3,028 research outputs found

    Fast Supervised Hashing with Decision Trees for High-Dimensional Data

    Get PDF
    Supervised hashing aims to map the original features to compact binary codes that are able to preserve label based similarity in the Hamming space. Non-linear hash functions have demonstrated the advantage over linear ones due to their powerful generalization capability. In the literature, kernel functions are typically used to achieve non-linearity in hashing, which achieve encouraging retrieval performance at the price of slow evaluation and training time. Here we propose to use boosted decision trees for achieving non-linearity in hashing, which are fast to train and evaluate, hence more suitable for hashing with high dimensional data. In our approach, we first propose sub-modular formulations for the hashing binary code inference problem and an efficient GraphCut based block search method for solving large-scale inference. Then we learn hash functions by training boosted decision trees to fit the binary codes. Experiments demonstrate that our proposed method significantly outperforms most state-of-the-art methods in retrieval precision and training time. Especially for high-dimensional data, our method is orders of magnitude faster than many methods in terms of training time.Comment: Appearing in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2014, Ohio, US

    Efficient Decomposed Learning for Structured Prediction

    Full text link
    Structured prediction is the cornerstone of several machine learning applications. Unfortunately, in structured prediction settings with expressive inter-variable interactions, exact inference-based learning algorithms, e.g. Structural SVM, are often intractable. We present a new way, Decomposed Learning (DecL), which performs efficient learning by restricting the inference step to a limited part of the structured spaces. We provide characterizations based on the structure, target parameters, and gold labels, under which DecL is equivalent to exact learning. We then show that in real world settings, where our theoretical assumptions may not completely hold, DecL-based algorithms are significantly more efficient and as accurate as exact learning.Comment: ICML201

    A submodular optimization framework for never-ending learning : semi-supervised, online, and active learning.

    Get PDF
    The revolution in information technology and the explosion in the use of computing devices in people\u27s everyday activities has forever changed the perspective of the data mining and machine learning fields. The enormous amounts of easily accessible, information rich data is pushing the data analysis community in general towards a shift of paradigm. In the new paradigm, data comes in the form a stream of billions of records received everyday. The dynamic nature of the data and its sheer size makes it impossible to use the traditional notion of offline learning where the whole data is accessible at any time point. Moreover, no amount of human resources is enough to get expert feedback on the data. In this work we have developed a unified optimization based learning framework that approaches many of the challenges mentioned earlier. Specifically, we developed a Never-Ending Learning framework which combines incremental/online, semi-supervised, and active learning under a unified optimization framework. The established framework is based on the class of submodular optimization methods. At the core of this work we provide a novel formulation of the Semi-Supervised Support Vector Machines (S3VM) in terms of submodular set functions. The new formulation overcomes the non-convexity issues of the S3VM and provides a state of the art solution that is orders of magnitude faster than the cutting edge algorithms in the literature. Next, we provide a stream summarization technique via exemplar selection. This technique makes it possible to keep a fixed size exemplar representation of a data stream that can be used by any label propagation based semi-supervised learning technique. The compact data steam representation allows a wide range of algorithms to be extended to incremental/online learning scenario. Under the same optimization framework, we provide an active learning algorithm that constitute the feedback between the learning machine and an oracle. Finally, the developed Never-Ending Learning framework is essentially transductive in nature. Therefore, our last contribution is an inductive incremental learning technique for incremental training of SVM using the properties of local kernels. We demonstrated through this work the importance and wide applicability of the proposed methodologies

    Doctor of Philosophy

    Get PDF
    dissertationThe goal of machine learning is to develop efficient algorithms that use training data to create models that generalize well to unseen data. Learning algorithms can use labeled data, unlabeled data or both. Supervised learning algorithms learn a model using labeled data only. Unsupervised learning methods learn the internal structure of a dataset using only unlabeled data. Lastly, semisupervised learning is the task of finding a model using both labeled and unlabeled data. In this research work, we contribute to both supervised and semisupervised learning. We contribute to supervised learning by proposing an efficient high-dimensional space coverage scheme which is based on the disjunctive normal form. We use conjunctions of a set of half-spaces to create a set of convex polytopes. Disjunction of these polytopes can provide desirable coverage of space. Unlike traditional methods based on neural networks, we do not initialize the model parameters randomly. As a result, our model minimizes the risk of poor local minima and higher learning rates can be used which leads to faster convergence. We contribute to semisupervised learning by proposing 2 unsupervised loss functions that form the basis of a novel semisupervised learning method. The first loss function is called Mutual-Exclusivity. The motivation of this method is the observation that an optimal decision boundary lies between the manifolds of different classes where there are no or very few samples. Decision boundaries can be pushed away from training samples by maximizing their margin and it is not necessary to know the class labels of the samples to maximize the margin. The second loss is named Transformation/Stability and is based on the fact that the prediction of a classifier for a data sample should not change with respect to transformations and perturbations applied to that data sample. In addition, internal variations of a learning system should have little to no effect on the output. The proposed loss minimizes the variation in the prediction of the network for a specific data sample. We also show that the same technique can be used to improve the robustness of a learning model with respect to adversarial examples
    • …
    corecore