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ABSTRACT 

A SUB MODULAR OPTIMIZATION FRAMEWORK FOR NEVER-ENDING 

LEARNING: SEMI-SUPERVISED, ONLINE, AND ACTIVE LEARNING 

Wael Emara 

November 26,2012 

The revolution in information technology and the explosion in the use of computing 

devices in people's everyday activities has forever changed the perspective of the data min­

ing and machine learning fields. The enormous amounts of easily accessible, information 

rich data is pushing the data analysis community in general towards a shift of paradigm. In 

the new paradigm, data comes in the form a stream of billions of records received everyday. 

The dynamic nature of the data and its sheer size makes it impossible to use the traditional 

notion of offline learning where the whole data is accessible at any time point. Moreover, 

no amount of human resources is enough to get expert feedback on the data. 

In this work we have developed a unified optimization based learning framework 

that approaches many of the challenges mentioned earlier. Specifically, we developed a 

Never-Ending Learning framework which combines incremental/online, semi-supervised, 

and active learning under a unified optimization framework. The established framework is 

based on the class of submodular optimization methods. 

At the core of this work we provide a novel formulation of the Semi-Supervised 

Support Vector Machines (S3VM) in terms of submodular set functions. The new formu­

lation overcomes the non-convexity issues of the S3VM and provides a state of the art 

solution that is orders of magnitude faster than the cutting edge algorithms in the literature. 

Next, we provide a stream summarization technique via exemplar selection. This 

technique makes it possible to keep a fixed size exemplar representation of a data stream 
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that can be used by any label propagation based semi-supervised learning technique. The 

compact data steam representation allows a wide range of algorithms to be extended to 

incremental/online learning scenario. Under the same optimization framework, we provide 

an active learning algorithm that constitute the feedback between the learning machine and 

an oracle. 

Finally, the developed Never-Ending Learning framework is essentially transductive 

in nature. Therefore, our last contribution is an inductive incremental learning technique 

for incremental training of SVM using the properties of local kernels. We demonstrated 

through this work the importance and wide applicability of the proposed methodologies. 
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CHAPTER I 

INTRODUCTION 

In today's world, there is an explosive growth of information technology in terms of 

data generation. The data produced in 2006 alone was estimated to be 161 Exabyte (Billion 

GByte) [33]. The statistical properties of the generated data are dynamic in nature. Data 

distributions are evolving, new patterns are emerging/vanishing, and interesting concepts 

are shifting. Biometric identification systems, multimedia search engines, fraud detection 

systems, web content classification systems, robotics are some examples of applications 

that produce large dynamic data volumes. The dynamic nature of the data makes the use 

of traditional learning paradigms, in which models are learned once using a training data 

set and then used forever, not useful anymore. In contrast, learning paradigms that mimics 

learning in humans and other animals, where learning is an ongoing process, is more ap­

propriate for the future of the machine learning field. We refer to such learning paradigms 

as Never-Ending Learning as discussed next. 

1.1 Never-Ending Learning 

Never-Ending Learning paradigms, also called lifelong learning, have been widely 

acknowledged in the literature [50, 66, 68, 69, 70]. The basic concept was articulated to 

handle the proposition that learning tasks in humans are not isolated from each other. In 

contrast, humans tend to use all their experience from previous tasks to make the learning 

of a new task easier and faster. As such, most of the literature in this topic study machine 

learning algorithms capable of transferring knowledge across multiple learning tasks. This 

is applied in situations where a learning machine faces a never-ending sequence of learning 

tasks over its entire lifetime. The never-ending learning process happens incrementally 

where learning occurs at every time step. If such tasks are related, the never-ending learning 
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paradigm provides the opportunity for synergy. This paradigm has been mostly applied to 

robotics reinforcement-learning tasks [69] and recently to knowledge extraction from the 

web [7]. 

The basic characteristics of never-ending learning have been considered throughout 

several research directions in machine learning. These directions include transfer learning, 

multi task learning, incremental learning, sample bias correction, and concept drift analysis. 

While transfer learning and multi task learning both share the notion of applying knowledge 

learned from one or more tasks to related tasks, they differ in the direction of knowledge 

transfer between tasks. Transfer learning [67, 77, 78] performs the knowledge transfer 

in unidirectional manner from older learned related tasks to a currently pursued one. On 

the other hand, multitask learning [3, 4, 5, 15] uses bidirectional transfer of knowledge 

between tasks as it attempts to learn multiple related tasks together. As opposed to transfer 

and multi task learning, where several tasks are involved at each time step, incremental 

learning [16, 32, 59] is concerned with only one task (itself) throughout its lifetime. This 

is why incremental learning can be thought of as a special case of transfer learning where 

a task transfer knowledge to itself by updating the current model using subsets of training 

data the become available with time. Other issues that face never-ending learning are those 

related to the differences in the statistical properties of training data between different tasks 

or the evolution of single data set with time. The former issue is studied through sample 

bias correction [11, 12,29, 39] where the distribution of test and training data are different, 

while the latter is examined through concept drift analysis [24,44,45, 75]. 

An important aspect for the never-ending learning paradigm is the quality and use­

fulness of the used training data. While labeled data grant ultimate information content 

for learning, it is well known that the labeling process of training data is a costly and time 

consuming process. On the other hand, vast amounts of unlabeled data are being collected 

all the time. This issue raised the question about the possibility to choose ahead of time 

some subsets of training data that are expected to be of most usefulness for the learning task 

at hand. Then, these are the data subsets that will be labeled. This is referred to as active 

learning [13, 50]. Another question is that if using unlabeled data along with labeled data 

will improve the learning process. It turned out using unlabeled along with labeled data 
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reduces dramatically the cost of supervised learning. This issue, called semi-supervised 

learning, has widely attracted the attention of the machine learning research community 

recently [50, 81]. Beside being provably beneficial for semi-supervised learning, using 

unlabeled samples has shown significance in transfer learning [58], multitask learning [4], 

and sample bias correction [29, 39]. 

Despite being a broad learning paradigm that encompasses many machine learning 

research directions, any algorithm for never-ending learning is defined by some basic char­

acteristics that will define its scope. These characteristics include: the number of learning 

tasks involved (single or multiple), availability of training data labels (labeled, unlabeled, 

or both), the nature of the data spaces (open or closed data spaces), and the assumption 

about the training data distributions and concept definitions (fixed or evolving). 

1.2 Contributions and Structure of the Dissertation 

The goal of this dissertation is to present a unified single-task (classification) and 

closed-space Never-Ending Learning framework for streaming data. We define a never­

ending learning machine by: (a) its ability to process data sequentially in streams, (b) the 

streaming data is partially labeled, and (c) the learning process should possess a mechanism 

of feedback from the machine to the supervising oracle in the form of active learning. A 

never-ending learning framework should be able to run for extended periods of time with 

little to no supervision from an oracle. Moreover, it must exhibit constant storage and time 

complexities. 

Support vector machines (SYM) [72, 73] are powerful and popular machine learning 

tools due to their good generalization performance. Therefore, research has been active 

into extending them to the semi-supervised learning paradigm [17]. The difficulty of the 

problem and challenge to solve it accurately and efficiently has inspired us to build our 

never-ending learning framework around the Semi-Supervised Support Vector Machine 

model (S3YM). 

Chapter III represents the core of the dissertation where we developed a novel for­

mulation of the S3YM in terms of standard quadratic programming optimization. The 
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new formulation overcomes the non-convexity issues of the S3YM and makes it feasible 

to use off the shelf optimization techniques to solve such a hard problem. One important 

contribution of the new quadratic programing formulation is that it uncovers an intuitive 

relationship between the two major categories of semi-supervised learning, namely the 

low-density separation and the graph-based methods. This relationship will help migrate 

ideas and algorithms between both categories. 

The second major contribution in Chapter III is the introduction of submodular set 

functions optimization to the problem of semi-supervised learning. We transformed the 

quadratic programming S3YM into a submodular optimization function. We then showed 

that in this new form, we could achieve statistically comparable classification accuracies to 

the state of the art S3YM algorithms. Meanwhile, the achieved execution times are orders 

of magnitude better than the state of the art. 

In Chapter IY we present a stream summarization algorithm via exemplars selection. 

This algorithm provides our contributions in Chapter III with a mechanism for achieving 

constant time and storage complexity. This is achieved by choosing exemplars that pre­

serve the inherent data structures necessary for semi-supervised learning. Once again the 

exemplar selection algorithm is formulated under the submodular optimization framework 

which makes it very efficient. One major advantage of the developed stream summarization 

algorithm is that it is not specific for the S3YM problem but rather general in the sense that 

the preserved properties in the exemplars can be used by any label propagation learning 

algorithm. Under the same submodular optimization framework, in Chapter Y we provide 

an active learning algorithm that constitute the feedback between the learning machine and 

an oracle. 

All the provided algorithms in the previous chapter work under the transductive 

learning paradigm. In transductive learning only the labels of the unlabeled samples are 

produced as the output of the learning process. However, no model is available to classify 

new never seen data. In Chapter VI we present an inductive incremental learning algorithm 

for supervised SVM. This algorithm uses the properties of local kernels (e.g. RBF) to per­

form local and efficient updates to an SVM model. The main contribution of this chapter 

is that we have proved analytically and illustrated experimentally that the well know local-
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ity of the RBF -SVM during the testing stage is actually transferrable to the training stage. 

The provided contributions in Chapter VI complements the proposed never-ending learn­

ing framework by providing a methodology to keep an inductive model of the data stream. 

Finally, Chapter VII provides a summary of the conclusions of the dissertation and some 

directions for future work. 
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CHAPTER II 

PRELIMINARIES 

In this chapter we provide an introduction to the basics of Support Vector Machines 

(SVM) in the supervised and semi-supervised learning paradigms. We also present the 

algorithms we used to implement the supervised SVM. Moreover, we present an introduc­

tion to submodular set function optimization which constitutes the backbone for many of 

the algorithms developed in this dissertation. 

11.1 Background of Support Vector Machines 

In order to introduce Support Vector Machines (SVMs), we will first start with dis­

cussing linear classifiers and learning in feature spaces. 

11.1.1 Linear Classifiers 

Given a training data set S = {(Xi, Yi)}~=l' where Xi E lRn and Yi E {+ 1, -1}. 

A binary classifier is a real valued function f : lRn -+ lR for which sign(J(xi)) = Yi. A 

function f(x) is called a linear classifier when it can be written in the following form: 

f(x) (w,X) +b (11.1 ) 
n 

where w E lRn and b E lR are the classifier parameters. Linear classifiers can also be 

interpreted geometrically as a hyperplane in lRn
-

1, where w is the normal vector to the 

hyperplane and b is its distance from the origin. 

Figure (II. I-a) shows a linear separating hyperplane parameterized by (w, b). Figure 

(II. I-b) illustrates the fact that there are many hyperplanes that are capable of separating 
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Figure II.I: (a) Illustration of the concept of a linear hyperplane and a depiction of its 
parameters w and b. (b) Depiction of a subset of the possible hyperplanes that my separate 
the two classes. 

the shown two classes. Choosing one hyperplane is an issue that will be discussed when 

we get to support vector machines. 

11.1.2 Learning in Feature Space 

For many of the real world applications linear separation of the data may not be 

possible. This leads to the necessity of non-linear separators (decision functions) . Non­

linear separators my be viewed as linear separators in a different space. Therefore the 

strategy used in machine learning to accommodate non-linear separators involves mapping 

the input data X i to a new space called the Feature Space , where they can be linearly 

separated. 

Figure II.2 shows how non-linear separation in the original data space can be achieved 

via a non-linear mapping to a feature space via a mapping function ~ (x) . Because a linear 
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Figure II.2: An illustration of how non-linear separation in the original data space (left) is 
possible by mapping the data into a higher dimensional feature space (right) where linear 
separation is possible. 

separator is now constructed in the feature space, Eq. (1I.2) will have the following form: 

f(x) (w, <p(x)) + b (II.2) 
n 

L wi<I>(xd + b 
i= l 

11.1.3 Supervised Support Vector Machines 

Support Vector Machines (SVM) were first introduced by Vladimir Vapnik in 1982 

[71]. Formally, for a training data set S = {(Xi, Yi )}~= l ' where Xi E ]Rn and Yi E {+ 1, -I}, 

SVM in its linear form is a hyperplane that separates the two classes in S with a maximum 

margin. The samples of S that lie closest to the SVM hyperplane are called Support Vec­

tors. The name Support Vector Machines is coined to indicate that the obtained hyperplane 

depends only on the support vectors. To formalize the SVM problem, the margin is defined 

as follows: 

Definition The functional margin I I i of a training sample (Xi , Yi) with respect to a hyper­

plane (w, b) is defined as: 
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From the definition of a functional margin, it is clear that if a sample (Xi, Yi) is correctly 

classified then its functional margin is positive, If i > O. 

Among all the hyperplanes that separate the training data, SVM finds the one with 

the maximum margin. However, the functional margin If i can be made arbitrarily large 

by scaling wand b. Therefore, a normalized version of If i can be used instead. This 

normalized margin is called the Geometric Margin, 19i [23]: 

(II.3) 

The geometric margin measures the Euclidean distances of the data samples from the deci­

sion boundary in the input space. The SVM goal of finding the hyperplane that maximizes 

the geometric margin can be formulated as the solution of the following optimization prob­

lem: 

S.t. 

max Ig 
w,b 

Yi((W,Xj)+b) > 
Ilwll - 19' 

(II.4) 

i = 1, ... , I 

which can be solved by minimizing Ilwll instead of maximizing the margin as follows [23]: 

min Ilwll 
w,b 

(II.S) 

S.t. Yi( (w, Xi) + b) :2: 1, i = 1, ... , I 

This follows from the fact that Ig = II~II' To show how this fact came about we will again 

consider the functional margin 

(II.6) 

Substituting two support vectors x+ and x- as some positive and negative samples, we 

obtain the following 

+1( (w, x+) + b) = If 

-1( (w, x-) + b) = If 

Adding (II.7) and (II.8) and using the fact that If = Igllwll, we obtain the following: 

9 

(II.7) 

(II.8) 

(II.9) 



Therefore, for I f = 1 

(ILIO) 

and hence 19 = II ! II . Figure II.3 provides an illustrative example of a simple linear SVM 

with depictions of both support vectors and geometric margins. 

Figure II.3: An illustration of a simple linear SVM parameterized by (w, b). The circled 

data samples are the support vectors and the associated dotted arrows depict the margin of 

each support vector. 

11.1.4 Optimization in Support Vector Machines 

Many optimization formulations have been proposed for SVMs [56, 57, 71]. A key 

property of SVMs is that the optimization formulations are often convex and therefore a 

global optimum can be guaranteed. This section presents basic optimization formulations 

for SVMs in the cases where the training data examples may and may not be linearly 

separable. 
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11.1.4.1 Separable Case 

Using the definition of the inner product, the SVM problem for linearly separable 

training data can be written as: 

min ~(w, w) 
w,b 

(lUI) 

s.t. i = 1, ... , l 

The solution of (11.11) is easier to obtain for the dual representation of the problem. Fur­

thermore, the dual representation is also important for employing kernels with SVMs to ob­

tain non-linear decision functions. The procedure to find the dual representation of (11.11) 

consists of finding its Lagrangian primal representation and then getting the dual of the 

Lagrangian. 

In the following, we give the definition of the Lagrangian and Kuhn-Tucker theorem 

which gives necessary and sufficient conditions for an optimum solution to the optimization 

problem. 

Definition Given the optimization problem 

min f(X) 
x 

s.t. 9i(X) ::; 0, , i = 1, ... , k 

j = 1, ... ,m 

The Lagrangian primal is defined as: 

k m 

L(X, a, (3) = f(X) + L ai9i(X) + L (3jhj (X) 
i=1 j=1 

= f(X) + ag(X) + (3h(X) 

where ai and {3j are called the Lagrangian multipliers. 

The Lagrangian is usually used to transform a constrained optimization problem into 

a non-constrained one. The Kuhn-Tucker theorem gives necessary and sufficient conditions 

for the optimal solution in terms of the Lagrangian. 
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Theorem 1. (Kuhn-Tucker) Given the optimization problem [23 J 

min f(X) 
x 

s.t. 9i(X) ~ 0, , i = 1, ... , k 

hj(X) = 0, j = 1, ... ,m 

with the convex domain n ~ ]Rn, f is convex, and 9i and h j are affine. X* is an optimum 

solution if and only if there exist a*, (3* such that 

aL(X*, a*, (3*) = 0 
ax 

i = 1, ... , k 

i = 1, ... , k 

a* > 0 l - , i = 1, ... , k 

Using the definition of a Lagrangian, the Lagrangian primal of (11.11) is 

1 I 

L(w,b,a) = "2(w,w) - L adYi((Wi, Xi) +b) -1] 
i=l 

(11.12) 

Applying the first condition of the Kuhn-Tucker theorem, where the parameters X in the 

theorem corresponds to wand b in (11.11), 

aL(w, b, a) = 0 ==} w = '""' YiaiXi aw ~ 
i=l 

(11.13) 

I 
aL(w, b, a) '""' 

ab = 0 ==} ~ Yiai = 0 (11.14) 
i=l 

where ai ~ 0 are the Lagrangian multipliers associated with each data sample. Substituting 

(11.13) and (11.14) in the Lagrangian primal (11.12), we get the following: 

1 I 

L(w,b,a) = "2(w,w) - LadYi((Wi,Xi) +b) -1] (11.15) 
i=l 

1 I I I I 

"2 LYiYjaiaj(xi,Xj) - LYiYjaiaj(xi,Xj) - b LYiai + Lai 
i=l i=l i=l i=l 
III 

L ai - "2 LYiYjaiaj (Xi, Xj) 
i=l i=l 
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Therefore, instead of solving (II. 1 1 ) we solve the following dual quadratic programming 

problem, 

(I1.16) 

s.t. i = 1, ... , l 

i = 1, ... , l 

Finally, the optimal hyperplane w* is obtained by substituting the solution of the dual 

problem a* in (11.13), w* = 2:~=1 Yia;Xi. 

The Kuhn-Tucker theorem also states that the following set of equations must hold 

between the optimal solution a*, w*, and b: 

i = 1, ... , l (11.17) 

These equations imply that ai are non-zero for only those Xi'S with functional margins 

equal to one. Those Xi's with non-zero ai are called support vectors. Therefore, the SVM 

depends solely on the support vectors. 

11.1.4.2 Non-separable Case 

Thus far we have discussed only the SVM optimization case where the training data 

is assumed to be linearly separable. In this section we show how to handle the linearly 

non-separable case. Assuming that a data sample Xi has a label + 1, however the SVM 

parameterized by (w, b) classify it to be labeled -1, that is 

,~i > 0 (11.18) 

For the constraint Yi( (wi, Xi) + b*) ~ 1 to be satisfied, we need to add a slack variable ~i 

to each misclassified data sample Xi, 

s.t. 

1 I 

min -llw l1 2 + C L ~i 
w,b,€ 2 

i=l 

Yi( (w, Xi) + b) + ~i ~ 1 

~i ~ 0, i = 1, ... , l 
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where C is a fixed parameter to penalize allowing a misclassified data samples. Otherwise, 

the solution of the optimization problem will take the easy path of assigning slack variables 

to all the data samples and non of them will be correctly classified. Assigning the values of 

~i 's is done through a function called the Loss Function. The loss function should assign 

~i = 0 for correctly classified samples and ~i > 0 for misclassified ones. A natural choice 

for the loss function that emerges from the constraints in (II.19) is known as Hinge loss 

function, 

(II.20) 

U sing the concept of loss functions, the constrained optimization problem in (11.19) can be 

transformed to an unconstrained form, 

(11.21) 

Following the same procedure we employed in the separable case on (11.19), the 

dual optimization problem is as follows: 

(II.22) 

s.t. i = 1, ... , l 

i = 1, ... , l 

The solution is reached when all Karush-Kuhn-Tucker (KKT) conditions are being satisfied 

over all the training samples. KKT conditions are described as follows [57]: 

0< eli < C ~ Yi((W,Xi) +b) = 1 

eli = C ~ Yi((W,Xi) + b) ~ 1 

11.1.4.3 Non-linear SVM 

(11.23) 

As we discussed in Section 11.1.2, non-linear decision functions can be learned by 

using a non-linear function to map the data to some feature space and then construct a 

linear classifier in that feature space. Generally, the feature space has higher dimensionality 
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than the original data space. This suggests that the classifier constructed in the feature 

space will be more computationally expensive to find and utilize. However, as the training 

data involvement in SVMs is through inner product operations, as shown in (II.22), it is 

feasible to construct classifiers in high dimensional feature spaces, without compromising 

the computational complexity, through what is know as the Kernel Trick [23]. 

Definition Given two data samples x and z from the input space X S;;; ]Rn, the function 

K that returns the inner product between their images in the feature space is known as the 

Kernel Function: 

K(x, z) = (<I> (x) , <I>(z)) 

where <I> is a mapping from the input data space to the feature space. 

Some of the commonly used kernels are: 

• Identity Kernel 

K(x, z) = (x, z) 

• Radial Basis Function Kernel (with a width parameter ,) 

K(x, z) = exp( -,llx - zll) 

• Polynomial Kernel (of order p) 

K(x, z) = ((x, z) + l)P 

Using kernels with SVMs involves replacing any dot product of data sample with the output 

of the kernel function. 

11.1.4.4 Sequential Minimal Optimization 

In this section we will present one of the simplest and most efficient techniques to 

perform training of SVMs, known as Sequential Minimal Optimization (SMO). The rest 

of this work employs SMO as the core SVM training technique. SMO [57] is a simple 

algorithm to solve the QP problem arising in training SVMs. It belongs to a family of 
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algorithms that addresses training SVMs on large data sets by breaking the QP problem 

into smaller manageable ones [56, 71]. SMO takes the idea of breaking the QP problem 

to its extreme by choosing to solve the smallest possible QP problem; At each iteration, 

two Lagrange multipliers are jointly optimized and the SVM is updated accordingly. The 

advantage of optimizing two Lagrange multipliers lies in the possibility to do it analytically 

and therefore fast. 

Starting with (X l, YI, (l~ld) and (X2 1 Y2, (l2ld) and considering the constraints in (n.22), 

it is clear that the space of possible values for (ll and (l2 is actually, due to the inequality 

constraints C ~ (li ~ 0, a square with side length C . Moreover, we can see that the sum­

mation constraint, 2:!=1 Yi(li = 0, forces the values of (ll and (l2 to lie on a diagonal line. 

These insights narrow down the space of the solution, see Fig. 11.4. 

Figure 11.4: An depiction of the domain values of (ll and (l2 imposed by the constraints in 

(11.22). The square is a result of the inequality constraint C ~ (li ~ 0 and this domain is 

even reduced to the dotted diagonal line imposed by the constraint that 2:!=1 Yi(li = O. The 

shaded circle is sample solution of the optimization problem. 

The algorithm starts by finding the bounds on (l2'ew which depends on the value 

YIY2. If YIY2 = - 1, then the bounds on (l2'ew are: 

L 

H 

max(O (l0ld _ (lold) 
1 2 I 
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If Y1Y2 = 1, then the bounds on a 2ew are: 

L max(O, a~ld + a~ld - C) 

H (11.25) 

Next, a2ew is obtained by: 

new old Y2(E1 - E 2) a 2 = a 2 - (11.26) 
TJ 

where TJ is the second derivative of the objective function (11.22) along the diagonal line: 

(11.27) 

and Ei is the error of the old SVM on the ith training sample. Then, a 2ew is clipped 

according to its bounds in (11.24) or (11.25). 

H if H ~ a 2ew 

new,clipped _ anew if L < a 2ew < H a 2 -
2 

(11.28) 

L if a 2ew ~ L 

Finally, a~ew is computed by 

new _ old + (old new,cliPped) 
a 1 - a 1 Y1Y2 a 2 - a 2 (11.29) 

SMO provides two heuristics to select the Lagrange multipliers to be optimized. The first 

choice heuristic selects the first Lagrange multiplier by iterating over the whole training 

data set until a multiplier violating the KKT conditions is found then the search start for 

the second Lagrange multiplier by initializing the second choice heuristic. When the first 

choice heuristic completes one pass through the entire training data set, it starts iterating 

over the multipliers that are neither 0 or C (non-bound multipliers). Again after it finishes 

iterating over the non-bound multipliers, it makes another pass through the whole training 

data set and so on. The second choice heuristic aims at choosing the second Lagrange 

multiplier that maximizes the step taken during the optimization. SMO proposes using 

lEI - E21 as an estimate for the step size. Therefore, a cached error Ei is stored for 

every non-bound multiplier which is then used by the second choice heuristic to choose the 

second Lagrange multiplier. See Algorithm 1 for a summary of the SMO algorithm. 
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Algorithm 1: Sequential Minimal Optimization (SMO) [57] 

1 Function ai f----- SMO((xi, Yi), i = 1, ... ,l) 
Input: (Xi, Yi), Labeled training pairs. 
Output: ai, Lagrangian multipliers. 

begin 
N um_C hanged_ai = 0 
Examine_All = 1 
while Num_Changed_ai > 0 OR Examine_All do 

N um_C hanged_ai = 0 
if ExamincAll then 

I 
Loop lover all training examples 

Num_Changed_ai+ = Examine_Example(I) 
end 
else 
I Loop lover examples where ai is not 0 and not C 

end 
if Examine_All == 1 then 
I Examine_All = 0 

end 
else if Num_Changed_ai == 0 then 
I Examine_All = 1 

end 
end 

end 

Examine_Example(I): Selects the second Lagrangian multiplier and performs 
the processes described in Eqn.(II.24-II.29). 
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11.2 Semi-supervised Learning (SSL) 

Traditionally the classification problem in machine learning has been formulated 

to perform training using only labeled data (feature/label pairs). However, labeled in­

stances are often difficult, expensive, and slow to acquire. Meanwhile, unlabeled instances 

are abundant and much cheaper to collect. Semi-supervised learning (SSL) addresses the 

problem of learning from large sets of unlabeled data along with a few labeled samples 

with the ultimate goal of enhancing the generalization performance of what is learned from 

the labeled samples using the knowledge from the unlabeled data [81]. The paradigm is 

also motivated by the fact that SSL is the natural way in which humans learn [82]. Two 

assumptions form the basis for the usefulness of unlabeled samples in SSL: The Cluster 

Assumption and the Smoothness Assumption [20]. In the cluster assumption, the data of 

each class is assumed to form a cluster. Therefore, the unlabeled data could be beneficial 

in finding the boundary of each cluster more accurately [18]. The cluster assumption states 

that if points are in the same cluster, they are likely to be of the same class. The smooth­

ness assumption is a classic assumption that makes learning from data a possible task. It 

originally states that if two data samples are close under a certain metric, then so should 

their corresponding labels. When extended to SSL, the smoothness assumption take into 

account not only the metric between two data samples but also the density of data between 

them. Thus the assumption states that iftwo data samples in a high-density region are close, 

then so should their corresponding labels. If the data is assumed to lie on a lower dimen­

sional manifold in the original space, the metric used in the smoothness assumption will 

be defined on that manifold. The smoothness assumption will then be called The Manifold 

Assumption [9]. 

Much of the literature of SSL algorithms can be categorized according to the as­

sumption they implement; cluster assumption or manifold assumption. Algorithms imple­

menting the cluster assumption are referred to as "Avoiding Dense Regions" algorithms. 

The basic idea behind such algorithms is that no decision function should pass through 

a cluster [34, 41, 48, 65]. Figure II.S shows a sample output for an SSL algorithm that 

implements the cluster assumption. In the figure you see that the decision function avoids 
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clusters and that unlabeled samples help defining the clusters. 

o a 

a 
a 

(a) (b) 

Figure 11.5: An illustration of how SSL algorithms implementing the cluster assumption 

use unlabeled data. We see that the decision function (bold/blue line) avoids clusters. And 

that unlabeled samples help defining the clusters. (a) Model constructed using labeled data. 

(b) Model constructed using labeled/unlabeled data. 

Algorithms implementing the manifold (smoothness) assumption are referred to as 

"graph based" algorithms. In such algorithms, a graph is defined where the nodes are 

data instances (labeled/unlabeled) and edges connecting the nodes reflect the similarity 

between the instances. The algorithms can generally be viewed as estimating a function on 

the constructed graph. This estimate should be close to the labels of the labeled samples 

and meanwhile be smooth over the whole graph [8, 9, 40, 77, 79]. Figure 11.6 depicts an 

example for a graph based SSL algorithm. 
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Figure 11.6: Example of graph-based SSL algorithms [74]. (a) LabeledlUnlabeled Data. 

(b) Graph construction. (c) Intermediate step illustrating how the unlabeled samples are 

assigned to labels. In this case through neighborhood propagation. (d) Final labeling of all 

unlabeled samples. 

Another important taxonomy for SSL algorithms is transductive versus inductive 

categorization. A learning machine is transductive if it only makes inference about the 

training data (labeled/unlabeled samples) and can not extend this inference to unseen data. 

Graph based SSL algorithms are often transductive. On the other hand, inductive learning 

machines can naturally handle unseen data. 
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11.3 Semi-Supervised Support Vector Machines (S3VM) 

Now that we have introduced the basic concepts of semi-supervised learning, we 

will present how such ideas are used in the SYM framework. While SYMs work by estimat­

ing a hyperplane that maximizes the margin between labeled samples of different classes, 

S3YM extends the same idea by maximizing the margin jointly for labeled and unlabeled 

samples. This way S3YM learns a decision boundary that avoids data-dense regions while 

conforming to the labeled samples. In other words, S3YM is one of the techniques that im­

plement the cluster assumption discussed earlier. Figure II.S shows how S3YM maximizes 

the margin between classes using both labeled and unlabeled samples. 

The major body of work on S3YM is based on the idea of solving a standard SYM 

while treating unknown labels as additional variables [17]. Formally speaking, if we are 

given a partially labeled data set Slu = {(Xi, Yi)}~=l U{ Xi}~!r+l where Xi E ]Rn , Yi E 

{ + 1, -I}, I and u are the number of labeled and unlabeled samples, respectively. The 

linear S3YM learning problem is to find the solution of the following optimization problem 

for both the hyperplane parameters (w, b) and the labels of the unlabeled samples denoted 

by the vector Yu = [Yl+l ... Yl+uj, 

m'ln 
(w,b),yu 

i=l i=l+u 
J((w, b),yu) = ~llwl12 + CL:£I((W, b); (xi,yd) + C* L: £u((w, b); (Xi)) 

i=l i=l+l 

(II.30) 

where the loss functions for unlabeled samples £u and labeled samples £1 are defined as 

follows: 

£1((W, b); (Xi, Yi)) =max (0,1 - Yi( (w, Xi) + b)) 

£u((w, b); (Xi)) = max (0,1 - Yi( (w, Xi) + b)) 
YiE{-l,+l} 

(II.31 ) 

(II.32) 

The first two terms in the objective function J in (II.30) correspond to a standard SYM 

and the third term is where the unlabeled data is incorporated. The loss over labeled and 

unlabeled samples is controlled by two parameters C and C*, which reflect the confidence 

in the labels and the cluster assumption respectively. 

It is popular in the literature to solve the problem in (II.30) under a class balancing 
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constraint, 
1 i=i+u 

- L max(Yi,O) = r 
u 

i=i+l 

(11.33) 

where r is the ratio of the unlabeled samples that should be labeled + 1 [42]. This balancing 

constraint helps overcome the problem of getting totally unbalanced solutions where all the 

unlabeled samples are assigned to one label. Since the ratio r is not known, it is usually 

estimated from the labeled samples. 

Algorithms that solve (11.30) can be broadly divided into Combinatorial and Con­

tinuous optimization algorithms. 

11.3.1 Combinatorial Optimization for S3VM 

In combinatorial optimization algorithms, for a given Yu, the optimization for (w, b) 

is a standard SVM problem. Therefore, if we define a function I(yu) such that 

I(yu) =min J((w, b), Yu) 
(w,b) 

(11.34) 

the problem will be transformed to minimizing I(yu) over a set of binary variables Yu 

where each evaluation of I (y u) is a standard SVM optimization problem. The techniques 

in this category varied between branch-and-bound based algorithms [10, 21], local combi­

natorial search algorithms [42], and deterministic annealing algorithms [63]. 

11.3.2 Continuous Optimization for S3VM 

In continuous optimization algorithms, for a given fixed w, b, the optimal labels of 

the unlabeled samples is simply obtained by Yu = sign( (w, Xi) + b). This elimination of 

the variables Yu converts the problem into a continuous optimization problem over (w, b), 

where 

i=l i=i+u 

m'ln -2111w112 + C L f1((w, b); (Xi, Yi)) + C* L fu((w, b); (Xi)) 
(w,b) 

i=l i=l+l 

f1((w, b); (Xi, Yi)) =max (0,1 - Yi( (w, Xi) + b)) 

fu((w,b); (Xi)) =max (0, l-l(w,Xi) +bl) 
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The first two terms in (11.35) correspond to a standard SVM, and the last term drives the 

boundary away from the unlabeled samples. Also this formulation shows why the S3VM is 

a hard problem, this is basically due to the non-convexity of the objective function (11.35). 

Some of the algorithms in this category attempted to use standard optimization such as 

the gradient descent [18] of a smoothed version of the objective function in (11.35). Other 

algorithms employed a continuation approach [19] and convex-concave optimization to 

overcome the non-convexity of the problem. 

11.4 Background of Submodular Optimization 

Submodular set functions playa central role in combinatorial optimization [35]. To 

a great extent they are considered the discrete analogue of convex functions in continuous 

optimization, in the sense of structural properties that can be benefited from algorithmi­

cally. They also emerge as a natural structural form in classic combinatorial problems such 

as maximum coverage and maximum facility location in location analysis [2], as well as 

max-cut problems in graphs [36]. More recently submodular set functions have become 

key concepts in machine learning where problems such as feature selection [53] and active 

learning [47] are solved by maximizing submodular set functions while other core prob­

lems like clustering and learning structures of graph-based models have been formulated 

as submodular set function minimization [22, 52, 54]. 

11.4.1 Submodularity Definition and Applications 

To define submodularity properly, we start by considering a ground set X = {Xl, X2, 

... , x n }. A set function defined on X is a function f : 2x -+ R The following definition 

formalizes the concept of the submodularity of a set function. 

Definition 1. (Submodularity). A set function f : 2x -+ lR is submodular if and only if, for 

all A ~ B ~ X and for each j E ,1'\B, it holds that 

f(A U {j}) - f(A) ~ f(B U {j}) - f(B). 

Definition 1 describes the submodularity of a set functions in terms of the "Law of Di­

minishing Returns ", which is a well known principle in economics. In the context of set 
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functions, it essentially states that adding an element to a smaller set is more influential than 

adding it to a larger one. To illustrate this idea we provide a simple example of submodular 

functions in Fig.II.7. 

(a) A + j (b) B + j 

Figure 11.7: Depiction of the submodular set function f Shapes&ColoTs, defined as 
fShapes&ColoTs( S ) = #(Distinct Shapes in S ) + # (Distinct Colors in S ) . 

The function depicted in Fig.II.7 is a set function f Shapes&ColoTs defined over a finite 

set of shapes and colors. That is for any set S, 

f Shapes&ColoTs(S ) = # (Distinct Shapes in S ) + #(Distinct Colors in S ) 

First we notice that the set A in Fig.II.7a is a subset of the set Bin Fig.II.7b. Applying the 

definition of the fShapes&ColoTs on both sets A and B , we get the following: 

f Shapes&ColoTs( A ) = 8 and f Shapes&ColoTs( B ) = 9 

Adding the element j (yellow trapezoid) to both sets will affect their corresponding set 

values as follows: 

fShapes&ColoTs( A U j) = 10 and fShapes&Colors( B U j) = 10 

Based on this outcome, we can conclude that f Shapes&ColoTs is a submodular set function, 

as 

fShapes&ColoTs( A U j) f Shapes&ColoTs( A ) = 2 

> 

f Shapes&ColoTs( B U j) f Shapes&ColoTs( B ) = 1 
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The importance of submodularity and the associated diminishing returns concept 

has been attracting increasing attention since many real world combinatorial optimization 

problems could be modeled as maximizing submodular functions with respect to certain 

(usually cardinality) constraints [49, 51]. One interesting example is the viral marketing 

through social networks. The aim of this problem is to select a subset of people in a 

social network whose influence over of the whole network is maximum [51] , see Fig.II.8. 

Recognizing such influential people is essential in marketing products on social networks 

where such influential people are given free samples and special offers. This is based 

on the fact that the expected size of the final influence under many models of influence 

propagation in networks has been shown to be a submodular function of the set of the 

initially selected people. Moreover, the budget assigned to any marketing campaign puts 

a limit on the number of influential people that could be chosen. Therefore, the influence 

maximization problem can be regarded as maximizing a submodular function subject to 

cardinality constraints. 

Alice,, __ 
~~ -

0.3 

Bob ~ 
.~ 6:;' · 0.5 ---'----

~ Charlie 

Prob. of 
influencing 

Courtesy of Andreas Krause and Ca~os Guestrin, 2008 ICML Tutorial: Beyond Convexity - Submodularity In Machine Learning. 

Figure 11.8: Illustration of viral marketing through social networks [51]. In this example, 
free cell phones are given away to a small set of people with high social influence in order 
to encourage others to buy the phones. 

Another example is the problem of deciding the optimal positions of sensors for 
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environmental monitoring [49]. The goal of such a problem is to place sensors in the en­

vironment in order to minimize the uncertainty in the recorded observations. The number 

of used sensors is limited by the assigned budget to the project. This is again a submod­

ular maximization problem as the efficiency of a subset of sensors is a submodular set 

function. Many other important problems fall in this category of optimization problems, 

e.g. the capital budgeting problem where it is required to decide the optimal assignment of 

limited investments among different projects, and the feature selection problem in pattern 

recognition problems [46]. 

11.4.2 Optimization of Submodular Set Functions 

In this work we make use of a well acknowledged result by Nemhauser et al. [55, 

31], which provides a lower bound on the performance of using a simple greedy approach 

to maximize a monotonic submodular set function subject to a cardinality constraint. We 

first provide the definition of monotonicity as follows: 

Definition 2. (Monotonicity). A set function 1 : 2.1' -+ lR is monotonic if and only if, for 

all A ~ B ~ X, it holds that 

I(A) S; I(B). 

Theorem 2 provides the formal statement for the performance of the greedy algorithm, 

Theorem 2. Given afinite set X = {Xl, X2, ... , xn} and a monotonic submodular function 

I(A), where A ~ X and 1(0) = O. For thefollowing maximization problem, 

A* = argmax I(A). 
IAI::;k 

The greedy maximization algorithm returns ACreedy such that 1 (ACreedy) ;::: (1 - ~) 1 (A *), 

where e is Euler's number. 

Proof Let Ai denote the first i elements selected by the greedy algorithm and let A * denote 

the actual optimum, I(A*) = OPT. Greedy will select exactly k elements, i.e. Ak is the set 

returned by the algorithm. We claim via induction that for 0 S; i S; k, 

(11.38) 
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The base case of i = 0 is trivially true. Suppose that i > 0 and in the i-th step, Greedy 

selects element ai, maximizing JA;-l (ai) among the remaining elements. Observe that the 

remaining elements include A*\Ai- l , a set of size at most k. By submodularity, we have 

J(A*) - J(Ai- l ) ::; L JA;-l (a) 
aEA*\Ai - 1 

and this implies that the element ai has marginal value 

Assuming that Eq.(1I.38) holds true for Ai-I, we have 

J(A*) - J(Ai) J(A*) - J(Ai-d - JA;-l (ai) 

< J(A*) - J(Ai-d - ~(J(A*) - J(Ai-d) 
k 

(1 - 1/k)(J(A*) - J(Ai-d) 

< (1- 1/k)iJ(A*) 

which proves Eq.(II.38). Using the claim for i = k, we get 

(II.39) 

(11040) 

(11041 ) 

D 

The simple greedy algorithms, see Algorithm 2, basically works by adding the el­

ement that maximally increases the objective value. According to Theorem 2, this simple 

procedure is guaranteed to achieve at least a constant fraction (1 - 1 Ie) of the optimal 

solution, where e is the natural exponential. One point to emphasize is that the provided 

constant fraction (1 - 1 Ie) is just a lower bound on the performance. However, in practice 

the greedy algorithm achieves significantly better than this lower bound. 

What makes the greedy algorithm even more interesting is that it has been proved 

by Feige [30] that the approximation factor (1 - lie) is the optimal approximation for this 

problem. Specifically, given any fixed E > 0, the problem of achieving a (1 - 1 I e + E)­

approximation for the Max k-cover problem is NP-hard. Keep in mind that the Max k­

cover problem is a special case of max{J(A) : IAI ::; k} for J monotone submodular 
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Algorithm 2: Greedy Algorithm for Submodular Function Maximization with 
Cardinality Constraint [55, 64] 

Input : Submodular Function J(A), where A S;;; X = {Xl, X2,"" x n }. 

Cardinality Parameter k. 
Output: A* ~ argmax J(A) 

IAI:Sk 

1 begin 
2 Set Ao := ¢ 
3 for i := 1 to k do 
4 X* := argmax J(Ai - 1 U {x}) - !(Ai - l ) 

xEX\Ai _ 1 

(Find greedy maximizer) 
5 Ai := Ai - l U {x*} (Update current set Ai) 
6 end 
7 A*·- Ak 
8 end 

set function. Thus, the greedy algorithm constitutes the best approximation obtainable for 

these problems. The same problem has been studied for more complicated domains as well. 

Specifically, for maximizing a submodular function over a matroid, which is a general class 

that includes the cardinality constraint as a special case. Recent results by Vondrak [14] 

shows that the (1 - 1/ e)-approximation persists for the matroid constraints as well. 
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CHAPTER III 

EFFICIENT SEMI-SUPERVISED SUPPORT VECTOR MACHINE 

THROUGH SUBMODULAR OPTIMIZATION (SUBMOD-S3VM) 

In this chapter we present a quadratic programming approximation of the Semi­

Supervised Support Vector Machine (S3YM) problem, namely approximate QP-S3YM, 

that can be efficiently solved using off the shelf optimization packages. We show that 

this new formulation establishes a relationship between the low density separation and the 

graph-based models of semi-supervised learning (SSL), which is important to develop a 

unifying framework for semi-supervised learning methods. Furthermore, we propose the 

novel idea of representing SSL problems as submodular set functions and use efficient 

submodular optimization algorithms to solve them. Using this new idea we develop a rep­

resentation of the approximate QP-S3YM as a maximization of a submodular set function 

(SUBMOD-S3YM) which makes it possible to optimize using efficient greedy algorithms. 

We demonstrate that the proposed methods are highly competitive and provide significant 

improvement in time complexity (up to 300X) over the state of the art in the literature. 

The proposed approximate QP-S3YM is detailed in Section IlL!. In Section III.2 we 

present the submodular formulation SUBMOD-S3YM. Experimental results are provided 

in Section IlI.4, followed by the discussion in Section IlI.5. 

111.1 Quadratic Programming Approximation of S3YM (QP-S3VM) 

As we have mentioned in Chapter I, the objective function of the S3YM problem 

has the form: 

argmin ~llwl12 + CLfz(w, (Xi,Yi)) + C* Lfu(w,xj) 
w,Yj iEL JEU 

(IlL! ) 
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where £ and U are the labeled and unlabeled sample sets, respectively. The loss functions 

for unlabeled samples Cu and labeled samples C[ are defined as: 

(111.2) 

(III.3) 

The combinatorial path to solve this problem works as follows: a) The solution space for 

the problem is the space of all vectors {± 1} lUI , b) Each evaluation of a solution in the 

vector space, is performed through a standard supervised SVM optimization process. 

111.1.1 Continuous Formulation of S3VM Problem 

To simplify this hard mixed-integer programming, the loss of setting Yj = 1, de­

noted by ct, is assigned a new variable Pj, where 0 ::; Pj ::; 1. This variable represents the 

probability that the assignment Yj = 1 is correct. Similarly, the loss of setting Yj = -1, 

denoted by t;, is represented by the probability 1 - Pj. The balancing constraint, which 

prevents obtaining trivial solutions as discussed earlier, will have the form LjEU Pj = rlUI, 
where r is the ratio of all Yj = 1 assignments in the final solution. This way the problem 

has been modified from mixed-integer to a completely continuous problem. The modified 

formulation is formalized in Problem 1 [63, 76]: 

Problem 1. Continuous Optimization Formulation of the Combinatorial S3 VM Problem. 

argmin 
p'=[Pl,,,,,PIUll 

subject to 

Yi[(W, Xi) + bJ 2: 1 - (i 

(w, Xj) + b 2: 1 - ct 
-(w,Xj) - b 2: 1- C; 

(i 2: 0, ct 2: 0, C; 2: 0 

o ::; Pj ::; 1, L Pj = rlUI 
JEU 
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To get more insight about Problem I , Figure IlL I provides a visualization of a sim­

ple version of the objective function :J(w , p ) when w and p = [PI , ... ,PluIJ are exclusively 

fixed. Fixing p means that all unlabeled samples are assigned labels, where all samples 

with Pj ~ 1 have the labels Yj = 1 and all samples with Pj ~ a are assigned Yj = - l. 

Therefore, our objective function is now a function only in wand has the following form, 

(lIl.4) 

subject to 

This is a standard supervised SVM problem which is a convex quadratic optimization prob­

lem where the global minimum can be efficiently found. This idea is depicted in Fig. IlL I 

by the convex functions on the planes perpendicular to the p axis. 

Objective function for fixed p 

p 

Objective function for fixed w 

Figure III.1: Illustration ofthe nature of the continuous S3VM objective function :J(w , p). 
The illustration visualizes a cross-section in :J (w , p ) with respect to w and p . The cross­
section with respect to p shows the convexity of :J(w , p ) for fixed p as it is reduced to an 
SVM problem. The cross-section with respect to w is linear in p . 

On the other hand, when the hyperplane w is fixed, Problem I will be reduced to the 
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following problem: 

argmin 
p'=[Pl'''''Plu!l 

subject to 

JEU JEU 
(111.5) 

L Pj = rlUI , 0::; Pj ::; 1 
JEU 

This is a linear programming problem in p, which makes it simple and efficient to optimize. 

This is illustrated in Fig.IlI.l by the linear function on the plane perpendicular to the w axis. 

The provided insights about the objective function .:J (w, p) in terms of being convex 

when p is fixed and linear when w is fixed, might give the impression that .:J (w, p) is 

simple to optimize. This actually would have been true if it was not for the dependence 

between the variables w and p. The optimal w is the hyperplane that maximizes the margin 

using all labeled and unlabeled data samples, and therefore it implicitly assigns values for 

members of p, and vice versa for the optimal p which should result in finding w that 

maximizes the margin according to the label assignments in p. Therefore, .:J (w, p) is a 

non-convex function that is hard to optimize. 

111.1.2 Proposed Technique for Continuous S3VM Optimization 

Our strategy to solve the non-convex optimization in Problem 1 is based on propos­

ing a surrogate objective function that is simpler to optimize and meanwhile preserves the 

optimal solution. To that end, we propose to use an approximation of minw.:J(w, p) that 

is a function in p only. This way Problem 1 will be a function in p and as we will see later, 

we end up with a quadratic optimization problem. 

To find an approximation for minw.:J(w, p) we proceed to find its dual form. De­

riving the Lagrangian and applying the Karush-Kuhn-Tucker conditions to it, the obtained 

dual form is presented in Problem 2. 

Problem 2. Dual form of min .:J (w, p) in Problem 1. 
w 

max IDual 
Ot,{3,/ 
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where 

subject to 

where 

LDual a'llLI + b + ,6)'llul - ~(a 0 y)'Kll(a 0 y) 

- ~b - ,6)'Kuub -,6) - (a 0 y)'Klub -,6) 

o ::; a ::; G11LI 

o ::; , ::; G*p 

0::; ,6 ::; G*(llul - p) 

11LI: A ones vector of length l.el· Similarly is 11ul' 

ai:Lagrangian Multiplier of labeled loss constraint (i' 

Ij :Lagrangian Multiplier of unlabeled loss constraint it. 
{3j:Lagrangian Multiplier of unlabeled loss constraint tj. 

a' = [al,"" aILI],,6' = [{3l,"" (3lul]," = bl,"" Ilul] 

p' = [PI,'" ,PIUI], y' = [Yl,'" ,YILI], 

Kll = Ki,i' Vi, i' E.e, Kuu = Kj,j' Vj, j' E U, 

K lu = Ki,j Vi E .e,j E U. 

(III. 7) 

One issue to clarify at this point is that minwJ( W, p) = maxo:,(3,,,!LDual for any 

fixed p. This is true because for any fixed p, minwJ(w, p) is basically a standard SVM 

problem which is known to be convex and therefore there is no duality gap. Using the de­

rived dual form in Problem 2, we approximate minwJ(w, p) by deriving an upper bound 

function for maxo:,(3,"!LDual. Theorem 3 provides the details of deriving the upper bound 

function. 

Theorem 3. Proposed upper boundfor maxa ,{3"LDual: 

max LDual ::; L(W*) + G*IUI + Ml + M2 
a,{3" 

(111.8) 

where 
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(III.9) 

Proof To get an upper bound for IDual we divide it into several components as follows: 

where 

Then 

Nl = a'll£1 - ~(a 0 y)'Kll(a 0 y) 

N2 = h + 13)'1 lUI - ~h - f3)'Kuuh - 13) 

N3 = -(a 0 y)'Kluh - 13). 

max IDual:::; max Nl + max N2+ max N3 
01.,(3" 01. (3" 01.,(3" 

(IILlO) 

(l1I.ll) 

(III.12) 

max Nl is the dual form of a standard supervised SVM problem using the label data, i.e. 
01. 

1 
max Nl =min -llwl1 2 + GI: (i 

01. w 2 
(III.13) 

iE£ 

Furthermore, using the value limits of a, 13 and" i.e. 0 :::; a :::; G11£1' 0 :::; 13 :::; G* (11ul - p) 

and 0 :::; , :::; G*p, we can derive the following upper bounds of N2 and N3 , 

(l1I.l4) 

and 

max N3 :::; GG*y'K1u (llul - p). 
01.,(3" 

(III.l5) 

Combining the three upper bounds we get the provided bound in the theorem. 

o 

Examining the upper bound in Theorem 3 we observe that I(w*) is the objective 

function value of optimizing a standard supervised SVM on the labeled samples L. There­

fore, it is a constant value as well as the term G* IU I. The rest of the upper bound, namely 

Ml + M 2 , is a function ofp. Therefore, the proposed upper bound is a function in p only. 

The optimal p is now obtainable through solving Problem 3, which is a standard quadratic 

programming problem that can be solved by off the shelf optimization techniques. 
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Problem 3. Quadratic Programming Approximation of Semi-supervised Support Vector 

Machines (QP-S3 VM): 

subject to 

argmin ~C*2(1Iul - p)'Kuup + CC*y'K1u (1Iul - p) 
p'=[Pl, ... ,PIUll 2 

(111.16) 

(111.17) 

Note: Equation (111.16) can be rewritten in the standard quadratic programming form as 

follows: 

. 1C *2 'K (l C *21' K CC*'K) arg mm - - p uuP + - lUI uu - Y lu p 
p'=[Pl, ... ,Pluil 2 2 

(111.18) 

In order to avoid trivial solutions to the problem where all the variables Pj are zero, 

we add the constraint p'1 = rlUI which makes sure that a certain ratio of the unlabeled 

samples, r, be assigned to class + 1. 

An intuitive illustration of the proposed surrogate objective function is depicted 

in Fig.1I1.2, where we can see the upper bound function, which is a function in p only, 

tracking the optimal value of maxa,(3"IDual , which is a function in both wand p, for any p. 

Therefore, the optimal p solution of the upper bound function will occur at the same vector 

p obtained from solving Problem 1. The concavity of the upper bound function in Fig.IlI.2 

is actually inferred from the standard quadratic programming form in Eq.(l1I.18), where 

the Hessian matrix for the objective function in Eq.(III.18) is -0.5 C*2Kuu' Remember 

that Kuu is essentially the kernel matrix of all unlabeled samples in U, therefore Kuu is 

a positive semidefinite matrix. Hence, the Hessian matrix is negative semidefinite, which 

makes the objective function in Problem 3 a concave function. 

111.1.3 QP-S3VM Model Verification 

Now that we have derived a quadratic programming surrogate objective function 

for S3VM in Problem 3, one essential step is to validate the correctness of this objective 

function. The definition of being correct as a surrogate objective function implies that both 
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Figure III.2: Illustration of the proposed upper bound function and how it tracks the 
maxa.,(3,'YI Dual at all possible p . 

the original and the surrogate function always produce proportional values and thus the 

surrogate function can be used to simplify the process of optimizing the original objective 

function. In our case, to show that the proposed surrogate in Problem 3 is correct with 

respect to the original Problem 1, we need to show that, 

min J (w , p ) ex UpperBound(p ) \ip (III . 19) 
w 

where 

J (w , p ) ~ JJ wJJ 2 + C L (i + C* L pjfj + C* L(1 - Pj)t; , 
iE£. JEU JEU 

UpperBound(p ) = ~C* 2( 1 IU I - p)'Kuup + CC*y'K1u (1IUI - p ). 

To that end, we use an experimental setup that evaluates both sides of Eq.(III.19) with 

respect to a wide spectrum of p assignments and then examine the output using scatter 

plots. 
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111.1.3.1 Sampling the p-space 

The members of the vector p' = [PI, . .. ,Pj, ... ,PIUll represent the probabilities of 

unlabeled samples to belong to the positive class. Despite the the continuous nature of the 

p-space, the members of any vector p will be thresholded to decide the membership to the 

classes. Therefore, when sampling from p-space we can discretize the continuous space 

into finitely countable combinatorial space which significantly reduces the difficulty of the 

sampling process. To sample from such large combinatorial space we start by setting the 

center of the space to a certain vector, denoted by PCenter. Samples from the combinatorial 

space are then generated by flipping the values of the members of PCenter. Since we validate 

the relationship in Eq.(III.19) using data sets, we set PCenter to the original labels of an 

examined data set, that is 

I {I PCenter = [PCenteq, ... ,PCenterj' ... ,PCenterIUI], PCenterj = 0 

111.1.3.2 Covering the p-space 

v Yj = 1 

V Yj = -1 

To cover the whole range of p-space, we need to use a measure to indicate how far 

a sample is from the center of the space, PCenter. We use the Hamming distance which is 

basically the number of mismatches between the corresponding components of two com­

binatorial vectors. The Hamming distance (HD) between any vector in the p-space and 

PCenter has the range, HD E {O,lpl}. Therefore, to provide a good coverage of the P­

space, we sample vectors with all possible Hamming distances from PCenter. 

111.1.3.3 QP-S3VM Model Verification Experimental Setup 

We validate the correctness of Eq.(III.19) by experimentally evaluating both of its 

sides with respect to sampled P vectors. For each data set, the samples were split into 99.5% 

unlabeled samples and the rest are labeled. This means that the length of the vectors we use 

for evaluation is Ipi = 0.995*# Samples. As mentioned earlier, PCenter is set to the original 

labels and sampling takes place by randomly flipping individual components in PCenter. 

The number of samples to be flipped depends on the Hamming distance we are examining. 
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In our experiments, we use all possible Hamming distances, HD E {a, Ipl}. Once a vector 

p is sampled, the value for the Upper Bound(p) is easily obtained by direct substitution. 

However, the value for minw.J (w, p) is obtained through an SVM training procedure. 

The output of the experiment is illustrated through scatter plots of minw.J (w, p) versus 

the Upper Bound(p) for all sampled p vectors. 

111.1.3.4 QP-S3VM Model Verification Experiments Discussion 

Figure III.3 shows the outcome of the verification experiments for a wide range of 

data sets. The shade of each point on the scatter plots indicate the Hamming distance of the 

p vector from PCenter. The key for shade-Hamming distance correspondence is visualized 

in the color bar associated with each scatter plot. All the scatter plots shown in Fig.1I1.3 

illustrate that the relationship between both sides of Eq.(111.19) is direct proportionality 

over the whole range of p, which validates using the Upper Bound(p) as a surrogate for 

minw.J(w, p). 

Upon closer examination of the obtained scatter plots, we notice that the propor­

tional relationship between Upper Bound(p) and minw.J (w, p) is almost strictly linear 

for very high dimensional data sets, see Fig.(I1I.3h, 1I1.3i, 1I1.3j, and 1I1.3k). This means 

that for high dimensional data sets, the Upper Bound(p) works as a perfect surrogate ob­

jective function. On the other hand, it is clear that the degree of proportionality varies with 

the Hamming distance for data sets with few dimensions. For such data sets, while the pro­

portional relationship is linear over almost all the p-space, it tends to saturate for p vectors 

with very large Hamming distances as can be seen in Fig.(1I1.3a-1I1.3g, III.3i, and 111.31). 

However, that does not take away from the quality of the Upper Bound(p) as a surrogate 

function. It just indicates that the surrogate function becomes less sensitive to the variations 

in minw.J(w, p) at the edges of p-space centered at PCenter. In other words, the Upper 

Bound( (p)) is very tight for high dimensional data sets and most of the p-space for low 

dimensional data sets. The tightness weakens a bit for low dimensional data set around the 

edges of the p-space. These observations about the relationship between the dimensional­

ity of the data sets and the Upper Bound(p) will render very important in the results section 

where the performance of the approximate formulation in Problem 3 is examined. 
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It is also noticeable in the scatter plots that some data sets show more dispersion 

with respect to the linear relationship between minwJ(w, p) and Upper Bound((p)) than 

others, see Fig.(III.3b,I1I.3d,III.3e,III.3g, and III.3i). As the performance of different data 

sets varies with the type of kernel used, the observed variation in dispersion is basically 

due to the use of the linear kernel for all the data sets in the verification experiment. This 

is evident from the small dispersion observed for data sets that are known to work well 

with the linear kernel, see Fig.(III.3h, II1.3j, and I1I.3k). Other data sets that achieve better 

performance with non-linear kernels show larger dispersion. For instance, the RBF ker­

nel achieves better performance for the Diabetes data set which explains the dispersion in 

Fig.(I11.3e ). 

While the scatter plots in Fig.III.3 show the good performance of the Upper Bound 

as a surrogate function for the minwJ(w, p) they might wrongfully give the impression 

that it is an easy problem. Actually through the experiments we noticed that some of 

Hamming distances are not visible on the scatter plots. For instance, in Fig.IIl.3a the p 

vectors with Hamming distances HD E {7000, llOOO} are not visible on the scatter plot. 

It turned out that minwJ(w, p) is not linear in the Hamming distance but rather con­

cave, see Fig.I1I.4a. That is after a certain Hamming distance, see point M in Fig.I1I.4a, 

minwJ(w, p) decreases, backtracking its way on the points with smaller Hamming dis­

tance. Figure I1I.4 shows the behavior of minwJ(w, p) with increasing Hamming dis­

tance. Figure I1I.4c illustrates the trajectory ofp vectors with increasing Hamming distance 

from PCenter on the scatter plots, where though the point E has the farthest distance from 

PCenter, as shown in Fig.III.4a, it exits inside the scatter plot in Fig.IIl.4c not at its edge. 

The concave behavior of the minwJ(w, p) with changing p can be explained using 

the nature of the SVM training process. In our verification experiment we start with the 

original labels of the unlabeled samples as the origin of the p-space and then we sample 

vectors that have increasing Hamming distances from PCenter. Assuming that PCenter are 

good labels, i.e. the data set is well separated using SVM, then any P vector farther away 

from PCenter will force SVM to just add the differences between P and PCenter as tolera­

ble classification mistakes, while sticking mostly to the PCenter labels. Such mistakes are 

handled by slack variables that increase the value of the SVM objective function. This is 
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Figure I1L3: Scatter plots of minwJ(w, p) versus the Upper Bound(p) for several data 
sets. The shade of each point represent the Hamming distance of the examined combina­
torial vector p from P Center. The key for the Hamming distances shades is depicted in the 
color bar attached to each plot. 
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Figure IIL3: Continued: Scatter plots of minwJ(w , p) versus the Upper Bound(p) for 
several data sets. The shade of each point represent the Hamming distance of the examined 
combinatorial vector p from P Center. The key for the Hamming distances shades is depicted 
in the color bar attached to each plot. 
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why the the value minwJ(w, p) increases with increasing the Hamming distance from 

PCenter. As the Hamming distance between P and PCenter gets very large, see point Min 

Fig.II1.4a, the majority of the label assignments in the vector P are opposite to those in 

PCenter. Therefore, it is cheaper for an SYM trained using P to accommodate the labels of 

P and will handle the differences from PCenter as tolerable mistakes which result in smaller 

value for the SYM objective function. This explains why the value of minwJ (w, p) tends 

to decrease after the point M in Fig.I1I.4a. Figure I1I.4b highlights the flexibility of the 

Upper Bound to track minwJ (w, p) in various regions of the p-space. 

It is important to clarify at this point that through out the verification experiments 

we wanted to show that the UpperBound(p) is a proper surrogate objective function for 

minwJ(w, p), this is why we experimented with all possible areas of the p-space. How­

ever, it is important to notice that the solution space for Problem 3 will be smaller than 

the general p-space we considered so far. This is because the solution of Problem 3 has to 

adhere to the labels of the labeled samples. In other words, the area of the p-space where 

the output labels are mostly opposite to PCenter, e.g. p-space from M to E in Fig.III.4a, is 

outside of the solution space for Problem 3. 

In the presented verification experiments thus far, due to the computational burden 

of performing SYM training thousands of times, we sampled one p vector for each ham­

ming distance. This can be considered limiting considering the fact that the number of p 

vectors at a Hamming distance H from PCenter is (I~I). Therefore, In Fig.I1I.4c we show 

the output of repeatedly sampling P vectors at the same Hamming distance. The figure 

provides a magnification of the scatter plot where 300 P vectors are sampled at the same 

Hamming distance. It is clear that the direct proportionality behavior is maintained and is 

consistent with our previous results in Fig.III.3. 

111.1.3.5 QP-S3YM Model Verification Experiments Conclusion 

In this section we provided an experimental verification of using the upper bound 

proposed in Theorem 3 as a surrogate objective function for minwJ(w, p) which trans­

formed the non-convex S3YM objective function in Eq.III.2 into the quadratic program­

ming in Problem 3. 
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111.1.4 QP-S3VM Model Interpretation 

In this section we provide analytical interpretation of the quadratic programming 

S3YM (QP-S3YM) obtained in Problem 3 which has the following form, 

subject to 

argmin ~C*2(1IUI - p)'Kuup + CC*y'Kzu(llul - p) 
p'=[Pl""'PIUll 2 

p'llUI = rlUI, 0::; p ::; llul' 

(III. 16) 

This step is necessary to ensure that the proposed approximate QP-S3YM model does not 

conceptually deviate from the original S3VM problem. 

111.1.4.1 Interpreting the First Term in Eq.(IIL16) 

The first term in Eqn.(IIL16) can be expanded as follows: 

1C *2(1,u, - p)'Kuup 1C *2 2:= [K uu]j,j,pj,(1 - Pj) 

j,j'={l, .. ·,lui} 
j=j' 

~--------~vr--------~; 
Ql 

l C*2 """' [ ] ( ) + "2 ~ Kuu j,j' Pj + Pj' - 2pjpj' 

(III.20) 

j={1, .. ·,lul-l} 
j'={j+l, .. ·,IUI} 

~~------------_vr------------~; 
Q2 

As Ql is negative quadratic in Pj, minimizing Ql enforces the variables Pi's to take val­

ues at the extremes of their possible range, i.e. either 0 or 1. In other words, minimizing 

Ql helps making clear assignments of the labels to the unlabeled samples. The notion of 

clear assignments can actually be traced back to the idea behind the S3YM where decision 

functions are sought in low density regions, thus the name Low Density Separation algo­

rithms. Therefore by avoiding confusing midrange label assignments like Pj ~ 0.5, Ql 

essentially implements the low density separation criterion of S3YM where it is preferred 

for no unlabeled samples to exist inside the margin or near the decision boundary. 

To understand the implications of minimizing Q2 on the solution of Problem 3, we 

start by plotting Zj,j' = (Pj + Pj' - 2pjpj'), for all Pj, Pj' E [0,1]' as shown in Fig.IlL5. 

In Fig.Ill.5 we see that small values of Zj,j', i.e. Zj,j' ~ 0, means that Pj ~ Pj' 

while large values of Zj,j', i.e. Zj,j' "-' 1, means that PjPj' ~ 0. In Q2, since Zj,j' is 
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Figure III.S: Plot of Zj ,j' = (Pj + Pj' - 2 pjpj') for all Pj Pj' E [0, 1] . 

multiplied by [Kuu]j,j', then the absolute minimum of Q 2 can be achieved by assigning all 

Zj,j' values to zero, which basically assigns Pj = Pj' for all j and j ' , i.e. we get a degenerate 

solution where all the unlabeled samples are assigned to one class. This situation is highly 

undesirable, therefore we must assign a certain portion of Zj,j ' to small values, indicating 

pairs with the same label , and the rest of Zj,j' should be assigned high values to indicate 

pairs with opposite labels. This is why the balancing constraint, p'l lu l = r lUI, is important 

in the approximate formulation in Problem 3. 

With the previous argument in mind, to minimize Q 2 we assign small Zj,j' to large 

valued [Kuu] j,j' , This means that when two unlabeled samples Xj and Xj' are similar, 

[Kuu]j,j' is large, the assigned small valued Zj, j' will force them to assume the same label, 

i.e. Pj ~ Pj" On the other hand, if [Kuu]j,j' is small, indicating dissimilarlity, assigning 

large Zj,j' , i.e. PjPj' ~ 0, will ensure that the involved unlabeled samples assume oppo­

site labels. It is clear to see now how minimizing Q 2 basically implements the clustering 

assumption [61] of semi-supervised learning algorithms where unlabeled samples form 

clusters and all samples in the same cluster have the same label. 
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111.1.4.2 Interpreting the Second Term in Eq.(III.16) 

Next we study the second term in Eq.(III.16). We start by rewriting it as follows: 

CC*y'K1u(1IUI - p) = CC* L YdK lukj(1 - Pj) 
iE£,jEU 

iE£,jEU 
Yi=+l 

iE£,jEU 
Yi=-l 

~ ______ ~v~ ______ ~J ~~------~v~--------

Q3 Q4 

(III.21 ) 

We split Eq.(III.21) into terms associated with labeled samples with Yi = + 1, Q3, and those 

with Yi = -1, Q4. This is necessary because of the dependence of the interpretation on the 

labels Vi. Since Pj E [0,1], minimizing Q3 involves assigning small (1- Pj), i.e. Pj c:::: 1, to 

[Klukj with large values and vice versa, small valued [Klukj are assigned large (1 - Pj), 

i.e. Pj c:::: O. In other words, if an unlabeled sample Xj that is close to, i.e. large [K1ukj, a 

labeled sample (Xi, Yi = + 1), then this unlabeled sample should have the same label as the 

labeled sample, that is Pj c:::: 1 and Yj = + 1. On the other hand, ifthe unlabeled sample Xj 

is far from, i.e. small [K1ukj, the labeled sample (Xi, Yi = + 1), then this unlabeled sample 

should have an opposite label to that of the labeled sample, that is Pj '::::' 0 and Yj = -1. 

The same argument holds for minimizing Q4 where unlabeled samples with large/small 

similarity to a labeled sample (Xi, Yi = -1) will be assigned small/large (Pj - 1), i.e. 

Pj '::::' 0 and Pj c:::: 1, respectively. 

It is worth mentioning here that the balancing constraint, p'llul = rlUI, is not of 

significant effect in minimizing Q3 + Q4. This is because of the competition between 

Q3 and Q4 in the assignment of Pj. Essentially, if minimizing Q3 took the easy road of 

assigning all unlabeled samples to the same label, Q4 will exert a high cost on that solution, 

and vice versa for Q4. Therefore, optimizing Q3 + Q4 has its owrI inherent balancing 

mechanism. 

To summarize, the provided interpretation of Eq.(III.16) shows that the proposed 

QP-S3YM model adheres to the core intuition of S3YM by implementing the clustering 

assumption as well as the low density separation principle. Therefore, the approximation 

approach we used to derive the QP-S3YM model will not affect the output of the semi-
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supervised learning process. 

111.1.4.3 QP-S3VM Model Relationship to Graph-based Semi-supervised Learning 

Methods 

The proposed QP-S3YM model inherently belongs to the low density separation 

semi-supervised leaning methods. In this section we discuss another aspect of the QP­

S3YM model in terms of its relationship to graph-based methods. In graph-based semi­

supervised learning methods [79, 80], a weighted graph 9 = (V, £) is constructed, where 

the vertex set V = {Xl, X2, ... , xlcl+lul} consists of all labeled and unlabeled data samples, 

and £ = {Wij} is the set of edges where Wij represents the similarity between the vertices 

Xi and Xj. Once the graph is obtained, learning basically assigns labels Yi to the vertices 

set V by using the edges connecting the labeled vertices to the unlabeled ones. Given that 

the edges Wij represent the similarity between vertices, the idea behind semi-supervised 

learning on the graph is that for any two vertices Xi and Xj with large edge weight Wij, the 

assigned labels Yi and Yj are expected to be the same. Based on this simple notion, semi­

supervised learning on a graph can be intuitively described as the process where labels are 

propagated from labeled vertices to unlabeled ones via graph edges, where the extent of 

propagation is controlled by the edge wights. This is why this class of algorithms are also 

called Label Propagation algorithms. 

One thing to clarify is that it is not necessary for every unlabeled vertex to have 

a direct edge with a labeled vertex. However, it is enough for an unlabeled vertex to be 

connected to a labeled vertex through many intermediate strongly connected unlabeled 

vertices where such intermediate unlabeled vertices act as stepping stones for the label to 

propagate from the labeled vertex. 

Graph-based semi-supervised learning algorithms formalize the idea of label prop­

agation by estimating a labeling function f on the graph 9 with two important constraints: 

First, the function f must respect the labeled vertices. That is, for all labeled vertices Xi 

with given labels Yi, the output of f(Xi) should be very close to Yi. Second, the function 

f should be smooth with respect to the graph. Estimating f is usually formulated in a 

regularization framework, where a loss function is used to enforce consistency with the la-
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beled vertices and the smoothness is imposed via regularization using various forms of the 

graph Laplacian. One popular algorithm for graph-based semi-supervised learning is the 

harmonic function algorithm [80] where estimating the function f is formulated as follows, 

mm 
f:f(x)E'J{ 

iE£ 
''-----~v __ -------''; 

Loss 

(IIL22) 
i,jE£UU 

'~--------~v~--------; 
Regularization via Graph Laplacian 

Looking at Eq.(I1L22), it is clear that minimizing regularizer term enforces f(Xi) ~ f(xj) 

for large Wij, thus achieving label smoothness over the graph. This regularizer has another 

form, 2 f'Lf, where f' = [f(Xl), f(X2), ... , f(xl£I+lul)] and L is the combinatorial graph 

Laplacian, where L = D - W, W is the similarity matrix with all weights Wij, and D is 

the diagonal degree matrix with diagonal elements dii = L:j Wij' 

With the graph regularization formulation of Eq.(I1L22) in mind, the QP-S3VM 

model can be interpreted under the graph regularization framework where Q2 is the regu­

larization term with respect to the similarity kernel matrix K. To illustrate this idea we com­

pare the regularization behavior of both the graph Laplacian in Eq.(I1L22) and that of Q2 in 

Fig.II1.6. For the sake of clarity we assume that the function f(x) estimated in Eq.(IIL22) 

has the same range as the variables qj in Q2, i.e. f(x) E [0,1J. Figure IIL6a depicts the 

regularization effect of graph Laplacian by plotting Si,j = (J (Xi) - f (Xj ) ) 2, for all f (x) E 

[0,1 J. For easy reference Fig.III.6b depicts the smoothness behavior of Q2 provided earlier 

in Fig.I1L5. 

Figure 111.6 shows that the minimum of both the graph Laplacian regularization 

and Q2 encourages giving similar labels to similar samples, i.e. smoothness, as shown 

in the blue colored areas of both depictions. One important difference though is that the 

graph Laplacian regularization, Fig.III.6a, enforces the label smoothness without regard 

to value of f(x); f(Xi) ~ f(xj) for all f(x) E [0,1J. On the other hand, Q2 not only 

enforces smoothness but also encourages the values of labels to be localized around ° or 

1, see Fig.III.6b, which is consistent with the assumptions of the low density separation 

methods explained earlier. Therefore, Q2 can be thought of as a graph regularization with 

the additional property of clear label assignments. 

Finally, the process of jointly minimizing Q2, which is basically a regularization 
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Figure 111.6: (a) Plot of the graph Laplacian regularizer, Si ,j (f(Xi) -
f (Xj))2 , for all f(x ) E [0, 1]. (b) Plot of Zj ,j' = (Pj + Pjl - 2pjpj/) for all Pj , Pjl E [0, 1]. 

term, and Q3 + Q4, where unlabeled samples are assigned labels by their similarity to 

labeled samples, results in a formulation that follows the same intuition behind label prop­

agation algorithms [80] for semi-supervised learning. This shows that both categories 

of semi-supervised learning algorithms, namely graph-based methods (label propagation 

methods) and low density separation methods, are connected in a well principled manner 

despite their different origins. The impact of this connection goes beyond producing a uni­

versal semi-supervised learning framework where algorithms from both graph-based SSL 

methods and low density separation SSL methods provide their best properties. This con­

nection actually extends to establishing relationships with spectral and kernel unsupervised 

methods [25] . 

111.1.4.4 QP-S3VM Model Interpretation Conclusion 

In this section, we provided a detailed discussion of how the formulation in Prob­

lem 3 (QP-S3YM), though approximate, does not deviate from the general paradigm of the 

semi-supervised learning. Moreover, we showed that the provided formulation presents 

an insight into the connection between the Low Density Separation semi-supervised algo­

rithms, which include S3YM, and the Graph-based algorithms. 
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111.2 Submodular Optimization of QP-S3VM 

The approximate QP-S3YM formulation proposed in Problem 3 is simple and intu­

itive. However, due to the fact that it is a quadratic minimization of a concave function, the 

computational complexity of finding a solution will become a hindering issue specially for 

semi-supervised learning problems which are inherently large scale. In this section we use 

the concepts of submodular set functions to provide a simple and efficient algorithm for the 

proposed approximate QP-S3YM problem. 

111.2.1 Semi-supervised Learning as a Set Function Optimization 

As discussed in Section 111.1, the solution of the QP-S3YM problem provides a value 

for the variable Pj associated with each unlabeled sample Xj, j E U, such that Pj = 1 for 

Yj = +1 and Pj = 0 for Yj = -1. In this section, we use a different perspective of the 

problem. In this new perspective the problem of binary semi-supervised classification in 

general is concerned with choosing a subset A from the pool of all unlabeled samples U. 

All the unlabeled samples Xj, j E A, should be assigned the label Yj = + 1, and the rest of 

them, Xj, j E U\A, will be assigned the label Yj = -1. Each possible subset A is assigned 

a value by a set function f (A) that has the same optimal solution, in terms of A and U\A, 

as the original semi-supervised classification problem. Reformulating the semi-supervised 

learning problem into optimizing set functions, more precisely submodular set functions, 

puts at our disposal a vast arsenal of efficient optimization techniques that were not used in 

this capacity before [35]. 

111.2.2 Solving QP-S3VM Using Submodular Optimization (SUBMOD-S3VM) 

In this section we use the concepts of submodular functions maximization to provide 

an efficient and simple algorithm for solving the approximate QP-S3YM problem. Towards 

this goal we propose a submodular maximization problem, in Problem 4, that is equivalent 

to the approximate QP-S3YM in Problem 3. For the sake of quick reference, we restate 

Problem 3 here. 

Problem 3. Quadratic Programming Approximation of Semi-supervised Support Vector 
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Machines (QP-S3 VM): 

subject to 

argmin tC*2(1IUI - p)'Kuup + CC*y'K zu (1Iul - p) 
p'=[Pl""'Plull 

p'11UI = rlUI, 0 :::; p :::; 11ul · 

(III. 16) 

Note: Equation (lII.l6) can be rewritten in the standard quadratic programmingform as 

follows: 

. (l C *21, K CC* 'K) 1C*2 'K arg mm - lUI uu - Y lu P - - P uuP 
p'=[Pl"",PIUll 2 2 

(lII.lS) 

111.2.2.1 Discrete Representation 

Before stating the proposed submodular maximization problem, we start by provid­

ing the discrete version ofthe quadratic objective function in Eq.(III.lS): 

D · .. 1C*21' K . • lscretlzzng "2 lUI uup· 

Let T = [i 1 , ... , ilul], such that i j , = 2::jEu[Kuu]j,j', then 

1 C*2 , ~C*2Tp "2 11uIKuup 2 

~C*2 "ip. 2 ~ J J 
JEU 

As described earlier, in Sec.III.2.1, the set function formulation of semi-supervised learning 

makes Pj E {O, I}. Therefore, only nonzero pj's, i.e. Pj, V j E A, will contribute to the 

term in hand. Thus, 

1C*2 , K "2 11uI uuP 

(III.23) 

• Discretizing -CC*y'Klup : 

Let T = [h, ... ,ilul], such that i j = 2::iEC ydKlukj, then 

-CC*y'Klup - CC*Tp 

- CC* 2: ijpj = -CC* 2: i j 
JEU JEA 

(III.24) 

- CC* 2: 2: Yi[Klukj 
JEA iEC 
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• Discretizing - ~C*2p'Kuup : 

Let T = [t l , ... , tlul], such that tjl = 2:jEu Pj [Kuu]j.jl = 2:jEA[Kuu]j,jl, then 

-!C*2p'K - !C*2Tp 2 uuP 2 

- !C*2"tp = _!C*2"t. 
2 ~JJ 2 ~J 

jEU jEA 
(1II.25) 

- !C*2" "[K ]," 2 ~~ uUJ,J 

jEAj'EA 

Using the discretized version of Eq.lIl.18, we propose the following submodular maxi­

mization formulation: 

Problem 4. Submodular maximizationformulation that is equivalent to Problem 3: 

where 

max S(A) 
IAI::;rIUI 

(1II.26) 

S(A) _~C*2 L [KuuL,jl + CC* L Yi [K1uL,j + ~C*2 L [Kuu]j,jl 
jEA,j'EU jEA,iE£ j,j'EA 

+L d [6j ,jl (~C*2IUI + CC*I£I) - ~C*2], 
J,J'EA 
, "I 

v 
Q5 

(111.27) 

and S is a submodular set function defined on all subsets A c U of unlabeled samples 

assigned to the class Yj = + 1, 0 :::; K.,. :::; d, and 6j,j' = 1 for j = j' and 0 otherwise. 

Problem 4 basically maximizes the negative of a discrete version of the objective function 

in Eq.(1II.18). The first three terms in S(A) are those derived in Eq.(III.23), (III.24) and 

(111.25). However, the term Q5 is of our design, and it is added to ensure the monotonicity 

and submodularity of S(A), as will be shown in Theorem 4. 

111.2.2.2 Q5 Design 

The initial submodular maximization formulation of (111.18) has the the following 

form, 

- ~C*2 L [KuuL,jl + CC* L Yi [K1uL,j + ~C*2 L [KuuL,jl 
jEA,j'EU jEA,iE£ j,j'EA 
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The design of Q5 took place through several iterations of examining the monotonicity and 

submodularity properties of SInitial(A), then compensating for the unsatisfied conditions 

with terms that should not affect the optimal solution of the optimization problem. 

In the first design iteration, we examined the monotonicity of SInitial(A), where 

\:1m ~ A, 

SInitial(A U m) - SInitial(A) = - ~C*2 I)Kuu]jl,m + CC* LydKlukm 
j'EU iE£ 

'---..... 'VI""---~.1 'V,,---~.1 

Dl D2 

JEA 
~C*2[Kuu]m,m . 

, J 

v 
~'----..v,..--~ D4 

D3 

It is clear that D3 and D4 are non-negative, as 0 ::; K.,. ::; d. On the other hand, Dl is 

non-positive and the sign of D2 depends on how many of the labels Yi = -1. Therefore, 

the monotonicity of SInitial is conditional on the available data labels and the associated 

kernel matrix. To overcome this dependence and achieve absolute monotonicity for SInitial, 

we add the constant term (~C*2IUI + CC*I£I) lAid, which ensures that possible negative 

values produced by Dl and D2 are cancelled out. The new updated function, SUpdated, have 

the form, 

SUpdated-l (A) SInitial(A) + (~C*2IUI + CC*I£I) lAid 

- ~C*2 L [Kuu]j,jl + CC* L Yi [K1uL,j + ~C*2 L [Kuu]j,jl 
jEA,j'EU jEA,iE£ j,j'EA 

+ (~C*2IUI + CC*I£I) lAid. 

In the next design iteration, we examined the submodularity of SUpdated-l (A). We 

applied the submodularity condition in Def.l on the smallest possible case of diminishing 

return law, where a set A c Band B = {A U q}. That is \:1m ~ B, 

SUpdated-l(A U m) - SUpdated-l(B U m) 
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which means that the current set function, SUpdated-l, is not submodular. We then trace this 

result back to the original formulation of SUpdated-l and we find that adding the constant 

-~C*2IAI2d overcomes the non-submodularity issue. The updated set function now has 

the form, 

SUpdated-2(A) SUpdated-l(A) - ~C*2IAI2d 

- ~C*2 2:: [KuuL,jl + CC* 2:: Yi [K1uL,j + ~C*2 2:: [Kuu]j,jl 

JEA,j'EU jEA,iE'c j,j'EA 

+ (~C*2IUI + CC*ILI) lAid - ~C*2IAI2d. 

However, the last update performed on the set function violated the monotonicity 

condition again. Therefore, we repeated the design process one more time and we found 

that adding a constant C*2IUIIAld will suffice to reach the final monotone submodular 

function, S Final (A) described in Problem 4, 

- ~C*2 2:: [Kuu]j,jl + CC* 2:: Yi [K1uL,j + ~C*2 2:: [Kuu]j,jl 

JEA,j'EU jEA,iE'c j,j'EA 

+ .2:: d [6j ,jl (~C*2IUI + CC*ILI) - ~C*2], 
J,J'EA 
, # 

v 
Q5 

It is worth mentioning that SFinal(0) = 0, which is a necessary condition for using the 

greedy maximization approach. 

111.2.2.3 Implications of Using Q5 to Satisfy Monotonicity and Submodularity 

Since for a fixed IAI the value of Q5 is constant, then the solution obtained by 

optimizing S (A) is not affected by adding Q5' In other words, examining Q5 

Q5 =2:: d [6j ,jl (~C*2IUI + CC*ILI) _ C;2] 
J,J'EA 

(~C*2IUI + CC*ILI) lAid _ C;21A12d 

shows that it depends on the cardinality of A not its contents. 
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Although adding Q5 in Problem 4 (SUBMOD-S3YM) does not change the fact that 

both Problem 3 (QP-S3YM) and the proposed submodular SUBMOD-S3YM have the same 

optimal solution, adding Q5 will affect the approximation guarantee of the greedy approach 

when applied on SUBMOD-S3YM. To better understand this issue, let us denote the dis­

cretized version of Problem 3 by V(A) such that 

V(A) = -tC*2 L [Kuulj,j' + CC* L Yi [K1uli,j + tC*2 L [Kuulj,j" 
JEA,j'EU jEA,iEL j,j'EA 

Then, for the optimal solution A*, the proposed S(A) in SUBMOD-S3YM can be written 

as, 

S(A*) = V(A*) + Q5, 

with Q5 being a constant as mentioned earlier. Using the submodular greedy algorithm to 

maximize S(A) will result in a solution AGreedy such that, 

S(AGreedy) ;::: (1 - 1je)S(A*), 

which can be written in terms ofV(A) as follows, 

V(AGreedy) + Q5 > (1 - 1je)[V(A*) + Q5l 

V(AGreedy) > (1 - 1je)V(A*) - (lje)Q5. 

(111.28) 

(111.29) 

Therefore, we see that the actual obtained lower bound on the approximation of V is less 

than the (1 - 1 j e ), i.e. 63.21 %, promised by the sub modular greedy maximization algo­

rithm. It is important here to remember that this is a lower bound on the performance and 

that the actual performance is usually much higher. Section 111.4.3.1 provides imperical 

estimates for the approximation percentage V(AGreedy)jV(A*) achieved by the greedy al­

gorithm for several of data sets. For most of the data sets, the obtained approximation is 

more than 98% of the optimal value and the lowest reached approximation is 87.5%. 

III.2.2.4 Proposed Submodular Optimization of S3VM (SUBMOD-S3VM) 

In Theorem 4, we provide the detailed proof that the proposed set function S(A) 

is monotone submodular, and thus can be maximized using the simple submodular greedy 

maximization algorithm. 
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Theorem 4. The set function S(A) in Problem 4 is monotone (non-decreasing), submodu­

lar, and S(0) = o. 

Proof First, S(0) = 0 follows directly from the definition in Eq.(lII.27) where all the 

summations are on elements in the set A. Therefore if A = 0 then S(0) = O. Next we 

prove the monotonicity property. Using the definition of S(A), we can show that for any 

m E U and m ~ A, the increase in the objective value of S due to adding mis, 

S(A U m) - S(A) = - ~C*2 L [Kuulm,j' + CC* L Yi [KluL,m 
j'EU iE£ 

(111.30) 
j'EA 

+ ~C*2 ([Kuulmm - d) + ~C*2IUld + CC*I£ld 
2 ' 2 

Since we are dealing with semi-supervised learning problems, then lUI» 1£1. For any 

kernel matrix K , where 0 :::; Ki,j :::; d, since 

then, 

C*2 L [Kuulm,j' 2: 0 
j'EA 

iE£ 

~C*2IUld > ~C*2 "[K 1 . 2 - 2 ~ uu m,l' 
j'EU 

S(A U m) - S(A) 2: O. 

Thus the monotonicity property of S(A) holds true. 

(III.31 ) 

N ow we prove the sub modularity of S (A) by assuming the set B = {A U q}, where 

q E U. Using the same set element m we used earlier, i.e. m E U and m ~ A, we need to 

show that adding m to the set A has more effect than adding it to the set B as stated in Def. 

2. Since 

S(B) - ~C*2 L [Kuulj,j' + CC* L Yi [KluL,j + ~C*2 L [Kuulj,j' 
jE{AUq},j'EU jE{AUq},iEC j,j'E{AUq} 

+ L d [6j ,j' (~C*2IUI + CC*I£I) - ~C*2] 
j,j'E{AUq} 

(III.32) 
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then 

S(8 u m) - S(8) = - ~C*2 L [Kuulm,jl + CC* L Yi [K1uL,m 
j'EU iEL 

+ C*2 L [Kuulm,jl - C*2 (IAI + 1) d (III.33) 
j'E{Auq} 

+ ~C*2 ([Kuulm,m - d) + ~C*2IUld + CC*I£ld 

Therefore 

[S(A U m) - S(A)l - [S(B U m) - S(8)l (III.34) 

Hence the set function S(A) is submodular. 

o 

Now that we have shown that S(A) is monotonic, submodular, and S(0) = 0 this 

means that the greedy maximization algorithm can be used to optimize Problem 4 and the 

performance guarantee in Theorem 2 holds true. 

To sum up, the proposed equivalent submodular maximization in Problem 4 is de­

fined on the all subsets A of samples belonging to the class labeled Yj = + 1. The efficient 

greedy algorithm in Algorithm 2 is used to the solve the problem efficiently. Once the 

optimum solution A * is determined, the rest of the unlabeled samples, i.e. U\A *, will 

belong to class with labels Yj = -1. We use the proposed algorithm in the transductive 

setting of semi-supervised learning. However, if the inductive setting is needed, a standard 

supervised SVM training can be performed to give the final hyperplane w. 

111.2.2.5 SUBMOD-S3VM Algorithm and Implementation Details 

SUBMOD-S3VM is an iterative greedy algorithm. In each iteration all available 

unlabeled samples Xj, j E U are evaluated against the marginal benefit function, defined in 

Eq.(III.30), and the sample Xm with the most benefit is added to the set of selections A. The 

process is repeated rlUI times, i.e. the expected number of samples with Yj = + 1 and j E 

lUI, where only previously unselected samples, Xj, j E U\A, are considered as illustrated 
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in Algorithm 3. 

S(A U m) - S(A) _~C*2 L [Kuulm,jl + CC* L Yi [KluL,m 
j/EU iEL 

~----~vr------' v------~ 
Term 1 Term2 

+ C*2 L [Kuulm,jl + (-C*2IAld) 
"I A '-.r----' 

, ] E ,," Term4 
v 

Term3 

+ ~C*2 ([Kuulm,m - d) + ~C*2IUld + CC*ICld 
, .I , .I 

V v 
Terms Termconst 

Algorithm 3: Greedy Algorithm to Optimize SUBMOD-S3YM [55, 64] 

Input : Set of Labeled Samples {(Xi, Yin, i E C. 
Set of Unlabeled Samples {Xj}, j E U. 
Ratio of Positive Labels in the set of Unlabeled 

Samples' r = l{y]=+l,]EU}1 
, lUI 

Output: Positively Labeled Samples in U; A * = {j E U : Yj = + 1 }. 
Negatively Labeled Samples in U; U\A* = {j E U : Yj = -I}. 

I begin 
2 Set Ao := ¢ 
3 for i := 1 to rlUI do 
4 foreach m E U\Ai - 1 do 
5 I MarginalBenefit [m] := S(Ai - 1 U m) - S(Ai - 1 ) 

6 end 
7 m* := argmax MarginalBenefit [m] 

m 

8 Ai := Ai- 1 U m* 

9 end 
10 A*'- ArlUI 

II end 

(III.30) 

As the focus of this work is handling very large data, it is important to empha­

size that, despite being iterative, the SUBMOD-S3YM algorithm is computationally ef­

ficient. To illustrate this idea we examine the marginal benefit function in Eq.(III.30) 

which is considered the computational bottleneck of the algorithm as it is for all avail­

able unlabeled samples reevaluated in each iteration. Looking at Eq.(III.30), it is notable 

that Term 1 , Term2, and Term5 are independent of the selected set A and hence they are 

evaluated once, for each unlabeled sample, during the first iteration of the algorithm and 
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then used throughout all iterations. Therefore, only Term3 and Term4 need to be reeval­

uated in-between iterations. However, both of them can be written in a recursive form, 

see Eq.(III.35), where they use values from previous iterations and the values' updates are 

efficient to calculate. 

For iteration i + 1, 
Term31i+l = C*2 L [Kuulm,jl 

j'EAi 

= Term31i + C*2 [Kuulm,jl={Ai\Ai_d 

Term41i+l = -C*2 id 

= Term41i - C*2d 

(III.35) 

So far we have discussed the efficiency of evaluating the marginal benefit function 

involved in the SUBMOD-S3YM algorithm. However, as we perform this evaluation for 

all possible unlabeled samples in each iteration, we end up with number of evaluations of 

order 0 (r IU 12 ). The submodular property can be exploited to dramatically reduce the num­

ber of required evaluations by using lazy evaluations. Let 6m (A) be the marginal benefit of 

the unlabeled samples Xm with respect to the selected set A as defined in Eq.(III.30). The 

key idea is that for a fixed m, the function 6m (A) is monotonically non-increasing in A: 

For any A s:;;; A', 6m (A) ~ 6m (A') holds true. Moreover, the greedy algorithm produces a 

monotonically increasing sequence of sets Ai s:;;; Ai+l during the iterations. Therefore, for 

a fixed m, 15m can never increase as the greedy iterations proceed. This idea is employed 

by evaluating 15m for all m E U in the first greedy iteration. For all next iterations we go 

through m E U\A i in a decreasing order of their 15m value by using a sorted list data struc­

ture. In each iteration, the highest 15m , located at the top of the list, is reevaluated and then 

reinserted in the proper spot with respect to the order of all 15m . In many cases, the reevalu­

ation does not change the value much and therefore it is quite often that the reevaluated 15m 

keeps its position at the top of the list. When this occurs, it is not necessary to reevaluate 

any other smaller 15m as we know they will not increase to be above the obtained top 15m . 

We perform evaluations only for the highest 15m , thus the name lazy evaluations. 

Algorithm 4 presents the SUBMOD-S3YM lazy evaluations greedy algorithm for 

general kernels. The first loop (Steps 3-9) evaluates the marginal benefit, Eq.(III.30), for 
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all unlabeled samples. All the obtained evaluations are then sorted and kept in a list (MrgB­

nfList). The top of the list is then picked as the first unlabeled sample with positive label 

and the index for the head of the list is moved to the second item. Lazy evaluations occur 

in the while loop (Steps 13-24) where only the current head of the list is re-evaluated. If 

after re-evaluation the head of the list remains at the top, the while loop is broken and the 

current head of the list is chosen to be positively labeled. If after re-evaluation the head of 

the list is less than its successor value, then the current head is pushed down the list such 

that it is larger than the next item. The while loop then continues to re-evaluate only the 

top item until a new head is found. The process is repeated in the for loop (Steps 12-26) 

until all unlabeled samples that should positively labeled are picked. 

Finally for the sake of easy reproducibility of this work we provide in Algorithm 5 

the detailed lazy evaluations greedy algorithm for optimizing SUBMOD-S3YM with linear 

kernel. 

111.3 Automatic Estimation of Unlabeled Positive Samples Ratio r 

One of the most important open problems in the semi-supervised learning (SSL) 

field is that many algorithms produce imbalanced solutions, sometimes called degenerate 

solutions, where almost all unlabeled samples are assigned to just one class. Looking at the 

continuous variable formulation of S3YM that we introduced earlier, 

we see that a very small value of the objective function is achievable by assigning all Pj = 1 

(or all Pj = 0). In this case, third and forth terms of the objective function will be zero, 

either because of the values of Pj or the zero loss terms associated. The only loss endured 

in this case, is due to the misclassification of the labeled samples in the second term. 

To overcome this problem, a wide range of semi-supervised algorithms put a restric­

tion on the number of samples assigned to each class. In particular, it is a common practice 

to impose a constraint on the output of SSL problems such that a certain ratio of the unla­

beled samples are to be assigned to the positive class, namely the unlabeled positive ratio 

r. What makes this issue a pressing problem is that all algorithms assign a value to r before 
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Algorithm 4: Lazy Evaluations Greedy Algorithm to Optimize SUBMOD­
S3VM with general kernels [28]. 

Input : Set of Labeled Samples {(Xi, Yin, i E c. 
Set of Unlabeled Samples {Xj}, j E U. 
Ratio of Positive Labels in the set of Unlabeled 

Samples· r = l{y]=+I,]EU}1 
, lUI 

Output: Positive Labeled Samples in U; A* = {j E U : Yj = + 1}. 
Negative Labeled Samples in U; U\A* = {j E U : Yj = -1}. 

I begin 
2 Set Ao := ¢ 
3 for m := 1 to lUI do 
4 New MrgBnfObj 
5 MrgBnfObj.Index := m 
6 MrgBnfObj. b := S(Ao u m) - S(Ao) 
7 MrgBnfObj.UpdateIteration := 1 
8 MrgBnfList.PushBack +-- MrgBnfObj 
9 end 

10 MrgBnfList +-- MrgBnfList.Sort 

II A 1 := Ao U MrgBnfList [l].Index 
12 for l := 2 to rlUI do 
13 while True do 
14 if (MrgBnfList [l]. Updatelteration=l) then 
15 I Break while loop. 
16 end 
17 MrgBnfList [l]. b := S(AI- 1 U m) - S(AI-d 
18 MrgBnfList [l].UpdateIteration := l 
19 if (MrgBnfList [l].b 2:: MrgBnfList [l + lIb) then 
20 I Break while loop. 
21 else 
22 I Push down MrgBnfList [l] to proper position to keep list sorted. 
23 end 
24 end 
25 A I ·- A I- 1 U MrgBnfList [l].Index 
26 end 
27 A*·- ArlUI 

28 end 
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Algorithm 5: Greedy Algorithm with Lazy Evaluations to Optimize SUBMOD-S3VM with 
linear kernel [28]. 

Input : Set of Labeled Samples {(Xi, Yin, i E L. 
Set of Unlabeled Samples {Xj}, j E U. 

Ratio of Positive Labels in the set of Unlabeled Samples; r 

Output: Positive Labeled Samples in U; A* = {j E U : Yj = + I}. 

I{Yj=+l,jEU}1 
lUI 

Negative Labeled Samples in U; U\A* = {j E U : Yj = -I}. 

1 begin 
2 Set Ao := cp 
3 US:= 2:: jEu Xj 

4 SLS:= 2::iEL YiXi 
5 for j := 1 to lUI do 
6 New MrgBnfObj 
7 MrgBnfObj.lndex := j 
8 MrgBnfObj.SSim := X'j . US 
9 MrgBnfObj.UpdateIteration := 1 

\ \ Sum of Unlabeled Samples. 

\ \ Sum of Signed Labeled Samples. 
\ \ Evaluate Marginal Benefit of All Unlabeled Samples w.r.t Ao. 

\ \ Instantiate a Marginal Benefit Object. 

\ \ Sum of Similarities to All Unlabeled Samples. 

10 MrgBnfObj.Terml := -0.5 C*2(x'j . US) 
11 MrgBnfObj.Term2 := CC*(x'j . SLS) 

12 MrgBnfObj.Term3 := 0 \ \ Since Term3 = C*2 2:: j 'EA Xj . Xj' and Ao = cp. 
13 MrgBnfObj.Term4 := 0 \ \ Since Term4 = -C*2IAld, and IAol = o. 
14 MrgBnfObj.Term5 := 0.5 C*2(x'j . Xj - d) 

15 MrgBnfObj.8 := 2::;=1 Termt \ \ Marginal Benefit Value of Unlabeled Sample Xj' 

MrgBnfList.PushBack +- MrgBnfObj \ \ Pushing Objects into a List. 
end 

16 

17 

18 MrgBnfList +- MrgBnfList.Sort \ \ Descending Sorting of List Objects Using Values. 

19 A 1 := Ao u MrgBnfList [1].Index 
20 SA:= Xj, j E Al \ \ Sum of Unlabeled Samples with Indeces in A. 
21 for l := 2 to rlUI do 
22 while True do 
23 if (MrgBnfList [l). Updatelteration=l) then 
24 I Break while loop. 
25 end 

26 MrgBnfList [l].Term3 := C*2(SA' . Xj) ,J MrgBnfList [l].Index 
27 MrgBnfList [l].Term4:= -c*2IAi_lld 

28 MrgBnfList [l]. 8 := 2::;=1 Termt 
29 MrgBnfList [l].UpdateIteration := l 
30 if (MrgBnfList [l}.8 ~ MrgBnfList [l + I}. 8) then 
31 I Break while loop. 
32 else 
33 I Push down MrgBnfList [l] to proper position to keep list sorted. 
34 end 
35 

36 

37 

38 end 

end 
Ai := Ai-l U MrgBnfList [l].Index 
SA := SA+xj 

39 A*:= ArlUI 
40 end 

, j MrgBnfList [l].Index 
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starting to optimize for the solution. This ratio assignment is usually estimated using the 

labeled samples, which can be a misleading estimate especially as in SSL problems the 

labeled data set is usually too small to be informative. 

The proposed SUBMOD-S3YM algorithm provides an advantage over the other 

S3YM techniques in the sense that the involved greedy procedure produces the classifica­

tion of individual unlabeled samples sequentially. Therefore, after n iterations of the greedy 

procedure on a set U of unlabeled samples, we have a set A with IAI = m of positively 

labeled samples and the rest of the samples U\A are negatively labeled. This means that 

the greedy procedure imposes a structure over the space of all possible label assignments 

to U, which is exponentially large with size 21ul, and reduce it to be of size lUI. In other 

words, the SUBMOD-S3YM algorithm produces lUI possible label assignments, and they 

are produced sequentially. This allows the opportunity to examine the various assignments 

and decide when to terminate the learning process. Figure III.7 shows a sample sequence of 

label assignments obtained during the iterations of the SUBMOD-S3YM algorithm along 

with their corresponding SYM decision boundaries. The reason the SYM models are de­

picted is to show how some of the label assignments are better than the others in terms of 

data separability, and therefore generalization performance, which is the core idea behind 

SYM/S3YM. 

Figure IIL8 presents the proposed approach for estimation of unlabeled positive 

samples ratio r. As discussed earlier the iterations of the SUBMOD-S3YM algorithm pro­

duces a sequence of possible label assignment such that each two consecutive label as­

signments differ in only one sample label. We use the inverse width of the SYM margin, 

Eq.(III.36), as an estimate of the generalization performance of the SYM model associated 

with every label assignment as a measure of the best label assignment. 

(IIL36) 

subject to 

The proposed approach, as seen in Fig.III.8, starts by training an SYM h using the 

first set of label assignments produced by the SUBMOD-S3YM algorithm. The inverse 

norm 1/ II W 112 is then used to estimate the generalization estimate for h. The process is 
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Figure 111.7: Sample sequential label assignments obtained during the iterations of the 
SUBMOD-S3VM algorithm. The lines depict the SVM model corresponding to the ob­
tained label assignment. (a) Original SSL data set. (b) First iteration label assignments. 
(c,d) Intermediate iterations. ( e) The optimal label assignment and the corresponding SVM 
model. (f) Last iteration, only one sample is assigned a negative label. 
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repeated for all iterations of the SUBMOD-S3VM algorithm to get 12 , ... , f lul and the 

corresponding margin width estimators. After the first iteration, SVM's do not have to be 

trained from scratch but rather incremental SVM is used to update previous ones. This 

is especially helpful given that each two consecutive SVM's have the same exact training 

data except for one sample with flipped label. We use incremental-deere mental SVM in­

troduced in [16] to perform incremental SVM training where exact closed form, and thus 

very efficient, formulation is utilized to account for adding or removing one sample from 

the training set of an SVM. Once all iterations are finished, the label assignment with the 

best margin is chosen as the output of the SUBMOD-S3VM algorithm. However, if there 

exists prior knowledge about a proper threshold for the generalization performance, the it­

erations can be stopped when this threshold is reached. Figure III.9 shows a sample output 

of the proposed approach on the imbalanced (Unlabeled Positive Sample Ration r = 65%) 

Breast-Cancer data set. We see that the margin width has a clear minimal value which 

corresponds to the proper inherent value for r. To validate the obtained ratio, we also de­

pict the accuracy as well as the F -Score of the label assignments to show that they achieve 

highest values at the chosen positive ratio r . 

· 1 · 1 

+1 

-ve £:, { ~ 

Figure I1L8: Proposed approach for automatic estimation of unlabeled positive samples 

ratio r. 
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Figure III.9: Sample result of the proposed approach for automatic estimation of unlabeled 

positive samples ratio r on the Breast-Cancer data set. The global internal minimum ofthe 

margin norm (1/llwI1 2 is the margin width) corresponds to the correct value for the number 

of positive samples. 

111.4 Experimental Results 

In this section we illustrate the superior performance, in terms of accuracy and time 

efficiency, of the proposed QP-S3YM and its submodular formulation SUBMOD-S3YM. 

We compare the performance of QP-S3YM and SUBMOD-S3YM with state of the art 

S3YM algorithms, namely Transductive Support Vector Machine (TSYM) [41] , Determin­

istic Annealing/or Semi-supervised Kernel Machines (DA) [62], and Gradient Transduc­

tive Support Vector Machine (\7TSYM) [18]. All experiments are performed on a 2.7 GHZ 

Intel Core2 Duo machine with 8 GB RAM. Moreover, we provide experiments to examine 

and illustrate the validity and effectiveness of the proposed contributions in this chapter. 

111.4.1 Experiments Description 

Figure 111.10 provides an outline of the work presented in this chapter and the cor­

responding experiments. As shown in the figure, our first contribution is the quadratic 
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programming surrogate objective function QP-S3YM. The verification experiments for this 

model are presented in Sec.IILl.3. For scalability purposes we transformed the QP-S3YM 

into a submodular optimization problem SUBMOD-S3YM and used an efficient greedy ap­

proach for optimization. Therefore, in Sec.IIL4.3.2 both QP-S3YM and SUBMOD-S3YM 

are compared against the state of the art S3YM techniques stated above in terms of their 

transductive accuracy (accuracy of labels assigned to unlabeled samples). Since some of 

the used benchmark data sets are imbalanced, we also use the sensitivity, specificity, and 

Matthews Correlation Coefficient (MCC) for comparison: 

T d . A - TP+TN rans uctlve ccuracy - TP+TN+FP+FN 

S ... TP 
ensltlvlty = TP+FN 

Specificity = TNr:'FP 

Matthews Correlation Coefficient (MCC) = J(TP+FP)(;::N)~::FP)(TN+FN) 

where TP and FN refer to the true positive andfalse negative counts of the positive-labeled 

unlabeled samples, respectively. Similarly, TN and FP are defined with respect to negative­

labeled unlabeled samples. We use the Matthews Correlation Coefficient (MCC) rather 

than the F -Score due to the dependence of the F -Score on the positive class where the TN 

is not considered. Therefore, the F -Score is not symmetric with respect to the labels of the 

classes while the MCC is. Therefore, MCC is preferred in our experiments as the cost of 

erroneous assignments to both classes is equal. 

The proposed SUBMOD-S3YM is a discrete form of QP-S3YM with an added con­

stant term to achieve submodularity and monotonicity. This means that the optimal solu­

tion of both problems is the same. However, we have shown in Sec.IIL2.2.3 that the added 

constant affects the approximation lower bound achievable by the greedy approach to opti­

mize SUBMOD-S3YM. In Sec.IIL4.3.1 we perform experiments to examine the empirical 

optimization approximation achieved by the greedy algorithm when applied on SUBMOD­

S3YM. The last set of experiments, Sec.I1I.4.S, examines the time efficiency and scalability 

of the SUBMOD-S3YM given that the submodular property allows the greedy approach to 

perform lazy evaluations which significantly reduces its computational complexity. 

The experiments are performed on several real world and simulated data sets with 
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Figure III. I 0: Outline of the proposed contributions in this chapter and the corresponding 
experimental outline. 

a wide spectrum of dimensions and size. Not all S3YM techniques in the literature are 

scalable, therefore we divide the experiments into small and medium/Large scale experi­

ments. In the small scale experiments, Sec.III.4.3 , all the techniques are used for compar­

ison. Whereas in medium/large scale experiments, Sec.III.4.4, we compare the proposed 

SUBMOD-S3YM only to the DA as it is the most scalable techniques in the literature. 

111.4.2 Experimental Setup 

All experiments are performed on pessimistic 10 labeled/unlabeled splits out of 100 

random splits of the data sets and the average is reported. SYM's are known for their very 

good generalization performance using only few data samples for learning. Therefore, it is 

not uncommon to obtain very few labeled samples and they produce highly good labeling 

of the unlabeled samples in SSL. In other words, the unlabeled samples in this case do 

not carry extra knowledge. Figure IlL I I illustrates this idea, where the decision boundary 

obtained in Fig.III.II b is almost the same as that in Fig.III.II a. This shows that the few 

chosen labeled samples are quite powerful and that the unlabeled in this example are not 

of much importance. To overcome the issue of san1pling useless unlabeled samples, we 
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choose our labeled/unlabeled samples to be challenging for the standard SVM. We acquire 

100 random labeled/unlabeled splits of any data set and use the 10 splits that achieve the 

worst classification performance with a standard supervised SVM. This way we guaran­

tee that the SSL decision boundary is very different from that of the supervised SVM, see 

Fig.III.llc. This will be clear when examining Table III.2 and Table III.7, where the su­

pervised SVM have hard time achieving a good accuracy. One of the state of the art S3VM 

techniques is the Deterministic Annealing (DA) S3VM. DA uses linear kernels. Therefore, 

we chose to perform all the experiments using the linear kernel. Moreover, using the lin­

ear kernel is one of the key aspects of applying SVM based techniques to very large data 

sets. Finally, the ratio of positive samples in the output r is set to the correct ratio in the 

unlabeled samples. 
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Figure III. I I : (a) Decision function obtained by supervised SVM on few labeled samples. 
(b) Labeled (circles) and Unlabeled (squares) samples where a supervised SVM on the 
labeled samples is good enough to effectively label all the unlabeled samples. Decision 
boundary similar to (a). (c) Unlabeled samples distribution is challenging for decision 
boundary of the supervised SVM. Decision boundary is very different from (a). 
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111.4.3 Small Scale Data Sets Experiments 

Table IILI presents the small scale data sets used for comprehensive comparison 

of the proposed algorithms to the literature S3VM techniques. The data sets have been 

chosen to cover a wide spectrum of data characteristics and applications. Most of the 

data sets come from real applications, except for G50c, Four-Class, and DigitI which are 

synthetic. G50c consists of samples from two Gaussian classes in a 50-dimensional spaces. 

The Four-Class data set is a challenging 2-dimensional data set used to test non-linear 

separation. DigitI is an image data set with different variations of the number one. It is 

designed to include samples close to a low-dimensional manifold that is embedded into a 

high-dimensional space. However, the samples do not show a pronounced cluster structure. 

The Breast-Cancer and Diabetes data sets are real world data for predicting breast 

cancer malignancy and diabetes in females of Pima Indian heritage, respectively. From the 

financial applications, we used the Australian and German-Numer data sets. Both are used 

for credit approval. We also experimented with data sets from physics based applications. 

Svmguide 1 is a data set for classifying astroparticles, Sonar is a data set for classifying 

rocks versus mine like objects, and the Ionosphere data set is used for detection of structures 

in the ionosphere. The USPS data set [20] is derived from the famous USPS data set of 

handwritten digits. The positive class consists ofthe digits "2" and "5", and the rest of the 

digits constitute the negatives class. 

Finally, from text classification applications we used the News20-Binary and the 

Text data sets for Newsgroup classification, and the W6a data sets for web page classifi­

cation. News20-Binary is a size-balanced two-class variant of the UCI "20 Newsgroups" 

generated in [43]. The positive class consisting of 1 0 groups with names of the form sci. *, 

compo *, or misc.forsale. The negative class includes the other 10 groups. The Text data 

set [20] consists of the 5 compo * groups from the Newsgroups data set and the goal is to 

classify the ibm category versus the rest. 
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TABLE 111.1 

Small scale data sets used in the experiments [6, 38, 20]. 

Data set Samples Features Labeled C C*/C r 

Sonar 208 60 2 0.47 
Ionosphere 350 34 2 1 1 0.35 
G50C 550 50 5 10- 1 10-2 0.5 
Breast -Cancer 675 10 4 1 10-2 0.65 
Australian 690 14 4 10- 1 0.44 
Diabetes 768 8 8 10-2 0.65 
Four-Class 862 2 11 10-2 0.36 
News20-Binary-Small 997 1,355,191 15 10-4 0.5 
German-Numer 1000 24 3 I 0.3 
W6A 1488 300 15 10-2 0.44 
Text 1494 11,960 30 10-3 0.5 
USPS 1500 241 4 10-3 0.2 
DigitI 1500 241 8 10- 1 0.49 
Svmguidel 3025 4 16 10- 2 10-6 0.66 

111.4.3.1 Greedy Approximation Experiments 

Section IIL2.2.2 presented the design process of the term Q5 that achieves the mono­

tonicity and submodularity of the SUBMOD-S3VM objective function. Furthermore, in 

Sec.III.2.2.3 we discussed the implications of using the term Q5, Eq.(IIL29), on the ap­

proximation achieved by the greedy algorithm. That is, while using the greedy algorithm 

has an approximation low bound of 63 %, adding Q5 will further reduce the approximation 

lower bound. 

In this section the approximation percentage V(ACreedy)jV(A*) achieved by the 

greedy algorithm is calculated for all the data sets in Table III.I. Figure IIL12 shows the 

obtained approximation percentages. It is clear that despite adding the constant Q5, the 

greedy algorithm still reaches a very good approximation of the optimal maximum value. 

Most of the shown data sets achieves more than 98% of the optimal value and the lowest 

reached approximation is 87.5% for the W6a data set. 
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Figure III.12: Approximation achieved by the greedy approach. 

111.4.3.2 Small Data Set Accuracy and Efficiency Experiments 

105.00% 

Table 111.2 provides the outcome of the transductive accuracy experiments. The 

bold and the underlined numbers indicate the best and the second best transductive accu­

racy, respectively, amongst all the tested techniques. It is clear that in almost all the tested 

data sets, the proposed QP-S3VM and SUBMOD-S3VM techniques achieve the best or the 

second best transductive accuracy. This shows the stability and the consistent performance 

of the proposed methods. For statistically robust conclusions, we have performed a series 

of paired-sample hypothesis tests, at the 5% significance level, to examine the transductive 

accuracy of SUBMOD-S3VM versus the state of the art, using both Table 111.2 and Table 

III .7. The output p-values of the hypothesis tests are shown in Table 111.3 . The p-values are 

small enough so we can reject the null hypothesis that the SUBMOD-S3VM have the same 

performance as the state of art S3VM algorithms. 

Table 111.4 provides further comparison measures, namely sensitivity, specificity, 

and MCC, for the small imbalanced data sets, where we see the proposed techniques are 

very comparable to the literature. 
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TABLE III.2 

Transductive accuracy for small scale data sets. All algorithms are tested on the unlabeled 
samples. SVM is trained only using the labeled samples while the semi-supervised tech-
niques are trained using both labeled and unlabeled samples. 

Data set SVM TSVM DA VTSVM I QP-S3VM SUBMOD-S3VM 

Sonar 45.15 54.45 50.24 45.83 55.53 57.09 
Ionosphere 34.22 51.15 76.44 45.92 65.23 65.17 
G50C 49.54 94.70 94.26 49.54 94.64 93.83 
Breast -Cancer 58.78 96.66 93.28 76.54 96.69 96.63 
Australian 40.26 64.46 63.13 63.43 82.83 79.30 
Diabetes 46.16 66.14 67.74 67.16 61.13 61.11 
Fourclass 55.24 60.71 63.34 64.49 63.41 63.43 
News-20-Small 49.12 67.67 65.60 N/A 57.23 67.78 
German-Numer 33.01 60.12 61.24 61.81 63.75 63.43 
W6A 45.09 53.90 60.65 44.82 64.13 62.30 
Text 56.67 73.71 75.96 N/A 74.25 74.04 
USPS 50.67 70.95 74.88 62.67 71.40 71.42 
DigitI 50.56 83.90 84.95 49.56 66.55 85.92 
Svmguidel 65.11 94.88 81.77 84.05 92.38 92.55 

TABLE IIL3 

P-values of paired hypothesis tests examining transductive accuracy of SUBMOD-S3VM. 

TSVM DA VTSVM 

p-value 0.0427 0.0307 0.0025 
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TABLE I1I.4 

Transductive accuracy evaluation for imbalanced small scale data sets. 

Data set TSVM DA VTSVM QP-S3VM SUBMOD-S3VM 

Sens. 31.73 66.29 84.52 50.97 50.89 
Ionosphere Spec. 61.81 82.01 24.82 73.06 73.02 

MCC -0.06 0.48 N/A 0.24 0.24 

Sens. 97.41 98.60 69.01 97.45 97.41 
Breast-Cancer Spec. 95.28 83.45 90.26 95.28 95.19 

MCC 0.93 0.85 0.61 0.93 0.93 

Sens. 72.88 81.19 79.64 70.28 70.26 
Diabetes Spec. 53.42 42.35 43.53 43.83 43.80 

MCC 0.26 0.25 0.26 0.14 0.14 

Sens. 49.96 52.36 48.58 48.61 
Four-Class Spec. 70.72 71.24 71.60 71.62 

MCC 0.21 0.24 0.20 0.20 

Sens. 33.75 33.83 21.46 39.30 38.76 
German-Numer Spec. 71.34 72.92 78.92 74.16 73.93 

MCC 0.05 0.07 0.09 0.13 0.13 

Sens. 27.08 22.58 76.21 28.22 28.26 
USPS Spec. 81.86 87.89 59.31 82.15 82.15 

MCC 0.09 0.14 0.28 0.10 0.10 

Sens. 95.78 86.73 94.49 94.24 94.37 
Svmguide1 Spec. 93.12 72.08 63.72 88.75 89.00 

MCC 0.89 0.59 0.66 0.83 0.83 
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The outcomes of the time efficiency comparison are listed in Table I11.5. We can 

see that the proposed SUBMOD-S3YM achieves a speed-up of 1.5X - 60X over the most 

efficient literature algorithm for each data set while maintaining a statistically significant 

better performance as evidenced in Table 111.3. In Fig.I11.13 we provide a visualization that 

summarizes the transductive performance and time efficiency of the proposed techniques. 

For each data set, the average transductive accuracy of the literature S3YM techniques 

(TSYM, DA, and V'TSYM) is plotted as a solid black line. Moreover, for each data set, the 

time access is scaled with respect to the most time efficient algorithm in the literature, i.e. 

min[time(TSYM), time(DA), time(V'TSYM)]. This scaling makes the time reading corre­

sponding to each algorithm represents the time efficiency compared to the best algorithm. 

Examining Fig.III.13 we see that in all data sets the proposed SUBMOD-S3YM performs 

better or close to the average transductive accuracy of the state of the art S3YM algorithms 

while achieving a much better time efficiency. 

TABLE 111.5 

CPU time (Seconds) experiments for the small scale data sets. 

Data set TSYM DA V'TSYM QP-S3YM I SUBMOD-S3YM 

Sonar 1.412 0.421 0.361 1.705 0.006 
Ionosphere 2.521 0.863 0.153 5.853 0.006 
G50C 1.254 0.207 0.097 27.38 0.019 
Breast Cancer 7.957 0.068 0.129 40.73 0.004 
Australian 36.03 0.294 0.297 105.5 0.008 
Diabetes 55.18 0.096 0.120 76.31 0.007 
Fourclass 54.48 0.127 0.108 115.4 0.005 
News-20-Small 369.0 21.87 N/A 195.0 0.583 
German-Numer 4.402 0.849 0.384 211.2 0.012 
W6A 28.31 0.960 0.536 767.2 0.163 
Text 46.98 0.628 N/A 756.2 0.130 
USPS 24.70 2.708 1.143 734.8 0.016 
Digiti 23.33 2.472 0.137 782.4 0.094 
Svmguide1 34.43 0.974 0.214 2823 0.030 
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Figure III.!3 : Summary visualization of the transductive accuracy and time efficiency of 
the proposed SUBMOD-S3YM versus the state of the art S3YM techniques . 
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Figure III,)3: Continued: Summary visualization of the transductive accuracy and time 
efficiency of the proposed SUBMOD-S3YM versus the state of the art S3YM techniques . 
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Figure III.J 3: Continued: Summary visualization of the transductive accuracy and time 
efficiency of the proposed SUBMOD-S3VM versus the state of the art S3VM techniques. 

111.4.4 Medium/Large Scale Data Sets Experiments 

In this section we provide the transductive accuracy and time efficiency experiments 

for medi urn and large scale data sets with sizes ranging from few tens of thousands to more 

than a million samples as listed in Table 111.6. For the current experiments we focused 

more on using with high dimensionality. The W8a and the New20.Binary are just larger 

versions of the data sets used in Sec.III.4.3 . The RCV i .Binary is extracted from the Reuters 

Corpus Volume I data set, where CCAT(Corporate/Industrial) and ECAT(Economics) con­

stitute the positive class and GCAT(Government/Social) and MCAT(Markets) constitute 

the negative class. We also considered classifying the CCAT against all other topics . The 

A9A is a Census data set that is used to redact if an adult earns more than $50K a year. 

Aut-Avn and Real -Sim data sets are articles discussion groups for simulated auto racing , 

simulated aviation , real autos , real aviation . The Aut-Avn data set is used to classify be­

tween the aviation and auto articles , while the Real-Sim is used for classifying reaJ versus 

simulation articles. Cod-Rna is used for the detection of non-coding Rna in bioinformat­

ics. Finally, the KDD-99 data set comes from computer network analysis where network 

intrusion needs to be detected . The used KDD-99 data set is a close to balanced version of 

the full (training/testing) original data set . 
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111.4.4.1 MediumlLarge Data Set Accuracy and Efficiency Experiments 

We consider only the DA algorithm for comparison as it is the only algorithm that 

can scale to large data sets and it has shown consistent good performance in the small 

scale data sets. Table 111.7 and Table I1L8 provide the output of the transductive accuracy 

experiments. It is clear that SUBMOD-S3YM again shows statistically significant better 

better performance while achieving a 8X - 300X speed up as clear from Table 111.9. 

TABLE I1L6 

Medium and large scale data sets used in the experiments [6, 38]. 

Data set Samples Features Labeled C C*/C r 

News20.Binary 19,954 1,355,191 50 1 10-3 0.50 
CCAT 23,149 47,236 30 1 10-6 0.47 
GCAT 23,149 47,236 30 1 10-6 0.40 
A9A 35,276 122 9 1 10-3 0.23 
W8A 59,245 300 15 1 10-6 0.02 
Aut-Avn 70,166 20,702 9 1 10-6 0.65 
Real-Sim 72,201 20,958 8 1 10-6 0.31 
Cod-Rna 488,516 8 98 1 10-6 0.33 
Coy-Type 581,012 54 24 0.1 10-6 0.49 
RCY I.Binary 697,641 47,236 35 1 10-8 0.52 
KDD-99 1,500,000 122 9 1 10-5 0.47 

TABLE IIL7 

Transductive accuracy for medium and large scale data sets. 

Data set SYM DA SUBMOD-S3YM 

N ews20-Binary 50.74 69.51 71.10 
CCAT 51.13 62.44 63.32 
GCAT 57.63 65.81 79.29 
A9A 56.04 66.55 65.11 
W8A 80.74 97.08 95.00 
Aut-Avn 62.08 64.78 70.12 
Real-Sim 54.09 61.64 70.83 
Cod-Rna 33.33 56.67 70.08 
Coy-Type 48.52 50.13 55.09 
RCY1.Binary 69.91 75.60 76.16 
KDD-99 71.95 98.62 95.38 
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TABLE III.8 

Transductive accuracy evaluation for imbalanced medium and large scale data sets. 

Data set DA SUBMOD-S3YM 

Sells. 65.89 71.06 
News20-Billary Spec. 73.12 71.15 

MCC 0.391 0.422 

Sells. 53.60 61.12 
CCAT Spec. 70.33 65.29 

MCC 0.24 0.264 

Sells. 10.64 66.06 
GCAT Spec. 90.04 85.09 

MCC N/A 0.530 

Sells. 23.44 24.76 
A9A Spec. 79.57 77.29 

MCC 0.028 0.021 

Sells. 0.243 14.33 
W8A Spec. 99.99 97.42 

MCC N/A 0.118 

Sells. 100.0 76.94 
Aut-Avll Spec. 0.000 57.58 

MCC N/A 0.345 

Sells. 20.03 52.58 
Real-Sim Spec. 80.13 78.93 

MCC N/A 0.315 

Sells. 27.32 55.12 
Cod-Rna Spec. 71.35 77.56 

MCC -0.014 0.327 

Sells. 86.85 53.95 
CoY-Type Spec. 15.19 56.18 

MCC N/A 0.101 

Sells. 76.75 77.27 
RCYI.Billary Spec. 74.34 74.93 

MCC 0.51 0.522 

Sells. 99.08 95.13 
KDD-99 Spec. 98.20 95.60 

MCC 0.97 0.907 
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TABLE IIL9 

CPU time (Seconds) experiments. 

Data set DA 

News20-Binary 175.2 
CCAT 12.59 
GCAT 5.891 
A9A 11.61 
W8A 6.228 
Aut-Avn 24.34 
Real-Sim 12.35 
Cod-Rna 119.7 
Cov-Type 59.38 
RCV1.Binary 2,190 
KDD-99 425.45 

111.4.5 Time Complexity Experiments 

0.497 
1.150 
1.09 

0.166 
1.573 
0.347 
1.457 
9.302 
14.44 
23.22 
15.72 

In Sec.III.2.2.5 we presented the implementation details of the SUBMOD-S3VM 

algorithm and we discussed the idea of implementing the greedy algorithm using lazy eval­

uations which is made possible by the submodularity property of the objective function. In 

this section we provide experiments comparing the number of function evaluations saved 

through using lazy greedy evaluations. Table IlL 1 0 and Fig.IIL14 provide the number of 

function evaluations used by the lazy greedy approach compared to the total number of 

evaluations required for the standard greedy approach and they show that reductions in the 

range 71-99% are achieved. Table IIL11 presents the output of the same experiment on the 

medium and large scale data sets where the reductions are above 99% for all large scale 

data sets. It is noticeable by comparing TabielIL1 0 and Table IlL 1 0 that the reduction in 

the number of the function evaluations achieved gets better with larger data sets. 
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TABLE III .l 0 

Number of Evaluations for Lazy Greedy and Standard Greedy Approaches for Small Scale 
Data Set. 

Data set Lazy Evaluations Complete Greedy Evaluations 

Sonar 2.74E+03 1.53E+04 
Ionosphere 3.88E+03 3.56E+04 
G50C 2.11E+04 1.l2E+05 
Breast Cancer 2.03E+03 1.98E+05 
Australian 6.40E+03 1.63E+05 
Diabetes 5.30E+03 2.55E+05 
Fourclass 4.34E+03 2.13E+05 
News-20-Small 1.11E+05 3.59E+05 
German-N umer 7.92E+03 2.53E+05 
W6A 2.16E+05 7.50E+05 
Text 1.44E+05 8.00E+05 
USPS 4.59E+03 4.03E+05 
DigitI 4.04E+04 8.23E+05 
Svrnguidel l .26E+04 4.0IE+06 

Svmguide1 
Digit1 

• Number of Lazy Evaluations 
• Number of Complete Greedy Evaluations 

USPS ____________ _ 

T~t ............................ . ~a .. ____________ _ 

German-Numer ............................ .. 
News-20-Small ............................ .. 

Fourclass ................ ~ .......... .. 
Diabetes ............................ ~ 

Australian 
Breast Cancer ............................ .. 

G50c .......................... . 
Ionosphere 

Sonar 

0% 20% 40% 60% 80% 100% 

Reduction % 

82.04% 
89.11 % 
81.16% 
98.97% 
96.07% 
97.92% 
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69.01 % 
96.87% 
71.23% 
82.00% 
98.86% 
95.10% 
99.69% 

Figure 111.14: Depiction of the number of evaluations used by the lazy greedy algorithm 
compared to the total number evaluations of a standard greedy approach for the small scale 
data sets. 
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TABLE 111.11 

Number of Evaluations for Lazy Greedy and Standard Greedy Approaches for Large Scale 
Data Set. 

Data set Lazy Evaluations Complete Greedy Evaluations Reduction % 

News20-Binary 3.08E+004 1.48E+008 99.9793% 
CCAT 1.45E+005 1.81E+008 99.9196% 
GCAT 1.30E+005 1.30E+008 99.9100% 
A9A 6.45E+004 2.55E+008 99.9747% 
W8A 2.06E+005 1.01E+008 99.7959% 
Aut-Avn 7.52E+005 2.16E+009 99.9651 % 
Real-Sim 2.30E+005 1.36E+009 99.9830% 
Cod-Rna 9.06E+005 6.63E+OI0 99.9986% 
Cov-Type 1.27E+006 1.24E+Oll 99.9990% 
RCY I.Binary 1.42E+006 1.88E+Oll 99.9992% 
KDD-99 2.41E+006 8.l5E+Oll 99.9997% 

Next, we examine the efficiency of SUBMOD-S3YM with increasing data set sizes. 

For this experiment we repeated the original experiment with varying number of total sam­

ples. Specifically, for the large scale data sets we run the SUBMOD-S3YM on the full set 

of unlabeled samples and then reduce the number of samples by one order of magnitude 

and re-run. The process is repeated until the number of unlabeled samples is less than 10. 

Fig.I1I.15 shows the time complexity of the set of large scale data sets compared to the DA 

algorithm. We also provide the O(n) and O(n2
) complexities as references for compari­

son. The results shown in Fig.I1I.15 illustrate that the SUBMOD-S3YM time complexity 

increases almost linearly with the size of the unlabeled data set. 

111.5 Discussion 

In this chapter we proposed a quadratic programming approximation of the semi­

supervised SYM problem (QP-S3YM) that proved to be efficient to solve using standard 

optimization techniques. One major contribution of the proposed QP-S3YM is that it es­

tablishes a link between the two major paradigms of semi-supervised learning, namely low 

density separation methods and graph-based methods. Such link is considered a significant 

step towards a unifying framework for semi-supervised learning methods. Furthermore, we 

propose a novel formulation ofthe semi-supervised learning problems in terms of submod-
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Figure Il1.l5: Time complexity of the proposed SUBMOD-S3YM as a function of the data 
sets size compared to the DA algorithm . 
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ular set functions which is, up to our knowledge, is the first time such idea is presented. 

Using this new formulation we present a methodology to use submodular optimization 

techniques to efficiently solve the proposed QP-S3YM problem, namely SUBMOD-S3YM. 

We showed through the chapter that the proposed SUBMOD-S3YM algorithm is very com­

petitive with the sate of the art S3YM algorithms and moreover it achieves a 1.5X - 300X 

speed up which constitutes a significant improvement to the field as well as our general 

purpose of using such algorithms for incremental/online learning. 
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CHAPTER IV 

SEMI-SUPERVISED SVM LEARNING FOR STREAMING DATA 

IV. 1 Semi-supervised SVM (S3VM) for Streaming Data 

In Chapter III we have developed the QP-S3YM and SUBMOD-S3YM algorithms 

to efficiently solve the S3YM problem. However, both algorithms assume the existence 

of the all data prior to the learning process. The goal of the current chapter is to extend 

these algorithms to the more flexible case where parts of the data need to be processed 

sequentially. This constitutes the core of the proposed never-ending learning framework. 

In general, sequential data processing is important for two scenarios: a) If the data is too 

large to fit in the main memory. Therefore, the learning algorithm has to work on smaller 

manageable portions of the data sequentially. b) If the data is not available at the beginning 

of the algorithm operation but rather is being generated over time. The first scenario is 

known as Incremental Learning while the second one is referred to as Online Learning. 

Incremental/online learning 

The target of the proposed algorithms in this chapter is to achieve a classification 

performance that is not affected by the sequential processing of the data as well as reaching 

a constant time and storage complexity for processing streaming data. 

For the rest of this chapter data is presented to a learning algorithm in a stream of 

batches HI, H2 , ... , Ht. We consider a batch to be partially labeled, that is Ht = {Ut, Lt}, 

where Ut and Lt are the unlabeled and labeled sample subsets, respectively. The availability 

of the labels Lt depends on the learning scenario. In incremental learning, the labels Lt 

are revealed to the algorithm instantly. However, in online learning they are presented 

as feedback from the environment after the learning algorithm has classified the samples. 

Labeled samples are usually expensive to acquire and therefore the majority of the batches 

are unlabeled (Lt = ¢). 
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The proposed algorithm proceeds in ordered iterations of testing, supervision (i.e. 

environment feedback), and updating steps. For incremental learning the testing and su­

pervision steps coincide as the labels of Lt are revealed to the algorithm at the testing step. 

The following summarize these steps for both the incremental and learning algorithms. 

1. At every time step t, the environment chooses a batch Ht = {Ut, Lt} and present it 

to the incremental/online transductive learning algorithm. 

2. Testing Step: Using its current model (predictor) [t-I: 

(a) The incremental transductive algorithm produces labels for only the unlabeled 

samples in Ut . 

(b) The online transductive algorithm produces labels for all labeled/unlabeled 

samples in Ht . 

3. Supervision Step: Occasionally, Lt =1= ¢: 

(a) For the incremental transductive algorithm, the environment provides Lt in­

stantly to the learning machine to use it along with the model [t-I to predict the 

labels ofUt . 

(b) The online transductive algorithm labels all samples in Ht and then the correct 

labels of the samples in Lt are provided by the environment as a feedback. 

4. Updating Step: The incremental/online transductive algorithm updates its current 

model to [t using the new available data. 

Note that the QP-S3VM and SUBMOD-S3VM algorithms inherently performs label prop­

agation to predict labels of unlabeled samples. Therefore, the model [t-I used by the 

incremental/online extensions consist basically of all samples seen thus far by the algo­

rithm, [t-I = {HI, ... , Ht - I }. This is a hindering problem in practice as no memory is 

ever enough to store all samples in a data stream. In the proposed work, we use compact 

exemplar based representations as will be presented in the following sections. 

The direct dependence of the model [t on the data samples makes all components 

of a data batch Ht = {Ut, Lt} necessary for the the model update process in step 4. Clearly 
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the labels for the samples in Lt are very valuable as they present a direct feedback from the 

environment (oracle) about the performance of the algorithm. However, even the samples 

in Ut are of utmost importance as they delineate dense regions in the data space that are 

necessary for the operation of the QP-S3YM and SUBMOD-S3YM algorithms. 

IV.2 From Batch to Online Learning of QP-S3VM 

To introduce the proposed Incremental/Online Transductive Learning Approaches 

we start by describing the incremental/online version of the QP-S3YM proposed in Section 

III.I and then we proceed to its efficient submodular version. Recall that the QP-S3YM 

problem has the following form, 

argmin -~C*2p'Kuup + (~C*21;uIKuu - CC*y'K.cu)p 
p'=[Pl,···,PIUll 

subject to p'llul = rlUI 0 :::: P :::: llul 

(IV I) 

Assuming that the input data is divided into batches {HI,"" Ht , ... HT }, the objective 

function in Eq.(IVI) can be rewritten as follows: 

(IV2) 

where K Usut and K Csut are kernel matrices with Us, Ls E Hs and Ut E Ht . Eq.(IV2) shows 

that the QP-S3YM objective is additive over the data batches. 

In incremental/online learning, the batches Ht arrive sequentially and thus the algo­

rithm has access only to the input batches up to the present time. Keeping in mind that the 

objective function in Eq.(IV2) is decomposable over the data batches, a natural incremen­

tal/online extension of the QP-S3YM algorithm presents itself where for each new arriving 

data batch Ht an instantaneous objective functions of the following form is optimized: 

(IV3) 

Naturally, the instantaneous objective function in Eq.(IV3) is optimized with respect 

to PUt where labels are assigned to the most recent batch of unlabeled samples Ut . This 

form of instantaneous objective optimization depends on the decisions made in previous 
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iterations for Pus where s < t . Since there is no assumption about the sequence in which 

the data batches are presented to the learning algorithm, the values of PUs obtained with 

partial observation of the data are not guaranteed to be consistent with their values if the 

whole data set is observed. To illustrate this idea, we examine two possibilities for batch 

sequence arrival of the sliced cube data set in Fig.IVl . 

• + I Labeled Sample • -I Labeled Sample X Unlabeled Sample 

. +1 Assigned Unlabeled Sample + -1 Assigned Unlabeled Sample 

(a) (b) 

Figure IVl : (a) Partially labeled sample of the Sliced Cube data set. (b) The ideal outcome 
after using semi-supervised learning to label the unlabeled samples. 

Figure rV2 and Fig.IV3 depict the ideal and the realistic scenarios for batch se­

quence arrival of the sliced cube data set, respectively. In both figures, the first column 

(a-d) shows the partially labeled data available at each time step. Each data batch is titled 

with a number indicating the time step when it arrived. Figure IV2 depicts a rather ideal 

scenario for data batches arrival, where the new unlabeled batches of the same class arrive 

in sequence so as to be closer to each other than to the opposite class, see Fig.IV2(a-d). 

Using the instantaneous objective function in Eq.(lV3) for this scenario will result in a 

perfect solution as seen in Fig.IV2( e-h). This is because the data batch arrival is coherent 

with the inherent data structure and thus the instantaneous objective function does not make 

intermediate mistakes during the algorithm operation. 
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Figure IV2: (a-d) Ideaf
d
2cenario for data batches arrival. 

using instantaneous objective function in Eq.(IV3). 
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A more realistic scenario for batch data arrival is depicted in Fig.IV3(a-d), for in­

stance in the second time step of the algorithm, Fig.IV3(b), two batches arrive that are 

closer to their opposite classes than to their own. Therefore, optimizing the instantaneous 

objective in Eq.IV3 will results in the labeling shown in Fig.IV3(f) which is clearly cor­

rect with respect to the currently available data but rather wrong when more data becomes 

available and the correct structure of the data is uncovered. As mentioned earlier, the in­

stantaneous objective function finds the labeling for the most recent data batch using the 

labelings obtained in previous iterations. Therefore, we see that that the wrongful label­

ing in Fig.IV3(f) carries over to Fig.IV3(g-h) and thus the intermediate mistake made in 

Fig.IV3(f) ruins the results for all further iterations. 

One suggestion to overcome the problem of error propagation through iterations is 

to optimize the instantaneous objective function in Eq.(lV2) for both PUs' 'is < t, and PUt 

for each new data batch Bi> 

:,~~ '!~ ( _~C'2 t p~.Ku.u, + ~C'2 t l;u.,Ku•u, - CC' t y~.K,.u, ) PuIIVA) 
" .I " .I , .I V V v 

7I ~ TJ 

This suggestion might look promising specially that it maintains label propagation and 

similarities between the current batch unlabeled/labeled samples and all previous unla­

beled/labeled samples through the terms T2 and 7;, respectively. It also maintains label as­

signment smoothness between the current batch and all previous ones through the term Ti. 

However, one crucial part is missing from Eq.(lV4) which maintains the labeling smooth­

ness among the previous batches themselves. The absence of such smoothness results in 

data labeling that is not consistent with underlying geometry of the data. 

The previous argument tells us that using the QP-S3VM algorithm for streaming 

data is only possible by repetitively applying it on all the data available at each iteration as 

follows: 

Problem 5. Incremental/Online QP-S3VM: 

For a sequence of data batches B1 , ... , BT , ••• , BT , as each batch become available 
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(e) 
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(g) 

(h) 

(i) 

-
, " 

", ! , #/ , ~. 
..... .. / . ... ~ ,", A 

(k) 

(1) 

Figure IV3: (a-d) Realistic scenario for data batches arrival. (e-h) Corresponding label­
ing using instantaneous objective function in Eq.(IV3) which exhibits errors to carry over 
between iterations. (i-I) Corresponding correct labeling without error carry over. 
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find the solution of 

This way we make sure that all label assignments to all unlabeled samples available thus 

far are based on the current view of data and that any previous mistakes due to partial 

observation of the data are fixed as more data become available and finally we are certain 

that all smooth label propagation paths (dense regions) are preserved. 

IV.2.1 Proposed QP-Exemplar Selection Model for Online QP-S3VM Learning (QP­

EXMP) 

We have shown that the QP-S3YM algorithm can only be used for streaming data 

via repetitive application on all data available at each time iteration. However, this en­

tails storing all samples of a data stream. This deems the applicability of the approach 

impossible. In this section we propose a stream summarization, i.e. exemplars selection, 

technique for the specific use with QP-S3YM algorithm. The exemplars are selected to 

keep a compact representation of the data stream that retains the key properties impor­

tant to semi-supervised learning with respect to dense regions and similarities to labeled 

samples. 

Figure IYA provides an illustration of the concept of exemplar selection for incre­

mental/online learning. Figure IV4(a) shows a batch B1 of partially labeled data arriving 

at the disposal of the learning algorithm. B1 will be processed by S3YM and the labels of 

the unlabeled samples (+ and x) are predicted. To proceed with processing more batches, 

B1 has to be summarized using few exemplar samples. The summarizations aims at choos­

ing few representative exemplars that fit into the main memory. The shaded samples in 

Fig.IV4(b) represent the chosen exemplars. The exemplars at this time iteration form the 

model of the data stream (Ct) up until this moment. In the next time iteration, a new batch 

B2 arrives, Fig.IYA( c). The stream model Ct is then appended to B2 for further processing 

by S3YM. 

The proposed exemplar selection technique is formulated as follows: 
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XX X 

+ Positive l abeled Samples 

X Negative Labeled Samples 

o Batch I Exemplars 

+ Batch 2 Unlabeled Samples 

X Batch 2 Unlabeled Samples 

o Batch 1 Samples 

• Selected Exemplars 

(b) 

+ 

JC x 
x XX 

X X X 

X X ~X 

o ~~X X 

X 
XX X 

(d) 

Figure IV.4: Illustration of exemplar selection for stream summarization. (a) Bl of data 
with a single labeled sample and many unlabeled ones. (b) Exemplars selected to summa­
rize B1. (c) Batch B2. (d) Exemplars from (b) are appended to B2 for further learning 
iterations. 
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Problem 6. Quadratic Programming Exemplar Selection Algorithm for Incremental/Online 

QP-S3 VM (QP-EXMP): 

Given a data batch B = {U, £}, with U and £ being subsets of unlabeled and 

labeled samples, respectively. Assuming that the subset £ is very small and to be kept in its 

entirety. The proposed QP-EXMP selects exemplars from the subset U using the following 

optimization problem: 

argmin A1e'Kuue + A2lf,qKlu(1Iul - e) + A3lfulKuu(1lul - e) 
e'=[el,,,.,elull 

(IVS) 

subject to 

(IV6) 

where 

ll.cl: A ones vector of length 1£1. Similarly is llul' 

e' = [e1' ... ,elul], ej = 1 for selected exemplars and ej = 0 otherwise. 

ME: The number of exemplars to be chosen. 

KII = Ki,i' Vi, i' E £, Kuu = Kj,j' Vj, j' E U, K lu = Ki,j Vi E £, j E U. 

Note: Equation (IVS) can be rewritten in the standard quadratic programming form as 

follows: 

arg min A1 e 'Kuue - (A2lf.cIKlu + A3lfulKuu)e 
e'=[el,,,.,elull 

(IV7) 

Figure IVS provides a depiction ofthe proposed incremental/online QP-S3YM learn­

ing procedure using the QP-EXMP exemplar selection algorithm. Each column in Fig.IVS 

demonstrates the operation of the algorithm at a single point in time. The first row contains 

the new data batch arriving at that time iteration, B1, ... , Bt . The last row shows the cor­

responding labeled batches after applying QP-S3YM, 81, ... ,8t . The second row contains 

the stream model used for the current time iteration. Notice that in the first column, the 

stream model is empty as B1 is the first batch to process. The third row in the figure con­

tains the aggregation of the input batch in the first row and the stream model in the second 

row. Basically the contents of the third row represent the input to the QP-S3YM at each 

time iteration. 
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In the proposed algorithm, we assume that all batches Bt have fixed size. We further 

assume that the memory budget for the stream model is set at twice the size of the processed 

batches, i.e. 21Bt l. These assumptions are quite general as data streams can be processed at 

arbitrary batch sizes. In streaming data processing, it is usually assumed that the correlation 

between data samples is inversely proportional to the time elapsed between their arrival. 

Therefore, in the proposed incremental/online learning procedure, we give more weight to 

the last arriving batch against being summarized to construct the stream model. Basically, 

at each time t the used stream model consists of the last data batch Bt - 1 in its entirety and 

the QP-EXMP exemplar summarization of all previous batches of the stream £t- 2 starting 

with Bt - 2 until the first batch. This is illustrated in Fig.IVS where at t = 3 the stream model 

in the second row consists of the last batch B2 combined with the stream summarization 

£1 ; £1 is essentially the QP-EXMP summary of the batch B1 . On the other hand, at t = 2 

the stream model is B1 as simply £1 = <p. 

Each curved arrow in Fig.IVS represents applying the QP-EXMP algorithm to ob­

tain an exemplar representation of the stream £t. This illustrated in the third row at t = 3 

where the QP-EXMP algorithm summarizes £lB2 into £2. 

• Stream Batches 

• Stream Exemplars 

• SSL Stream Labeling 

• Labeled Stream Batch 

Figure IVS: Illustration of the incremental/online QP-S3VM learning procedure using the 
proposed QP-EXMP exemplar selection algorithm. 
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IV.2.2 QP-EXMP Model Interpretation 

In this section we provide an interpretation of the proposed QP-EXMP model which 

will give an insight into understanding why this model works and how it is appropriate 

for stream summarization for the QP-S3VM algorithm. The QP-EXMP model has the 

following formulation: 

arg min )qe'Kuue + A211.cIK/u(1Iul - e) + A31lulKuu(1lul - e) 
e'=[el, ... ,eluIJ 

subject to 

e'llul = ME, 0 ::; e ::; llul' 

The first term in Eq.(lY.8) can be expanded in the following manner: 

Ale'Kuue = Al L [KuuL,jlej'ej + Al L [KuuL,jl(2ejejl) 

j,j'={I, ... ,IUI} j={I,···,lul-l} 
j=j' j'={j+l,···,IUI} 

~'----.... v----
Ql 

(ly'8) 

(ly'9) 

The term Ql is quadratic in ej, thus Ql is minimized by setting all ej value to zero. There­

fore, Ql induces sparsity of the solution by discouraging samples from being chosen as 

exemplars, which is a desirable notion in our problem where only few important exemplars 

are to be chosen. Minimizing the term Q2 is explained through Fig.lY.6 where we plot the 

function Zj,j' = 2ejejl, for all ej' ej' E [0,1]. Minimizing Q2 with respect to the cardinality 

constraint e'llul = 1£1 means that terms with large [KuuL,jl values should be assigned a 

small 2ejej' value and vice versa for small [Kuu]j,j'- This basically means that when two 

samples are similar, large [Kuu]j,jl, then only one or neither of them should be selected 

as an exemplar ej = 1. However, if the two samples are dissimilar, small [KuuL,jl, then 

both samples are selected to be exemplars. Therefore, minimizing Q2 encourages select­

ing diverse samples which is once more an important criterion in exemplar selection as it 

provides the ability to model rich environments using few samples. 

The second term in Eq.(lY.8) can be expanded as follows: 

A211.cIK/u(1IUI - e) = A2 L [Klukj(l- ej) (lY.10) 
iE.c,jEU 

Since ej E [0,1], minimizing Eq.(lY.lO) would involve setting small (1 - ej), i.e. ej ~ 1, 

to [Klukj with large values and vice versa. This means that samples with high similarity 
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1 0 

Figure IV6: Plot of Zj ,j' = (2ejejl) for all ej, ej' E [0, 1] . 

to labeled samples are encouraged to be picked as exemplars. This idea makes sense in the 

context of exemplar selection for the QP-S3VM algorithm where label propagation occurs 

from labeled samples through dense regions to unlabeled samples. Therefore, to ensure 

proper label propagation exemplars close to labeled samples are important to be included. 

The same argument we used for the second term in Eq.(IVIO) can be used to inter­

pret the third term, 

J'31(UIKuu(1IUI - e) = .\3 L [KuuL,j'(1 - ej) (IV I I ) 
j ,j'EU 

We see that the minimizing the third term encourages selecting exemplars that are similar 

or close to other unlabeled samples. In other words, this term chooses exemplars that 

exist in dense regions. This is once more an important criterion for exemplar selection 

for semi-supervised learning paradigm where unlabeled samples delineate the data space 

and moreover provide dense paths for label propagation. Therefore, choosing exemplars in 

dense regions helps preserving the underlying dense regions structure of the data space for 

use semi-supervised learning algorithms. 

In the rest of this section we provide a set of illustrative figures to show in action 

the effect and importance of the different components of the proposed QP-EXMP model 

in Eq.(IV8). The basic set up for these illustrations starts with the Two Moons data set in 

Figure IV7. In Fig. IV7(a), the bold samples are labeled samples while the thin ones are 

unlabeled. The unlabeled samples have the marker of their ideal labeling. Therefore, for 
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an unlabeled sample to be labeled correctly, the color assigned to it should match the color 

of the labeled sample of the same marker shape. This makes it easier to visually judge the 

quality of the achieved labeling. 

To simulate the streaming scenario, the data set in Fig.IV7(a) is split into two 

batches Bl and B2 that arrive in order, see Fig.IV7 (b) and (c), respectively. The illus­

tration setup continues by applying the QP-EXMP algorithm on Bl to select few summary 

exemplars £1. The exemplars £1 along with the batch B2 are used as input to the QP-S3VM 

algorithm to assign labels to B2. In each of the following illustrative experiments we will 

demonstrate the importance of the various components of the QP-EXMP model by show­

ing the output of the exemplar selection process if each component was ignored from the 

model. We further show how the differences in the chosen exemplars reflect on the labeling 

of the batch B2 . 

First we examine the effect of the first term in Eq.(IV8), which induces diversity 

among the chosen exemplars. Figure IV8(a) depicts the exemplars selected by the original 

QP-EXMP model, and Fig. IV8(b) provides the exemplars when the diversity inducing 

term is removed. The exemplars chosen without the diversity term (Right Column) are 

clumped and therefore does not well represent the dense regions in B1. As can be seen in 

the bottom row, this resulted in a severe distortion in the labeling of the batch B2 . 

Figure IV 9 illustrates the importance of exemplars selection in dense regions. As 

we can see, ignoring the third term in Eq.(IV8) results in selecting exemplars that are more 

likely to belong to noise (Right Column) rather than meaningful exemplars representing 

the underlying dense regions of the data space. This also has a degenerative effect on the 

labeling obtained for the batch B2 as shown in the bottom row of the figure. 

To illustrate the importance of the exemplar selections with high similarity to labeled 

samples, i.e. the second term in Eq.(IV8), we use the Long Tail Two Moons data set in 

Fig.IVI0. Figure IVll shows the effect of exemplar selections without this term, where 

ignoring the similarity to labeled samples resulted in cutting the path for labels to propagate 

from the labeled samples to unlabeled samples and thus distorting the final labeling of the 

batch B2 as shown in the bottom row of the figure. 

One important property of the proposed QP-EXMP model is its ability to select 
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Figure IV7: (a) Two moons partially labeled data set. (b) Batch 81. (c) Batch 82. 

102 



I ~ Batch I Samples 
Selected Exemplars I ~ Batch 1 Samples 

Selected Exemplars 

8~~ o °f ooc J& 0 0 s 0 

o 
o 

(a) 

-4 + 
~*f+ 

00 +~*±t 
o ~ 

;i. + + 1-ti-;::, + 
c6 '*f-+ 

1-* r + f 
x )lE( 

o 

x ~ X hl 

:~.:x t:1X 
Ir+-=--PO-Siti-Ve-La-be-Ied-S-am-Pl-es--il:<",&~i x ~ ; 

X Negative Labeled Samples X ~~ 
o Batch I Exemplars X X 

+ Balch 2 Unlabeled Samples 

X Balch 2 Unlabeled Samples 
X 

(c) 

-4 + 

~;ff •• • -1=';1-

I + + 1-ti-~ + 

ix '*f-+ 
! +f ~ 

x. )lE( 
• 

>( ~X >( . 

~~ t -' X X 

~*$~l !Ii: 

X X 

X 

(e) 

o 

(b) 

-4 + 
~.ff+ 

+~*ff 
+ -t+._~ 

+ +~ + 
1±f-+ I-! ! + f 

x )lE( 

X 

o 

x ~x 
I r-::----------l"\:~>.<.·:x X 

+ Posi tive Labeled Samples I~J< ~ ~ 
~X~~~ X Negative Labeled Samples X 'iJ?f<~ 

o Batch I Exemplars X X 

+ Batch 2 Unlabeled Samples 
X 

X Balch 2 Unlabeled Samples 

(d) 

-4 + 
~+ 
+ ~~ 

+ ~ >~ X ; + X J , 

.}'*- ~ 
~.>< 
;~ 

X X 

X 
lji<X 

+ ~>( + 
~x 1 _ X 

+ 
~.~+ )lE( 

X I 

+ 

(f) 

Figure IV8: Importance of diversity in exemplars. Left Colwnn: Output of QP-EXMP 
model. Right Column: Output if diversity enforcement is ignored. (a-b) Selecting exem­
plars from batch B1. (c-d) Using exemplars and batch B2 as input for SSL. (e-f) Output of 
SSL. 
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larity to labeled samples is ignored. (a-b) Selecting exemplars from batch B1. (c-d) Using 
exemplars and batch B2 as input for SSL. (e-f) Output ofSSL. 
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exemplars from dense regions that might not belong to any existing know class. This 

scenario is illustrated in Fig.IVI2, where the batch Bl has clusters of samples that belong 

to two classes. However, it includes only one labeled sample. Despite the lack of a clear 

path between the second unknown cluster and any labeled samples, the QP-EXMP selected 

some exemplars from the unknown cluster in anticipation that it might receive labeled 

samples in the future that clarifies its identity. 
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Figure IV12: Exemplar selection from dense regions with no labeled samples. (a) Two 
moons data set. (b) Batch Bl with two cluster from opposite classes and only one labeled 
sample. (c) Batch B2. (d) Exemplars selected by QP-EXMP. (e) Exemplars and Batch 2 
input to SSL. (t) Output of SSL. 
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Figure IV12: Continued: Exemplar selection from dense regions with no labeled samples. 
(a) Two moons data set. (b) Batch 81 with two cluster from opposite classes and only one 
labeled sample. (c) Batch 82. (d) Exemplars selected by QP-EXMP. (e) Exemplars and 
Batch 2 input to SSL. (f) Output of SSL. 

IV.2.3 QP-EXMP Model Verification 

Now that we have formulated and interpreted the QP-EXMP model, we proceed 

in this section by verifying if the proposed model actually works for its intended purpose 

which is selecting exemplars that preserve the inherent data properties for use with the 

QP-S3YM during incremental/online learning. 

The used experimental setup starts by selecting two batches, 81 and 82, from any 

given data set. Batch 81 represents all previous data from a data stream, while 82 rep­

resents a new arriving batch that needs to be labeled using the QP-S3YM algorithm. The 

purpose of the experiment is to show that batch 81 can be significantly summarized into a 

set small set of exemplars £1 without affecting the final labeling of 82. In other words, we 

need to show that: 

QP-S3YM Labeling of 82 Given 81 ~ QP-S3YM Labeling of 82 Given £1 

One issue that we considered while sampling batches for the experiment is the mutual 

relationship between 81 and 82 in the sense that using 81 during the semi-supervised 

labeling of 82 provides significant improvement over the case if only 82 is used. Tllis 

way we make sure that sure that any significant reduction in the number of exemplars £1 
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while maintaining the labeling accuracy of B2 is indeed due to the good performance of 

the QP-EXMP algorithm and not because B1 is invaluable to the semi-supervised learning 

process. We use what we called the Dissimilarity Indicator of B1 versus B2 as a measure 

for the value of B1 with respect to semi-supervised labeling of B2, 

Dissimilarity Indicator of B1 versus B2 = 

I Difference ( QP-S3YM Labeling of B2, QP-S3YM Labeling of B2 Given B1) I 
~----------------------~--~----------------------~ x 100% 

IB21 

For each selected B1 and B2, the experiment proceed by applying the QP-EXMP model 

to select an exemplar set £1 and the comparative transductive accuracy of using £1 versus 

using B1 in the semi-supervised labeling of B2 is calculated as follows, 

Transductive Accuracy of B1 Exemplars £1 = 

Transductive Accuracy of QP-S3YM Labeling of B2 Given £1 

Transductive Accuracy of QP-S3YM Labeling of B2 Given B1 
x 100% 

The process is repeated for several sizes of £1 to examine the effectiveness of the QP-

EXMP model in selecting smallest exemplar sets that maintains the transductive accuracy. 

We performed the experiment on seven data sets spanning a wide spectrum of di­

mensionality. We used two types of kernels during the experiments, Linear and RBF as 

shown in the following figures. For each data set, batches B1 and B2 of size 500 samples 

each are randomly chosen and the QP-S3YM algorithm is applied on both of them to get 

the labels for B2. Next the QP-EXMP is applied on B1 to extract the exemplars set £1. 

£1 is then fed back to the QP-S3YM algorithm to get new labels for B2 as described ear­

lier. The process starts with initial size of the exemplar set as small as 0.5% of IB11 and 

keep increasing to see when satisfactory performance is achieved. We repeated this pro­

cedure on 200 pairs of batches. Samples results for three of the data sets are presented in 

Fig.(IV13-IV15). The rest of the experiments are provided in Appendix. 

Examining the figures we see that the QP-EXMP model performs very well in terms 

of selecting very small exemplar sets, as low as 1 % of B1 in Fig.IV15, while maintaining 

more than 95% of the comparative transductive accuracy with respect to B1. The results 

also prove to be robust in the sense of being consistent even for batches with very large 

dissimilarity indicator, up to 95% in Fig.IY.l3. The figures also show that the performance 
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is consistent with both Linear and RBF kernels which suggests expected good performance 

with other types of kernels. 

Finally, through these experiments we have verified that the proposed QP-EXMP 

model is a proper model for the problem of exemplar selection and summarization of data 

streams for the purposes of incremental/online semi-supervised learning. 

IV.3 Submodular Optimization of QP-EXMP (SUBMOD-EXMP) 

The proposed QP-EXMP has time efficiency issues due to the quadratic program­

ming problem involved. Similar to what we have presented in Chapter III, in this section we 

propose a submodular maximization problem that is equivalent to the QP-EXMP problem 

and that is highly scalable. By using submodular optimization to solve the QP-EXMP, the 

problem is transformed into a set function optimization problem where the goal is to select 

the best set of exemplars among all possible samples. We start by restating the QP-EXMP 

problem for the sake of quick reference. 

Problem 7. Quadratic Programming Exemplar Selection Algorithmfor Incremental/Online 

QP-S3 VM (QP-EXMP): 

arg min Ale'Kuue + A211c1Klu(11ul - e) + A31iulKuu(1lul - e) 
e'=[q, ... ,eluil 

(lVI2) 

subject to 

(IV 13) 

Note: Equation (IV 12) can be rewritten in the standard quadratic programming form as 

follows: 

argmin Ale'Kuue - (A21i.qK1u + A31iulKuu)e 
e'=[eI, ... ,eluil 

(IV 14) 

Following the same procedure used in Section III.2.2, we use the discrete represen­

tation of Eq .IV14 and propose the following submodular maximization formulation of the 

QP-EXMP: 
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Figure IY.!3 : QP-EXMP model verification for the Cov-Type data set using linear and 
RBF kernels. 
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Problem 8. Submodular formulation (SUBMOD-EXMP) of the QP-EXMP in Problem 6: 

where 

j,j'EE 

j,j'EE 

max 9(E) 
IEI:SME 

jEE,iE£ 

'~--------~vr--------~ 
T 

(lV15) 

JEE,j'EU 

(lV16) 

and 9 is a submodular set function defined on all subsets E c U of unlabeled samples 

eligible to be chosen as exemplars, 0 ::; K.,. ::; d, and 5j ,j' = 1 for j = j' and 0 otherwise. 

Problem 8 maximizes the negative of the discrete version of QP-EXMP in Eq.lV14. 

The constant term T is added to enforce the monotonicity and submodularity of the func­

tion 9(E), see Theorem 5. 

Theorem 5. The setfunction 9(E) in Problem 8 is monotone (non-decreasing), submodu­

lar, and 9(0) = o. 

Proof First, 9(0) = 0 follows directly from the definition in Eq.(lV.l6) where all the 

summations are on elements in the set E. Therefore if E = 0 then 9(0) = O. Next we prove 

the monotonicity property. Using the definition of 9(E), we can show that for any m E U 

and m 1:. E, the increase in the objective value of9 due to adding mis, 

j'EE iE£ 

For any kernel matrix K , where 0 ::; Ki,j ::; d, since 

A2 L [K1uL,m ~ 0 
iE£ 

j'EU 

4AI1Uld - 2Al L (d + [Kuulm,j') ~ 0 
j'EE 

2A1d - Al ([Kuulm,m + d) ~ 0 
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then, 

9(£ u m) - 9(£) 2 o. 

Thus the monotonicity property of 9 (£) holds true. 

Now we prove the submodularity of 9(£) by assuming the set F = {£ U q}, where 

q E U. Using the same set element m we used earlier, i.e. m E U and m tI:- £, we need to 

show that adding m to the set £ has more effect than adding it to the set F as stated in Def. 

2. Since 

9(F) = -AI 2: [Kuu]j,j' + A2 2: [KtuL,j + A3 2: [Kuu]·, 
],] 

j,j'E{EUq} jE{£Uq},iE'c jE{EUq},j'EU 

+ 2: AId [6j ,j' (41UI + 2) - 1] 
(IV 19) 

j,j'E{EUq} 

then 

9(F U m) - 9(F) 
j'EF iE'c j'EU 

(IV20) 

Therefore 

[9(£ U m) - 9(£)]- [9(F U m) - 9(F)] (IV21) 

Hence the set function 9 ( £) is submodular. D 

In summary, we have proved that the proposed SUBMOD-EXMP in Problem 8 is 

monotonically increasing and submodular. Therefore, we can use a simple efficient greedy 

algorithm to optimize it and find the exemplars as described in Algorithm 6. 

To illustrate the benefits of the proposed SUBMOD-EXMP, we repeated the exper­

iments we conducted for the QP-EXMP model verification in Section IV.2.3, but this time 

we used both the QP-EXMP and SUBMOD-EXMP algorithms. Figure IV16 presents a 

comparison between both algorithms in terms of the transductive accuracy and the com­

putational efficiency. The results shows no statistically significant difference in the trans­

ductive accuracies of the QP-EXMP and SUBMOD-EXMP algorithms. Meanwhile, the 

SUBMOD-EXMP achieves several folds of computational efficiency improvements over 

the QP-EXMP algorithm as shown in the logarithmically scaled time comparison in Fig.IV16. 
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Algorithm 6: Greedy Algorithm to Optimize the Proposed SUBMOD-EXMP 

Input : B = {L, U}: A data batch with labeled and unlabeled samples. 
M: Size of the exemplars set to be chosen. 

Output: £*: The best set of exemplars given the size constraint. 

I begin 
2 Set £0 := ¢ 
3 for i : = 1 to M do 
4 foreach m E U\£i-l do 
5 I MarginalBenefit [m] := Q(£i-l U m) - Q(£i-d (Eq.(IV.l7)) 
6 end 
7 m* := argmax MarginalBenefit [m] 

m 

8 £i := £i-l U m* 

9 end 
10 £*.- £M 
II end 
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IV.4 Proposed IncrementaVOnline SUBMOD-S3VM 

We propose an incremental/online SUBMOD-S3YM aJgorithm to perform on stream­

ing data. The idea is the same as we described for the incremental /online QP-S3 YM, where 

the standard SUBMOD-S3YM is repetitively applied on the newly arriving data batch along 

with an exemplar representation of the data stream so far, see Fig.IV17. For labeling a batch 

Bt, we choose the stream representation to consist of Bt- 1Et- 2, where Bt- 1 is the most re­

cently processed batch and Et - 2 is the set of exemplars summarizing the stream until the 

time instant t - 2. We believe that keeping the last processed batch Bt - 1 rather summarizing 

it instantly, gives the algorithm the ability to perform aggressive summarization without the 

fear that the removed samples might be affect dramatically near future decisions . 

• Stream Batches 

• Stream Exemplars 

• SSL Stream Labeling 

• Labeled Stream Batch 

Figure IV17: Illustration of the incremental/online SUBMOD-S3YM learning procedure 
using the proposed SUBMOD-EXMP exemplar selection algorithm. 

Figure IV18 illustrates the procedure we propose to automatically decide the size of 

the exemplar representation of the stream . When a new batch Bt+2 arrives , the full available 

stream representation EtBt+l is used to label it using the SUBMOD-S3YM and resulting in 

the labels Bt+2 . Now, to summarize the current stream representation EtBt+1 , we iteratively 

use SUBMOD-EXMP with increasing cardinality of the selected exemplars to obtain a 

new exemplar set Et+1 . Increasing the number of exemplars is aimed at achieving a good 

labeling of the new batch that is the same as the labeling obtained with the whole available 

stream representation , i.e . B't+2 = Bt+2. Increasing the size of the exemplars stops if an 

exact match of B't+2 is obtained or the storage limit amiable for stream representation is 
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exact match of 8' t+2 is obtained or the storage limit amiable for stream representation is 

reached. In our experiments we set the initial size of the exemplars to be O.11£t8 t+ll and is 

increased by the same amount at each iteration. We also assume that the exemplar set £t at 

any time instant can not exceed in size a data batch. That is to say that we assume that the 

main memory has the size of three times a data batch. 

SUBMOD-S3VM 

SUBMOD-EXMP 

SUBMOD-S3VM 

no 

Figure IVI8: Diagram of the proposed incremental/online SUBMOD-S3YM illustrating 
the use of SUBMOD-EXMP to summarize streaming data. 

Finally, upon observation we found that achieving 8' t+2 = 8 t+2 is quite hard and 

results in unnecessary large storage of exemplars. On the other hand, through experiments 

we have seen that a tolerance of 5% difference between B't+2 and B t+2 can achieve almost 

the same results but with much faster performance and much smaller memory storage. In 

the experiments we compare these two strict and tolerant procedures as well as the batch 

learning where all the data starting at the beginning of the stream is used to label the current 

batch. 
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IV.S Experimental Results 

In this section we present the experiments we conducted to examine the perfor­

mance of the proposed incremental/online SUBMOD-S3VM algorithm. We evaluate the 

performance of the proposed work in terms of transductive accuracy, time complexity, and 

memory requirements. As a benchmark for optimal accuracy, we provide the transduc­

tive accuracy obtained by batch based learning where all samples in the data stream to 

the current moment are used to predict the labels for the current batch. Moreover, we 

compare both procedures, strict and tolerant, for determining the exemplar size used by 

SUBMOD-EXMP as described in the previous section. Finally, the exemplars provided by 

the SUBMOD-EXMP are not perfect and at each time step, using such exemplars rather 

than the whole data batch will result in some misclassifications. We report these misclas­

sification as the cost of summarization, as we believe it is important how such errors might 

affect the learning process on the long run. Table IV. 1 provides the details of the used data 

sets. 

TABLE IV. 1 

Data sets used in the experiments [6, 38]. 

Data set Samples Features Labeled Batch Size 

News20.Binary 19,954 1,355,191 50 1,000 
CCAT 23,149 47,236 30 1,000 
GCAT 23,149 47,236 30 1,000 
Aut-Avn 70,166 20,702 9 2,000 
Real-Sim 72,201 20,958 8 2,000 
RCV I.Binary 697,641 47,236 35 10,000 
KDD-99 1,500,000 122 9 8,000 

IV.S.I Experimental Results for the Incremental Learning Scenario 

In this section we provide the experiments conducted under the incremental learning 

scenario, where data batches presented to the algorithm sequentially are partially labeled. 

In other words, if there exists labeled samples in the data batch, the algorithm see them 

120 



instantly and are used in the process oflabeling the rest of unlabeled samples. This scenario 

is more suitable for learning from enormous partially labeled data that can not fit into 

the main memory and therefore is broken into manageable batches that can be processed 

sequentially. 

Examining Fig.lY.19-IY.25 we observe that there no statistically significant differ­

ence between the transductive accuracy of the incremental SUBMOD-S3YM algorithm and 

the batch learning algorithm. As the time complexity graphs show the batch learning has 

linear time complexity in the size of the data, the incremental SUBMOD-S3YM shows 

constant, on average, time complexity. The fluctuations in the time complexity around the 

constant average are due the changes in the size of the stored exemplar set as can be seen 

in the subplots (b) and (c) in Fig.lY.19-IY.25. 

One important observation is that the cost of summarization tend to decrease for 

all data sets over time. This actually indicates that the exemplars selected over time are 

getting saturated and in fact they represent correctly the core characteristics of the data 

stream. Moreover, looking at the cost of summarization curves for all the data sets, we 

noticed that it does not exceed 5% of the batch size, and that only occurs for the early 

data batches at beginning of the learning process. This observation inspired the tolerant 

procedure described earlier. In fact comparing the performance of the standard (strict) 

and the tolerant procedures, we see that the tolerant procedure preserves the transductive 

accuracy while achieving much butter time complexity and memory storage. 

Figure IY.25 shows the transductive accuracy produced by the incremental SUBMOD­

S3YM with different batch sizes. The instability of the performance for the small batch size 

and the improvement observed for the large batch size suggests that for the small batches 

the stored exemplar are too few to hold a stable comprehensive representation of the stream. 

Therefore, over time as further reductions are performed some important exemplars are re­

moved which affects the performance. A larger batch size allows a richer representation to 

be stored (remember that we use a stream representation equal to the batch size) and thus 

the transductive accuracy becomes more stable. 
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IV.S.2 Experimental Results for the Online Learning Scenario 

In this section we provide the experiments conducted under the online learning sce­

nario, where data batches presented to the algorithm sequentially are always unlabeled and 

thus have to be labeled. Occasional engagement from the environment is provided in the 

form for labels for unlabeled samples, however this occurs only as feedback after the algo­

rithm has already finished labeling. This scenario is more suitable for learning from data 

generated over time. 

Figure IY.26-Iy'30 show the transductive accuracies of the online SUBMOD-S3YM 

algorithm, the online batch learning algorithm, and the incremental batch learning algo­

rithm from previous section. The incremental batch learning is observed to initially outper­

form the other online approaches and the difference diminishes as the stream progresses. 

This is natural as the incremental batch learning have access to the labeled samples in each 

new batch, and it uses these labels to find the best labels for the unlabeled samples. How­

ever, the online approaches do not have access to the labels and thus their performance is 

expected to differ in the beginning of the stream. As more batches are processed, the online 

SUBMOD-S3YM become robust enough to perform as well as the incremental approach. 
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Figure IY.26: Online SUBMOD-S3YM results for the CCAT data set. 
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IV.6 SUBMOD-EXMP Extension for Inter-batch Dependence 

In the proposed SUBMOD-EXMP algorithm, for given two batches B1 and B2, 

and B1 is required to be reduced via exemplar selection into £1. the SUBMOD-EXMP 

uses only to select the exemplars. B2 on the other hand is only used during the procedure 

of deciding the proper size for £1. In this section we propose an improvement over the 

SUBMOD-EXMP model where B2 is involved as well in the process of selecting £1 as it 

include up-to-date information about the dense regions of the data space that might not be 

clear in B1 and thus might get ignored during the exemplar selection process. 

Figure IV31 depicts a special case of the Two Moons data set, where the batch B1 

includes two clusters belonging to two different classes and one of them is much denser 

than the other. Another disadvantage against the lighter cluster is that it does not have a 

labeled sample to attract attention to it, whereas the dense cluster has a labeled sample 

which gives it double the attention from the SUBMOD-EXMP algorithm. As can be seen 

in Fig.lV32(Left Column), the SUBMOD-EXMP does not include B2 in the decision to 

select £1 which results in selecting all of £1 from the dense cluster while considering the 

light cluster as noise. Had B2 been included in the decision, it would become clear that the 

light cluster in B1 is in fact a primitive sign for a much denser region in B2 and thus few 

exemplars would be chosen from the light cluster, see Fig.lV32(Right Column). 

We tested this idea on reveal of the data sets we used earlier and the results and 

presented in Fig.IV33-IV35. It is clear that the idea is valid and that in some cases, such 

as in Fig.IV33, it provides obvious improvement over the standard SUBMOD-EXMP and 

in the rest of data sets we do not decay in the performance due to the use of the inter-batch 

dependence idea. 
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CHAPTER V 

ACTIVE LEARNING EXTENSION FOR QP/SUBMOD-S3VM 

The previous chapters considered two aspects of our proposed Never-Ending Learn­

ing framework, specifically learning under limited supervision in Chapter III and doing so 

over time in Chapter IV. In both chapters the learning process is unidirectional. Knowl­

edge flows from the oracle (i.e. environment) to the learning machine in the form of labels 

or dense regions of unlabeled samples. In this chapter we present an extension of the 

QP/SUBMOD-S3VM algorithms in Chapter III for Active Learning, where the learning 

machine requests feedback from an oracle in the form of labels for important samples. Ac­

tive learning serves as the interaction between the learning machine and the oracle. This 

interaction is necessary for the proposed Never-Ending Learning framework as the learning 

machine is deployed for extended periods of time. Occasionally, the learning machine will 

come across hard samples that may deteriorate the performance in the long run unless han­

dled properly. Therefore, active learning provides a mechanism for requesting feedback 

from the oracle when needed. 

V.I Proposed Active Learning for QP/SUBMOD-S3VM 

The proposed active learning technique is formulated in Problem 9. 

Problem 9. Quadratic Programming Active Learning Algorithmfor QP_S3 VM (QP-ACTV): 

Given a data batch B = {U, .£:}, with U and .£: being subsets of unlabeled and 

labeled samples, respectively. The proposed QP-ACTV selects unlabeled samples from the 

subset U in order to be labeled by an oracle using the following optimization problem: 

arg min Ala'Kuua + A2ly'Klula + A31(ulKuua 
a'=[al, ... ,alull 

(V.I) 
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subject to 

(V.2) 

where 

11CI: A ones vector oflength ILl Similarly is 11ul' 

a' = [aI, ... , alul], aj = 1 for selected exemplars and aj = 0 otherwise. 

M v: The number of samples to be labeled by the oracle. 

Ku = Ki,i' Vi, i' E L, Kuu = Kj,j' Vj, j' E U, K lu = Ki,j Vi E L, j E U. 

Note: Equation (VI) can be rewritten in the standard quadratic programming form as 

follows: 

arg min )qa'Kuua + P'21y'K1u l + A31iulKuu)a 
a'=[al, ... ,alud 

(V3) 

V.2 QP-ACTV Model Interpretation 

The first term in Eq.(V.1) is the same as that in the QP-EXMP model in Section 

IV2.2 where we showed that it enforces diversity amongst the selected exemplars sum­

marizing a data stream. For the purposes of active learning, requesting feedback from an 

oracle is expensive and thus in active learning, the goal is to gain the maximum feedback 

supervision using the minimum number of requests. Therefore, enforcing diversity maxi­

mizes the information gain per feedback request made by the active learning algorithm. 

To interpret the second in Eq.(VI) we rewrite it as follows: 

A21y'KIula = A2 L ajlLYi[Klukjl 
JEU iEC 

(VA) 

The absolute value expression finds the difference in similarities between all positive/negative 

labeled samples and each unlabeled sample. As aj E [0, 1 J, minimizing this term entails 

assigning aj = 0 to samples that have large similarity with either positively or negatively 

labeled samples. On the other hand, samples that are highly dissimilar or equally similar 

to both signs of labeled samples, are assigned aj = 1. In fact the second term handles 

one essential kind of confusion in label propagation semi-supervised learning problems. 
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An unlabeled sample that is too dissimilar to any labeled sample or equally similar to two 

labeled samples from opposite classes is considered confusing and error prone. Therefore, 

it is highly valuable for active learning. 

Minimizing the third term as expressed in Eq.(V5) involves assigning aj = 1 to 

unlabeled samples with small aggregated similarity with other unlabeled samples and vice 

versa for aj = O. 

A31iuI K uua = A3 L [Kuu]j,j,aj 
j,j'EU 

(V5) 

In other words, the third term in Eq.(Vl) encourages selecting samples, for active learn­

ing, that are far from dense regions of unlabeled samples. This idea is coherent with the 

concepts of label propagation in semi-supervised learning where labels propagate mainly 

through dense regions of unlabeled samples. Therefore stray unlabeled samples are likely 

to be confusing and appropriate for active learning. 

In summary, the proposed QP-ACTV formulation in Problem 9 uses three basic 

ideas for active learning: a) Similarity to labeled samples is small, b) existence far from 

dense regions, and c) diversity of selections to minimize the number of requests to the 

oracle. 

Figure VI provides some examples of the samples selected for active labeling by 

the QP-ACTV model. The depicted data set has only two labeled samples. Figure V.l(a) 

shows the full data set and the selected samples in circles. It is noticeable that many of the 

selected samples exist in sparse areas. However, in the center of the Fig. V.1 (a), we see 

samples that are very close to dense regions and yet are selected. Such samples are likely to 

be far or equally distant from all the labeled samples. In Fig. VI (b) and Fig. VI (c) we use 

QP-ACTV with subsets of the full data. It is more clear in these plots that samples can be 

in very dense regions and yet be selected for active labeling. The diversity of the selected 

samples is also clear in the figure, otherwise we would have had most of the samples in a 

limited area. 
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x 

(a) 

(b) 

x 

(c) 

Figure Y.1: (a) Two Moons data set with two labeled samples. Circled samples are selected 
for active labeling by QP-ACTY. (b) Batch 1 from the Two Moons data set with samples 
selected for active labeling. (c) Batch 2 from the Two Moons data set with samples selected 
for active labeling. 
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V.3 Sub modular Optimization of QP-ACTV (SUBMOD-ACTV) 

This section presents a submodular reformulation of the QP-ACTV problem to over­

come the computational burden of quadratic programming. Similar to what we have done 

in previous chapters, we transform the current optimization problem into a set function 

optimization problem where we select the best subset of samples among all possible sam­

ple sets for active learning. Following the procedure we used previously, the submodular 

formulation is as follows: 

Problem 10. Submodular formulation (SUBMOD-ACTV) of the QP-ACTV in Problem 9: 

where 

max J(V) 
IVI:SMv 

J(V) -AI L [KuuL,jl - A2 L 1 LYi [KtuL,j 1- A3 L [KuuL,jl 
j,j'EV JEV iE£ JEV,j'EU 

JEV 
'~----------~v~----------~j 

T 

eV6) 

eV7) 

and J is a sub modular set function defined on all subsets V c U of unlabeled samples 

eligible to be chosen as exemplars, 0 ::; K.,. ::; d. 

Once again, the submodular formulation is basically the negative of the discrete 

of the quadratic programming problem, with the addition of a designed constant that en­

sures the monotonicity and submodularity of the new objective set function, as explained 

in Theorem 6. 

Theorem 6. The set function J(V) in Problem 10 is monotone (non-decreasing), submod­

ular, and J(0) = o. 

Proof First, J(0) = 0 follows directly from the definition in Eq.eV7) where all the sum­

mations are on elements in the set V. Therefore if V = 0 then J(0) = O. Next we prove 

the monotonicity property. Using the definition of J(V), we can show that for any m E U 
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and m ~ V, the increase in the objective value of J due to adding mis, 

J(V u m) - J(V) = - 2Al L [Kuulm,jl - Al [Kuulm,m - A21 L Yi [K1uL,m 1 
j'EV iEL 

- A3 L [Kuulm,jl + 2AI1Uld + AId + A21£ld + A31Uld 
j'EU 

(V8) 

For any kernel matrix K , where 0 :::; Ki,j :::; d, since 

2AI1Uld - 2Al L [Kuulm,jl ~ 0 
JEV 

AId - Al [Kuulm,m ~ 0 

A21£ld - A21 L Yi [K1uL,m 1 ~ 0 
tEL 

(V9) 

A31Uld - A3 L [Kuulm,jl ~ 0 
j'EU 

then, 

J(V u m) - J(V) ~ o. 

Thus the monotonicity property of J(V) holds true. 

Now we prove the submodularity of J(V) by assuming the set F = {V u q}, where 

q E U. Using the same set element m we used earlier, i.e. m E U and m ~ V, we need to 

show that adding m to the set V has more effect than adding it to the set F as stated in Def. 

2. Since 

J(F) = -AI L [Kuulj,jl - A2 L 1 L ydKluL,j 1- A3 L [Kuulj,jl 

j,j'E{VUq} jE{VUq} iEL jE{VUq},jIEU 

then 

+ L d [Al(2IUI + 1) + A21£1 + A3IUIJ, 
jE{VUq} 

(VIO) 

J(F u m) - J(F) - 2Al L [Kuulm,jl - Al [Kuulm,m - A21 L Yi [K1uL,m 1 
j'EF iEL 

- A3 L [Kuulm,jl + 2AI1Uld + AId + A21£ld + A31Uld 
j'EU 

(VII) 
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Therefore 

[J(V u m) - J(V)] - [J(F U m) - J(F)] 

Hence the set function J(V) is submodular. 

(VI2) 

D 

Having formulated the SUBMOD-ACTY, we can use a simple greedy approach to 

optimize the problem efficiently as we have done previously. 

V.4 Experimental Results 

To test the proposed active learning model, we follow the experimental set up we 

used for the incremental SUBMOD-S3YM in Sec.lV5. Batches of partially labeled sam­

ples arrive over time. At each time iteration, the proposed SUBMOD-ACTY model selects 

a set V of the unlabeled samples for active labeling by an oracle. Once the labels are pro­

vided by the oracle, the labels are reflected on the available partially labeled data and the 

incremental SUBMOD-S3YM is invoked. In the experiments we set the size of V to %25 

of the batch size. 

The goal of the experiments is to examine whether the actively selected samples ac­

tually help the transductive accuracy of the incremental SUBMOD-S3YM algorithm. Fur­

thermore, the experiments should verify that any achieved enhancement in the transductive 

accuracy is not just due to the increase in the number of labeled samples used in the learn­

ing process. To that end, we compare the performance of the proposed SUBMOD-ACTY 

algorithm to randomly selected active samples. 

In Figs V2-Y.4 we see that the proposed SUBMOD-ACTY algorithm consistently 

achieves significantly better transductive accuracy when used with the incremental SUBMOD­

S3YM. An important observation from the figures is that random selection of samples for 

active labeling clearly lags in performance behind the SUBMOD-ACTY algorithm. This 

shows that the SUBMO-ACTY selects particularly important samples for active labeling 

and that the improvement over the standard incremental SUBMOD-S3YM is not due to the 

increased number of labeled samples. 

Figures V2-Y.4 show that the performance of random active learning eventually co­

incides with the standard incremental SUBMOD-S3YM. The extra labeled samples, though 
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chosen randomly, allows that random active learning to uncover some important structure 

of the data, which will not be visible for the standard incremental SUBMOD-S3VM until 

later on in time. 
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CHAPTER VI 

INCREMENTAL SVM TRAINING VIA LOCAL KERNELS 

The dissertation so far presented a framework for SVM-based Never-Ending Learn­

ing using submodular optimization. The proposed framework is transductive in the sense 

that it only provides labels for the unlabeled samples seen thus far. In other words, there 

is no inductive model that can be used for classifying unseen samples without invoking 

the semi-supervised learning process. However, a standard framework for learning from 

streaming data should have an up-to-date inductive model for use at any point in time. In 

this chapter we provide an algorithm for incremental supervised SVM that uses the proper­

ties of local kernels (e.g. RBF kernels) to efficiently update an inductive SVM model over 

time. 

Section VI.I explains the local properties ofRBF-SVM during the testing stage, i.e. 

the local properties of the SVM decision function. Section VI.2 introduces the idea of using 

local properties of the RBF kernel to perform efficient SVM model updating. Section VI.3 

investigates analytically and experimentally whether locality exists during training ofRBF­

SVM. Section VI.4 proposes a analytical and an experimental estimates for the ultimate 

neighborhood size. Finally, discussion is provided in Sec.VI.S. 

VI.I Locality of RBF -SVM Decision Function 

In this section we will prove the locality of the RBF -SVM decision function. The 

decision function of SVM has the form, 

f(x) (w, 1>(x)) + b 

L CtiYiK(Xi, x) + b (VI.1) 
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which can be interpreted as an expert, i.e. voting, system where each expert is represented 

by a support vector (D:i in (VI.1)) and the final decision on the classification of a data 

sample x is basically the summation of weighted decisions of all the experts. The degree 

of participation of each expert in the final decision [59] is given by 

(VI.2) 

Discarding the sign of the examined support vector we get 

(VI.3) 

In the case of using an RBF kernel, 

(VI.4) 

equation (VI.3) is interpreted as follows: During the classification phase of an RBF-SVM, 

the contribution of each support vector in the final classification depends solely on the RBF 

similarity between the sample to be classified x and the support vector Xi. The similarity 

in terms of RBF is basically the £} distance between the support vector and the classified 

sample. This means that the support vectors that are very far from the classified sample, 

have very small effect on its classification. 

VI.2 Incremental Local RBF -SVM Algorithm 

The locality of RBF -SVM decision function along with the interpretation of SVM 

as an expert system made the extension of the locality property to the learning stage an in­

tuitive step [59]. Basically, when viewing RBF-SVM as an expert system, the classification 

of a data sample depends mostly on the experts closest to it. Therefore, a natural extension 

of the idea for the learning process is that if a new expert is added to the existing set of 

experts then the closest experts to it are the ones that will encounter considerable changes. 

The changes to the rest of the experts will diminish as they get farther from the new expert. 

Figure VI.I provides an illustration of the concept of locality during training. 

This leads to a natural incremental SVM algorithm that updates an existing SVMold 

model using only local efficient updates rather than complete retraining from scratch. 
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(a) (b) 

Figure VI. 1 : Illustration of the locality of RBF-SVM during learning. (a) An established 
RBF -SVM and a new training sample represented by the dashed sample. (b) The old RBF­
SVM is depicted with dashed curves while the updated one is depicted with solid lines. 

Specifically, the algorithm starts with SVMold and for each newly arriving sample a neigh­

borhood is constructed as shown in Fig.VI.1. The SMO algorithm, SecJI.1.4.4, is re-run 

on the samples inside the neighborhood to obtain SVMnew. The neighborhood size is de­

termined in an iterative fashion where the neighboring samples are incrementally added 

to the neighborhood one at a time. The neighborhood stops growing once the SVMnew 

model stabilized, i.e. no significant changes are observed when adding new samples to the 

neighborhood. 

Despite the appeal of the described local incremental RBF-SVM algorithm, the tran­

femsability of the local properties from the testing to the training stage of SVM is still just 

an intuitive assumption. The locality during the training stage has not been studied ana­

lytically or verified experimentally. Moreover, the local incremental SVM algorithm [59] 

is very iterative as the neighborhood of changed support vectors is constructed by adding 

one close training sample to the neighborhood at a time and repeating the model updating 

process. 

Therefore, the goal of the rest of this chapter is to formaIly validate if the locality 

during training assumption is true. Then using the findings from the validity of the local 

assumption, we will try to find an estimate of the ultimate neighborhood size for each new 

sample. This estimate will significantly reduce the number of iterations used to construct 
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the neighborhood around the new sample [26,27]. 

VI.3 RBF -SVM Locality During Training 

In this section, we will formally check the validity of the locality assumption during 

the learning stage with the ultimate goal of finding an estimate ofthe support vectors neigh­

borhood size that provides the compromise between the computational complexity and the 

accuracy of the solution without the need for iterations. 

To validate the locality during learning premise, we need to measure the changes 

occurring to an RBF -SVM when a new sample is added to its training data set. As shown 

in (VI. 1 ), the main parameters of an SVM are the Lagrangian multipliers ai associated 

with each support vector. Therefore, throughout our study we will use ~ai as a measure 

of changes happening to individual support vectors. Hence, the objective of the rest ofthis 

section comes down to studying the influence of a new training sample on ~ai for each 

support vector. 

VI.3.1 Exact Formulation of Incremental SVM Training 

In order to analytically validate the locality of RBF -SVM during learning, we will 

use a formulation of ~ai developed for exact incremental training of SVM [16]. To present 

this formulation we will start from the dual formulation ofthe SVM training problem where 

the solution is obtained by minimizing the objective function W described by 

(VI.5) 

where ai are the Lagrangian multipliers and Qij = YiyjK(Xi, Xj) is a symmetric positive 

definite kernel matrix. The Karush-Kuhn-Tucker (KKT) conditions result from the first-
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order conditions on W as follows: 

~o 

::;0 
8W 
8b = LYjQj = 0 

j 

(VI. 6) 

Vi E R 

Vi E E 

(VI.7) 

where SV = {XSl' X S2 ' ... , X Sf } is the set of support vectors strictly on the margin, E is 

the set of support vectors inside the margin, and R is the set of all other data samples. We 

denote the whole data set by D, where D = SV U RUE. 

The basic idea of the incremental SVM learning formulation [16] is to retain the 

KKT conditions on all the previous samples in the SVM while adding a new sample to the 

model. To this end, the differences in the KKT conditions, (VI.6) and (VI. 7), when a new 

sample Xc with label Yc is added to the SVM are expressed as 

~gi = Qic~Qc + L Qij~Qj + Yi~b, Vi E D u {xc} (VI.8) 
jES 

(VI.9) 
jES 

where Q c is the Lagrangian multiplier associated with Xc; it is initialized to zero before 

being added to the SVM model. Since gi = 0 for the set S, then under the assumption that 

the new sample Xc will not change the members of the set SV, (VI.8) and (VI.9) can be 

formulated V Si as 

~b 

Q. 
~QSl 

(VI. 10) 

~Qs 

where 

0 YS 1 YS f 

Q= 
YS 1 QSlSl 

(VI.11) 

YS f QSfSl 
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Hence, the modifications of the SVM model to accommodate the new sample Xc are de-

scribed by 

6.b /36.o:c 

6.O:j /3j 6.o:c, Vj E D 

where /3's are obtained by 

/3 Yc 

/3s 1 = _Q-l. QS1C 

/3s£ Qs£c 

and 

/3 - 0 ]- Vj ~ SV 

Substituting /3's in (VI.8), the changes in the KKT conditions will be 

where 

and 

Ii = Qic + L Qij/3j + Yi/3 Vi ~ SV 
jES 

Ii = 0 Vi E SV 

(VI.12) 

(VI. 13) 

(VI.14) 

(VI.15) 

(VI.16) 

(VI. 17) 

Now that we have presented a closed form formulation ofthe changes that will occur 

to an SVM (i.e. 6.o:i) when a new data sample is added to its training data set. We will 

examine these changes for RBF -SVMs and see whether they are local in nature. 

VI.3.2 Analytical Proof of Locality for a Pilot Case 

In this section we present a mathematical proof of the locality of RBF -SVM during 

learning for the pilot case shown in Fig. VI.2. The pilot case consists of an RBF -SVM with 

two support vectors Xl and X2 and a new training data sample Xc. In the following lemma 

we show that if the Xc is closer to Xl than X2, then the absolute changes in 0:1 are larger 

than the absolute changes in 0:2. 
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Figure VI.2: Pilot RBF-SVM with two support vectors Xl and X2. A new sample Xc is 

added to the training data set such that Xl is closer to Xc than X2 is. 

Lemma 1. Let RBF-SVM be any radial-basis-function support vector machine with a train­

ing data set D = {Xl , X2, X3, .. . } and a set o/support vectors SV = {(Xl , a l) , (X2' ( 2)}, 

where ai are the associated Lagrangian multipliers. Assume that a new training data sam­

ple Xc is added to D and a new support vector machine RBF-SVMnew is constructed, such 

that Dnew = D u {xc} and SVnew = {(xI ,a~) , (x2,a~) , (xc,a~)} . lflIXc1 11 < IIXd l, 

then I ~all > I ~a2 1 , where ~ai = a~ - ai are the changes that each support vector will 

encounter due to the new training sample Xc and IIXij II is the distance between X i and X j . 

Proof Applying (VI.12) and (VI.13) to the example in Fig.(VI.2), we get the following 

formulas for ~al and ~a2 . 

l -~ -~ -~] e 20- - 1 - e 20- + e 20-

~ e- 20- - 1 
(VI. 18) 

l
-~ -~ -~] e 20- - 1 - e 20- + e 20-

~ e- 20- - 1 
(VI. 19) 

[ -~ -~ -~] YI e 20- - 1 - e 20- + e 20-

[ -~ -~ -~] Y2 e 20- - 1 - e 20- + e 20-

(VI.20) 

I -~ -~ -~ I e 20- - 1 - e 20- + e 20-

I -~ -~ -~ I e 20- - 1 - e 20- + e 20-

(VI.21 ) 
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Let 

~ C = e- 2" - 1 and 

then (VI.21) becomes, 

Since 

then 

Since 

then 

Since 

then 

Hence 

IC-VI 
IC+VI 

IIXc1 11
2 > 0 , (J" > 0 , and n > 1 

IIXdl2 > 0 ,and (J" > 0 

V> 0 and C < 0 

IC-VI 
IC+VI > 1 

(VI.22) 

(VI.23) 

(VI. 24) 

(VI.25) 

(VI.26) 

(VI.27) 

(VI.28) 

(VI.29) 

(VI.30) 

D 

The introduced lemma has proved the locality property of RBF -SVM during learn­

ing for the pilot case in Fig.VI.2. However, the pilot case is rather simple and it is hard 

to extend the same proof to larger number of support vectors as the formulas get much 

more involved. Therefore, in the next section we will follow another approach to prove the 

locality property for RBF -SVMs with large number of support vectors. 
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VI.3.3 Validation of Locality via Visualization 

In this section we follow an approach in which we prove the locality property for 

problems with large number of support vectors via visualization. To do this we will start 

with RBF -SVMs trained on real world data sets and then use the closed form formulation 

in (VI.12) and (VI.13) to calculate the sensitivity (3si of each support vector in the SVM to 

the addition of a new sample Xc to the training set. Then by visualizing (3si of each support 

vector for all possible values for Xc we can investigate whether the locality during learning 

holds or not. Two data sets have been used for this experiment, FourClass (2D) and Thyroid 

(5D), see Table VI. 1. 

In Fig.VI.3, each row depicts the sensitivity (3s = ~Q8i of a support vector Xs to all 
1- wOc t 

possible positions of a new training sample Xc in ]R2 within the FourClass data set values 

range. The left column depicts the values as hight (3D) while the right column depicts 

them in color (2D). The support vector of interest X Si is depicted with a yellow circle on 

the right column of Fig. VI.3. The rest of the support vectors are represented with red and 

blue stars. Figure VI.3 illustrates that as the new training sample Xc get farther from the 

support vector under analysis X Si the 3D surfaces in the left column become flat and the 

corresponding colored areas in the right column have constant values. This means that 

when a new training sample Xc is in these areas the support vector of interest X Si will not 

get affected or in other words 6.O:Si is negligible. On the other hand, the l(3si I values gets 

significantly higher when Xc is close to support vector of interest X Si . 

Moreover, it is shown that when Xc is in the neighborhood of the support vector 

of interest then (3si < 0 for the most part as shown in Fig.VI.3(a)(c) while (3si > 0 in 

Fig.VI.3(e)(g). This is due the labels of both the new training sample Yc and the support 

vector of interest Y Si along with the negative sign in (VI.I3). When Y cy Si = 1, the negative 

sign in (VI.13) results in the output in Fig.VI.3(a)(c) and vice versa when YcYs
i 

= -1 

which output is shown in Fig.VI.3(e)(g). 

For the Thyroid data set we visualized the values of (3si using parallel axis visual­

ization where the data dimensions are depicted by parallel axes and each data sample is 

represented by a line. The values of (3si are depicted in color; the higher the value the 
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Figure VI.3: f3s i versus X c for the FourClass data set. Left column depicts f3s i as hight 
and right column depicts it as color for the same support vector of interest X Si ' Support 
vector X Si is depicted as a yellow circle in the right column. The rest of support vectors are 
depicted with red and blue stars depending on their labels. 
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Figure VI.3: f3s i versus X c for the FourClass data set. Left column depicts f3s i as bight 
and right column depicts it as color for the same support vector of interest X Si • Support 
vector X Si is depicted as a yellow circle in the right column. The rest of support vectors are 
depicted with red and blue stars depending on their labels. 
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brighter the color. The support vector of interest X Si is depicted as a bl ue line. In Fig.Y1.4, 

we can see that the lines (high dimensional data samples) surrounding the blue line (sup­

port vector of interest) are brighter than those away from it which again means that f3s i is 

higher when the new sample X c is close to the support vector of interest X Si and gets lower 

when X c gets farther. This also supports the validity of the locality during learning. 

(a) (b) 

(c) (d) 

Figure VI.4: f3s i versus X c for the Thyroid data set using parallel axes visualization. The 
support vector of interest X Si is depicted as a blue line. The color brightness of each line is 
proportional to its corresponding value of f3s i • 

Having shown analytically that the RBF-SVM is local in nature during the learning 

stage, we need to quantitatively study the characteristics of the locality property so as to be 

able to predict the effect of adding a new sample X c to the training set of an RBF-SVM. 
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In the next section we will present this quantitative analysis which will serve; a) as large 

scale experimental validation of the locality during learning, and b) will help us deduce an 

estimate for the ultimate neighborhood size. 

VI.3.4 Experimental Validation of Locality During Training 

In the previous section we focused on examining the sensitivities (3s; of the changes 

in the support vectors Lagrangian multipliers (,6,o;sJ with respect to the new sample La­

grangian multiplier (,6,o;c), 

(VI.31) 

This is because ,6,o;c can not be estimated ahead of time and is calculated during the op­

timization problem involved in the training process. Moreover, the analytical formulation 

used earlier, Sec.VI.3.1, is based on the assumption that when the new sample Xc is added 

to the training set, it will not change the current set of support vectors SV. This assumption 

is often violated in practice. As such, in this section we consider examining the locality of 

the RBF-SVM during learning from the experimental perspective where we can measure 

the exact values of ,6,o;s; while taking into consideration the membership changes in the set 

of support vectors SV. 

VI.3.4.1 Experimental Setup 

The experimental setup starts with an RBF-SVMold trained on a data set D old . RBF­

SVMold has a set of support vectors SVold . A new sample Xc is added to DOld constructing 

a new training data set Dnew = DOld U {xc}. The training process is repeated on Dnew and 

an RBF-SVMnew is obtained with a set of support vectors SVnew . Then we get ,6,o;s; for 

all the support vectors xs;. The obtained ,6,o;s; should takes into account the differences 

in membership between SVnew and SVald; during the transformation from RBF-SVMold 

to RBF-SVMnew some support vectors will stay common in both SVnew and SVald while 
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others will vanish or emerge. Equation (VI.32) shows how ~ctsi are obtained. 

~cts.· = (",) LXSi new (VI.32) 

This process is repeated for all Xc E SVnew . Throughout the experiments we used 24 data 

sets, see Table VI. 1 , that cover a wide range of dimensions. 

TABLE VI. 1 

Data sets used throughout experiments. 

Data set No. Features No. Samples 

Four Class [37] 2 802 
Banana [60] 2 5300 
Titanic [6] 3 2201 
SVMGuide1 [38] 4 7089 
Mamographic Mass [6] 5 830 
Thyroid [6] 5 215 
Diabetes [6] 8 768 
Breast Cancer Wisconsin [6] 9 683 
Magic Gamma Telescope [6] 10 19020 
Heart [6] 13 296 
Adult [6] 14 30162 
Credit Approval [6] 15 653 
Image Segmentation [6] 18 2310 
German Credit [6] 20 1000 
Twonorm 20 7400 
Waveform [6] 21 5000 
IJCNN1 22 191681 
Ionosphere [6] 34 351 
Kr-vs-Kp [6] 36 3196 
Spambase [6] 57 4601 
Mushrooms [6] 112 8124 
Musk2 [6] 166 6598 
Internet Advertisement [6] 1558 2358 
Gisette [6] 5000 7000 
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VI.3.4.2 Experiment 1 

The purpose of this experiment is to verify experimentally the existence of locality 

during learning ofRBF-SVMs. This is achieved by showing that the changes in the values 

of a Si , 'Vs i E SVoldUSVnew, between SVald and SVnew , as described in (VI.32), when a new 

sample Xc is added to Do1d, are inversely proportional to the distance IlxSi - xclla, where 

(VI.33) 

and a is the standard deviation parameter of the used RBF kernel. 

The choice of IlxSi - xclla in (VI.33) is motivated by the fact that the learning pro­

cess of RBF -SVM takes place in the RBF feature space not the original Euclidean data 

space. Furthermore, our main goal in this work is to find an estimate of the region of effect 

of a new sample Xc on RBF -SVMold . Hence, we ultimately need to find a similarity thresh­

old in the RBF feature space that can be used to decide if a new data sample Xc has high 

effect on a support vector X Si . As we do not know yet the parameters that will affect the 

similarity measure, we decided to use (VI.33) as it coincides with RBF feature space and 

meanwhile it may uncover any dependency on a. 

Figure VI.5(a-e) depict ~aSi versus IlxSi - xclla of several new data samples Xc 
for an RBF-SVM trained using the Image Segmentation data set. The figure shows that 

~aSi decreases with increasing IlxSi - xclla. The large values of ~aSi when IlxSi - xclla 
is small are due to significant changes in a Si 'V Si E SVoid n SVnew , emerging support 

vectors XSi 'V Si E SVnew \ SVold, or vanishing support vectors XSi 'V Si E SVoid \ SVnew. 

On the other hand, the small, almost negligible, values of ~aSi when IlxSi - xclla is large 

shows that support vectors ~aSi that are far from Xc are barely affected and also that new 

or vanishing support vectors exist only near to Xc. In Fig.VI.5(f) we plot ~aSi versus 

IlxSi - xclla for all new samples Xc. This is actually to show that the behavior experienced 

in Fig.VI.5(a-e) is not a special case. 
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Figure VI.5: Depiction of ~(XSi vs IlxSi - xclla for the Image Segmentation data set. (a)-(e) 

For individual new samples X C. (f) For all X C. 

After examining Fig.VI.5 , we can conclude that the RBF-SVM trained on the Im­

age Segmentation data set shows locality during learning. The same experiment has been 

repeated for all the data sets in Table VI.l, see Fig.VI.6. As shown in Fig.YI.6 , despite 

the wide variety in the characteristics of the examined data sets in terms of number of di­

mensions and distributions , all the data sets exhibit the same behavior of decreasing ~(XSi 
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age Segmentation data set shows locality during learning. The same experiment has been 

repeated for all the data sets in Table VI.1 , see Fig.VI.6. As shown in Fig.VI.6, despite 

the wide variety in the characteristics of the examined data sets in terms of number of di­

mensions and distributions, all the data sets exhibit the same behavior of decreasing ~aSi 

versus IlxSi - xcllu ' Therefore, the same conclusion is justified for all the data sets. Hence 

we have verified experimentally the locality of RBF-SVMs during learning. 
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Figure VI.6: ~aSi vs IlxSi - xcllu for all Xc for the data sets in Table VI. 1 
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for all Xc for the data sets in Table VI. 1 

VIA Estimating the Ultimate Neighborhood Size 

Now that we have analytically and experimentally verified the validity of the as­

sumption that RBF -SVM exhibits local behavior during the learning stage, in this section 

we investigate also analytically and experimentally the possibility offinding an estimate of 

the ultimate neighborhood size required for local incremental learning ofRBF-SVM. 

VI.4.1 Analytical Estimate of the Ultimate Neighborhood Size 

In this section we are interested in finding an estimate of the neighborhood size (we 

will denote it by lIu) of most significant effect around the new training sample Xc. For this 

purpose we will extend the definition oflocality to be not only characterized by the absolute 

value of changes in the Lagrangian multipliers values, but also to include the contributions 

of each support vector to these absolute changes. 

To this end we will again consider the simple pilot RBF-SVM in Fig.VI.7 where 

.6.a l and .6.a2 are given in (VI. 18) and (VI. 19), but we will repeat them here for conve-

mence. 
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Figure VI.7 : Pilot RBF-SVM with two support vectors Xl and X 2 . A new sample X c is 

added to the training data set such that Xl is closer to X c than X 2 is. 

(VI.34) 

[ -~ -~ -~l I::::. - I::::.O'.cY2Yc e 2" - 1 - e 2" + e 2" 

0'.2 = 2 ~ (VI.35) 
e-~- l 

Notably, each 1::::. 000i is a function of, IIXci ll , the distances between the new sample X c 

and all the support vectors, that is 

(VI.36) 

and 

(VI.37) 

Remember that the data samples Xl and X 2 are not subject to change and hence Yl , Y2, and 

IIXdl are not variables. 

The basic definition of RBF-SVM locality during learning can be extended in the 

context of equations (VI.36) and (VI.37) and Fig.VI.7 as follows: Since IIXcl l1 and IIXd l 
both contribute to 1::::.0'.1 through an RBF function and as IIXcl l1 < IIXd l, the definition of 

locality is extended from only, 

(VI.38) 

to also include a inversely proportional relationship between the closeness of a support 

vector to the new sample and its contribution to the changes in the values of the Lagrangian 
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multipliers. In other words, the change of the Lagrangian multiplier of each support vector 

will be most sensitive to the support vector that is closest to the new sample (in terms of 

distance). That is, for the case in Fig.VI.7, the following inequality is satisfied, 

(VI.39) 

In (VI.39) we used ~Ql rather than ~al as ~ac is only known through solving the SVM 
'-"Qc 

optimization problem involved. This however does not affect what we are trying to do. 

In the following lemma we show that (VI.39) holds true but with one more constraint 

on the relationship between IIXc1 11 and IIXc2 11, that is 

If IIXc1 11 < m(J < IIXdl then I~I~III > I~I~III (VI.40) 

such that 1 < m and (J is RBF a. 

What the lemma says is that, for the RBF-SVM with two support vectors in Fig.VI.7, when 

a new sample Xc is added to training data set, the extended definition of locality in (VI.39) 

will be violated within a distance of (J around Xc, where (J is the width parameter of the 

RBF-SVM. 

Before introducing the detailed proof, we would like to discuss the logic behind our 

reasoning: the neighborhood size is defined as the region with significant changes around 

the new sample Xc. As such we can actually use the violation of the extended definition 

of locality in (VI.39) as a measure for the significant changes imposed on the RBF-SVM 

model by the introduction of Xc to the training data set. This will result in a lower bound 

for the neighborhood size of value (J (i.e. (J < lIu). The main benefit of establishing a lower 

bound on the neighborhood size is to reduce the number of iterations which will have an 

immediate impact on the complexity of the algorithm. Next is the statement and proof of 

the lemma. 

Lemma 2. Let RBF-SVM be any radial-basis-function support vector machine with a train­

ing data set D = {Xl, X2, X3) ... } and a set o/support vectors SV = {(Xl, ad, (X2' a2)}, 

where ai are the associated Lagrangian multipliers. Assume that a new training data sam­

ple Xc is added to D and a new support vector machine RBF-SVMnew is constructed, such 
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that Dnew = DU{xc} and SVnew = {(Xl, a~)'(X2' a;), (Xc, a~)}. lflIXc1 11 < ma < IIXdl 
and m > 1, then I ~I~:~III > I ~I~III, where ~ai = a; - ai are the changes that each sup­

port vector will encounter due to the new training sample Xc, a is the width parameter of 

the RBF-SVM and IIXij II is the distance between Xi and Xj. 

Proof Starting with the closed form formula of ~al' 

(VI.41 ) 

Since Xl, x2, and Xc lie on a triangle, see Fig.VI.7, the relationships between IIXdl, IIXcIll, 
and II X c211 can be described by the law of cosines as follows, 

IIXdl2 -IIXc1112 -IIXdI2 
cos e = ----.,---..-----

211Xc1 IIIIXdl 
(VI.42) 

IIXc1 11 2 -IIXdI2 -IIX12 11 2 
cos ¢ = '"'------'-'-----"--"""""'--'---'-'------'-'-

211XdlllXl2 11 
(VI.43) 

Next we use (VI.42) to get a version of (VI.41) that is only in terms of IIXc1 11 and then we 

get the derivative with respect to IIXc1II. 

(VI.44) 

(VI.4S) 

Using (VI.43) to get a version of(VI.41) that is only in terms of IIXdl and then we get the 

derivative with respect to IIXc211. 

(VI.46) 

~ e- 2" - 1 
(VI.47) 
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(VI.48) 

(VI.49) 

(VI.50) 

Since by definition II X ell I < II X d I, the following are equivalent implementations of this 

definition 

IIXell1 < meJ < IIXdl where m> 0 (VI.51 ) 

and 

(VI.52) 

Substituting from (VI.52) in (VI.50) we get, 

IIX II -~ _ (n2+11IX II _ l11X12112) _n2I1x~)112 el e 20- 2 el 2 IIXclll e 20-

R= ------------~--------~----~--~--~ 

(
n2+11IX II _ ---.L IIX12112) _IIXc~1I2 _ IIX II - n211X~11l2 

2n el 2n IIXclll e 20- n el e 20-

(VI.53) 

~ 
Multiplying numerator and denominator of R by e 1I~:111 ' 

(VI.54) 

Taking the absolute and rearranging the terms, R becomes 

(VI.55) 

Let 

(VI.56) 
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then 

IRI = 11 +ABI 
InB+~1 

The rest of the proof will investigate the values of A and B. 

Since 

then 

A = IIX12 11 2 - IIXdl2 -IIXcl I1 2 
211Xcl l12 

From Fig.VI.7 we know that 

IIXcll1 + IIXdl ;::: 

IIXcl l12 + IIXc2 11 2 + 211Xcl llllXdi ;::: 

Since IIXcl l1 2 > 0 then 

IIXcl l1 2 + IIXdl2 - IIXdl2 > _IIXdl 
211Xcl l12 - IIXcll1 
-A;::: -n :::} IA < nl 

Now we will show that B < ~ is a sufficient condition for IRI > 1 to be true. 

If 

and 

then 

1 
B < - :::} InS - 1 < 01 

n 

A:S;n:::}IO<n-A1 

(n - A)(nB - 1) < 0 

n2 B - n - nAB + A < 0 

n2B+A < n+nAB 
A 

nB+- < l+AB 
n 
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(VI.59) 

(VI.60) 

(VI.61 ) 

(VI.62) 

(VI.63) 

(VI.64) 
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We will show later that nB + d > 0 but we will use for now as a fact. Since nB + d > 0, n n 

then 

1 < 
l+AB 

(VI.66) nB+d n 

1 < 
11+ABI 
InB+~1 

1 < IRI 

Hence we have proved that B < ~ is a sufficient condition for IRI > 1 to be true. Now we 

will look at the details of this condition. By definition 

IIXc1 11 < m(J" < IIXdl where 

IIXc1 11 < (J"< IIXdl 
m m 

IIXc1 11
2 

< (J"2 < IIXdl 2 

m2 m2 

Using the upper bound on (J"2 and B, we get the following, 

Since B < ~ and n > 1 then 

Hence, 

m 2 (n 2 _1) 1 
e 2n2 < n 

m2 (n 2 - 1) 
> Inn 2n2 

2n2 In n 
m > n2 - 1 

m > 1 

1 
B < - => 1m> 11 

n 
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(VI.68) 

(VI.69) 

(VI.70) 



which concludes the proof. 

Now we will introduce the only missing part of the proof, that is proving that nB + 
A > o. If 
n 

A 1 
nB + - > 0 and 0 < B < - (VI. 71) 

n n 

then 

(VI. 72) 

-n < A 

-n < 
IIXdl2 - IIXdl2 - IIXc1 11 2 

211Xc1 11 2 
-2nIIXc1 11 2 < IIXdl2 -IIXc2 11 2 - IIXc1 11 2 

-2nIIXc1 11 2 < IIXdl2 - n211Xc1112 - IIXc1 11 2 

(n2 
- 2n + 1) IIXc1 11 2 < IIXdl2 

nlIXc1 11 - IIXc1 11 < IIXdl 

IIXdl- IIXc1 11 < IIXdl 

IIXdl < IIXdl + IIXc1 11 

which is actually true by definition from Fig.VI.7. o 

In Lemma 2, we have shown that for the pilot case in Fig. VI. 7 the ultimate neighbor­

hood size should be larger than (J, where (J is the width parameter of the RB F kernel used 

in RBF -SVM. This is a big step for our purposes as we now have a lower bound on the size 

of the neighborhood size which will significantly reduce the number of iterations to find 

the proper neighborhood size. However, the derived bound is for the simple pilot case and 

a similar bound for larger RBF -SVM configuration has been found to be very complicated 

to obtain. Therefore, we will use the result in Lemma 2 as a proof of the concept that it is 

possible to find an estimate of the ultimate neighborhood size and in the next section we 

will provide an experimentally derived estimate. 
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VI.4.2 Experimentally Estimating the Ultimate Neighborhood Size 

In this section we will investigate the possibility of experimentally finding an esti­

mate of a threshold on Ilxsi - XC II a- above which the values of ~aSi are of negligible effect 

on the training ofRBF-SVMnew . Hence, when a new sample Xc is added to Do1d, there is 

no need to calculate all values of ~aSi. However, we might just consider the ones that are 

closest to Xc which we have verified analytically and experimentally that they encounter 

significant changes. In other words, we need to find an estimate of the neighborhood size 

around Xc which has a significant effect on the quality ofRBF-SVMnew . In the following 

we will try to compare the output of experiment 1 (~aSi vs II XSi - XC II a-) for all the data 

sets with the goal of finding a proper value for Ilxsi - xciia-. 

First we will start by normalizing the values of ~aSi so it would be comparable 

between the different data sets. From (VI.7) we know that 0 < a Si < C. Thus we denote 

the normalized ~aSi by 
~aSi 

~aSiN =~ (VI.73) 

where ~aSiN E [-1, 1]. Next we will try to summarize the output of experiment 1, ~aSiN 

versus Ilxsi - xciia-' for each data set. Since we are interested in finding a threshold on 

Ilxsi - xciia-' we will use several threshold values for ~aSiN and find the average corre­

sponding Ilxsi - xciia- for all Xc in each data set. Basically, this procedure finds the average 

Ilxsi - xciia- after which ~aSiN is less than a certain threshold. As the sign of ~aSiN is not 

of interest to us we will just use I ~aSiN I. We experimented with the threshold values such 

that l~aSiN_Thl E [0,0.5]. Rememberthatas~asiN E [-1, 1], l~asiNI > 0.5 corresponds 

to 50% changes in l~asiN I. 

Figure VI.8 illustrates the thresholding procedure. Figure VI.8(a) shows l~asiN I 

for a new sample xc, same as those shown in Fig.VI.5(a-e). For illustration we will use 

only l~aSiN-Th 1 = {0.01, 0.05, 0.1} to threshold l~asiN I. The thresholding process is 

depicted in Fig.VI.8(b), where each shaded area represents the region in which l~asiN I ::; 

1 ~aSiN -Th I· The corresponding Ilxsi - Xc 11a- are shown by the arrows and are denoted by 

v, where Vi corresponds to l~aSiN_Th 1 = i. The process is repeated and the average is 

obtained for all l~asiN I corresponding to all new samples xc. Thus each data set has a 
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Figure VI.8: Illustration of the thresholding process. (a) l.6.a siN I versus IlxSi - xclla 
thresholded with l.6.a siN_Th I = {0.01 , 0.05 , 0.1}. (b) Each shaded area shows the region 

where l.6.a siN I :=:; l.6.a siN _Th I and V is the corresponding IlxSi - xclla 

The results of the thresholding process for all the data sets in Table VI. 1 are shown 

in Fig.VI.9. The results can be interpreted as follows: In order to have small values for 

l.6.asiN_Th I the value of v = IlxSi - xclla should be large. As l.6.aSiN _Th I gets larger, the 
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corresponding /J gets smaller. In other words, when a new sample Xc is added to D Old 

and the RBF-SVMold is retrained to give RBF-SVMnew, the support vectors X Si that will 

experience significant changes l6.a siN I ~ l6.a siN -Th 1 are the ones that exist within the 

close neighborhood of Xc, i.e. the ones with small /J = IlxSi - xcll a. Next we will try to 

make an estimate of /J for which l6.a siN -Th 1 are of significant effect during the retraining 

process ofRBF-SVMold • 
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Figure VI.9: /J vs l6.asiN_Th 1 for all data sets in Table VI.l. 

Now we will propose an experimental estimate /Ju of the proper value of /J = 

IlxSi - xclla such that all the support vectors XSi with /J > /Ju will experience negligi­

ble changes in their Lagrangian multipliers l6.a siN I ~ l6.asiN_Th I. Figure VI.9 illustrates 

that all the data sets behaves very similarly; the values of /J decay almost exponentially 

with l6.a siN -Th I. This unanimous behavior, despite the wide variety in the characteristics 

of the data sets with respect to both dimension and distribution, motivated us to propose a 

global model of /J versus l6.a siN -Th I. This model is shown in Fig. VI. 1 O. It is basically the 

average /J versus l6.a siN_Th I curve for all the curves in Fig.VI.9. Figure VI.I0 shows the 

average curve along with the two standard deviation curves. 
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Figure VI. 1 0: Average 1/ vs l6.asiN_Th I curve for all data sets along with the two standard 

deviation curves. Shaded region is the area where the deviation from the average curve is 

minimal. 

Without doubt a universal estimate is not the ultimate way to find the proper values 

for 1/ . However, it is always desirable to reach a compromise between complexity and 

accuracy of an algorithm. In the case of local incremental learning of RBF-SVM [59] , 

performance is the main focus meanwhile complexity is significant due to the iterative 

trials to find the proper value of 1/. We will show that the universal estimate I/u is a proper 

way to establish the accuracy/complexity compromise. Furthermore, I/u can be used as an 

initialization for local incremental learning of RBF-SVM in [59]. This initialization will 

decrease significantly the number of iterations in the algorithm. 

To estimate I/u using the model shown in Fig. VI.1 0, we propose to use the model 

where it best fits all the data sets. That is where the deviations around the average model are 

minimal. Figure VI.10 shows thatthis occurs when l6.a siN _Th I E [0 .1, 0.2]. As the average 

1/ versus l6.asiN_Th I curve in Fig.VI.I0 is almost linear when l6.asiN_Th I E [0 .1, 0.2], we 

will choose l6.asiN_Th I = 0.15 which has corresponding I/u = (J, where (J is the standard 

deviation of the used RBF kernel. 

Remembering that l6.a siN I :::; l6.a siN _Th I and that 6.a siN E [- 1, 1], the proposed 
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universal model is described by lb.a siN I ~ 0.15 and Vu = (J which can be interpreted as 

follows: When performing incremental learning with RBF-SVM, it is generally common 

that for all support vectors X Si with v > (J will experience changes in their normalized 

Lagrangian multipliers that are on average bounded by lb.a siN I ~ 0.15. In other words, 

support vectors outside he neighborhood of size (J from the new training sample will experi­

ence less than 15% change in their Lagrangian multipliers. In order for this universal model 

to be useful for local incremental learning, we need to show that ignoring the changed sup­

port vectors outside the (J neighborhood is tolerable. We do that through an experiment 

that finds the correct classification rate (CCR) of the RBF-SVM versus lb.asiN_Th I. Figure 

VI.ll shows the outcome of this experiment for the data sets in Fig.VI.l 0 (using the same 

color code). We can see that for almost all the depicted data sets the performance of the 

RBF-SVM does not deteriorate for 1 b.a siN_Th 1 = 0.15 and even for the one data set that 

showed decrease in quality (IJCNNl), the decrease in CCR is within 3% which is relatively 

insignificant. 
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Figure VI.ll: Results of Correct classification rate (CCR) vs 1 b.a siN -Th I. 
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VI.4.3 Experiments with the Universal Neighborhood Size 

In this section we will examine the applicability of the proposed universal neigh­

borhood size Vu = a. To this end we will compare the performance of the local incre­

mental RBF-SVM learning algorithm [59] using the proposed universal Vu = a as a fixed 

neighborhood size and compare it with the iterative neighborhood construction. For this 

experiment we will use the COIL2 [20] data set which was not used during our previous 

experiments. The algorithm is evaluated in both cases with respect to speed and correct 

classification rate. Initially an RBF-SVM is trained using 20% of the data set, 40% of the 

data set is used to estimate the correct classification rate, and finally the remaining 40% are 

used for incremental learning. The results of the experiments are shown in Fig. V1.12. In 

Fig.VI.12(a) we see that the proposed universal neighborhood size is more efficient from 

the speed perspective. Moreover, it is notable that the slope for the iterative neighborhood 

construction is higher which will make the proposed Vu even more efficient when the in­

cremental learning continues for long times. On the other hand, Fig. VI. 12(b ) shows that 

the iterative neighborhood construction out performs the fixed Vu with respect to the clas­

sification rate. In fact, this is a natural result considering that Vu is a universal estimate. On 

the contrary, the results in Fig. VI. 12(b ) supports the applicability of Vu as it shows that it 

maintains a good correct classification rate that is comparable to that of the iterative neigh­

borhood construction. This again suggests using Vu as an initial neighborhood size for the 

iterative neighborhood construction to significantly lower the number of iterations. 

VI.5 Discussion 

In this chapter we verified via analytical analysis and experiments the locality of 

RBF -SVM during learning which is an important property for incremental learning algo­

rithms as it makes the model updating process during learning increments local rather than 

global. We also presented a analytical lower bound estimate on the ultimate neighborhood 

size (v > a) as well as an experimentally derived one (v = a). We see that despite the 

analytical lower bound was derived for a pilot case, its value is consistent with the exper­

imentally derived estimate. This gives high confidence in the correctness of this estimate. 
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the proposed universal neighborhood estimate Vu and the iterative construction with respect 
to (a) Speed (b) Correct classification rate. 
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When the universal estimate l/u of the size of neighborhood for local incremental RBF­

SVM was compared with the iterative neighborhood construction, the universal estimate 

showed superior performance with respect to speed. Meanwhile its performance with re­

spect classification rate was very comparable to the iterative construction. 
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CHAPTER VII 

CONCLUSION AND FUTURE WORK 

In this work, we focused on what we believe will be the next generation of learn­

ing algorithms. This is where learning machines are set free in an environment to gather 

data, model it, and occasionally stop for a feedback session with an oracle. The Never­

Ending Learning framework developed in this dissertation is just the initial step towards 

such imagination for where the future of machine learning is heading. 

The main contribution of this dissertation is a unified Never-Ending Learning frame­

work for classifying streaming data. The developed framework can ideally work on infinite 

long data streams, with the streaming data partially labeled. Moreover, the developed active 

learning establishes a mechanism for feedback from a supervising oracle. 

To decide on the underlying learning machine for the framework, our criteria was 

that the chosen algorithm should be powerful in terms of generalization performance and 

applicability. Moreover, we were eager to make a novel contribution in each component we 

consider. This is basically why we have chosen SYM as the underlying model of to frame­

work. The generalization performance of SYM is well established and therefore many 

algorithms are proposed for the semi-supervised learning problem. However, most of them 

suffer local minima or bad time efficiency. 

The dissertation presented the QP-S3YM algorithm which is a novel formulation of 

the S3YM in terms of standard quadratic programming optimization. We showed that this 

new formulation simplifies the S3YM problem to a concave quadratic programing problem 

as illustrated in Fig.YII.1(a). Furthermore, the extensive experiments conduced to validate 

the QP-S3YM model, see Fig.YII.1 (b), showed the model to be a solid surrogate for the 

S3YM problem. 

Through the analysis and mathematical interpretation of the QP-S3YM model, we 
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presented an intuitive explanation of the relationship between the low-density separation 

and graph based methods for semi-supervised learning. What we concluded is that QP­

S3YM also performs semi-supervised learning via label propagation, in the same fashion as 

the graph based algorithms. The difference lies in the insistence of QP-S3YM on assigning 

district labels in order to avoid creating a decision boundary passing through a data cluster. 

Whereas, the graph based methods tend to give soft indiscriminate label assignments. 
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Figure YII.l: (a) Illustration of the proposed upper bound function with respect to the 
S3YM. (b) Sample of the upper bound validation for News20.Binary data set. 

The dissertation also introduced the idea of submodular set functions optimization 

to the problem of semi-supervised learning. Transforming the QP-S3YM into a submodu­

lar optimization function (SUBMOD-S3YM) entailed many iterations of careful design to 

avoid affecting the solution of the original problem. Theoretically, using the greedy ap­

proach to maximize a monotone submodular function entails achieving a solution that is 

at least 63% of the optimal maximum solution. However, in our experiments we mostly 

achieved above 98% approximation. The lowest approximation achieved was 87.5% of the 

optimal solution, see Fig.YII.2(a). The transductive accuracy of the developed SUB MOD­

S3YM algorithm was shown to be better than the literature state of the art, while achieving 

up to two orders of magnitude speed up. A sample of such performance is illustrated in 

Fig.YII.2(b) for the News20.Binary data set. 
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Figure YII .2: (a) Sample approximation achieved by SUBMOD-S3YM. (b) Sample ac­
curacy and time efficiency of SUBMOD-S3YM vs the literature state of the art for 
News20.Binary data set. 

The dissertation further introduced a stream summarization algorithms via exem­

plars selection (QP/SUBMOD-EXMP). These algorithm provide any label propagation 

semi-supervised learning algorithm with a mechanism for achieving constant time and 

storage complexity during online learning. The QP/SUBMOD-EXMP algorithms achieve 

stream summarization by choosing exemplars that preserve the inherent data structures 

necessary for semi-supervised learning in terms of: a) Outlining dense regions in the data 

space, and b) establishing label propagation paths from labeled samples to unlabeled ones. 

Figure YII.3 provides a sample output for the QP/SUBMOD-EXMP algorithms. 

(a) (b) 

Figure YII.3: (a) Sample batch input to the QP/SUBMOD-ACTY algorithm. (b) Sample 
exemplars selected by the QP/SUBMOD-ACTY algorithm. 

The experiments on using SUBMOD-EXMP with SUBMOD-S3YM for incremen-
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tal learning from streaming data has showed no significant difference in transductive ac­

curacy from the batch learning where all data is provided for the SUBMOD-S3VM, see 

Fig.VII.4(a) for sample results on the RCVl.Binary data set. However, the use of SUB MOD­

EXMP achieved constant storage and time complexity, as can be seen in Fig.VII.4(b) . 
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Figure VIl.4: (a) Sample transductive accuracy achieved by using SUBMOD-ACTV and 
SUBMOD-S3VM on the RCVl.Binary data set. (b) Corresponding time complexity. 

Under the same submodular optimization framework, in Chapter V we provide an 

active learning algorithm that constitute the feedback between the learning machine and an 

oracle. The QP/SUBMOD-ACTV algorithms selects samples that QP/SUBMOD-S3VM 

classify with low confidence. These include samples that are far from dense regions or those 

existing in dense but are far from any labeled samples. The experiments showed that the 

SUBMOD-ACTV that significantly improve the transductive accuracy of the SUBMOD­

S3VM algorithm. 

All the contributions described so far work under the transductive learning paradigm, 

where only the labels of the unlabeled samples are produced as the output of the learning 

process. However, no model is available to classify new never seen data. In Chapter VI we 

presented an inductive incremental learning algorithm for supervised SVM. This algorithm 

uses the properties of local kernels (e.g. RBF) to perform local and efficient updates to 

an SVM model. The main contribution of this chapter is that we have proved analytically 

and illustrated experimentally that the well known locality of the RBF-SVM during the 

testing stage is actually transferrable to the training stage. The provided contributions in 

Chapter VI complements the proposed never-ending learning framework by providing a 
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methodology to keep an inductive model of the data stream. 

VII.O.I Directions for Future Work 

The Never-Ending Learning framework presented has many possibilities for future 

extensions as summarized below: 

• The current framework considers binary classification problems only. Therefore, 

all the multi-class problems are dealt with in the form of one-vs-one or one-vs-all 

manner. Extending the framework to handle inherently multi-class problems will 

entail using the submodular maximization greedy algorithms with multiple classes. 

This is known in the literature as the welfare problem. Establishing the connection 

between multi-class SUBMOD-S3YM and the welfare problem is a very promising 

and exciting line of work. This is especially true as the S3YM is not known to handle 

several classes gracefully as the graph-based semi-supervised learning algorithms do. 

• Throughout the dissertation we used manual design to transform quadratic program­

ming problems into monotone submodular ones. It will make an interesting exten­

sion to investigate techniques that learns the monotone submodular functions directly 

from the data. 

• The presented learning framework considered only a supervised form of feedback 

from the oracle to the learning machine, where the labels of actively selected sam­

ples are revealed to the learning machine. We propose to investigate other forms 

of unsupervised feedback, where the learning machine requests the relationship be­

tween a set of samples not their labels. In this scenario, the oracle will respond by 

telling if the samples should belong to the same class or different classes without 

revealing the actual labels. 
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APPENDIX 

This following is the rest of the experiments performed in Sec.ly'2.3. verifying the 

QP-EXMP model. 
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Figure VIl.5 : QP-EXMP model verification for the A9A data set using linear and RBF 
kernels. 
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Figure VlI.7: QP-EXMP model verification for the Cod-Rna data set using linear and RBF 
kernels. 
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Figure Vll.9: QP-EXMP model verification for the RCV1.Binary data set using linear and 
RBF kernels. 
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