builds on that knowledge and executes the prepare phase
only once (cf. §2.2.3 and §2.4.2).

Fig. 2.6a compares the average full completion latency, i.e., time until
Synchrotron completion, for WPaxos and WMulti-Paxos with 188 nodes. The
red line represents the proposer’s progress, while the orange line represents the
average progress of the acceptors. The dark-orange area represents the standard
deviation of the acceptors’ progress, and the light-orange area the minimum
and maximum progress, i.e., the slowest and fastest acceptor respectively.

It takes by average 127 slots (633 ms), for WPaxos to complete (from a
Synchrotron perspective), while it takes only 83 slots (500 ms) for WMulti-
Paxos. Removing the first phase improves the latency although WMulti-Paxos
requires more computation time (cf. Table 2.3).

2.5.3 Paxos and Primitive Latencies

Paxos defines a consensus complete once a majority of accept responses have
been received by the proposer. However, the lower layer Synchrotron does not
stop communication at that point, but continues until all nodes have converged
(i.e., until all nodes see all flags set, see §2.4.1). We measure the latency from
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Figure 2.7. Cost of Multiple Proposers in Flocklab: the competition
between proposers causes a latency overhead. After 3 concurrent
proposers, the overhead stops growing.

Paxos and Wireless Paxos perspectives.

Metrics. We select three definitions of latency: (a) Disseminated value:
similar to Glossy, corresponds to the time required for all nodes to hear the
value the first time; (b) Pazos: following Paxos definition, a correct consensus
requires that the proposer receives a majority of replies during the accept phase;
(c) Full completion: similar to the Maz primitive of Chaos [42], the latency is
defined as the time required for all nodes to hear from all other nodes.

Results. Fig. 2.6b shows the reported latencies. Simply disseminating the
value is fast, it takes WPaxos only 248 ms to share the result to all nodes.
Collecting feedback is more expensive, and it takes 289 ms for the proposer to
learn that at least a majority replied to its Accept request (Paxos definition of
consensus). Collecting the flags from all the nodes induces a large overhead,
with a mean latency of 633 ms. On the other hand, WPaxos thus ensures that
all nodes received the decision, beyond the majority ensured by Paxos.

WMulti-Paxos is faster. It takes 94 ms for the dissemination, 133 ms to
hear from a majority and 500 ms to receive all flags.

2.5.4 Influence of Multiple Proposers

In this section, we study the effect of having more than one proposer in the
system.

Scenario. Traditional agreement protocols require at most one node to
act as a leader, and fail if multiple are present. Paxos, on the other hand,
can deal with the presence of more than one proposer in the system. We run
several hundred WPaxos rounds while increasing the number of proposers in
the system. Proposers are chosen following a uniform distribution, and send
a prepare request as soon as a lower proposal is received. A proposer stops
competing once a packet with a higher proposal number is received.

In a round. Fig. 2.6¢c depicts the competition between four proposers in
the highly dense deployment of Euratech. Py represents the proposal of the
flood initiator, while P; to P3 are from randomly chosen proposers. As the
request floods the network, many acceptors prepare for Py. The other proposals
start competing very early but their dispersion is slower due to the collisions
during transmission. Intermediate proposals P; and P, cannot gain enough
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Figure 2.8. Comparing the cost of different primitives: Glossy solves
dissemination, WPaxos and WMulti-Paxos solve consensus while
2PC and 3PC (here from A? [75]) solve commit (agreement). The
cost increases with the complexity (i.e., the number of phases). The
latency is measured for the network-wide dissemination of the final
decision.

momentum to collect a majority of replies.

While both Py and P5 are heard by a majority of acceptors, only P; manages
to collect enough responses and “wins” the competition. After roughly 50
slots (250 ms), the proposer of Pj starts disseminating the accept phase. The
proposal is accepted as it propagates through the network.

Latency. Fig. 2.7 characterizes the effect of competition in terms of full
completion latency in Flocklab, although the Paxos latency follows the same
behavior. The presence of multiple proposers induces an overhead of up to 100
ms in Flocklab.

As the number of concurrent proposers grows, the overhead starts to plateau.
Acceptors quickly discard lower proposals to force the spread of the highest
proposal, and competitors are quickly ruled out of the system. In addition,
a proposer will not compete if its own proposal is lower than the proposal
received.

With WMulti-Paxos, the overhead is only present when the first phase is
executed and with similar results. Any consecutive round is executed as usual
as long as proposers do not compete again.

2.5.5 Comparing the Cost of Primitives

We evaluate the cost of running the WPaxos primitive, and compare it with
dissemination (Glossy [23]) and agreement primitives (2&3PC from A? [75]), in
terms of latency and radio-on time. Since the lower layer Synchrotron continues
to communicate after a value is chosen, we use the full completion latency (see
§2.5.3) as metric.

Scenario. We compare five applications: (a) Glossy Mode (Glossy), a
one-to-all dissemination mode without flags; (b) Two-Phase Commit (2PC),
an all-to-all agreement protocol with flags and votes introduced to A?; (c)
Three-Phase Commit (3PC), similar to 2PC but with an additional phase, also
introduced by A?; (d) the Wireless Paxos primitive; and (e) the Wireless
Multi-Paxos primitive.

Experiments are run both for Flocklab with 27 nodes and Euratech with
188 nodes. All applications are executed for 2500 rounds in Flocklab, and for
a thousand rounds in Euratech. Glossy, 2PC and 3PC are executed only for
several hundred rounds in Euratech due to the final closure of the testbed. The
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results reported here are nonetheless consistent with the results reported by
A? [75]. The slot length used are summarized in Table 2.3.

Results. Fig. 2.8 summarizes the comparison in terms of full completion
latency, both in slots and milliseconds, and in terms of radio-on time. First, we
observe a cost increase with the number of nodes. The increase is however not
proportional, as Euratech is seven times larger than Flocklab but induces an
increase of roughly 2.5x only. This is mainly due to the difference in density
and topology of the deployments.

We now take a look at the performance of each application. Glossy is
the fastest since it does not require feedback, but does not provide the same
guarantees as consensus (see §2.2.1). WMulti-Paxos has the second lowest cost,
since only one phase is executed. WPaxos shows a cost of roughly 1.5x the cost
of WMulti-Paxos in terms of slots. This is due to the fact that the primitive
has two phases, but the first one requires half the nodes only. 2PC is roughly
2x more expensive than WMulti-Paxos in terms of slots, while 3PC is roughly
3x more costly. Again, it translates to the two and three phases of 2&3PC,
respectively.

Due to the different slot length (cf. Table 2.3), the improvements of WMulti-
Paxos are less visible when considering the latency in milliseconds. WPaxos
takes 1.3x the time of WMulti-Paxos, while 2PC takes 1.4x the time in
Euratech and 3PC takes 2.4x the time of WMulti-Paxos. Again, we point
out that these results are due to the hardware used (4 MHz CPU). Modern
hardware would provide improved results, closer to the slot latency.

Note that in Flocklab, WPaxos and 2PC presents a similar latency, even if
WPaxos requires fewer slots. For small deployments, the length of the slot has
a bigger effect than for dense deployments.

Finally, the radio-on time represents how long the radio was active (either
transmitting or receiving), and is used as a proxy for energy consumption.
Once again, WMulti-Paxos and WPaxos require fewer transmissions than their
counterparts 2PC and 3PC, since they rely on majorities.

2.5.6 Primitives Consistency

In this section, we evaluate the consistency of the different primitives under
injected failures.

Scenario. Paxos, by design, is tolerant against failures, and solve them by
using majorities, while 2PC delays the decision (consistency over availability).
We compare how the different consensus primitives are affected by node failures.

We run Wireless Paxos on Flocklab for 900 rounds with different failure
rates. At each slot, each node can fail following a given probability (from 0
to 4 x 1079), i.e., it stops communicating for the duration of the round. This
failure model is similar to a network segmentation or a crash-recovery where
the node saves the result of the consensus in a stable storage.

A round is considered consistent if all nodes have the same value in the
end. In WPaxos, a consensus is also consistent if at least a majority share
the same decision, even if some node missed the value. We refer to those
cases as MAJ-consistent. A system can also abort a decision in 2PC and 3PC.
The result is consistent if all nodes have aborted. A blocked round means no
decision has been chosen yet. Other cases are inconsistent.
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Figure 2.9. Consensus consistency under injected failure: WPaxos
handles failures with majorities and semantics, while 2PC is blocking
(consistency over availability), and 3PC is non-blocking but some-
times inconsistent.

Results. Fig. 2.9 shows the result of consensus under failure. Because
WDMulti-Paxos executes the accept phase only, the consensus is faster and less
prone to failure. WPaxos, with its two phases, is slightly less resilient. As the
failure rate increases, some nodes are missing the final value. The consensus
remains nonetheless correct and nodes can eventually learn the decision, keeping
the system consistent.

2PC blocks if at least one node is missing the decision. Strong consistency
is maintained at the cost of availability. 3PC requires more communication,
and is thus more prone to faults. Some rounds were inconsistent (some nodes
aborted while others committed). However, 3PC is non-blocking by design.

2.6 Related Work

Concurrent Transmissions. Glossy [23] is one of the pioneer works in the
field of concurrent transmissions. In Glossy, nodes synchronously transmit the
same packet, allowing constructively interfering signals to be received. Glossy
thus provides highly reliable and low latency dissemination. LWB [27] and
Crystal [28] use Glossy to provide data dissemination and collection from all
nodes by scheduling and executing floods sequentially.

By relying on the capture effect instead of constructive interference, Chaos
[42] and Mixer [43] relax the tight synchronization condition and can transmit
different data concurrently. Chaos uses in-network processing to provide data
collection and aggregation by applying an aggregation function locally over
the received data, while Mixer uses network coding to provide many-to-all
communication.

Consensus. In distributed systems, agreement and consensus have been
extensively studied for several decades already. Well-known solutions include
2PC [49] and 3PC [50]. Other solutions, like PBFT [113], provide a solution
in the presence of Byzantine faults. Paxos is a general (non-Byzantine) fault-
tolerant solution to the consensus problem [51,52]. Paxos has been extended
and further optimized, for example with Fast Paxos [114], Cheap Paxos [115]
or Ring Paxos [108]. Raft [102] is an alternative to Paxos, designed to be more
comprehensive.

Consensus in WSNs. Consensus has been studied in opportunistic
and ad-hoc networks [70,71]. However, most approaches focus on single-hop
networks [74,116]. Consensus with Byzantine failures in single-hop networks
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has also been studied [72].

Most multi-hop consensus solutions rely on routing. Kopke proposes an
adapted 2PC for WSNs [26], while Borran et al. extends Paxos with a new
communication layer for opportunistic networks [73]. Borran’s solution relies
on the MAC layer of 802.11 and builds a tree to collect and route responses.
Furthermore, unicast and acknowledgments are used for collecting responses.
In contrast, this work co-designs Paxos with the lower layers of the network
stack to provide an efficient and low-latency consensus primitive for low-power
wireless networks. We do not rely on any routing, but utilize concurrent
transmissions to communicate in multi-hop networks.

A? provides an implementation of 2&3PC using concurrent transmissions
[75]. Wireless Paxos reuses the transmission kernel introduced by A2, but
the consensus primitives differ. A2 handles failures by delaying the decision
(consistency over availability), while Paxos handles failures through majorities.

Finally, VIRTUS [29] brings virtual synchrony to low-power wireless net-
works. Virtual synchrony provides atomic multicast, i.e., it allows to deliver
messages in order to all members of a group, or none. Virtual synchrony and
Multi-Paxos are two ways to create state machine replication in distributed
systems. Both solutions provide guarantees on the consistency of delivered
messages. We argue in §2.4.4 why Glossy-based schemes (like VIRTUS) induce
higher costs than Wireless Paxos.

2.7 Conclusion

This paper presents Wireless Paxos, a fault-tolerant, network-wide consensus
primitive that builds on top of concurrent transmissions to offer low-latency and
reliable consensus in low-power wireless networks. We argue that although es-
tablished consensus protocols like Paxos offer many benefits like fault-tolerance,
correctness, and consistency guarantees, their designs, based on unicast com-
munications, make them unfit for low-power wireless deployments. Wireless
Paxos fills this gap by showing that Paxos can be expressed as a many-to-many
communication scheme, and by co-designing the consensus primitive along with
the lower layers of the network stack and concurrent transmissions to offer
highly reliable and low-latency consensus. We experimentally demonstrate that
Wireless Paxos (a) guarantees that at most one value can be agreed upon, (b)
provides consensus between 188 nodes in a testbed in 289 ms, and (c) stays
consistent under injected failures.
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Abstract

Intersections are the bottlenecks of road networks. Coordination mechanisms for
intersection crossing greatly affect the efficiency of road utilization. Typically,
coordination is done by implanting local infrastructure, whether signs, traffic
lights, or through common, well known-rules shared by all users. In this paper,
we introduce STARC, a decentralized intersection management protocol for
future connected vehicles and other traffic participants. With STARC, all
participants coordinate their movement using reservations to guarantee safe
crossings. To enable cost-efficient deployment, STARC does neither rely on
any centralized infrastructure, such as traffic lights, nor centralized wireless
intersection coordinators, like virtual traffic lights. STARC targets small,
cheap, and energy-efficient platforms and the open low-power wireless standard
802.15.4 so that all participants in road traffic could take advantage of it,
including vehicles, bikes, electric scooters, and even pedestrians. STARC builds
on low-power wireless communication with A2-Synchrotron and multi-hop
routing as a communication substrate and provides distributed transaction,
election, and handover mechanisms to manage the intersection cooperatively.
We show that STARC reduces average waiting times by up to 50% compared
to a fixed traffic light schedule in traffic volumes with less than 1000 vehicles
per hour. Moreover, we illustrate a platoon extension that allows STARC to
outperform traffic lights even at traffic loads beyond 1000 vehicles per hour.
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3.1 Introduction

Intelligent Transportation Systems (ITS) lay the foundations for new, effi-
cient ways of mobility. By adopting ITS, traffic delay, fuel consumption, and
greenhouse gas emissions could be reduced [24,79]. At the same time, vehicle-
to-everything (V2X) communication could replace infrastructures like traffic
signs and lights and minimize infrastructure costs [78,79]. Protocols in this
domain often rely on the presence of cellular network coverage or central servers
for coordination [24,79]. In contrast, decentralized approaches do not require
additional infrastructure as they solely rely on communication between the
vehicles [15,117]. However, most of these focus on bandwidth intense technolo-
gies such as 802.11p or 5G device-to-device (D2D) and are inherently limited
to platforms with sufficient compute and energy resources. Moreover, many
proposals neglect a detailed performance and reliability evaluation in realistic
communication environments [118].

In contrast, we argue that there is a need for distributed, safe, and efficient
protocols for traffic coordination able to run on resource-constrained platforms.

Challenges. Algorithms for robust and fault-tolerant coordination have
an inherent complexity that defines a stark contrast to the resource-constrained
low-power wireless platforms we target. Thus, we need to devise algorithms
and a system design that can deal with unreliable wireless communication,
complex routing, and group-membership in a delay-sensitive environment —
without sacrificing efficiency and safety.

Approach. We introduce STARC, a decentralized reservation-based pro-
tocol that uses cheap, low-power wireless radios to enable energy-efficient
vehicle-to-vehicle communication. We build our coordination protocol on top
of A2-Synchrotron (Synchrotron), a low-latency and energy-efficient commu-
nication primitive for all-to-all communication [75]. With STARC, traffic
participants reserve lanes to cross the intersection. We provide transaction
semantics, and all participants coordinate to commit on a shared access pattern
jointly. As a result, vehicles have unique access to different parts, i.e., lanes,
of the intersection, ensuring that at most, one car can use a given lane. Once
a car has crossed the intersection, it releases its reservation and leaves the
communication network, allowing the next car to continue its journey.

Our design and implementation for IEEE 802.15.4 radios allow STARC to
operate on energy-restricted devices to support all road users, including cyclists
and pedestrians.

Contributions. This paper contributes the following;:

e We present STARC, a decentralized protocol for autonomous intersection
management.

e STARC provides fault-tolerant, distributed coordination, and transactions
in dynamic networks.

e Targeting all traffic participants, we design and implement STARC for
resource-constrained IoT platforms.

e We evaluate STARC on a simulated intersection showing its efficiency
and fault-tolerance under injected interference and radio failures.
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Outline. After we cover background, related work and an introduction
to Synchrotron in Section 3.2, we present the design in Section 3.3 and its
evaluation in Section 3.4. Finally, we conclude our work in Section 3.5.

3.2 Background

Intelligent Transportation Systems build on computer systems to aid traffic
optimization. Brake assistants, crash, and congestion warnings are example
applications. Vehicles may also form platoons to save fuel and increase road
utilization [119]. Such advanced intents require communication of the vehicles
with each other (V2V) or with the infrastructure (V2I) [78]. Available protocols
for V2V and V2I communication are based on IEEE 802.11p (WAVE) or cellular
protocols such as LTE or 5G [120,121]. In Section 3.2.1, we review current
solutions for intersection coordination. Then, in Section 3.2.2, we introduce
our communication substrate, Synchrotron.

3.2.1 Related Work

Adams and Rutherford show the potential of decentralized intersection man-
agement [122]. They compare two peer-to-peer algorithms with the centralized
approach by Dresner and Stone (AIM) [79].

Vanmiddlesworth et al. present a reservation coordination-protocol based
on claims [117]. In their approach, cars broadcast claims for the intersection
repeatedly, and the one with the most dominant claim may proceed. While they
show that their approach doubles the throughput compared to ordinary stop
signs in low volume scenarios, the protocol itself can not handle communication
failures safely [123].

Virtual Traffic Lights (VTL) replace physical, centralized traffic lights
with a virtual coordination infrastructure by sending messages between the
participants [15]. In case of potential conflicting directions, vehicles elect a
single vehicle as the coordinator, which generates and broadcasts a schedule.
As soon as the coordinator is allowed to drive, it will handover coordination to
another vehicle. Ferreira et al. show that Virtual Traffic Lights can reduce CO,
emissions by up to 18% [124]. VTL are shown to improve the driving experience
as they reduce mean travel and waiting time [125]. Further optimizations are
made by Sommer et al. by dynamically changing the phase length based on
the number of waiting cars [123].

The protocol of Hassan and Rakha reduces the number of messages sent by
letting only the leading vehicles of each lane create the schedule [126]. Each
leading vehicle then propagates the schedule back through the lanes. Naumann
et al. propose a semaphore-based algorithm which only allows one vehicle to
stay in each critical region of an intersection [127].

In contrast, STARC builds its crossing schedule via a 2-Phase Commit-like
network-wide agreement. Since all participants must participate and agree for
a schedule to be valid, STARC achieves fairness and safety: All participants
eventually cross the intersection, and at most, one schedule can be selected at
any instant. Moreover, we implement STARC for low-power wireless radios.
Thus, any road user can take advantage of the protocol.
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Figure 3.1. (a) The STARC protocol builds coordination on top
of Synchrotron and adds support for join, and leave as well as the
election and hand-over of a leader. (b) The leader starts a coordina-
tion round in the merge phase. As soon as all vehicles marked their
participation, the commit phase is started and the merged sched-
ule established. (¢) A granularity of 1 (top) supports only a single
vehicle while a granularity of 2 (bottom) enables parallel crossings.

3.2.2 Synchronous Communication with Synchrotron

AZ-Synchrotron (Synchrotron) [75] is a wireless communication primitive com-
bining all-to-all data sharing and in-network processing to enable interaction
between all nodes in low-power wireless networks. Synchrotron provides multi-
hop communication and inherently supports mobile environments. Moreover,
it readily integrates channel-hopping and cryptographic primitives to ensure
a robust protocol. At its heart, it makes use of two fundamental techniques:
Synchronized transmissions and data aggregation.

Synchronized Transmissions. In Synchrotron, the nodes communicate
in rounds. Each round is divided into multiple slots in which nodes try to receive
a packet or transmit. Although multiple nodes might transmit concurrently
during the same slot, some nodes can correctly receive and decode packets due
to the capture effect [42]. Between two rounds, the radio is turned off to save
energy.

Data Aggregation. Upon receiving a packet, a node processes the infor-
mation using an application-specific merge-operator, marks its participation,
and disseminates the result. This approach combines data collection, processing,
and dissemination at once.

3.3 Design

Overview. The STARC protocol guarantees safe intersection crossing without
the need for central infrastructure. We rely only on local, low-power wireless
communication. We divide the protocol into two parts (1) Reservation-based
movement coordination and (2) handover support; see Figure 3.1a.

System Assumptions. We assume that all road users are equipped
with IEEE 802.15.4 radios. Moreover, we assume the presence of position
measurement devices, e.g., some sensors and a unique vehicle identifier (ID).



3.3. DESIGN 45

Furthermore, we assume access to information about the intersections, i.e.,
lane-layout, size, and possible directions. All vehicles have (limited) comput-
ing capabilities and can plan a trajectory they want to perform. Another
assumption is non-byzantine behavior: All participants are honest and follow
the protocol — no vehicle purposely tries to disrupt it.

3.3.1 Distributed Reservation Coordination

Intersection setup. We divide the intersection into a n x n,n € N, grid
of even tiles [79,128]. Each tile covers a specific area and possesses a unique
address. The tile-layout of the intersection is known to every vehicle.

Tile reservation. A vehicle requests a reservation for tiles based on their
addresses. Besides the tiles, a request contains the unique identifier of the
vehicle and its priority. We base the priority on the arrival time and enable
fairness by priority [127]: A later arrival time results in a lower priority.

Once a vehicle desires to pass the intersection, it plans its path over the
intersection and tries to reserve all the tiles on its way, see Figure 3.1c. No
notion of crossing time is used as we have to ensure safety also when vehicles
take longer to pass the intersection as initially planned. The vehicle may only
start when all needed tiles are reserved [127]. When the vehicle is leaving the
intersection, it frees its reserved tiles, so that other vehicles may reserve them.

Our protocol builds on top of Synchrotron since it is designed explicitly for
simultaneous data sharing and processing. We use this property to create a
Synchrotron round for parallelly collecting and merging the reservations. This
coordination round is split into two phases, as depicted in Figure 3.1b:

1. Merge phase: Individual reservation requests are collected and merged
into a feasible schedule.

2. Commit phase: If all members participated, this phase disseminates the
resulting intersection-wide schedule to ensure consensus.

Merge phase. The merge phase uses a custom merge-operator that
simultaneously merges and solves occurring conflicts according to individual
priorities. Additionally, the operator is order-invariant and creates partial
schedules of the participated vehicles. A leader node starts the merge phase
(and thus the coordination round) with the initial transmission. The progress
is tracked using participation flags in the packet. With the participation of all
members in the network, the schedule and thus the merge phase is complete.
The reservation grid assigns the vehicle ID with the highest priority (if any)
to each tile. Conflicts are resolved for each tile individually according to the
assigned priorities.

After collecting and merging the individual reservation requests, the vehicles
have to commit to the very same reservation-grid: The final result has to be
consistent. Though the participation flags indicate that every node participated
in the merging phase at some earlier point, it is not guaranteed that they are all
aware of the final schedule; an unmerged request could override some parts. For
this reason, we incorporate a second, commit phase. Overall, these transaction
semantics are the foundation for safety in STARC: a vehicle can only cross if
all others have agreed to the path.
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Commit phase. The leader starts the commit phase as soon as it receives
the complete schedule. It marks the packet as a commit phase transmission
and clears all participation flags before transmitting it: The leader commits on
the intersection-wide schedule. Further changes are not allowed in the commit
phase.

When a node currently in the merge phase receives a commit packet, it
switches to the new commit phase and adopts the received reservation-grid,
ignoring any local, incomplete state. Its participation flag is set once more,
this time as a simple acknowledgment of having received the commit. Nodes
retransmit the packet according to the underlying Synchrotron mechanism
using the flags as a progress indicator. The commit phase ensures that every
node has the chance to participate in the chosen, unique schedule. Due to the
retransmissions, almost all are aware of the schedule at the end of the round.

Crossing schedule. Vehicles can check the latest state they received at
the end of the round. If it contains a commit, the vehicle verifies the state of
its reservation request. The request is only accepted if all tiles along the path
have been granted to that vehicle. It follows that every other request either
tried to reserve other tiles or had a lower priority. Because the second phase
is only started, if all participated, the commit ensures that all requests are
merged. They agree on a common intersection-wide schedule.

If a vehicle got accepted, it might mark its reservation as passing for all
following rounds. Such a reservation has the highest priority and wins in all
conflicts in subsequent rounds. This way, the reservation grid contains both
the reservations of the passing and waiting vehicles. Conflicts between passing
reservations are impossible as long as the vehicles do not add new tiles to
accepted reservations, which is prohibited.

When the vehicle has passed the intersection, it just empties its following
requests, and others can reserve those tiles again (the protocol allows freeing
unneeded tiles). While issuing more requests seems a little excessive, this
mechanism does not require the vehicles to store any states of other vehicles
requests. They could even reconstruct their own state from the position in
the intersection. Since there is no need to save the states of the reservations,
failures can be handled well, making this part of the protocol fail-safe.

)

3.3.2 Handover Support and Leader Election

Before a car may participate in a coordination round, it needs to join the
network. Its participation is expected as long as the car has joined the network.
The car thus needs to leave explicitly. If the car drives off without leaving the
network, the commit phase does not start, and the protocol would halt so that
progress is impossible.

Leader handover. The leader manages the mapping of Synchrotron
indices to vehicle IDs and thus determines which nodes participate with which
Synchrotron index. The leader handles joins and leaves and hands-over to
another vehicle as soon as it wants to leave the network. As the mapping of
the joined nodes is part of that handover, and the payload of a Synchrotron
packet is restricted, we limit the network size. As a result, we only allow the
first cars of each lane to join the network and assume cars use their sensors to
detect cars in front of them.
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Join and leave. Nodes may join and leave the STARC network dynam-
ically. A new vehicle starts listening for packets, and with the beginning of
the next round, it acts as a forwarder: The node transmits according to the
STARC policy and merges partial schedules but is not allowed to issue its own
reservation requests until successfully joined. As soon as the vehicle passes the
intersection, it leaves the network.

We incorporate the join and leave mechanisms into the coordination round
and use monotonically increasing configuration numbers [75]. The nodes
compare their locally saved numbers to detect inconsistencies, e.g., missed
commits. Upon missed commits, a node rejoins the network to recover.

3.3.3 Platoon Extension

Vehicles that share a common direction may group up and form platoons to
utilize the road better and, in our case, the intersection. We can easily extend
the STARC primitive to support platoons: While waiting, the vehicles in each
lane form a platoon and their platoon head coordinates and reserves the path
for the full platoon as if they were a single, long vehicle. The reserved tiles are
freed after the last platoon member passes it.

3.4 Evaluation

This section analyzes STARC’s behavior in demanding wireless environments
as well as its efficiency in potential traffic scenarios.

Methodology. The measurements are based on data gained through
three 30 minutes simulation runs. Fach vehicle performs the following steps:
queueing, waiting for its reservation, moving over the intersection, and leaving
the network. The times for queueing, waiting, and leaving determine the delay
of the vehicle. We quantify efficiency by the average additional delay and safety
by the number of collisions [79]. The fundamental parameter is the number of
vehicles per hour specifying the level of traffic.

Setup. With 16 supported nodes, the network has enough slots to cover
all 12 lanes (three lanes per direction) plus four additional slots for crossing
or leaving vehicles. Figure 3.2a displays the simulated intersection with the
corresponding tile-grid. We set the granularity to 6, the resulting tile borders
thus match the borders of the lanes. The implementation features four join slots
and a single rejoin slot. We set the length of a Synchrotron slot to 6 milliseconds
and the number of slots to 200. The interval between two Synchrotron rounds
is 2 seconds.

The cars themselves are homogenous and share the same physic specifi-
cations, as displayed in Table 3.1. The turning rate is limited to 90 degrees
per second. Sharp curves thus require deceleration. As assumed in the design
chapter, the vehicles follow a preplanned path to cross the intersection. This
path is simplified to match the tiles used in the intersection. The car body is
represented by a circle to simplify the simulation and collision checking. The
circle has a diameter of 2 meters while the lanes are 3 meters wide. We assume
a 15% rate for both right and left turns, 70% of the cars are thus trying to
move straight across the intersection. Each starting lane has a corresponding
end lane. Lane swaps are prohibited.
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Figure 3.2. (a) The simulated intersection has three ways per di-
rection. The arrows represent the movement restrictions with the
corresponding tiles in the 6 x 6 grid. (b) The STARC protocol sim-
ulations without platoons indicate average delays of less than 20
seconds below 1000 vehicles per hour and congestion afterward. (c)
While STARC without platoons shows less delay than traffic lights
only below 1000 vehicles per hour, the version with platoons domi-
nates even in higher traffic levels.

Implementation. We use the Synchrotron implementation for TelosB
sensor nodes [75]. The TelosB features an MSP430 chipset by Texas Instruments
with 10 kB RAM and a 4 MHz CPU [129]. With their 250 kbps IEEE 802.15.4
radio, the nodes act as transmitters for the STARC protocol. They run Contiki
OS, an open-source operating system for the Internet of Things [130]. We use
the simulator Cooja to emulate the nodes’ code execution and simulate their
radio messages using a Multi-path Ray-tracing radio medium for an almost
realistic radio simulation.

3.4.1 Radio Failures

Wireless communication is prone to error and unreliable by nature: interfer-
ence from other technologies, multi-path reflection, and antenna orientation
can significantly affect the quality of communication. We evaluate STARC’s
resiliency against failure and its safety property when some cars are unable to
communicate with the rest of the network.

Scenario. We inject random failures blocking communication for certain
nodes in the network. During a round, at each slot, each node has a probability
of failing. Upon failure, the node is unable to communicate: it does neither
receive nor transmit any message until the end of the round. All failed nodes
recover their communication capabilities once the next round starts. We exclude
the leader from failure injection: the leader is always able to communicate. We
fix the traffic to 1000 incoming cars per hour.

Results. Table 3.2 presents the agreement success rate and the number of
car collisions for specific failure rates. Under lower failure rates of up to 0.01%,
most rounds are successful, and cars agree on a crossing schedule. With a
failure rate of 0.1%, each car has a probability of 0.1% to stop communicating
every 6 ms, and the success rate drops to 63.7%. This means that 6 out of 10
rounds led to an agreement on which cars should cross the intersection. In 4
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Table 3.1. Evaluation parameters

Parameter Value
= | Number of lanes 12
-% Tile grid 6 x 6
Q| Turn rate (left & right) |15% each
E) Lane width 3m
= [Maximum speed 50kmh~!
<[ Acceleration 2ms—2
-2 | Deceleration 4ms2
= [Vehicle diameter 2m
Round Interval 2s
%j) Slot length 6 ms
<¢| Slot number 200
5') Max. network size 16
Join / leave / rejoin slots |4 / 16 / 1

Table 3.2. Commit success and collisions in the presence of radio
failures. While failures affect the commit success rates, no collisions
occurred in the simulations.

Failure Rate | Commit Success Rate | Car collisions
0 % 99.8% 0
0.001% 99.4% 0
0.01 % 96.1% 0
01 % 63.7% 0

out of 10 rounds, the network did not commit on a new schedule, but no car
disagreed and chose its personal, unsafe schedule: all cars agreed not to cross.

For all failure rates, no collision between cars happened. STARC is safe
since it prefers to block crossings to prevent conflicting paths and possible
collisions under failures.

3.4.2 Delay Induced by Crossing

Scenario. We evaluate STARC’s efficiency with regards to varying traffic
load. Here, we define efficiency as the delay experienced by a user from the
time the vehicle reached the intersection up to the point the vehicle leaves
the intersection, and the STARC network. We vary the traffic load from very
few cars up to 1200 vehicles per hour, which corresponds to a medium city
intersection in the morning hours with one car every 3 seconds.

Results. Figure 3.2b depicts the average delay experienced at the intersec-
tion running STARC. While the average delay is below 20 seconds at first, the
delay spurts upwards at more than 1100 vehicles per hour. However, the lower
bound on the confidence interval indicates that some vehicles still experience
less delay.

Figure 3.3 breaks down vehicle delays for 1100 cars per hour for different
directions. With 70% of the vehicles driving straight over the intersection,
the straight-driving vehicles spent most of the time (38.2 s) waiting in the
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Figure 3.3. A delay composition for each turn direction in STARC
simulation runs with 1100 vehicles per hour and no platoons. Joining
and leaving the network, as well as waiting for the reservation, are
part of the coordination. The waiting times correspond to different
path lengths. Driving times are excluded. 70% of the cars continue
straight.

queue. This time is lower for vehicles that turn left (3.9 s) or right (0.3 s).
The waiting times for acceptance corresponds to the number of tiles needed for
the reservation: right-turning vehicles have to wait for the least (6.2 s), while
left-turning vehicles have to wait for the longest (18.9 s). The straight-driving
vehicles experience intermediate waiting times (14.6 s). The time to leave the
network is nearly equal across all directions (1.3 s to 1.5 s).

3.4.3 Traffic Lights Comparison

Scenario. The scenario is modified to support traffic lights, but its basics stay
the same. When passing over a traffic light intersection, the cars only have
two states: queueing and moving. Cars have to queue and wait for a green
light before they may cross the intersection. The traffic lights use a simple all-
lane-model: All lanes of one direction are allowed to drive simultaneously [79].
Each direction is scheduled once a minute, resulting in 15 seconds per direction.
Out of those 15 seconds, a green light is shown for 9 seconds. A yellow and red
light show for 3 seconds each, assuring a safe passing of potential left-turning
vehicles. In the scenario with traffic lights, only the time for queueing specifies
the delay. We also evaluate the platoon extension of STARC, as described in
Section 3.3.3. We limit the platoons to a maximum size of 25 vehicles and
only allow joining the platoon before it starts crossing. The platoon head
coordinates and reserves the path for the full platoon.

Results. Figure 3.2c presents the average delay of traffic lights and the
STARC protocol without and with platooning enabled. The platoon size limit of
25 roughly equals the maximum amount of cars that could cross straight during
a single green phase. The recorded delay for our protocol without platoons
increases slowly, and at more than around 900 vehicles per hour, skyrockets.
At around 1000 vehicles per hour, the delay without platoons already surpasses
the delay of traffic lights. This limit is not surprising, considering that the
protocol without platoons allows only a single vehicle per lane to move. The
version with platoons handles those values well and does not only compete
with the traffic lights but also further decreases the delay in low traffic settings
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with less than 1000 vehicle per hour compared to STARC without platoons.
All mechanisms can not handle arbitrary high traffic volumes. Just as a longer
green phase for the traffic lights, we expect that a higher limit for the platoon
size could reduce the experienced delay in higher traffic volumes (without
increasing the delay for lower traffic volumes).

3.5 Conclusion

Crossroads are the bottlenecks of road networks. Intersections often require
infrastructure, such as traffic lights, to enable coordinated crossing and ensure
the safety of all road users. Connected traffic is a building block of Intelligent
Transportation Systems: if vehicles and other road users can communicate,
they can coordinate how to efficiently and safely cross intersections. While
centralized coordination mechanisms could allow optimal crossings, they require
the presence of a central infrastructure, e.g., LTE or 5G coverage.

We introduce STARC, a decentralized reservation-based protocol for safe
intersection crossing. STARC uses cheap, low-power wireless radios and builds
on top of IEEE 802.15.4 to enable energy-efficient vehicle-to-vehicle communica-
tion in the absence of cellular coverage. With STARC, road users can instantly
create or join a low-power local network to coordinate at intersections. We
show through simulations that STARC is safe, reduces average waiting times
by up to 50% compared to traffic lights for volumes lower than 1000 vehicles
per hour, and can efficiently serve traffic loads over 1000 vehicles per hour with
the support of platoons.

Our future work will investigate priority strategies supporting high priority
vehicles such as ambulances.
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Abstract

Efficient, highly-reliable communication primitives are a cornerstone of low-
power wireless networks. Through network-wide flooding, Glossy and higher-
level primitives such as Low-power Wireless Bus (LWB) are able to provide
message delivery with high reliability and low-latency. However, these protocols
suffer from two limitations: (1) they are invariant to their environment dynamics
and deal with interference through over-provisioning, and (2) their one-fits-all,
cradle-to-grave designs lead to wasted energy in dense parts of deployments
and interference-free periods.

We argue that low-power wireless networking should adapt to the wireless
medium to meet a target performance, even under varying conditions, while
still ensuring energy efficiency. We propose Dimmer as a self-adaptive, all-
to-all communication primitive. Dimmer builds on top of LWB and uses
Reinforcement Learning to tune the flooding parameters to match the current
properties of the medium. By learning how to behave from unlabeled traces,
Dimmer adapts to different interference types and patterns, and is even able
to tackle previously unseen interference. Through Dimmer, we share insights
on how to efficiently design Al-based systems for constrained devices, and
evaluate our protocol on two deployments of 18 and 48 resource-constrained
sensor nodes (4 MHz CPU, 10 kB RAM), showing it improves reliability under
WiFi interference and IEEE 802.15.4 jamming.
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4.1 Introduction

Context. Reliable, energy-efficient communication is a cornerstone of low-
power wireless networks. Network-wide flooding, with its flagship Glossy [23],
has been established as an important building block to compose such efficient
protocols [27,28,131]. Building on top of Glossy floods, Low-power Wireless
Bus (LWB) provides low-latency and highly reliable message delivery, and can
be seen as the de-facto protocol for many-to-many communication in low-power
wireless networks [27]. By design, LWB is topology-independent, and with its
central scheduler, LWB adapts to changes in traffic. However, Glossy, and thus
LWB, suffer from two limitiations: (1) both protocols are invariant to dynamics
in their environment, and deal with interference through over-provisioning [32];
and (2) in the absence of interference, their one-fits-all approach leads to wasted
resources, especially in dense regions of deployments [132,133].

Firstly, the performance of Glossy and LWB degrades as interference arises.
To tackle this, improvements over Glossy use channel-hopping and tend to over-
provision resources, e.g., by increasing the number of retransmissions within a
flood [32,134]. This over-provisioning is, however, static for a deployment’s
lifetime, from its design-cradle to its grave, and thus independent of the actual
experienced interference. This inability to adapt to the environment leads
to wasted energy in the case of transient wireless perturbations. Secondly,
all devices participate in the message propagation. Thus, in dense regions,
many forwarders concurrently transmit, which can impede the reliability of
the flood as well as unnecessarily deplete energy. To counter this, XFCS and
Sleeping Beauty use additional communication to select active forwarders,
putting superfluous nodes to sleep [132,133], while Zhang et al. use multi-
armed bandits to learn the optimal retransmission parameter in Glossy at
runtime, assuming no interference is present [93].

Goal. Our goal is a paradigm where a low-power wireless stack adapts itself
to the wireless channel and deployment topology to meet a target performance,
while ensuring energy efficiency and efficient utilization of the wireless medium,
as depicted in Fig. 4.1.

Challenges. Building a self-adaptive wireless stack can be decomposed
into two distinct sets of challenges: (1) adapting to interference, and (2)
adapting to the topology, to achieve energy-efficiency in the interference-free
case. Interference comes in many shapes, e.g., bursts or slow channel-fading,
duration, and patterns [31,135]. Designing a general solution resilient to all
interference is non-trivial; a protocol designer must deal with limited available
information, and rely on its expert knowledge, e.g., to estimate when the
interfering episode has passed. This often leads to handcrafted and carefully
fine-tuned decision rules, that sometimes need to be re-tuned for each new
deployment and application. As example, PID controllers, the go-to approach in
closed-loop control, must be tuned, either through experimentation or complex
numerical methods, prior to their deployments, and possibly re-tuned to fit
each deployment [136-138]. Furthermore, our self-adaptive protocol must react
quickly to sudden interference surges. In contrast, distributed and autonomous
solutions are notoriously slow to adapt, and are prone to instability [93]. To
solve these challenges, we focus on quick, centrally-controlled adjustments of
our communication substrate once interference is detected. We implement deep
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Goal: Adaptive Wireless Stack with Dimmer

Yes No
Interference?
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Figure 4.1. Adaptive wireless stack. Smart communication proto-
cols must adapt to changes to the wireless medium, and save energy
under good conditions. With Dimmer, we use the advances in Al
to bring adaptivity to low-power wireless networks.

reinforcement learning methods using neural networks to obtain a self-adaptive
stack able to learn the optimal retransmission parameter over unlabelled traces,
in the absence of any human supervision.

During interference-free periods, a self-adaptive flooding protocol must
ensure energy-efficiency. Forwarder selection has been shown as an effective
method to save energy in dense deployments. However, Glossy does not provide
neighbor information, and XFCS and Sleeping Beauty rely on additional control
transmissions to select forwarders [132,133]. We employ a distributed forwarder
selection scheme using multi-armed bandits to find superfluous forwarders at
runtime, at no additional communication costs, by extending the approach
introduced by Zhang et al. [93].

System Challenges. Building on neural networks and deep reinforcement
learning brings its own, specific set of challenges: (1) We have to capture
the dynamics of the wireless medium in a neural network so that it can
learn how to quickly and efficiently adapt to the network dynamics. (2) It
is practically impossible to obtain a dataset of transmissions with optimally
selected parameters to train on, as used with supervised methods. Thus, we
must build an unlabelled simulation environment in which a reinforcement-
learning agent can be trained. (3) Low-power wireless systems are resource-
constrained, in the order of several MHz and tens of kB of RAM, and demand
for space-efficient neural networks so that we can deploy them on the hardware.
(4) Finally, multi-agent RL systems where each node execute its local multi-
armed bandit (MAB) instance are prone to unstability. A distributed MAB
approach must ensure that the learning phase does not lead to oscillatory
behavior and degraded performance.

Approach. We introduce Dimmer, a self-adaptive, all-to-all communica-
tion primitive based on LWB [27], the de-facto protocol for data collection
and dissemination in IEEE 802.15.4 low-power wireless networks. Combined
with LWB’s central scheduling, Dimmer introduces two novel elements: (1) a
centrally-executed deep Q-network that adapts the retransmission parameter
to tackle interference, and (2) a distributed forwarder selection scheme using
multi-armed bandits at runtime, to save energy in the interference-free case.
Dimmer does not require extra-communication: the feedback loop is closed
by collecting performance metrics alongside data packets, and disseminating
update decisions along with LWB schedules. Upon detecting packet losses, our
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central neural network globally increases the number of retransmission within a
flood. The deep Q-network is then able to detect once interference has passed
and converges back to its optimal parameter. During interference-free periods,
Dimmer nodes locally learn if they are superfluous during flood propagation, or
must act as active forwarder, using a multi-armed bandit approach. While the
approach of Zhang et al. focuses on optimizing a single-source flood, Dimmer
extends the optimization to multi-source communication.

Contributions. This paper contributes the following;:

e We present Dimmer, an RL-enabled self-adaptive communication primi-
tive featuring a deep Q-network and multi-armed bandits;

e We highlight how we map Dimmer to a solvable RL problem, and how
we design a constrained embedded deep Q-network fitting to a platform
featuring a 4 MHz CPU and 10 kB of RAM;

e We introduce a trace-based environment that Dimmer uses to learn
interference-coping strategies in a matter of minutes rather than days;

e We provide an open-source implementation for TelosB motes and evaluate
our solution on two testbeds comprising 18 and 48 nodes, showing it is
able to operate on new topologies and adapt against unseen interference
without retraining its DQN.

The remainder of the paper is structured as follows: we introduce reinforce-
ment learning and LWB in §4.2. We give an overview of Dimmer in §4.3,
explain how we solve typical RL challenges in §4.4, and go deep into Dimmer’s
design in §4.5. In §4.6, we evaluate Dimmer in depth on testbed deployments.
Finally, we discuss related work in §4.7 and conclude our work in §4.8.

4.2 Background

We introduce the basics of reinforcement learning, Q-learning, and multi-armed
bandits in §4.2.1. We then present the LWB primitive in §4.2.2.

4.2.1 Reinforcement Learning

Reinforcement Learning (RL) is a sub-field of machine learning [54]. It targets
sequential decision making; in an RL problem, an agent learns how to achieve
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a complex task by taking consecutive actions. RL differs from both supervised
and unsupervised techniques: in supervised learning, a dataset of input-output
tuples is available, and the goal is to find a generalized function mapping them.
In unsupervised learning, an unlabeled dataset is available, and the goal is to
find if a hidden structure exists within. In contrast, in RL, not only is the
data often unlabeled, but the algorithm must discover the sequential steps of
transitions that bring its final, desired state.

Trial and error. To discover the optimal strategy, an agent must interact
with its environment and learn from its mistakes. Fig. 4.2 illustrates how a RL
agent behaves during learning. At first, the agent observes its environment.
Based on the observed state of its surroundings, the agent makes a decision and
acts on it. In doing so, the agent alters the internal state of the environment.
The agent can, therefore, observe the effects of its action, and can use a reward
signal to evaluate the usefulness of its actions.

By exploring the environment and trying random actions, the agent can
accumulate experiences and build an internal model of how its actions affect the
environment. By exploiting its reward and with enough accumulated knowledge,
the agent can construct a sequence of actions that solves the complex task at
hand.

Markov Decision Processes. An RL problem is said to be solvable if
the environment can be represented as a Markov Decision Process (MDP) [55].
MDPs extend Markov chains: in Markov chains, the transition from a state to
a new state is represented as a probabilistic distribution. In an MDP, a decision
additionally affects the transition. As example, in the case of a network-wide
flood such as Glossy [23], where each node repeats multiple times the packet in
order to increase the probability of reception, the transition is affected both by
an a priori random wireless interference, as well as a controllable parameter,
the retransmission count. More formally, am MDP is represented by the tuple
(S, A,P,R), where S is the set of possible states, A the set of possible actions,
‘P the transition probability function and R a reward function.

Q-Learning. Finding the best sequence of actions requires an agent to
estimate future rewards. The agent seeks to maximize the cumulative reward
R, 2 322 " tr;, where r; is the reward obtained when transitioning at time
7, and v € [0,1) a constant called the discount factor. A small discount factor
will force the agent to maximize short-term, immediate rewards, while a high
discount factor will allow the agent to maximize long-term expected rewards.

Q-learning is one of the most popular ways to solve RL problems [54]. In
Q-learning, an agent learns an action-value function Q(s,a). This function
represents the expected cumulative reward the agent should get when starting
in state s, using action a such as:

Q(s,a) 2E[R; | sy = s,a; = a] (4.1)

In simple terms, the Q-function evaluates how valuable it is to choose action a
in state s, in terms of expected reward.

If the environment can be modeled as an MDP, then we can find an optimal
function Q* (s, a) that follows Bellman’s principle of optimality [56]:

Q*(s,a) = E[ry + ymax, Q*(s',a’) | 5, = s,a; = a (4.2)
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where 1; is the immediate reward received, v the discount factor presented
above, and s’ the state achieved after the state s. By iteratively trying actions
and receiving rewards, we can update a Q-function that ultimately converges
to the optimal Q*(s, a).

Deep Q-learning. While Q-learning algorithms have historically used a
tabular approach in estimating the Q-function [54], deep neural networks have
been recently established as Q-function approximators [57]. Deep Q-networks
(DQN) have been successfully used to solve problems outside of their original
application: datacenter cooling [58], wireless modulation [59], CSMA/CA
optimization [60], etc. One advantage of DQN over tabular approaches is the
ability to solve problems with continuous states and the generalization property
of neural networks.

Multi-armed bandits. In the Multi-Armed Bandits (MAB) problem,
a gambler is facing K machine slots in a casino, each machine giving an a
priori unknown, stochastic reward upon pulling its arm [139]. The goal of
the gambler is to maximize its returns in a minimal number of steps, by
carefully controlling its exploration and exploitation trade-off. In the extended
adversarial MAB setting, an adversary is able to impact the reward system
associated to each arm [140]. In wireless systems, changing conditions of the
medium can be represented as an adversarial setting. The gambler thus cannot
rely on past experiences only, and must continuously explore. Exp3 is an
online algorithm solving the exploration-exploitation trade-off in adversarial
MAB [141]. Exp3 associates an exponential weight with each arm, thus leading
to quick adaptation to adversarial changes in the environment.

4.2.2 Low-power Wireless Bus

In low-power wireless networks, quickly flooding a message to the entire network
has established itself has a simple and efficient method to provide communica-
tion, in contrast to slow, expensive routing solutions [142].

Glossy. Glossy is one of the pioneer works in synchronous transmissions
[23]. Through tight synchronization (< 0.5 us) and by sending identical
data, Glossy provides network-wide broadcasts (or floods) with high reliability
(> 99.9%) and low power-consumption. Within a Glossy flood, a packet
is retransmitted multiple times, typically 3, and nodes alternate between
transmission and reception to keep synchronization and reduce the number of
concurrent transmissions.

LWB. Low-power Wireless Bus (LWB) is a flexible communication protocol
tailored to wireless sensor networks [27]. Its most prominent feature is its
ability to support many different traffic patterns. LWB uses Glossy floods as
communication primitive, effectively turning a multi-hop network with mobile
nodes into a logical bus, in which any node can potentially receive any packet,
without the need for expensive routing.

LWB is a centralized solution; a host node computes a schedule that
satisfies flows requested by (message)-source nodes, and controls the periodicity
of communication to save energy. As such, LWB is a versatile solution for
low-power communication. The protocol is also used as baseline for the 2019
EWSN dependability competition [143].
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Figure 4.3. Adaptivity Policy Control in Dimmer. At the end of
the round, the coordinator executes its deep Q-network based on
previous network performance, and disseminates a new retransmis-
sion parameter Npy along with the next schedule. Source nodes
append to their payload their performance during their data slots,
thus closing the feedback loop.

4.3 An Overview of Dimmer

We introduce Dimmer, an adaptive all-to-all communication primitive for
resource-constrained devices. Dimmer builds on top of LWB [27], and inte-
grates two novel components alongside LWB’s central scheduler: (1) a central
adaptivity control scheme, used to quickly adapt to interference surges through
an embedded deep Q-network, and (2) a distributed forwarder scheme, allowing
Dimmer to discriminate superfluous transmissions at runtime and save energy
through the use of multi-armed bandits.

Dimmer in a nutshell. Like LWB, Dimmer operates in communication
rounds, see Fig. 4.3. A round is composed of a schedule slot, sent by a central
coordinator, followed by a series of attributed data slots. During each data slot,
the source node appends to its payload four bytes of meta-data on performance,
such as reliability and radio-on time. These metrics, collected by the coordinator
and participating nodes, compose an up-to-date global snapshot of the network
performance. The communication round ends with a second schedule, used



60 CHAPTER 4. DIMMER

c ..
o Statistics Collector Data Slot
)
3 Aggregated Local Reliability, Radio-on time
e Performance at k-1 |10f roundk
—
S
= . . Online Learning
g Multi-Armed Bandits
I Randomly choose to act as
o
L forwarder or leaf
Iteration 1, Learner B, Role: Forwarder [Reward]
TX RX TX RX TX
RX TX RX TX RX TX
RX X RX X RX X
Iteration 2, Learner B, Role: Leaf [No reward]
X RX X RX X
RX
Iteration 11, Learner E, Role: Leaf [Reward]
X RX TX RX TX
RX TX RX TX RX TX
RX

Learning in Action

B (1) B(10) E(1) E (10) c(1) C(2)

Learner (Iteration), all other nodes apply the best action

Figure 4.4. Forwarder Selection in Dimmer. In the interference-free
case, nodes take turn learning whether they should act as forwarder
to help the flood dissemination, or leaf to save energy.

to coordinate the next round. Once the communication round has ended, the
central coordinator executes its embedded DQN to adapt to any changes to the
medium. If the medium is free of interference, the nodes instead execute their
distributed forwarder selection scheme. In addition to dynamically adjusting
the retransmission count, Dimmer tackles interference with frequency diversity.
Each data slot is attributed a channel to use from a globally known hopping
sequence, as used in Crystal [28].

Al-augmented wireless. With Dimmer, we argue that recent advances in
Al and specifically reinforcement learning, can be used to design self-adaptive
primitives. Traditional solutions, such as handcrafted rule-based systems or PID
controllers, the go-to approach in closed-loop control, require expert knowledge
during the design phase, e.g., an understanding of possible disturbances to the
medium, how to measure them, and mitigate their effects [137,138]. Further,
once the solution has been tuned, there is no guarantee that it will provide
similar performance on a new deployment or on a different hardware. With
machine learning, deploying to a different topology or changing the hardware
simply equates collecting new traces and retraining the neural network, and



4.3. AN OVERVIEW OF DIMMER 61

can be done as an automatic step during deployment. Moreover, reinforcement
learning does not require a dataset labeled with the optimal retransmission
parameters, as the RL agent will use trial-and-error to build a model of its
environment and learn how to act optimally. This means that using Dimmer
does not require any prior expert knowledge. In addition, we show in §4.6 that
deploying Dimmer in a new environment does not always equate retraining
the DQN, as we demonstrate by operating Dimmer on a 48-node deployment
against WiFi jamming, while the DQN was trained on traces collected on a
18-node testbed predominantly featuring 802.15.4 jamming.

Embedded central adaptivity control. Dimmer incorporates a central
adaptivity control scheme using an embedded deep Q-network (Fig. 4.3). Be-
cause interference quickly rises, distributed solutions are too slow to react,
or might even cause instability [93]. As soon as a communication round has
ended, the central coordinator executes its DQN, using the worst-nodes perfor-
mance as input, and the current retransmission parameter. During the next
communication round, the coordinator disseminates the new retransmission
parameter along the round schedule. With Dimmer, we do not assume the
presence of a powerful edge-device to offload computation to; swarms of drones
cannot maintain constant communication and rely on distant computing to
react to interference. Instead, we choose to embed our intelligence onto the
resource-contrained node executing Dimmer. Thus, we quantize our DQN to
fit within 10 kB of RAM and to perform on a 4 MHz CPU.

Distributed Forwarder selection. We model the forwarder selection
problem of Dimmer as an adversarial multi-armed bandit setup and solve it
using Exp3 [141], by extending the approach introduced by Zhang et al. [93]. In
their work, they set to optimize the retransmission count of each node during
a single-source, Glossy flood. In contrast, we tackle the problem of optimizing
multiple, multi-source floods, and model the decision as a binary choice of
acting as forwarder.

Whenever the medium is free of interference and performance is good and
stable, Dimmer nodes execute the forwarder selection scheme in an iterative
manner, where at most one node learns at a time, see Fig. 4.4. Exp3 computes
the probability of each node to act as forwarder. At the beginning of a
round, the learning node draws its decision (to act as a forwarder or not) from
Exp3’s probability. All other nodes keep their previously learned behavior.
The learning node then collects the feedback from Dimmer, and updates its
probability based on whether any flood showed degraded performance. After
several iterations, we obtain a configuration where superfluous nodes learn to
not act as forwarder, thus saving energy by turning off their radios earlier.

Design outline. In §4.4, we introduce Dimmer in detail and discuss how
it solves key challenges of designing wireless primitives using RL. Next, in
§4.5, we describe the system design, i.e., how the Dimmer primitive operates
on constrained hardware: §4.5.1 presents our architecture, §4.5.2 our central
adaptivity control using the DQN, and §4.5.3 presents our forwarder selection
scheme using multi-armed bandits.
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Keep N Increase N

Figure 4.5. Glossy as a Markov Decision Process. For each retrans-
mission factor N, (N, Rz) represents the state where last transmis-
sions were successful, while (N, ()) represents an interfered medium.
We depict transitions from (3,()) only. In each state, an agent can
either decrease, increase or keep the same N value. The thickness of
the arrow depicts the transition likelihood. Increasing N here leads
to an increased chance of successful floods.

4.4 Designing a RL-based protocol

Challenges. To model Dimmer’s central adaptivity control as a RL problem,
we must solve the following problems:

C1. Defining a solvable RL problem: we represent Glossy and Dimmer as
MDP.

C2. Selecting actions and features: we show that it is sufficient to use a
limited set of features and only three actions.

C3. The reward leads to a correct behavior: we define a reward function with
a given reliability goal and minimization of the energy consumption.

C4. The neural network fits on a resource-constrained device: we show that a
quantized neural-network with one hidden layer of 30 neurons is sufficient.

C5. The neural network is (efficiently) trainable: we devise a trace-based
training environment.

Additionally, to solve the forwarder selection problem, we must ensure that:

C6. The forwarder selection does not cause instability: we serialize Exp3’s
execution.

We discuss how we solve challenges C1 to C4 with Dimmer in §4.4.1, deal with
C5 in §4.4.2, and tackle C6 in §4.4.3.

4.4.1 Resource-constrained RL Problem

C1. Dimmer as solvable RL problem. We define the following optimiza-
tion problem: Dimmer must find the optimal N parameter, i.e., the number
of packet retransmission within a Glossy flood, that maximizes the network
reliability while minimizing the energy consumption at any time. Concretely,
this means: (1) Under normal conditions, Dimmer should achieve a very good
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Table 4.1. Input vector of Dimmer’s DQN. Parentheses denote the
number of elements used by Dimmer during evaluation.

Input Number of rows (31) Normalization
Radio-on time K (10) [0, 20ms] — [-1,1]
Reliability K (10) (50, 100%] — [-1,1]
N parameter Npaz +1 (9) One-hot encoding
History M (2) -1 if losses, otherwise 1

reliability (> 99.9%) without wasting energy, i.e., by avoiding unnecessary
retransmissions. (2) Dimmer must adapt once it detects interference, i.e., once
it detects a drop in reliability. We allow Dimmer to lose a few packets while
adapting to changes in the channel conditions. In §4.2.1, we state that an RL
problem is solvable if it can be represented as an MDP. In the following, we
introduce an MDP representation of Glossy and, by extension, Dimmer.

We define two states for each possible N value, (N, Rz) and (N, 0), see
Fig. 4.5 for an extract of our MDP. Each state represents the current retransmis-
sion factor IV, tupled with the outcome of the current flood: Rz if transmissions
are successful, otherwise (). In each state, an agent can either decrease, increase
or maintain N. The external interference is modeled by an unknown transition
probability P (see §4.2.1). The goal of the RL algorithm is to recognize its
current state, and learn how to best adapt N to reach the most beneficial state.

C2.1. Defining a small action space. To foster quick learning and
ensure a small neural network, it is essential to keep the action space small.
While it is possible to define an action for each retransmission value (e.g., an
action for N=3, one for N=4, etc.), this approach leads to an action space
too large to execute on embedded hardware. Further, we argue that, in our
experience, such learning easily overfits our environment specifics and is unlikely
to generalize to unseen interference patterns. Instead, we define three actions:
Decrease, Keep, and Increase N. Our approach leads to a generalised behavior:
a system that learned to increase under interference is able to deal with any
reliability change, irrespective of the current N value. A drawback is that the
system is limited to step-wise increase, e.g., going from N =1 to 4 takes three
steps.

C2.2. Selecting meaningful features. In order to close the loop, we
next define the features — in our case network metrics — we collect as feedback
for the actions of the RL-agent. Each node shares two statistics over the
network: their radio-on time, as a proxy for energy consumption, and their
recent reliability. Since statistics are piggybacked along with data packets, they
do not require additional floods.

Neural networks suffer from their rigid structure: their input vectors must
remain constant in size. If a neural network is trained using one input per
sensor node, the neural network needs to be entirely retrained if a node is
added or removed. To counter this limitation, our DQN requires input from a
subset of nodes only. Thus, Dimmer supports a wide range of deployments of
varying size without retraining. We select the K nodes with decreasingly worse
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reliability, to correctly represent the suffered packet losses. If no feedback is
received from a given node, Dimmer assumes that node has 0% reliability. In
addition to these K network statistics, Dimmer uses the current retransmission
parameter N as input. N is represented as one-hot encoding, i.e., we use a
vector of size N,,qz + 1, where the row N is set to one, and all other rows set to
zero. Finally, we introduce additional, historical reliability features. Historical
features allow Dimmer to avoid oscillatory behavior under interference. Table
4.1 summarizes the input vector.

We normalize each input feature between -1 and 1. We deem any reliability
lower than 50% as unacceptable, and and represent it as -1. For historical
features, we represent the previous round as -1 if at least one packet was lost,
and 1 if all packets were received by all nodes. Thus, we obtain an input vector
with 31 elements. This enables a small neural network while being able to
support a wide range of deployments with varying size.

C3. Reward engineering. In RL, the goal of an agent is to maximize a
reward function, which mathematically represents the problem itself. Following
our goal stated in Fig. 4.1, we design Dimmer’s reward to obtain the following
behavior: reliability should be maintained at all costs, but energy should be
saved under good conditions. We model our goal with the following reward
function:

(4.3)

ry =

s J1—=C*N/Npas, if no losses
0, otherwise

where N/N,q. is the normalized retransmission factor and C = 1% a constant.
The value of C' impacts the reliability-energy trade-off: For high values, the RL
agent will converge to a lower N value under good condition; for low C values,
the agent will tend to keep many retransmissions to avoid any losses.

C4. Selecting neurons. In C3 we define the input and output spaces
used. For the feature set we eventually choose, c.f. §4.6, Dimmer requires 31
input features and outputs an expected reward for 3 possible actions. Knowing
that our DQN is to be executed on resource-constrained devices (4 MHz, 10 KB
RAM, no floating point), we go for the smallest, functioning architecture. We
use two fully connected layers; a hidden layer of 30 neurons with rectified linear
(ReLU) activation, plus three neurons for the output layer. We motivate this
choice by the light computation cost of ReLU, as well as their effectiveness in
the original DQN [57]. We explain in §4.5.2 how we quantize our DQN to fit
on a resource-constrained device.

4.4.2 Learning From Traces

Like all machine learning techniques, reinforcement learning requires access to
data. However, unlike other ML approaches, RL learns through interaction:
an accurate simulator or access to a real deployment is necessary for training,
rather than a dataset of labeled instances. In this section, we discuss how we
build an accurate simulator based on traces collected from a real deployment,
on which we are able to train Dimmer.

C5.1. Collecting meaningful traces for training. RL agents improve
their Q-function by infinitely trying state-action pairs. While RL relies on
observing the immediate effect of an action, we argue that we can collect traces
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that accurately represent the impact of an action under similar wireless medium
dynamics. In §4.4.1, we explain that Dimmer can be modeled as an MDP,
meaning that the Markov property holds [55]. Thus, building a simulator from
a collection of traces is possible if we ensure that the traces correctly model
the dynamics of the wireless medium.

We define a datapoint in our traces as the combined results of all slots
during one round. Because a round is composed of several floods, our trace
represents fast interference, e.g., a transient disturbance in the order of tens
of milliseconds, as a single datapoint with low reliability. In contrast, our
environment represents slow-moving interference, e.g., numerous bursts spaced
over a second, as a decrease in reliability over multiple datapoints. A correct
training environment must represent this slow dynamism: we iterate over all
possible N values sequentially during the trace collection, and ensure that
during training, consecutive actions draw timely-coupled datapoints, i.e., data
that are close to each other in the trace. Thus, we guarantee that slow-moving
interference is correctly modeled in our training environment.

Representative traces. We ensure that our traces are representative
of the environment by collecting them over multiple days, for different times
of the day and frequencies. Representative traces must correctly model the
distribution of the real-world scenario: interfered scenarios should not be overly
represented in the traces if Dimmer is to be executed in normal deployments.
Our traces are collected both during days and nights, with colocated WiFi
traffic from typical office environments and student lab rooms. Further, some
traces are collected with IEEE 802.15.4 jamming active, where the interference
pattern is changed several times throughout the trace, to represent a larger
sample of possible disturbances.

C5.2. Offline learning. Our targeted platform, a TelosB featuring a
4 MHz CPU and 10 kB of RAM, is unfit to support the training of our DQN.
Therefore, we train our neural network offline, and embed the result of the
learning on the resource-constrained device for its inference step. We train
our DQN for 200 000 iterations with an epsilon-greedy selection scheme. The
selection probability in annealed from 100% to 1% linearly over the length of
100 000 steps, and fixed to a random action probability of 1% afterwards. We
select a discount factor (see §4.2.1) of 0.7.

4.4.3 Distributed Forwarder Selection

The forwarder selection problem, i.e., selecting a subset of nodes that must
transmit during a flood to help the dissemination, is computationally expensive
for a centrally learned scheme. For a network with n nodes, there is 2" possible
configuration of forwarders and leaf nodes. Assuming one wants to train a
RL agent to solve this task, we estimate that building a training environment
requires well over 20 days of data per trace, where multiple traces are required
to avoid overfitting. Instead, in Dimmer, we learn how to act in an online
fashion, i.e., at runtime, and divide the problem into a localized decision, i.e.,
each node decides if it should act as forwarder. We get inspiration from the
approach of Zhang et al. and use Exp3 to design our solution [93].

C6. Serialized Exp3. As demonstrated by Zhang et al., using Exp3 to
solve the adversarial multi-armed bandits is not guaranteed to converge to a
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Figure 4.6. Dimmer’s architecture. Dimmer combines an adaptivity
policy control unit featuring a DQN to adapt to interference, and
a forwarder selection scheme built on multi-armed bandits to save
energy.

stable state. While we cannot guarantee convergence ourselves, we introduce
three techniques to avoid oscillatory states that can degrade the network
performance. Firstly, we serialize the learning execution. At any round, at
most one node can randomly choose an action and learn from the feedback.
Further, a node is given 20 consecutive rounds to try and evaluate different
strategies and to converge to a decision. Secondly, whenever a node chooses
to not act as forwarder and degrades performance in doing so, we further
pushes the node to act as a forwarder later, by giving an additional reward
for the ’forwarder’ decision. Finally, we use a pseudo-random order for the
serialized execution. This allows us to avoid network-breaking configurations in
deployments where geographically close nodes would otherwise be potentially
always in the same order.

4.5 System Design: Dimmer, an All-to-All adap-
tive primitive

After discussing the RL-oriented design choices of Dimmer, we now introduce
the integration of Dimmer into the LWB protocol stack. We dive into the
architecture of Dimmer in §4.5.1, its central adaptivity control in §4.5.2, and
its forwarder selection scheme in §4.5.3.

4.5.1 Architecture

We build Dimmer over LWB’s 2019 reimplementation [143], and depict its
architecture in Fig. 4.6. Dimmer is composed of four main novel components: a
statistics collector, used to close the feedback loop, the central adaptivity control
incorporating our deep-Q network (DQN), the forwarder selection implementing
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multi-armed bandits, and a controller managing and coordinating the different
components. The statistics collector has privileged access to the LWB runtime
and sent and received packets. The controller updates internal scheduling
parameters as well as the bus interface (i.e., retransmission) parameters. At
the end of a communication round, the controller queries the central adaptivity
control for new parameters, and let nodes autonomously select non-critical
forwarders with their forwarder selection scheme if no losses have been detected.

Feedback loop. Like LWB, Dimmer works in communication rounds (c.f.
Fig. 4.3). A central coordinator acts as the LWB host. Each communication
round starts with a schedule dissemination from the coordinator. In addition
to the LWB schedule, Dimmer incorporates an adaptivity control command,
e.g., a new value N for the retransmission parameter. As soon as the schedule
slot has finished, all nodes apply the new parameter. If no losses have been
detected, the coordinator let nodes run their distributed forwarder selection
scheme.

A series of attributed data slots follows the first schedule dissemination. For
each data slot, the source node appends to its payload a four-byte metadata
representing two performance metrics: its radio-on time averaged over the
last floods, and its reliability. Whenever such a data packet is received, its
metrics are locally recorded by all receivers. This aggregation of performance
metrics allows Dimmer to create a global snapshot of the system’s behavior,
and is used by both the central adaptivity control at the coordinator and the
forwarder selection scheme at the nodes. We estimate the reliability via the
schedule: if no message is received during an assigned slot, it is considered lost.
If no information is received from a given node, the network assumes the worst
and sets its statistics accordingly (100% radio-on time, 0% reliability). Thus,
missing metrics are always pessimistically filled.

Latency of feedback. Collecting feedback is not an instantaneous proce-
dure. While the retransmission parameter is updated at the beginning of the
communication round T, the effectiveness of the update is only known at the
end of round 7'+1: node first locally measure performance, and later share their
statistics during the next round. Thus, collecting feedback always take two
communication rounds, assuming enough data slots are available during a round.
We note that although Dimmer’s latency has no strong dependency on the
number of nodes, the round periodicity might increase for large deployments.

4.5.2 Central Adaptivity Control

Under challenging wireless conditions, it is imperious to maintain the maximum
achievable reliability. We endow Dimmer with a central policy control unit,
operating an embedded deep Q-network, see Fig. 4.3. Whenever interference
is detected, Dimmer updates the retransmission parameter to tackle the per-
formance degradation, and reduces it once the interfering episode has passed.
Since LWB communication starts with a schedule dissemination from the coor-
dinator, Dimmer adapts the retransmission parameter of the entire network at
no additional communication cost, by simply piggybacking commands with the
schedule.

Embedded DQN. We target TelosB motes as platform, meaning we
restrict ourselves to a 4 Mhz 16-bit CPU with 10KB of RAM. In §4.4.1, we
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specify our DQN with two fully connected layers: a hidden layer of 30 neurons
with ReLLU, and an output layer of three neurons. Due to the simplicity of our
neural architecture and in order to save space, we implement our own neuronal
compute-system rather than use an existing framework. Like other embedded
solutions [144], we use fixed-point integers for computation. We choose a fixed
point of 100, effectively truncating our initial weights to two floating digits
and representing them as integers. By using two bytes per weight and four
bytes for intermediary computation, our DQN uses around 2.5 KB of memory:
2.1 KB are used to store weights in flash, while 400 B of RAM are used for
intermediary results at runtime. Obtaining an output takes roughly 90 ms.
This high latency is due to the use of 32 bits integer for computation on a
16-bit architecture.

4.5.3 Distributed Forwarder Selection

In the absence of interference, not all transmissions in a Glossy flood are
beneficial [132,133]. Nodes can be classified as active forwarders, acting as
packet relays during the flood, or as leaf nodes, for which transmissions are
non-critical for the correct dissemination of the flood. By deactivating leaf
nodes, it is possible to save energy without degrading reliability.

Serialized Exp3. We model the forwarder selection problem as a multi-
armed bandit (MAB) problem and solve it using Exp3 [141]. Each node
executes a local instance of Exp3. If the central coordinator does not detect
interference, it lets the nodes execute their forwarder selection scheme. To
avoid concurrent updates, at most one node learns at a time. We select the
learning node following a globally known, pseudo-random sequence. During the
learning stage, the node randomly decides whether to act as forwarder or leaf,
drawn from a probability computed by Exp3. Once feedback is collected, the
learning node is rewarded or punished if performance is degraded. In addition,
if the node causes loss by acting as a leaf, we further reinforce the ‘forwarder’
arm to avoid further losses. After 20 learning iterations, the learning node
freezes its current behavior, and the next node in the sequence starts learning.

Slow adaptivity. Convergence to the optimal state is not guaranteed.
Systems using Exp3 can suffer non-convergent states, where action weights
oscillate [93]. Rewarding the ‘forwarder’ arm after losses, using a globally-
known pseudo-random sequence and giving 20 consecutive learning iterations
are key techniques we use to reduce the risk of non-convergence. In addition,
such distributed instances can be slow to react. For a deployment with n, we
can require up to 20 X n rounds to reach a new, stable forwarder set.

4.6 Evaluation

We evaluate Dimmer on two testbeds composed of 18 and 48 TelosB nodes,
respectively. We investigate the following questions: Which input features affect
the overall performance of Dimmer (§4.6.2), How does adaptivity manifest
(84.6.3), How does the distributed forwarder selection perform (§4.6.4), and can
Dimmer be used on a different topology with no additional training (§4.6.5).
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Figure 4.7. Testbed topology: 18 resource-constrained TelosB nodes
are deployed throughout offices and student lab rooms. The deploy-
ment is colocated with two WiFi access points, and has a 3-hop
network diameter. Two IEEE 802.15.4 jammers are placed to inter-
fere as many nodes as possible.

4.6.1 Setup and Methodology

We lay out the setup we use in this evaluation, as well as our experimental
methodology we follow.

Implementation. Based on LWB’s reimplementation for Contiki-NG [143],
we build Dimmer for the TelosB platform featuring a 4 MHz 16-bit CPU, 10
KB of RAM, 48 KB of firmware storage, and a CC2420 radio compatible with
IEEE 802.15.4. We implement Dimmer in C, and we make the primitive and
its training environment open-source (see footnote in §4.1 for a link).

Testbeds. We evaluate Dimmer on a local testbed comprising 18 TelosB
motes, see Fig. 4.7. The testbed is deployed in offices and students lab rooms,
and shares the spectrum with WiFi deployments and many Bluetooth PANs
(from cellphones, headphones, keyboards etc.). Both are outside of our control
and commonly are the source of heavy traffic, i.e., interference, during work
hours. Additionally, two TelosB motes are used as jammers to inject 802.15.4
interference using Jamlab [145], in a controlled manner.

In the second part of the evaluation, we evaluate Dimmer on the public
testbed D-Cube, featuring 48 TelosB motes and the ability to inject WiFi
interference [146].

PI controller baseline. To investigate the advantages of RL, we addition-
ally evaluate a traditional solution for closed-loop systems, a PI controller [136],
enhanced with handcrafted rules. We set Kp to 1 and K7 to 0.25, and add
additional mechanisms to the controller to avoid rapid parameter decrease,
which inevitably leads to decreased reliability if done too often. We test and
calibrate our PI controller both with the traces we use to train Dimmer, as
well as on the deployment itself. We calibrate the controller to provide ~99.9%
reliability under no interference, and to maintain high reliability even under
jamming.

Interference scenarios. The testbed used is colocated with WiFi and
Bluetooth PANs. We evaluate the following scenarios:
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Figure 4.8. Impact of the number of nodes and historical data as
input to the DQN. (a) Using only the worst node performance as in-
put to the DQN leads to an overly conservative strategy that wastes
energy but does not improve reliability. (b) Using historical data
helps improve reliability. We select 10 input nodes and 2 historical
features.

e No interference: experiments ran at night on channel 26 (i.e., without

WiFi), no injected interference.

e Daytime level (uncontrolled interference): experiments ran during the

day on channel 13, with colocated WiFi and Bluetooth PANs.

Controlled 802.15.4 interference: We use the CC2420 radio chip’s ability
of generating a pseudo-random data sequence that we transmit at 0 dBm
on additional TelosB motes, on channel 26. We interfere with the medium
with a 13 ms burst, which corresponds to a typical WiFi burst of packets
[145], followed by a calm period. We quantify the interference strength
by the ratio of time the channel is jammed: an interference of 10%
corresponds to a 13 ms burst followed by 117 ms with no interference,
while a 35% interference ratio represents a 13 ms burst followed by 24 ms
calm period.

D-Cube [146]: We use the public testbed D-Cube, featuring controlled
WiFi interference.

Metrics. Throughout this section, we use the two metrics, defined as
follows:

e Radio-on time: the amount of time the radio has been active (either

listening or transmitting) for one slot. The radio-on time is averaged over
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Figure 4.9. Tuning the reward function: increasing C in Eq. 4.3 has
a direct effect on the learned strategy. Low C values favor reliability
over energy, while high values improve energy efficiency.

all slots since the last parameter update. Slots in which no packet was
received are accounted for.

e Network reliability: application-level reliability, a packet is considered
lost if at least one destination did not receive it.

4.6.2 Deep-Q Network Features Selection

In this section, we study the effect of the number of historical and performance
features used as input to Dimmer, as well as the impact of the reward function
on the overall performance. We collect a evaluation dataset of 25 000 samples
over channel 26, featuring some periods of mild and heavy interference, and
some interference-free periods. For each parameter we evaluate, we train three
models, and average the overall performance over those models. For each model,
we run 100 episodes comprising 100 consecutive decisions each for the number
of nodes and reward, and 1000 episodes of 2 consecutive decisions to show the
direct effect of historical features.

Number of Nodes as Input: Scenario. We evaluate how many node
inputs are necessary for Dimmer. As described in detail in §4.4.1, Dimmer
selects K nodes with the worst performance as input to its DQN. We fix the
number of historical features to 2, and vary K from one, i.e., only the worst
performance is accounted, up to all nodes are used as input.

Results. Fig. 4.8a depicts the effect of K on Dimmer’s radio-on time.
Taking a very limited subset of nodes leads to an overly conservative policy,
wasting energy by retransmitting too often, even in non-interfered scenarios.
With all nodes used as input, the DQN tends to overfit, and reacts even to
transient disturbances, as depecited by the high radio-on time in Fig. 4.8a. Note
that the reliability is constant for all experiments, meaning that these overly
conservative strategies do not improve further reliability. For the remainder
of this evaluation, we choose K = 10 as our input, which both minimizes the
radio-on time, as well as provides a good trade-off w.r.t. the neural network
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Figure 4.10. Adaptiveness to interference.

size.

History Size: Scenario. We evaluate if historical features are beneficial
to adaptivity. In §4.4.1, we define an historical feature as 1 if no losses were
detected the previous round, and -1 if at least one packet was lost. For
this scenario, we focus on short decision updates in low and mild interfered
environment, to test Dimmer’s ability to distinguish transient disturbances
from longer-term interference.

Results. Fig. 4.8b shows the impact of using historical features. Adding
historical features helps Dimmer differentiate transient interference that affects
a single round, from long-term interference that must be dealt with. In the
absence of historical features, the DQN obtains 98.5% reliability, while it
achieves 99% with historical features. The number of historical features does
not seem to have a measurable impact on the overall performance in our
evaluation, but the interference patterns present in the training dataset can
affect the overall impact of historical features. As our training set contains
traces where we inject perturbations to the wireless medium followed by long
periods of calm, a single historical feature is sufficient to detect interfered-
periods from transient disturbances. Other interference patterns might require
more historical features to be correctly detected. For the remainder of this
evaluation, Dimmer uses two historical features.

Reward Function: Scenario. We evaluate the effect of the constant C'
in our reward function, see Eq; 4.3, over both interfered and non-interfered
environments.

Results. Fig. 4.9 depicts the impact of C' in the reward function. For a
low constant C', the system learns to use a high retransmission parameter, even
in non-interfered environments. From C = 0.3 and higher, Dimmer converges
to Nrx = 3, the value recommended by Glossy’s designers [23]. Note that for
high C' values, the Q-function learned by the DQN outputs small values, which
can negatively impacts performance once the DQN is quantized. We select
C = 0.3 for the remainder of this evaluation.
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Figure 4.11. Resilience to interference.

4.6.3 Adaptivity Against Interference

Next, we evaluate how Dimmer adapts to interference. First, we depict how
Dimmer handles coming-and-going interference patterns. Then, we evaluate
Dimmer’s performance against different interference levels.

Scenario: dynamic interference. We operate Dimmer on our office-
deployed testbed, see §4.6.1, on channel 26. After five minutes, we inject IEEE
802.15.4 interference using additional TelosB motes. We repeat this injected
interference followed by a calm period three times, with varying interference
strength, using 10, 20 and 35% jamming, respectively representing low, mild
and heavy interference. We then repeat the same scenario, replacing our DQN
with a PI controller enhanced with handcrafted rules (c.f. §4.6.1)

Results. Fig. 4.10a depicts Dimmer’s operation against dynamic inter-
ference. We depict reliability using a smoothing window of size s = 5. As
soon as losses are detected, Dimmer increases its retransmission factor Nrx
to tackle the disturbance. Once the interfering episode has passed, Dimmer
quickly converges back to its default, learned value. Note that Dimmer is
able to differentiate low interference (10%), where it tries to reduce Nrx
more often, from heavier interference, where the maximum retransmission is
maintained longer. While the PI controller is also able to detect interference
and quickly counter its effects (Fig. 4.10b), it is unable to distinguish different
interference patterns, and we have to supplement it with handcrafted rules to
avoid decreasing too early. Furthermore, our PI controller is unable to find
the optimal N7 x in during interference-free periods, and oscillates constantly.
Note that although the PI controller oscillates, we tuned its parameters to
provide almost 100% reliability in the interference-free case. It is possible to
improve the controller’s behavior, but such tuning would be time-consuming.
In the depicted run, Dimmer achieves an average reliability of 98.1%, and the
PI controller obtains 97.9%, for a much higher radio-on time, meaning Dimmer
is well suited to detect and adapt to different interference patterns.

Scenario: interference levels. We run Dimmer for 30 minutes against a
continuous, static interference-pattern, on channel 26. We evaluate Dimmer’s
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reliability and the amount of time the radio is active for, for different interference
levels. We repeat this scenario for the PI controller described above, as well
as for LWB, with its default retransmission parameter Nyx = 3. Results are
averaged over three 30-minute runs for each interference level.

Results. Fig. 4.11a depicts Dimmer, LWB and the PI controller’s reliabili-
ties against static interference, while Fig. 4.11b shows their radio-on time as
a proxy for energy consumption. While all protocols performance decreases
as interference arises, both Dimmer and the PI controller are able to provide
similar, higher reliability. As the PI controller is unable to distinguish inter-
ference levels, its radio-on time reaches the maximum slot length of 20 ms
even in low-interfered environments. In contrast, Dimmer is able to quantify
interference strength, and reaches the maximum slot length at 20% interference
only, and is thus able to save energy compared to the handcrafted controller,
while offering the same performance.

In conclusion, it is possible to design a solution, either using a PI controller
or handcrafted rules, to adapt to interference. However, tuning it to differentiate
interference levels is arduous and a research task in itself, requiring expertise in
the field. In contrast, Dimmer is able to learn how to differentiate interference
levels and how to adapt from unlabeled traces, and does not require expert
knowledge during deployment. From this point, we do not evaluate further the
performance of our PI controller.

4.6.4 Forwarder Selection with MAB

Next, we evaluate the second component of Dimmer, its distributed forwarder
selection scheme using multi-armed bandits.

Scenario. We execute Dimmer’s forwarder selection scheme on channel 26
for 10 hours. During that time, the DQN is deactivated to avoid interference in
the learning process. Each node is given 20 consecutive rounds to try whether
it should act as forwarder, see §4.4.3 for details. We evaluate the number of
nodes that act as forwarders throughout time, as well as the impact of learning
on performance.

Results. Fig. 4.12 depicts the network reliability and the number of active
forwarders through time. Within the first hour, many nodes stop acting as
forwarders. As reliability drops in bad configurations, nodes adapt and act
again as forwarders, for example here at the 1 and 7-hour marks. After 8
hours, the network stabilizes with 10 active forwarders out of 18. On average,
nodes are active for 8.7 ms, while they are on average active for 11 ms without
forwarder selection. Because leaf nodes still listen at the beginning of a slot,
synchronisation does not break for leaf nodes. Fig. 4.13 depicts the learning
process of a single forwarder. It must be noted that since we cannot guarantee
any convergence, some nodes will change their role, possibly multiple times,
during the protocol execution. Neighboring nodes will adapt accordingly to
maintain communication.

4.6.5 Performance on Unknown Deployments

In this section, we evaluate whether Dimmer is able to perform on different
deployments, against unseen interference, without retraining its DQN.
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Figure 4.12. Forwarder Selection with Multi-Armed Bandits. Nodes
takes turn learning whether to act as forwarder. As learning occurs,
the number of forwarders decreases, but learning might cause packet
losses.

Scenario. We execute Dimmer on D-Cube, a public testbed featuring 48
TelosB nodes [146]. D-Cube is able to inject either 802.15.4 or WiFi interference.
We limit Dimmer to channel 26 to evaluate the generality of adaptivity. We
run Dimmer in three scenarios: an interference-free case, a 802.15.4 interference
case, and a WiFi interference case. As the injected WiF1i interference surpasses
any 15.4 transmission, no single-channel protocol is able to ensure reliable
delivery in this scenario. The WiFi and 802.15.4 interference in D-Cube are
reproducible, and we consider the first level of interference available in this
evaluation. We use the Data Collection V1 scenario defined in D-Cube. In this
scenario, a known set of five nodes transmits packets at random intervals to a
known sink. Here, reliability is defined as the number of packets received at
the sink. For each scenario, we run five 10-minute experiments and average
the results.

Results. Fig. 4.14 depicts the results of Dimmer and LWB on D-Cube
for all three scenarios. Both LWB and Dimmer obtain 100% reliability in the
interference-free case, for similar energy consumption. Under 802.15.4 interfer-
ence, LWB and Dimmer obtain 99.4% and 99.6% reliability respectively. In this
scenario, interference seems to be sparse, and Dimmer hardly differentiates from
normal, transient disturbances. Finally, we inject WiF1i interference against
Dimmer. LWB higly suffers from the disturbance, and obtains on average 30%
reliability. In contrast, Dimmer is able to achieve 58% reliability on average,
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Figure 4.13. Probability to act as forwarder. As time passes, a node
learns it is vital for a correct flood propagation. A small probability
is maintained to allow adaptation to new network dynamics.

reaching 80% on multiple instances, but also dropping to 30% in one run, even
if Dimmer does recognize the interference and adapts its retransmission to
Nrx = 8 in all runs. This means that Dimmer is able to perform on a new
topology with more than two times the number of devices, as well as react to
interference never seen before, without the need to retrain its DQN.

4.7 Related Work

Surviving interference. Traditional approaches to improving reliability focus
on two orthogonal techniques: transmission scheduling and channel hopping.
Coupled with a higher, fixed retransmission count, Robust Flooding successively
transmits the packet several times in a row in order to improve resilience to
interference [32]. In contrast, we update the retransmission count to adapt to
current interference levels in Dimmer, but keep Glossy’s transmission schedule.
Going multi-channel is also an effective and well documented approach to
survive interference and jamming: Istomin et al. improve Crystal, an aperiodic
data collection primitive, against heavy interference scenarios using channel-
hopping [28]. Similarly, the winning solution for the 2019 EWSN dependability
competition, DeCoT+ [134], uses multi-channel, as well as most solutions in the
previous years. Dimmer supports a simple slot-based channel-hopping scheme,
but we plan to improve it with a learned blacklisting method in the future.

Traffic-based adaptivity. Earlier works refer to adaptivity as the ability
to adapt traffic changes. LWB is able to adapt its round periodicity as well as
the number of data slots to the current traffic needs [27]. Blink builds on top
of LWB to provide communication with end-to-end guarantees, by building a
schedule at runtime [80]. In contrast, we use adaptivity in this paper to refer
to the ability to adapt to environment changes.

Al-enabled wireless systems. Lately, RL and deep-RL (i.e., RL us-
ing deep neural networks) have been used to solve communication problems:
whether it is for routing [147], estimating link quality for RPL [148], MAC
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Figure 4.14. Porting Dimmer to a new deployment featuring un-
known interference. Without retraining, Dimmer is able to tackle
previously unseen WiF'i patterns, on a new 48-node deployment.

contention [91], schedule transmission [149], channel selection [92], or even
learning new modulation schemes [59].

Closer to our work, Zhang et al. use multi-armed bandits (MAB) to select
the number of retransmission within a Glossy flood [93]. Zhang et al. set out
to find the optimal N parameter for each node in the network, but assume
that (1) the environment does not evolve quickly, and (2) possibly break the
constructive interference requirements when providing feedback. In contrast,
our work uses a DQN to find the global N parameter under varying conditions,
and uses MAB to find a subset of necessary forwarders and leaf nodes to save
energy during interference-free periods.

4.8 Conclusion

Although Glossy-based communication primitives provide low-latency and
high-reliability message delivery, they suffer from two limitations: (1) they
are invariant to their environment dynamics, and rely on over-provisioning
to maintain performance under disturbances, and (2) their one-fits-all design
lead to wasted energy in dense deployments. We argue that communication
primitives for low-power wireless networks should be more adaptive with respect
to their environment, by meeting a target performance while ensuring energy
efficiency. We introduce Dimmer, an adaptive all-to-all communication protocol
built on top of LWB, bringing the recent advances of deep reinforcement
learning to low-power networking. We combine a deep Q-network that centrally
controls the retransmission parameter to tackle quick interference surges, with
a distributed multi-armed bandits approach to save energy during interference-
free periods. Trained over unlabeled traces, Dimmer adapts to perturbations
to the medium, and can be ported to different deployments without the need
to retrain.

In the future, we plan to extend Dimmer with blacklisting-enabled multi-
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channel capabilities, where Dimmer will learn to avoid and reintroduce channels
based on past performance.
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