
IMPROVING ACCURACY OF LEARNING MODELS

USING DISJUNCTIVE NORMAL FORM AND

SEMISUPERVISED LEARNING

by

Sayed Mehdi Sajjadi Mohammadabadi

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

The University of Utah

December 2017

Copyright c� Sayed Mehdi Sajjadi Mohammadabadi 2017

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Sayed Mehdi Sajjadi Mohammadabadi

has been approved by the following supervisory committee members:

Tolga Tasdizen , Chair 7/18/2017

Date Approved

Ross Whitaker , Member 7/18/2017

Date Approved

Neal Patwari , Member 7/18/2017

Date Approved

Behrouz Farhang , Member 7/18/2017

Date Approved

Thomas Fletcher , Member 7/18/2017

Date Approved

and by Gianluca Lazzi , Chair/Dean of

the Department/College/School of Electrical and Computer Engineering

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

The goal of machine learning is to develop efficient algorithms that use training data

to create models that generalize well to unseen data. Learning algorithms can use labeled

data, unlabeled data or both. Supervised learning algorithms learn a model using labeled

data only. Unsupervised learning methods learn the internal structure of a dataset using

only unlabeled data. Lastly, semisupervised learning is the task of finding a model using

both labeled and unlabeled data. In this research work, we contribute to both supervised

and semisupervised learning.

We contribute to supervised learning by proposing an efficient high-dimensional space

coverage scheme which is based on the disjunctive normal form. We use conjunctions of

a set of half-spaces to create a set of convex polytopes. Disjunction of these polytopes

can provide desirable coverage of space. Unlike traditional methods based on neural

networks, we do not initialize the model parameters randomly. As a result, our model

minimizes the risk of poor local minima and higher learning rates can be used which leads

to faster convergence. We contribute to semisupervised learning by proposing 2 unsu-

pervised loss functions that form the basis of a novel semisupervised learning method.

The first loss function is called Mutual-Exclusivity. The motivation of this method is the

observation that an optimal decision boundary lies between the manifolds of different

classes where there are no or very few samples. Decision boundaries can be pushed away

from training samples by maximizing their margin and it is not necessary to know the

class labels of the samples to maximize the margin. The second loss is named Transforma-

tion/Stability and is based on the fact that the prediction of a classifier for a data sample

should not change with respect to transformations and perturbations applied to that data

sample. In addition, internal variations of a learning system should have little to no effect

on the output. The proposed loss minimizes the variation in the prediction of the network

for a specific data sample. We also show that the same technique can be used to improve

the robustness of a learning model with respect to adversarial examples.

To the memory of my mother.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vii

LIST OF TABLES . ix

ACKNOWLEDGEMENTS . xi

CHAPTERS

1. INTRODUCTION . 1

1.1 Supervised Learning . 2
1.2 Semisupervised Learning . 3
1.3 Software . 6
1.4 Overview . 7

2. DISJUNCTIVE NORMAL NETWORKS . 9

2.1 Introduction . 9
2.2 Related Work . 11
2.3 Methods . 14

2.3.1 Network Architecture . 14
2.3.2 Model Initialization . 16
2.3.3 Model Optimization . 17

2.4 Experiments . 19
2.4.1 Artificial Datasets . 19
2.4.2 Two-class Problems . 21

2.4.2.1 Dataset normalization, training/testing set split 22
2.4.2.2 Model and classifier training parameter selection 23
2.4.2.3 Results . 24

2.4.3 Multiclass Problems . 27
2.5 Conclusion . 29

3. LOGISTIC PRODUCT BASIS NETWORKS . 30

3.1 Introduction . 30
3.2 Related Work . 31
3.3 Methods . 32

3.3.1 Network Architecture . 32
3.3.2 Model Initialization . 34
3.3.3 Model Optimization . 34

3.4 Experiments . 35
3.4.1 Dataset Normalization, Training/Testing Set Split 36
3.4.2 Model and Classifier Training Parameter Selection 37

3.4.3 Results . 40
3.5 Conclusion . 41

4. MUTUAL EXCLUSIVITY LOSS FOR SEMISUPERVISED DEEP LEARNING . 42

4.1 Introduction . 42
4.1.1 Motivation . 43

4.2 Unsupervised Regularization Function . 44
4.3 Experiments . 47

4.3.1 MNIST . 48
4.3.2 NORB . 49
4.3.3 SVHN . 49
4.3.4 CIFAR10 . 50
4.3.5 ImageNet . 51

4.4 Discussion . 52
4.5 Conclusion . 52

5. TRANSFORMATION/STABILITY LOSS FOR SEMISUPERVISED LEARNING 54

5.1 Introduction . 54
5.2 Related Work . 55
5.3 Method . 57
5.4 Experiments . 60

5.4.1 MNIST . 61
5.4.2 SVHN and NORB . 62
5.4.3 CIFAR10 . 66
5.4.4 CIFAR100 . 68
5.4.5 ImageNet . 69
5.4.6 Improving Robustness with Respect to Adversarial Examples 70

5.5 Discussion . 73
5.6 Conclusion . 74

6. CONCLUSION . 75

REFERENCES . 77

vi

LIST OF FIGURES

1.1 A well-known ConvNet structure called AlexNet [6] . 3

1.2 A simple illustration of how unlabeled data can improve the accuracy of a
supervised classifier. 5

2.1 LDNN architecture. The first hidden layer is composed of M ⇥ N logistic
sigmoid functions. The second hidden layer computes the logical negation
of N conjunctions using soft NAND gates. The output layer computes the
disjunction. The soft NAND gates are implemented as continuous functions
by subtracting the product of their inputs from 1. 16

2.2 A binary classification problem: (a) positive and negative training examples
partitioned into 3 clusters each; linear discriminants from each negative clus-
ter to (b) the first positive cluster, (c) the second positive cluster and (d)
the third positive cluster; the conjunction of the discriminants for (g) the
first positive cluster, (f) the second positive cluster and (e) the third positive
cluster; (h) the disjunction of the conjunctions before (blue) and after (red)
gradient descent. The 1/0 pair on the sides of the discriminants represent the
direction of the discriminant. 18

2.3 Two moons test set: (a)-(c) the 3 conjunctions in the second layer of the
network evaluated individually, and (d) the output of the 3 ⇥ 3 LDNN. +/o
symbols denote the 2 classes. 21

2.4 Two spirals dataset: ModN (top) and LDNN (bottom). First column: 18 clus-
ters/class, Second column: 21 clusters/class, Third column: 27 clusters/class . 22

3.1 LPBN architecture. The first hidden layer is composed of M ⇥ N logistic
sigmoid functions. The second hidden layer computes N conjunctions using
soft AND gates. The output layer is a linear combination of the soft gates.
The soft AND gates are implemented as continuous functions by product of
their inputs. 33

3.2 LPBN performance on synthetic data using 3 basis functions: (a) training data
and LPBN predictions, and (b) basis functions after training. 35

3.3 RBF performance on synthetic data: training data and RBF predictions with
(a) 3 kernels and (c) 10 kernels, and the Gaussian kernels after training with
(b) 3 kernels and (d) 10 kernels. 36

3.4 Coefficients of determination vs. degrees of freedom for the LPBN and RBF
models: These graphs compare LPBN and RBF in terms of number of learn-
ing parameters for 4 datasets. Every experiments is repeated 50 times and
the mean of R2 is shown versus the number of free parameters. Variance of
the experiments is shown by error bars. 41

4.1 Example showing that unsupervised regularization moves the decision bound-
ary to a less dense area. (a) Without and (b) With unsupervised regularization. 46

5.1 Illustration of our loss function. (a) Minimizing the variations caused by
data augmentation (b) Minimizing the variations caused by internal network
structure. 59

5.2 Sample images from MNIST dataset. 61

5.3 Samples of MNIST test set classified correctly by our semisupervised method
but classified incorrectly using supervised model. The value in parenthesis
shows the wrong prediction of supervised classifier. 63

5.4 Samples of (a) SVHN and (b) NORB datasets. 63

5.5 SVHN dataset: semisupervised learning vs. training with labeled data only. . . 65

5.6 NORB dataset: semisupervised learning vs. training with labeled data only. . . 65

5.7 Samples of SVHN test set classified correctly by our semisupervised method
but classified incorrectly using supervised model. The value in parenthesis
shows the wrong prediction of supervised classifier. 67

5.8 Sample images from CIFAR10 dataset. 67

5.9 Samples of CIFAR10 test set classified correctly by our semisupervised method
but classified incorrectly using supervised model. Wrong predictions of su-
pervised classifier are given in parenthesis. 68

5.10 Visual examples from MNIST test set. Left column: 3 images from MNIST test
set. Middle column: Output of DeepFool algorithm for a conventional Con-
vNet. Right column: Output of DeepFool algorithm for our method trained
using Gaussian noise with s = 0.25. 73

viii

LIST OF TABLES

2.1 Average, min. and max. testing error percentages over 50 repetitions for
LDNN initialized with random parameters, initialized with clustering and
ModN [47] initialized with clustering for different model sizes. 20

2.2 Column 1: Binary classification datasets, their source, number of positive
/ negative training/testing examples and data dimensionality. Column 2:
Classifier type. Column 3-4: Average testing and [min,max] testing error
(%) Best average testing errors are shown in bold. Column 5: Model and
classifier training parameters used. LDNN, Mod-N: N ⇥ M model and e step
size. MLP and MLP-m: h number of hidden nodes and e step size. RF: t
number of trees, f number of features considered per node and s training
instance sampling rate for each tree. SVM: C penalty factor, g: RBF kernel
width. Maxout: h number of hidden nodes, m number of linear discriminants
per hidden node and e step size. RBF: h number of radial basis functions. 25

2.3 Column 1: Multiclass datasets, their source, number of training/testing ex-
amples and data dimensionality. Column 2: Classifier type. Column 3-4:
Average testing, and [min,max] testing error (%). Best average testing errors
are shown in bold. Column 5: Model and classifier training parameters used.
LDNN: N ⇥ M model and e step size. RF: t number of trees, f number of
features considered per node and s training instance sampling rate for each
tree. SVM: C penalty factor, g: RBF kernel width. The space partitioning (SP)
results are from [60]. 28

3.1 Column 1: Regression datasets, their source, number of training/testing ex-
amples and data dimensionality. Column 2: Method of regression. Column
3-4: Average testing over 50 rounds, [min,max] testing R2. Best average
testing results are shown in bold. Column 5: Model and classifier training
parameters used. Ep: Epochs. LPBN: N number of basis functions and e step
size. RF: t number of trees, f number of features considered per node and s
training instance sampling rate for each tree. e-SVR: C penalty factor, g RBF
kernel width and e margin of tolerance. NN: N number of hidden nodes and
e step size. ELM: C regularization parameter, g kernel width and N number
of basis functions. k: Kernel . 38

4.1 Performance comparison on test data for MNIST dataset. Error rates: average
(%) ± std. dev . 48

4.2 Semisupervised performance comparison on test data for NORB dataset. Er-
ror rates: Average (%) ± std. dev . 49

4.3 Performance comparison on test data for NORB dataset with fixed labeled
set and variable unlabeled set. 50

4.4 Semisupervised performance comparison on test data for SVHN dataset. Er-
ror rates: Average (%) ± std. dev . 50

4.5 Performance comparison on test data for SVHN dataset with fixed labeled
set and variable unlabeled set. 51

4.6 Semisupervised performance comparison on test data for CIFAR10. Error
rates: Average (%) ± std. dev . 51

4.7 Performance comparison on test data for CIFAR10 dataset with fixed labeled
set and variable unlabeled set. 51

5.1 Error rates (%) on test set for MNIST (mean % ± std). 62

5.2 Error on test data for SVHN and NORB with 1% and 100% of data (mean %
± std). 66

5.3 Error rates on test data for CIFAR10 with 4000 labeled samples (mean % ± std). 68

5.4 Error rates (%) on validation set for ILSVR 2012 (Top-5). 70

5.5 Robustness of the models trained with different settings against adversarial
examples. 72

x

ACKNOWLEDGEMENTS

First, I would like to thank my adviser, Dr. Tolga Tasdizen, for trusting me and giving

me the opportunity to join his research group and work on amazing research projects while

providing scientific and financial support. He guided me through research with his vast

knowledge and patience while giving me the freedom to pursue my research interests. He

taught me how to be an independent researcher and always aim high.

I would like to thank the Scientific Computing and Imaging Institute (SCI) for their

world class computing resources, facilities and professional staff. Most of our research

projects were not possible without cutting-edge servers and clusters available at SCI. I also

thank my committee members, Dr. Ross Whitaker, Dr. Tom Fletcher, Dr. Behrouz Farhang

and Dr. Neal Patwari, for their helpful comments and their time.

I want to thank Dr. Mojtaba Seyedhosseini who was a great support even before I arrive

to the United States and then after that, he helped me to settle down. He was a role model

senior PhD student and I learned a lot from him. He was always there when I needed

help. I want to thank other members of our research group for helpful discussions and the

time that we spent together. Specifically, I would like to thank Mehran Javanmardi, Fitsum

Mesadi, Dr. Ting Liu and Nisha Ramesh.

I am grateful for many amazing friends that I had the opportunity to spend time with.

I will never forget the moments that we shared together.

I am so grateful of my father Masih Sajjadi and his wife Katayoun Izadapanah for

their support, encouragement and love. My deepest gratitude goes to my beautiful sisters,

Maryam, Mozhdeh and Golnoush for their emotional and spiritual support. Finally, I am

going to thank my mother who is not among us anymore but I always feel her presence,

support and love. It is to her that I dedicate this dissertation.

I would also like to acknowledge our funding support. This work was supported by

NSF Grant IIS-1149299.

CHAPTER 1

INTRODUCTION

Machine learning is the science of developing data-driven algorithms that create mod-

els to learn and describe the underlying distribution and structure of the data. The data are

usually in the form of a set of high-dimensional vectors and the goal is to find the model

of the underlying probability distribution that generated the data samples. The model can

then be used to generate data samples from the same probability distribution or to predict

the conditional probability of a given data sample.

In practice, a multidimensional data sample can also contain a label dimension. The

label determines the category that the data sample belongs to. If the data vector contains

a label dimension, then the goal is to learn a model capable of predicting the conditional

probability of the label given the rest of the data vector. This task is called classification or

supervised learning. Usually, the data samples belong to 2 sets. In the first set, dimensions of

data samples include the label dimension. This set is called the training set and the second

set is called the test set. The data samples belonging to the test set don’t have the label

dimension and the learned model should be able to predict the probability of the label

dimension given the other dimensions. In other words, the goal of supervised learning is

to predict the category of a data sample that does not have the label.

If the data samples don’t have the label dimension and the goal is to learn the un-

derlying structure of the probability distribution that generated the data, then the task

is called unsupervised learning [1]. It is also possible to use unlabeled data to improve a

supervised learning model. The task of learning a supervised classifier using both labeled

and unlabeled is called semisupervised learning [2].

The contributions of this dissertation can be broadly divided in 2 parts. In the first part,

we mainly focus on supervised learning. We propose a supervised learning model which

is based on an artificial neural network. It provides an efficient coverage of space and

2

a meaningful initialization of the weights. This model provides faster convergence and

reduces the risk of ending up in a local minima. Our focus in the second part is mainly on

semisupervised learning. We propose 2 unsupervised loss functions that form the basis of

a novel and competitive semisupervised learning method.

1.1 Supervised Learning
Supervised learning includes a large number of machine learning algorithms. Many

of the real-world challenging problems can be formulated as a supervised learning or

classification problem. Support Vector Machines (SVM) [3], Decision Trees [4] and Random

Forests [5], the Nearest Neighbor algorithm, Naive Bayes classifier and Artificial Neural

Networks are a few examples of supervised learning. Each of these methods can be the

optimal choice for general classification purposes depending on the type and size of the

data.

However, supervised learning methods based on neural networks gained popularity

in recent years mainly because of 2 reasons. First, advances in GPU and CPU technology

made it possible to train large-scale neural networks. At the same time, availability of

large sets of labeled data helped to create complex models that learn challenging tasks.

Second, in recent years, convolutional neural networks (ConvNets) [6] proved to be the

state-of-the-art in many computer vision tasks including but not limited to object detection,

object recognition [6],[7]-[8] and scene labeling [9]. ConvNets are special types of neural

networks with 2 properties: local connectivity and weight sharing. As a result, they can

take into account the spatial information of the images. Architecture of a well-known

ConvNet is shown in Figure 1.1.

Deep neural networks are also being used for many nonvision tasks including speech

recognition [10]. However, in certain applications, traditional classification methods such

as SVM and random forests are preferred over neural networks. As an example, when the

dimension of data samples are high and there is not enough data samples, a neural net-

work may struggle to find an optimal model. One reason is that during the optimization

process of neural networks, the parameters are initialized randomly with noise. Because

of that, the optimization process may stop at a poor local minima which is not the best

solution. In comparison, SVM is a convex problem and the optimization process will

3

Figure 1.1: A well-known ConvNet structure called AlexNet [6]

always stop at the global minima.

We propose a model based on neural networks that provides an efficient high dimen-

sional space coverage. In this aspect, our work is also related to space covering algorithms

such as radial basis function (RBF) networks [11]. Our model is based on the disjunctive

normal form [12]. We use conjunctions of a set of half-spaces to create a set of convex

polytopes. Disjunction of these polytopes can provide desirable coverage of space. As

a result of this specific network structure, we can initialize the network parameters in a

meaningful manner instead of random noise. Therefore, we introduce an intuitive initial-

ization scheme for the parameters that define the half-spaces. Then, we fine-tune these

parameters using backpropagation of the gradient of a cost function. Since the starting

point of the optimization process is determined carefully, we can use higher learning rates

which leads to faster convergence. Based on this general idea, we propose a classifica-

tion method named Logistic Disjunctive Normal Networks (LDNN) [13] and a regression

method called Logistic Product Basis Network (LPBN) [14].

1.2 Semisupervised Learning
It is possible to improve the accuracy of a supervised classifier with unlabeled data.

The methods that utilize unlabeled data to improve the accuracy of a supervised learning

model are categorized as semisupervised learning [2]. It is a common belief that the

learning process in human beings is more similar to semisupervised learning [15]. Humans

are usually given some labeled examples and then the learning is continued by observing

4

and analyzing other instances which is usually an unsupervised process.

Successful training of a supervised model usually requires a large amount of labeled

data. Specifically, ConvNets require large sets of labeled data to achieve their maximum

accuracy [6]. However, gathering large sets of labeled data requires a lot of manual effort.

On the other hand, unlabeled data is usually cheap to obtain. Therefore, semisupervised

learning algorithms can improve the accuracy of a supervised model with relatively low

cost.

Another argument for the usefulness of unlabeled data in supervised learning is that

even though we don’t know the category of unlabeled samples, they can help us to have

a better understanding of the underlying distribution of the data. A simple example is

shown in Figure 1.2 for illustration. In this example, we have 2 classes of rectangles

and triangles. Green circles represent unlabeled data. If we only take labeled samples

into account, naturally the optimal decision function would be a straight line placed in

the space between samples of 2 classes as it is shown in the left figure. However, we

can achieve a better understanding about the formation of the classes by analyzing the

unlabeled data. In this simple example, we can observe that unlabeled data are mainly

divided into 2 clusters. The first cluster of unlabeled data is closer to samples of triangle

class. Therefore, it can be associated to that class. Similarly, the second cluster can be

associated with the rectangle class. We can also observe that there is still a low density

area between the samples of 2 classes even when we consider the unlabeled data. This

low density space is where the decision function should reside. However, we can now

observe that the original decision function depicted in the left of Figure 1.2 was not the

optimal choice. This simple and intuitive observation is the basic principle of a class of

semisupervised learning methods. Label propagation [16] is a well-known example.

In this dissertation, we propose 2 unsupervised loss functions. These loss functions

can help a supervised classifier to learn about the distribution of the data using unlabeled

samples. These unsupervised loss functions are general and can be used with any learning

model which is based on optimization of a loss function using gradient descent.

The first loss function is named mutual-exclusivity [17]. With this loss, our goal is

to push the decision boundary away from both labeled and unlabeled training samples

in feature space. The motivation of this work is that since the object recognition and

5

Figure 1.2: A simple illustration of how unlabeled data can improve the accuracy of a
supervised classifier.

classification is a relatively easy task for humans, there exists a decision boundary that

can separate samples of different classes almost perfectly. Although this decision function

is highly complex in pixel space, the existence of such a function shows that the high

dimensional manifolds representing each class of data don’t intersect with each other

and this decision function lies in the space between these manifolds where there is no

or very few samples. Given an appropriate feature set, it is possible to push the decision

boundary away from training samples by maximizing their margin. For this purpose,

we don’t need to know the label of training samples. We propose a regularization term

based on unlabeled data that pushes the decision boundary towards less dense area of

decision space. We use the disjunctive normal form to define this regularization function.

In general, it forces the prediction vector of a classifier to be mutually-exclusive for every

class. In other words, this loss function pushes the prediction vector to have one nonzero

element.

The second loss function is called transformation/stability [18]. Our motivation for

this work is based on data augmentation and randomness of learning systems. Data

augmentation is an effective technique to artificially increase the size of training data. For

example, we can randomly rotate, scale and transform a given image and use it as a new

sample with the same label. This transformation usually happens randomly. In addition,

most learning models exhibit some degree of randomness in their internal structure. As

an example, dropout [19] is a well-known regularization technique for neural network

approaches. Dropout regularizes a network by randomly turning off a set of hidden nodes

6

in the neural network structure. Therefore, the internal structure of a network is slightly

different in different runs. As a result, even if we freeze the network parameters and pass a

sample through the network multiple times, we will get slightly different outputs because

of the randomized dropout.

Here we propose an unsupervised loss function that exploits the randomness in the

processes mentioned above. The general idea is that the prediction of the network for

a specific sample should be the same during multiple passes through the network. In

other words, randomness should not change the prediction of a network for a specific

sample when we pass that sample multiple times through the network. In summary, we

pass a sample through the network n times to obtain n predictions of the same sample.

Because of the randomized processes discussed earlier, these n predictions are not exactly

the same. Our proposed loss function minimizes the difference between the n predictions.

In addition we don’t need to know the label of a sample to enforce this loss function.

Regardless of the label of a sample, the prediction of the network should be the same

during multiple passes.

These 2 unsupervised loss functions form the basis of a novel and state-of-the-art semisu-

pervised learning method. We also show that the transformation/stability loss function

can improve the robustness of a network with respect to adversarial examples. Even

though neural networks and ConvNets are state-of-the-art for many tasks, it is possible to

handcraft data samples that easily fool them. For example, although ConvNets achieved

very high accuracy in object detection and recognition, it is possible to create 2 images that

are visually identical to human eyes but ConvNet classified them as different classes. We

show that we can use transformation/stability loss to improve the robustness of a network

with respect to these adversarial examples.

1.3 Software
We made the code of the LDNN classifier and semisupervised learning method pub-

licly available. The LDNN code is written in MATLAB. However, the computationally-

intensive optimization part is written in C++. It can be downloaded from:

http://www.sci.utah.edu/~mehdi/assets/ldnn_v01.tgz

7

We made the code of our semisupervised learning method available using 2 publicly

available deep learning frameworks: Spatially-sparse convolutional neural networks [20]

and Caffe [21]. Both of these frameworks are highly-efficient implementations of Con-

vNets. We implemented both of our unsupervised loss functions as separate modules in

these frameworks. We also provided examples of semisupervised learning networks that

use these unsupervised loss functions. The implementations are on GPU using NVIDIA

CUDA which provides large-scale processing power that can handle training of networks

with millions of parameters and millions of training samples. The code is available at the

following address:

https://github.com/m-sajjadi

1.4 Overview
Chapter 2 introduces disjunctive normal networks. In this chapter, first we describe

the structure of the network and how it compares to RBFs and Multi Layer Perceptrons

(MLP). Then we discuss how this specific structure allows for an intuitive initialization

scheme. Next, we show the performance of the LDNN classifier on 2 synthetic datasets

and compare it to related methods. We show how our initialization method improves the

accuracy and convergence speed of the model. Finally, we perform extensive evaluations

and comparisons using multiple binary and multiclass benchmark datasets.

In Chapter 3, we introduce our regression model logistic product basis networks (LPBN).

First, we explain why conjunction of a set of half-spaces can be considered as basis func-

tions for an effective and flexible feature space that presents data very well. Next, we

describe our network which is based on this feature space and introduce our intuitive

initialization scheme for the parameters of the network. We compare the accuracy of our

model to traditional regression models using multiple benchmark datasets. Finally, using

both synthetic and real-world benchmark datasets, we show that our network requires

fewer parameters to represent a dataset compared to RBFs because of more efficient and

flexible coverage of space.

We introduce mututal-exclusivity loss function in Chapter 4. We initially define a

binary indicator function using disjunctive normal form and then replace this binary func-

8

tion with differentiable approximations. Using synthetic examples, we show that this loss

function pushes the decision boundary towards less dense areas of space. Next, we eval-

uate this loss function on the task of object recognition using ConvNets. We experiment

with different sizes of labeled set and unlabeled set and show that adding more unlabeled

data improves the overall accuracy of the model.

Chapter 5 describes transformation/stability loss function. We also explain why this

loss function is a natural complement of mutually-exclusive loss. Therefore, we introduce

our semisupervised learning method based on both loss functions. Finally, we extensively

evaluate our method using ConvNets on object recognition benchmarks and show that our

method is a competitive and state-of-the-art semisupervised learning model.

CHAPTER 2

DISJUNCTIVE NORMAL NETWORKS

Artificial neural networks are powerful pattern classifiers. They form the basis of

the highly successful and popular convolutional neural networks which offer the state-

of-the-art performance on several computer visions tasks. However, in many general

and nonvision tasks, neural networks are surpassed by methods such as support vector

machines and random forests that are also easier to use and faster to train. One reason

is that the backpropagation algorithm, which is used to train artificial neural networks,

usually starts from a random weight initialization which complicates the optimization

process leading to long training times and increases the risk of stopping in a poor local

minima. Several initialization schemes and pretraining methods have been proposed to

improve the efficiency and performance of training a neural network. However, this

problem arises from the architecture of neural networks. We use the disjunctive normal

form and approximate the Boolean conjunction operations with products to construct a

novel network architecture. The proposed model can be trained by minimizing an error

function and it allows an effective and intuitive initialization which avoids poor local

minima. We show that the proposed structure provides efficient coverage of the decision

space which leads to state-of-the art classification accuracy and fast training times.

2.1 Introduction
An artificial neural network (ANN) consisting of one hidden layer of squashing func-

tions is an universal approximator for continuous functions defined on the unit hyper-

cube [22]-[23]. However, until the introduction of the backpropagation algorithm [24],

training such multilayer perceptron (MLP) networks was not possible in practice. The

backpropagation algorithm propelled MLPs to be the method of choice for many clas-

sification and regression applications. The success of neural networks culminated by

convolutional neural networks [25]-[26] (ConvNets), which deliver the current state-of-the

10

art performance on many computer vision problems including but not limited to classifi-

cation, detection, localization and scene labeling [27] -[31].

However, MLPs are not always the classifier of choice when it comes to general tasks.

In this regard, other techniques such as support vector machines (SVM) [3] and random

forests (RF) [5] are the preferred options. The computational cost of training fully con-

nected MLPs can be high yet they don’t deliver the best accuracy possible, especially

when the size and dimensionality of the dataset grows. An underlying reason is that the

optimization process for training MLPs can become more complicated in higher dimen-

sions. These optimization methods usually start from a random starting point and use the

gradient descent to find a locally optimal solution. However, this starting point can be

anywhere in the high-dimensional space and possibly in the energy well of a poor local

optima. Therefore, it may take the gradient descent a lot of iterations to get to a solution

which might possibly be significantly suboptimal compared to other local minima. This

increases the variation in training times. On the other hand, this random initialization may

put the initial point near a local minima and consequently lead the gradient descent to a

false local minima solution. Neural networks also suffer from the herd-effect problem [32].

During backpropagation, each hidden unit tries to evolve into a useful feature detector

from a random initialization; however, this task is complicated by the fact that all units

are changing at the same time without any direct communication between them. Con-

sequently, hidden units cannot effectively subdivide the necessary computational tasks

among themselves leading to a complex dance which can take a long time to settle down.

Another related classification approach is to partition the decision space or cover the

desired parts of space and then treat each partition or part of the covered space accord-

ingly. Radial Basis Functions Networks (RBF) are popular examples of these methods.

RBFs are commonly used models which use radial functions such as Gaussians as basis

functions [11]. Each radially symmetric Gaussian is tuned to respond to a local region of

feature space. One important drawback of such models is that their local coverage can be

inefficient when nonlocal coverage of space is needed [14]. In other words, so many local

radial basis functions are needed to cover a nonlocal part of the decision space sufficiently.

The reason is that each of these radial functions only covers a local part of the space. It

is also well known that an RBF network suffers from the curse of dimensionality [33].

11

As the number of dimensions grow, the number of radial basis functions required grows

exponentially.

In this chapter, we introduce a new network architecture that overcomes the diffi-

culties associated with MLPs and backpropagation for supervised learning. Our model

also provides an efficient space coverage which can either be local or nonlocal. This is

done by designing a set of convex polytopes that unlike RBFs are flexible in shape and

adaptive in coverage. Our network consists of one adaptive layer of feature detectors

implemented by logistic sigmoid functions followed by 2 fixed layers of logical units that

compute conjunctions and disjunctions, respectively. We call the proposed network archi-

tecture Logistic Disjunctive Normal Network (LDNN). Unlike MLPs, LDNNs allow for

a simple and intuitive initialization of the network weights which avoids the herd-effect.

Furthermore, due to the single adaptive layer, it allows larger step sizes in minimizing

the error function. Finally, we present results of experiments conducted on 10 binary and

6 multiclass classification problems. We repeated each trial repeatedly and reported the

mean, min and max of error rates for each problem in order to consider the variability in

the results. LDNNs outperformed MLPs in every case and produced the best accuracy in

11 out of the 16 classification problems in comparison to SVMs and RFs.

2.2 Related Work
Extensive research has been performed to improve the performance of the backpropa-

gation algorithm including batch vs. stochastic learning [34]-[35], squared error vs. cross-

entropy [36] and optimal learning rates [37]-[38]. Many other practical choices including

normalization of inputs, initialization of weights, stopping criteria, activation functions,

target output values that will not saturate the activation functions, shuffling training ex-

amples, momentum terms in optimization, and optimization techniques that make use of

the second-order derivatives of the error are summarized in [39]. More recently, Hinton

et al. proposed a Dropout scheme for backpropagation which helps prevent coadaptation

of feature detectors [19]. Despite the extensive effort devoted to making learning MLPs

as efficient as possible, the fundamental problems outlined in Section 2.1 remain because

they arise from the architecture of MLPs. There are several initialization and unsupervised

pretraining methods proposed to alleviate the the herd-effect problem. For example, Con-

12

trastive divergence [40]-[41] can be used to pretrain networks in an unsupervised manner

prior to backpropagation. Contrastive divergence has been used successfully to train deep

networks. The LDNN model proposed in this chapter can be seen as an architectural

alternative for supervised learning of one hidden layer ANNs.

The idea of representing classification functions in disjunctive form has been previously

explored in the literature. Fuzzy min-max networks [42] -[44] represent the classification

function as the union of axis aligned hypercubes in the feature space. The most important

drawback of this model is its limitation to axis aligned decision boundaries which can

significantly increase the number of conjunctions necessary for a good approximation.

We construct a significantly more efficient approximation by using an union of convex

polytopes. Furthermore, fuzzy min-max neural networks employ an adhoc expansion-

contraction scheme for learning, whereas we formulate learning as an energy minimization

problem. Lu et al. [45] proposed a multisieving network that decomposes learning tasks.

Lee et al. [46] proposed a disjunctive fuzzy network which is based on prototypes; however,

it lacks an objective function and is based on an adhoc training procedure. Similarly,

the modular network proposed by Lu and Ito [47] removes the axis aligned hypercube

restriction from fuzzy min-max networks; however, their network cannot be learned by

minimizing a single energy function. Our LDNN model uses differentiable activation func-

tions which makes it possible to optimize the network parameters in an unified manner

by minimizing a single energy function. We show that unified training of our classifier

results in very significant accuracy advantages over the modular network. Differentiable

approximations of min-max functions have been used to construct fuzzy neural network

that can be trained using steepest descent [48]- [51], but these have produced results that

are significantly less accurate than state-of-the-art classification techniques. A closely re-

lated approach to ours is adaptive mixtures of local experts which uses a gating network

to stochastically select the output from a set of feedforward networks [52]. The reader

is referred to [53] for a survey of mixture of expert methods. The products of experts

approach models complex probability distributions by multiplying simpler distributions

is also related [54].

Besides the network approaches discussed in the previous paragraph, the idea of par-

titioning the decision space and learning simpler decision functions in each partition has

13

been explored. RBFs mentioned in the previous section are related to this approach. The

set of radial basis functions are usually Gaussians and their parameters can be obtained

by unsupervised clustering of the data or fitting a Gaussian mixture model to our data

using the EM algorithm [55]. Then, we can use linear regression to obtain a set of linear

weights to combine the responses of the basis functions. It is also possible to learn the

RBF parameters in an unified manner by back-propagation of the error using chain rule

[56]. Mixture discriminant analysis treats each class as a mixture of Gaussians and learns

discriminants between the Gaussians [57]. Subclass discriminant analysis also relies on

modeling classes as mixtures of Gaussians prior to learning discriminant [58]. Local linear

discriminant analysis clusters the data and learns a linear discriminant in each cluster [59].

In these approaches, partitioning of the space is treated as a step independent from the

supervised learning step. Wang and Saligrama proposed a more recent approach that

unifies space partitioning and supervised learning [60]. While this method is related in

concept to our disjunctive learning, in Section 2.4.3, we show that LDNNs outperform

space partitioning by a large margin. Dai et al. proposed an approach which places local

classifiers close to the global decision boundary [61]. Toussaint and Vijayakumar propose a

products-of-sigmoids model for discontinuously switching between local models [62]. An-

other approach greedily builds a piecewise linear classifier by adding classifiers in regions

of error clusters [63]. Local versions of SVMs have also been explored [64]-[65]. A specific

type of local classification is based on the idea of pairwise coupling between positive and

negative examples or clusters is conceptually close to the initialization we propose for our

LDNN model. These methods typically employ a clustering algorithm, learning classifiers

between pairs of positive and negative clusters found by clustering, finally followed by

a combination scheme such as voting to integrate the pairwise classifiers into a single

decision [66]- [72]. The modular network [47] discussed previously also falls into this

category.

There are other methods that share similarities with our proposed structure. One recent

example proposed by Goodfellow et al. is Maxout Networks [31]. Instead of using an

activation function over the output of a single node, they take the maximum output of

a group of hidden nodes as the output. Here, the Max operator acts as an activation

function. Maxout is similar to our model in a sense that it combines the output of a set of

14

linear functions using Max operator. However, as we explain in Section 2.3, sigmoids are

important elements of our model which are not present in Maxout. We also propose a very

consistent and intuitive initialization scheme for our model. We provide comparisons with

Maxout networks and show that they are outperformed by LDNN. Another work similar

to our approach is Sum-Product Networks (SPN) [73]. SPNs are probabilistic models

that provide tractable inferences. SPN is based on the notion of a network polynomial and

represents unnormalized probability distributions. This leads to a deep structure with

interleaved layers of sums and products. SPN is similar to our proposed structure because

it uses sum units to mix different submodels. It also uses products that combine features

of submodels. However, our approach is different. Unlike SPNs, we use logistic sigmoid

functions before the product layer to approximate half-spaces. Then, we use products

to form convex polytopes. Sigmoid functions are not present in SPNs but as mentioned

earlier, they are crucial components of our approach.

2.3 Methods
2.3.1 Network Architecture

Consider the binary classification problem f : Rn
! B where B = {0, 1}. Let

W+ = {x 2 Rn : f (x) = 1} (2.1)

Let’s approximate W+ as the union of N convex polytopes

W̃+ = [
N
i=1Pi (2.2)

where the i’th polytope is the intersection Pi = \
Mi
j=1Hij of Mi half-spaces

Hij = {x 2 Rn : hij(x) > 0} (2.3)

We can replace Mi with M = maxi Mi without loss of generality. Hij is defined in terms of

its indicator function

hij(x) =
⇢

1, Ân
k=1 wijkxk + bij � 0

0, otherwise , (2.4)

where wijk and bij are the weights and the bias term. Any Boolean function b : Bn
! B can

be written as a disjunction of conjunctions, also known as the disjunctive normal form [12].

15

Hence, we can construct the function

f̃ (x) =
N_

i=1

0

@
M̂

j=1
hij(x)

1

A

| {z }
bi(x)

(2.5)

such that

W̃+ = {x 2 Rn : f̃ (x) = 1} (2.6)

Since W̃+ is an approximation to W+, it follows that f̃ is an approximation to f . Our next

step is to provide a differentiable approximation to this disjunctive normal form. First,

the conjunction of binary variables
VM

j=1 hij(x) can be replaced by the product ’M
j=1 hij(x).

Then, using De Morgan’s laws [12], we can replace the disjunction of the binary variables
WN

i=1 bi(x) with ¬
VN

i=1 ¬bi(x), which in turn can be replaced by the expression

1 �
N

’
i=1

(1 � bi(x)) (2.7)

Finally, we can approximate the perceptrons hij(x) with the logistic sigmoid functions

sij(x) =
1

1 + e�Ân
k=1 wijkxk+bij

. (2.8)

This yields the differentiable approximation to f̃

f̂ (x) = 1 �
N

’
i=1

(1 �
M

’
j=1

sij(x)

| {z }
gi(x)

), (2.9)

which can also be visualized as a network (Figure 2.1). We refer to the proposed network

architecture as LDNN. The only adaptive parameters of the LDNN are the weights and

biases of the first layer of logistic sigmoid functions. The second layer consists of N

soft NAND gates which implement the logical negations of the conjunctions gi(x) using

products. The output layer is a single soft NAND gate which implements the disjunction

using De Morgan’s law. We will refer to a LDNN classifier which has N NAND gates in

the second layer and M discriminants per NAND gate as a N ⇥ M LDNN. Note that other

variations of disjunctive normal networks can be constructed by using any classifier that

is differentiable with respect to its parameters in place of the logistic sigmoid functions.

16

𝑓(𝒙)

𝒙

𝜎 , (𝒙)

𝑥 𝑥𝑥

𝜎 , (𝒙) 𝜎 , (𝒙) 𝜎 , (𝒙) 𝜎 , (𝒙) 𝜎 , (𝒙)

1 − 𝑔 (𝒙)1 − 𝑔 (𝒙) 1 − 𝑔 (𝒙)

Figure 2.1: LDNN architecture. The first hidden layer is composed of M ⇥ N logistic sig-
moid functions. The second hidden layer computes the logical negation of N conjunctions
using soft NAND gates. The output layer computes the disjunction. The soft NAND gates
are implemented as continuous functions by subtracting the product of their inputs from
1.

2.3.2 Model Initialization

Consider a set of training examples G = {(x, y(x))} where y(x) denotes the desired

binary class corresponding to x. Let G+ and G� be the subsets of G for which y = 1 and

y = 0, respectively. The disjunctive normal form permits a very simple and intuitive

initialization of the network weights. To initialize a N ⇥ M LDNN, we first partition G+

and G� into N and M clusters, respectively. Let vij = c+i � c�j where c+i and c�j are the

centroids of the i’th positive and j’th negative clusters, respectively. We initialize the weight

vectors as wij = vij/|vij|. Finally, we initialize the bias terms bij such that the logistic

sigmoid functions sij(x) take the value 0.5 at the midpoints of the lines connecting the

positive and negative cluster centroids. In other words, let

bij = hwij, 0.5(c+i + c�j)i (2.10)

where ha, bi denotes the inner product of the vectors a and b. This procedure initilizes

gi(x), the i’th conjunction in the second hidden layer of the LDNN, to a convex polytope

17

which aims to separate the training instances in the i’th cluster of G+ from all training

instances in G�.

We give an intuitive description of LDNN initialization in the context of the 2 moons

dataset. An illustration of this dataset and 3 clusters for each of the 2 classes are shown

in (Figure 2.2a). Initial discriminants for the positive clusters taken one at a time are

shown in (Figure 2.2b-d). The conjunction of these discriminants form convex polytopes

for the positive clusters (Figure 2.2e-g). The disjunction of these conjunctions before and

after weight optimization (Section 2.3.3) are illustrated in (Figure 2.2h). This initialization

procedure is similar to the modular neural network proposed by Lu and Ito (12) as well

as to locally linear classification by pairwise coupling (20) in general. Each module in

Lu and Ito’s modular network independently learns a linear classifier between a pair of

positive and negative training data clusters. The key difference of our classifier from

Lu and Ito’s network, as well as from locally linear classification by pairwise coupling

in general, is that we learn all the linear discriminants simultaneously by minimizing a

single error function. When each module is trained independently, the success of the initial

clustering can strongly influence the outcome. In Section 2.4, we show, using both real and

artificial datasets, that this important disadvantage can create very significant differences

in classification accuracy between modular networks and LDNNs.

2.3.3 Model Optimization

The LDNN model can be trained by choosing the network weights and biases that

minimize the quadratic error

E(W , G) = Â
(x,y)2G

(y � f (x))2 , (2.11)

where f is determined by the set of network weights and biases W . Starting from an

initialization as described in Section 2.3.2, we minimize (2.11) using gradient descent.

To derive the update equations, we need to find the partial derivatives of the error with

respect to the network weights and biases. Using the fact that ∂sij/∂wpqk is nonzero only

when i = p and j = q, the derivatives of the error function with respect to the network

weights are obtained using the chain rule

18

a" c" d"

h"

b"

g" f" e"

1

1

1
1

1

1

1

1

1

0

0
0 0

0
0

0

0 0

1
0

1
0

1
0

Figure 2.2: A binary classification problem: (a) positive and negative training examples
partitioned into 3 clusters each; linear discriminants from each negative cluster to (b) the
first positive cluster, (c) the second positive cluster and (d) the third positive cluster; the
conjunction of the discriminants for (g) the first positive cluster, (f) the second positive
cluster and (e) the third positive cluster; (h) the disjunction of the conjunctions before (blue)
and after (red) gradient descent. The 1/0 pair on the sides of the discriminants represent
the direction of the discriminant.

∂E
∂wijk

=
∂E
∂ f

∂ f
∂gi

∂gi
∂sij

∂sij

∂wijk

= �2(y � f (x))

’
r 6=i

(1 � gr(x))

!
⇥

’
l 6=j

sil(x)

!
�
sij(x)(1 � sij(x))xk

�

= 2(f (x)� y)

’
r 6=i

(1 � gr(x))

!
gi(x)

�
1 � sij(x)

�
xk (2.12)

Similarly, we obtain the derivative of the error function with respect to the network biases

as
∂E
∂bij

= 2(f (x)� y)

’
r 6=i

(1 � gr(x))

!
gi(x)

�
1 � sij(x)

�
(2.13)

We perform stochastic gradient descent after randomly permuting the order of the

instances in G and updating the model weights and biases according to

wnew
ijk = wijk � a

∂E
∂wijk

(2.14)

and

bnew
ij = bij � a

∂E
∂bij

(2.15)

respectively. The constant a is the step size. This constitutes one epoch of training. Multi-

ple epochs are performed until convergence as determined using a separate validation set.

19

Notice that it is possible to achieve 0 training error for any finite training set G by letting

each positive training instance and each negative training instance represent a positive

and negative cluster centroid, respectively. However, in practice, this is expected to lead to

overfitting and poor generalization and typically a much smaller number of clusters than

training instances is used.

2.4 Experiments
2.4.1 Artificial Datasets

We first experimented with the 2 moons artificial dataset to evaluate the LDNN algo-

rithm with and without the proposed clustering initialization. We also compare the LDNN

model with the modular neural networks(ModN) [47]. To construct the 2 moons dataset,

we start by generating random radius and angle pairs (r, q). For both moons, r is an

uniform random variable between R �W/2 and R +W/2 where R and W are parameters

that determine the radius and the width of the moons, respectively. For the top moon, q

is an uniformly distributed random variable between 0 and p. For the bottom moon, q is

an uniformly distributed random variable between p and 2p. The Cartesian coordinates

for data points on the top and bottom moons are then generated as (R cos q, R sin q) and

(R cos q � W/2, R sin q � a), respectively. The parameter a determines the vertical sepa-

ration between the 2 moons. We generated a training and a testing dataset by using the

parameters R = 1, W = 0.7, a = �0.7 which generates slightly overlapping classes. Both

datasets contained 1000 instances on the top moon and 1000 instances on the bottom moon.

Then, for each n 2 [1, 7], we trained 50 n ⇥ n LDNNs starting from random parameter

initializations, 50 n ⇥ n LDNNs initialized from k-means clustering with n clusters per

moon and 50 n ⇥ n ModNs initialized from k-means clustering with n clusters per moon.

For ModNs, the n2 linear discriminants are trained independently using data from the n2

pairs of positive (top moon) and negative (bottom moon) clusters and then combined using

min/ma functions. We used stochastic gradient descent with a step size of 0.3, a momen-

tum term weight of 0.1 and 500 epochs for training all models. Testing accuracies were

computed over the second dataset which was not used in training. Table 2.1 shows the

mean, minimum and maximum testing error over the 50 trials for each of the models. We

observe that training the LDNN model starting from a random initialization is successful

20

Table 2.1: Average, min. and max. testing error percentages over 50 repetitions for LDNN
initialized with random parameters, initialized with clustering and ModN [47] initialized
with clustering for different model sizes.

n LDNN random init LDNN cluster init ModN cluster init
Av. Range Av. Range Av. Range

1 15.6 [15.2, 18.6] 15.6 [15.2, 20.2] 15.5 [15.2, 16.3]
2 6.6 [3.0, 15.8] 3.3 [2.9, 3.7] 4.2 [3.6, 5.4]
3 4.1 [1.1, 15.6] 2.3 [1.2, 3.5] 2.7 [1.2, 4.8]
4 3.6 [1.2, 15.6] 2.2 [1.3, 3.5] 3.0 [1.8, 5.2]
5 3.4 [1.2, 15.4] 2.2 [1.2, 4.2] 2.8 [1.4, 5.7]

in general; however, the range of testing error rates varies by a larger amount compared

to when a cluster initialization is used resulting in a slightly worse mean testing error. We

also note that the LDNN model performs better both on average and when comparing the

maximum error rates over the 50 trials than the ModN model. Figure 2.3 illustrates the

output of the LDNN model for n = 3, which appears to be an appropriate choice based

on Table 2.1. The outputs of the 3 conjunctions are also shown separately to give further

intuition into the behavior of the LDNN model. Notice the similarity to Figures 2.2(e-h)).

The 2-spirals dataset is an extremely difficult dataset for the MLP architecture trained

with the backpropagation algorithm [32]. The original dataset consists of 194 (x, y) pairs

arranged in 2 interlocking spirals that orbit the origin 3 times. The classification task is to

determine which spiral any given (x, y) point belongs to. We used the farthest distance

clustering algorithm [74] for initialization of both models. The k-means clustering algo-

rithm places most centroids near the origin where the data points are denser and fewer

centroids on the spiral arms further from the origin where the data is sparser. On the

other hand, the farthest distance clustering algorithm provides more uniformly distributed

centroids which leads to better classification results with fewer clusters. We performed

clustering with maximum distance thresholds 2.2, 2.0 and 1.5 resulting in 18, 21 and 27

clusters per class, respectively. For each of these, we trained a LDNN and a ModN. Note

that the number of parameters in both models is the same for the same number of clusters.

We used stochastic gradient descent with a step size of 0.3, a momentum term weight of 0.1

and 2, 000 epochs for training all models. LDNN achieved 0 percent training error in each

21

(a) (b)

(c) (d)

Figure 2.3: Two moons test set: (a)-(c) the 3 conjunctions in the second layer of the network
evaluated individually, and (d) the output of the 3 ⇥ 3 LDNN. +/o symbols denote the 2
classes.

of these cases while the ModN’s training error was 0.232, 0.062 and 0 percent, respectively.

These results suggest that the unified learning framework of LDNN is able to capture

the spiral dataset with many fewer parameters than independent, pairwise learning of

discriminants as in [47]. Furthermore, it can be seen from Figure 2.4 that LDNN creates a

much smoother approximation to the spirals than pairwise learning. Finally, we note that

LDNN initialized randomly was not able to find a satisfactory local minimum of the error

function via gradient descent. This is similar to the failure of the standard MLP architecture

for this dataset. This observation underlines the importance of the existence of an intuitive

initialization for the LDNN architecture.

2.4.2 Two-class Problems

We experimented with 10 different binary classification datasets from the UCI Machine

Learning Repository [75] and the LIBSVM Tools webpage [76]. For each dataset, we trained

the LDNN, ModN, MLP, SVM, RF, Maxout and RBF classifiers.

22

Training er. = 23% Training er. = 6% Training er. = 0%

Training er. = 0% Training er. = 0% Training er. = 0%

Figure 2.4: Two spirals dataset: ModN (top) and LDNN (bottom). First column: 18
clusters/class, Second column: 21 clusters/class, Third column: 27 clusters/class

2.4.2.1 Dataset normalization, training/testing set split

Datasets were normalized as follows: For LDNN, ModN, MLP, Maxout and RBF train-

ing, we applied a whitening transform [74] to datasets with a large number of training

instances (Forest cover type and Webspam) since the covariance matrix could be estimated

reliably. All other datasets were normalized by centering each dimension of the feature

vector at the origin by subtracting its mean and then scaling by dividing it with its standard

deviation. For SVM training, each dimension of the feature vector was linearly scaled to

the range [0, 1]. For RF training, no normalization is necessary.

The IJCNN and COD RNA binary datasets had previously determined training and

testing sets. For the rest of the datasets, we randomly picked 2/3’s of the instances for

training and the rest for testing. The training set was further randomly split into a training

(%90) and cross-validation (%10) set for determining the parameters of every method.

23

2.4.2.2 Model and classifier training parameter selection

For LDNN classifiers, we need to choose the number of NAND gates (N) and the

number of discriminants per group (M). These parameters translate into the number of

positive and negative clusters, respectively, in the initialization. Various combinations,

up to 40 clusters per class, were tried to find the selection that gives the best accuracy on

validation set. For any given number of clusters, the k-means algorithm was repeated

50 times and the clustering result with the lowest sum of square distances to nearest

cluster centroid was selected to initialize the LDNN weights. We also fine tuned the

step size for gradient descent. The number of epochs for training was selected using the

cross-validation set and early stopping. For the IJCNN dataset, the cross-validation set

was also used in training as in [77].

For MLP training, there are 2 main parameters. The first one is the number of hidden

nodes which was varied from 2 to 500 to find the best accuracy on validation set. This

was followed by fine tuning the step size for backpropagation. The number of epochs

was chosen using the cross-validation set and early stopping. We also trained a second

MLP classifier (MLP-m) for which the number of hidden nodes was chosen as N ⇥ M to

match the total number of logistic sigmoid functions in the LDNN classifier. This was

done to compare LDNN to a MLP with approximately the same degrees of freedom. The

optimal parameters for 4 datasets were already matched to LDNN parameters. Similarly,

a modular network, which we refer to as Mod-N, with the same number of conjunctions

and disjunctions as the LDNN classifier was trained to control for the degrees of freedom.

There are 3 main parameters involved in RF training. The first one is the number of

trees. We choose a sufficiently large number of trees to ensure that the out of bag error

rate converges. The second parameter is the number of features that will be considered in

every node of the tree. We tried a range of numbers around the square root of the number

of features [5]. The last parameter is the fraction of total samples that will be used in the

construction of each tree. We tried 2/3, 1/2, 1/3, 1/4 and 1/5 as possible values for this

parameter.

For SVM training, a RBF kernel was used for all datasets except for the MNIST dataset

for which a 9th degree polynomial kernel was used [40]. For all datasets except MNIST,

we used the grid search tool provided by the Libsvm guide [76] to set the parameters of

24

the RBF kernel.

For Maxout, we need to find the number of hidden nodes h and the number of linear

functions per hidden node m. We tried different combinations and picked the one resulting

in the best performance on the validation set. Similar to LDNN and MLP, we fine tuned

the step size for gradient descent. The number of epochs for training was also selected

using the cross-validation set and early stopping.

RBFs were trained using Netlab [78]. Netlab performs a few steps of k-means to initial-

ize unsupervised learning of a Gaussian Mixture Model using the Expectation-Maximization

(EM) algorithm. The predicted value is calculated by linearly combining Gaussian kernels.

Linear weights are obtained by least squares fitting. For every dataset, we need to find the

number of basis functions. So, we tried up to several hundred basis functions to pick the

best using the cross-validation set.

The training and model parameters selected for all models are listed in Table 2.2.

2.4.2.3 Results

All of the classifiers we consider, with the exception of SVM and RBF, are stochastic.

Therefore, each experiment with the exception of SVM and RBF was repeated 50 times to

obtain mean, minimum and maximum testing errors which are reported in Table 2.2 for all

classifiers. The LDNN classifier outperformed MLPs for all datasets. Furthermore, LDNNs

also outperform MLP-m in all datasets. All algorithms were run on an Intel i7-3770 3.4 Ghz

CPU.

Our results signify that the LDNN network architecture and training offers a more

accurate alternative to MLPs using backpropagation. The LDNN classifier also outper-

formed the Mod-N classifier in all datasets including several datasets such as Forest cover

type and Wisconsin breast cancer where the accuracy difference was very large. This empha-

sizes the importance of training the entire network in an unified manner. Considering all

of the classifiers tested, LDNNs had the lowest testing error in 7 out of 10 datasets. LDNNs

outperformed SVMs in 8 out of 10 cases, Maxouts in 8 out 10 cases and RFs in 7 out of 10

cases.

25

Table 2.2: Column 1: Binary classification datasets, their source, number of positive /
negative training/testing examples and data dimensionality. Column 2: Classifier type.
Column 3-4: Average testing and [min,max] testing error (%) Best average testing errors
are shown in bold. Column 5: Model and classifier training parameters used. LDNN,
Mod-N: N ⇥ M model and e step size. MLP and MLP-m: h number of hidden nodes and
e step size. RF: t number of trees, f number of features considered per node and s training
instance sampling rate for each tree. SVM: C penalty factor, g: RBF kernel width. Maxout:
h number of hidden nodes, m number of linear discriminants per hidden node and e step
size. RBF: h number of radial basis functions.

Dataset Classifier Av. test Test error Model Parameters
error range

Adult LDNN 15.25 [15.14, 15.41] 7 ⇥ 4, e = 0.007
UCI MLP 15.37 [15.17, 15.74] h = 20, e = 0.005
Train: RF 14.14 [13.97, 14.30] t = 300, f = 3, s = 2/3
7,508+ / 22,654- SVM 15.57 — C = 32768, g = 0.007812
Test: Mod-N 17.39 [16.32, 20.51] 7 ⇥ 4, e = 0.007
3,700+ / 11,306- MLP-m 15.43 [15.14, 15.81] h = 28, e = 0.007
Dim = 14 Maxout 15.44 [15.14, 15.69] h = 5, m = 4, e = 0.005

RBF 15.67 — h = 125
Wisconsin cancer LDNN 0.80 [0.52, 1.58] 2 ⇥ 1, e = 0.05
UCI MLP 1.37 [0.52, 2.64] h = 15, e = 0.05
Train: RF 1.79 [1.58, 2.11] t = 300, f = 10, s = 2/3
142+ / 238- SVM 1.59 — C = 2048, g = 0.000488
Test: Mod-N 14.58 [7.93, 24.33] 2 ⇥ 1, e = 0.05
70+ / 119- MLP-m 1.59 [0.52, 2.11] h = 2, e = 0.05
Dim = 30 Maxout 1.58 [0.52, 3.17] h = 2, m = 3, e = 0.05

RBF 1.58 — h = 14
PIMA diabetes LDNN 17.92 [17.25, 19.60] 6 ⇥ 10, e = 0.02
UCI MLP 19.34 [16.86, 23.13] h = 100, e = 0.01
Train: RF 20.81 [20.39, 21.56] t = 150, f = 2, s = 1/5
179+ / 334- SVM 21.57 — C = 32, g = 0.125
Test: Mod-N 24.29 [19.60, 27.05] 6 ⇥ 10, e = 0.02
89+ / 166- MLP-m 19.56 [17.64, 22.35] h = 60, e = 0.02
Dim = 8 Maxout 20.75 [17.64, 23.92] h = 6, m = 10, e = 0.005

RBF 18.82 — h = 12
Australian credit LDNN 12.93 [12.22, 13.53] 5 ⇥ 4, e = 0.02
UCI MLP 13.90 [12.22, 15.28] h = 20, e = 0.01
Train: RF 12.95 [12.22, 13.10] t = 150, f = 1, s = 1/5
205+ / 256- SVM 16.59 — C = 0.03125, g = 0.5
Test: Mod-N 14.62 [12.22, 17.46] 5 ⇥ 4, e = 0.02
1012+/127- MLP-m 14.03 [11.79, 16.15] h = 20, e = 0.02
Dim = 14 Maxout 14.15 [12.22, 16.59] h = 5, m = 3, e = 0.005

RBF 13.53 — h = 3
Ionosphere LDNN 3.40 [2.56, 4.27] 1 ⇥ 36, e = 0.05
UCI MLP 8.66 [6.83, 13.67] h = 40, e = 0.025
Train: RF 5.38 [5.12, 5.98] t = 200, f = 5, s = 1/5

26

Table 2.2 – continued
Dataset Classifier Av. test Test error Model Parameters

error range
150+ / 84- SVM 4.27 — C = 2, g = 2
Test: Mod-N 5.98 [4.27, 8.54] 1 ⇥ 36, e = 0.05
75+ / 42- MLP-m 8.73 [6.83, 11.11] h = 36, e = 0.05
Dim = 33 Maxout 6.37 [2.56, 17.94] h = 1, m = 36, e = 0.05

RBF 4.27 — h = 21
German credit LDNN 22.58 [21.02, 23,42] 6 ⇥ 1, e = 0.05
UCI MLP 23.96 [22.52, 26.12] h = 20, e = 0.01
Train: RF 24.28 [23.42, 24.92] t = 250, f = 4, s = 2/3
200+ / 467- SVM 25.83 — C = 8, g = 0.125
Test: Mod-N 30.03 [30.03, 30.03] 6 ⇥ 1, e = 0.05
100+ / 233- MLP-m 24.51 [23.12, 26.12] h = 6, e = 0.05
Dim = 24 Maxout 25.09 [22.22, 28.22] h = 1, m = 2, e = 0.05

RBF 23.72 — h = 26
Forest cover type LDNN 8.87 [8.09, 9.96] 20 ⇥ 10, e = 0.1
UCI MLP 9.00 [7.73, 13.26] h = 200, e = 0.1
Train: RF 3.90 [3.84, 3.94] t = 150, f = 15, s = 2/3
188,868+ / 198,474- SVM 6.91 — C = 32, g = 8
Test: Mod-N 25.68 [24.40, 26.77] 20 ⇥ 10, e = 0.1
94,443+ / 99,237- Maxout 7.07 [6.63, 8.13] h = 20, m = 15, e = 0.01
Dim = 54 RBF 24.53 — h = 100
IJCNN challenge LDNN 1.28 [1.02, 1.58] 10 ⇥ 8, e = 0.25
Libsvm MLP 1.80 [1.41, 2.27] h = 80, e = 0.1
Train: RF 2.00 [1.91, 2.09] t = 250, f = 3, s = 2/3
3,415+ 31,585- SVM 1.41 — C = 32, g = 8
Test: Mod-N 5.01 [4.13, 7.95] 10 ⇥ 8, e = 0.25
8,712+ / 82,889- Maxout 1.39 [1.03, 3.28] h = 10, m = 10, e = 0.1
Dim = 22 RBF 7.81 — h = 90
COD-RNA LDNN 3.36 [3.30, 3.46] 8 ⇥ 8, e = 0.05
Libsvm MLP 3.50 [3.37, 3.73] h = 64, e = 0.05
Train: RF 3.37 [3.34, 3.39] t = 200, f = 3, s = 2/3
19,845+ / 39,690- SVM 3.67 — C = 512, g = 8
Test: Mod-N 4.15 [2.82, 4.72] 8 ⇥ 8, e = 0.05
90,539+ / 181,07- Maxout 3.47 [3.35, 3.67] h = 5, m = 10, e = 0.05
Dim = 8 RBF 4.10 — h = 37
Webspam LDNN 1.21 [1.12, 1.27] 15 ⇥ 15, e = 0.1
Libsvm MLP 1.25 [1.13, 1.41] h = 225, e = 0.1
Train: RF 1.17 [1.13, 1.19] t = 100, f = 11, s = 2/3
141,460+ / 91,874- SVM 0.78 — C = 8, g = 8
Test: Mod-N 4.57 [3.89, 5.17] 15 ⇥ 15, e = 0.1
70,729+ / 45,937- Maxout 0.97 [0.9, 1.08] h = 12, m = 17, e = 0.02
Dim = 138 RBF 7.73 — h = 150

27

In 5 out of 10 cases, the mean LDNN error was lower than the minimum RF error.

The RF mean error was lower than the LDNN minimum error in only 2 out of 10 cases.

LDNNs never severely overfit the data, whereas RFs has significant accuracy differences

between training and testing sets for several datasets including Adult, PIMA Indian diabetes,

German credit and Forest cover type. LDNNs outperformed RBFs in all the cases. This can

be explained by the way RBF and LDNN cover the decision space. RBFs use simple radial

functions to cover desired parts of space. This type of coverage can be inefficient because

the basis functions are not flexible and cover only local parts of space. In many cases, a

nonlocal coverage of space is needed which leads to picking too many radial functions

in order to cover the space adequately [14]. On the other hand, LDNN combines a set of

convex polytopes that are flexible in shape and coverage and can also be local or nonlocal

depending on the type of coverage which is needed.

2.4.3 Multiclass Problems

We also experimented with 6 multiclass datasets from the UCI Machine Learning Reposi-

tory [75]. Each dataset was first normalized in the same way as described in Section 2.4.2.1.

For each dataset, we trained the LDNN, RF and SVM classifiers with the exception of the

MNIST dataset for which the SVM results are reported from [40]. In that paper, a SVM

is trained on a feature set generated by a deep belief network. We used one-vs-all to

generalize LDNN to multiclass problems. The model and classifier training parameters

were chosen as described in Section 2.4.2.2 and are reported in Table 2.3. LDNN and

RF experiments were repeated 20 times to obtain mean, minimum and maximum testing

errors which are reported in Table 2.3. The LDNN classifier is also related to the idea

of space partitioning [60] which combines partitioning of the space and learning a local

classifier for each partition into a global objective function for supervised learning. All

space partitioning classifier results are reported from [60]. LDNNs had the best accuracy

in 4 out of 6 datasets. Note that the minimum and maximum testing errors for LDNNs

were equal for MNIST.

28

Table 2.3: Column 1: Multiclass datasets, their source, number of training/testing exam-
ples and data dimensionality. Column 2: Classifier type. Column 3-4: Average testing,
and [min,max] testing error (%). Best average testing errors are shown in bold. Column
5: Model and classifier training parameters used. LDNN: N ⇥ M model and e step size.
RF: t number of trees, f number of features considered per node and s training instance
sampling rate for each tree. SVM: C penalty factor, g: RBF kernel width. The space
partitioning (SP) results are from [60].

Dataset Classifier Av. test err Test err range Model Parameters
Isolet LDNN 4.17 [3.65, 4.49] 4 ⇥ 4, e = 0.01
Train: 6,238 RF 5.61 [5.25, 5.90] t = 200, f = 30, s = 2/3
Test: 1,559 SVM 3.21 — C = 8, g = 0.03125
Classes=26 SP-LDA 5.58 — Results taken from [60]
Dim=617
Landsat LDNN 7.98 [7.65, 8.25] 9 ⇥ 9, e = 0.1
Train: 4,435 RF 9.15 [8.65, 9.55] t = 200, f = 6, s = 2/3
Test: 2,000 SVM 8.15 — C = 2, g = 8
Classes=6 SP-LDA 13.95 — Results taken from [60]
Dim=36
Letter LDNN 2.32 [2.12, 2.72] 20 ⇥ 20, e = 0.4
Train: 16,000 RF 3.89 [3.65, 4.02] t = 500, f = 3, s = 2/3
Test: 4,000 SVM 2.35 — C = 8, g = 8
Classes=26 SP-LR 13.08 — Results taken from [60]
Dim=16
Optdigit LDNN 2.29 [2.00, 2.67] 5 ⇥ 5, e = 0.1
Train: 3,823 RF 2.89 [2.50, 3.11] t = 200, f = 7, s = 2/3
Test: 1,797 SVM 1.56 — C = 8, g = 0.125
Classes=10 SP-P 4.23 — Results taken from [60]
Dim=62
Pendigit LDNN 1.80 [1.68, 1.94] 8 ⇥ 8, e = 0.005
Train: 7,494 RF 3.64 [3.40, 3.83] t = 250, f = 4, s = 2/3
Test: 3,498 SVM 1.86 — C = 8, g = 2
Classes=10 SP-P 4.32 — Results taken from [60]
Dim=16
MNIST LDNN 1.23 [1.23, 1.23] 30 ⇥ 30, e = 0.45
Train: 60,000 RF 3.00 [2.88, 3.14] t = 500, f = 26, s = 2/3
Test: 10,000 SVM 1.40 — Results taken from [40]
Classes=10
Dim=717

29

2.5 Conclusion
We believe that the LDNN network architecture and training can become a favorable

alternative to MLPs with one hidden layer. The LDNN classifier has several advantages

over MLPs: First, LDNNs allow for a simple and intuitive initialization of the network

weights before supervised learning. It is guaranteed that this initialization scheme puts

the initial point close to a desired local minima. This makes the optimization process more

predictable and leads to more stable and reliable performance. Similarly, LDNN structure

along with proposed initialization helps to avoid the herd-effect problem. Second, due

to the single adaptive layer, learning can use larger step-sizes in gradient descent. We

demonstrated empirically that LDNNs are more accurate than MLPs. Similar to MLPs,

the LDNN classifier also requires the choice of model complexity. The number of con-

junctions (number of positive training clusters) and the number of logistic sigmoid func-

tions per conjunction (number of negative training clusters) need to be chosen. However,

the complexity of the model could be chosen automatically by either using a validation

set, as commonly done for SVM training, or by initializing the LDNN in different ways.

For instance, sequential covering algorithms can be used to generate a set of rules [79].

Each rule is a conjunction and the final classification is a disjunction of these conjunctions

which can easily be converted to a LDNN classifier and fine tuned using gradient descent.

LDNNs outperform RBFs significantly which is a proof that LDNNs provide more efficient

coverage of the decision space.

While LDNNs are similar in architecture to modular neural networks [47], they are

significantly more accurate owing to the unified training of the network that we intro-

duced. LDNNs outperformed RFs in 13 of the 16 datasets and outperformed SVMs in 12

of the 16 datasets. Based on these results and observations, we believe that LDNNs should

be considered as a state-of-the art classifier that provides a viable alternative to RFs and

SVMs. Further improvements in accuracy can be possible by using cross-entropy instead

of the square error criterion or by using adaptive step sizes for training LDNNs. Finally,

another possibility is to use more powerful nonlinear discriminants such as conic sections

in (2.8).

CHAPTER 3

LOGISTIC PRODUCT BASIS NETWORKS

We introduce a novel general regression model that is based on a linear combination of

a new set of nonlocal basis functions that forms an effective feature space. We propose

a training algorithm that learns all the model parameters simultaneously and offer an

initialization scheme for parameters of the basis functions. We show through several

experiments that the proposed method offers better coverage for high-dimensional space

compared to local Gaussian basis functions and provides competitive performance in com-

parison to other state-of-the-art regression methods.

3.1 Introduction
Linear combination of a set of basis functions is one of the most commonly used meth-

ods for regression. By choosing a proper set of basis functions, we can project the data

into a feature space that provides effective representation of the data distribution [80].

Common basis functions include but are not limited to polynomials, natural splines, radial

basis functions (RBF) and wavelet bases [33]. The choice of the basis functions determines

the type of regression method. RBFs are important mathematical models and use radial

functions such as Gaussians as basis functions [11]. Each radially symmetric Gaussian is

tuned to respond to a local region of feature space. Therefore, RBFs require a sufficiently

large number of basis functions to cover the space.

In general, some regression methods originate from popular classification methods

such as Random Forests [5], Support Vector Machines and Artificial Neural Networks.

For example, random forest regression uses ensembles of regression trees instead of classi-

fication trees to make the final prediction [81]. In this chapter, however, our attention is on

a broad class of methods that work in weight-space according to [82]. The most commonly

used example is linear regression. There have been many works trying to improve this

linear model. For example, Robust Regression [83] was proposed to reduce the effect of

31

outliers in training data. In this chapter, we introduce a new structure which is based on

a new set of nonlocal basis functions and provides efficient coverage of high-dimensional

spaces. We refer to the proposed structure as Logistic Product Basis Network (LPBN). We

compare LPBNs with state-of-the-art regression methods such as Random Forests, Support

Vector Regression [84] and RBFs.

3.2 Related Work
Consider the problem of finding a function f : Rn

! R for fitting a set of training data

G = {xi 2 Rn, yi 2 R}
p
i=1 (3.1)

such that f (xi) = yi. Let’s specify f as a linear combination of N basis functions

f (x) =
N

Â
i=1

aifi(x) (3.2)

with fi(x) the basis functions that map the data points to the feature space. This mapping

is performed in order to obtain a better representation of the data and overcome the limited

expressiveness of a linear model. The model is reduced to simple linear regression by

setting fi(x) = x. ai are the weights of the linear combination. There is a broad range of

regression models that are based on this form. Support Vector Regression (SVR) can be

considered as an example of linear methods. In SVR, ai are determined by minimizing the

`2-norm of the weight vector a. The condition of this minimization is that the maximum

deviation of the predicted value f (xi) from yi shouldn’t exceed e which is called the margin

of tolerance [85]. The basis functions or mappings are implicitly determined by the type of

kernel being used.

A more recent approach is the Extreme Learning Machine (ELM) [86] for regression. They

map the training data to ELM feature space. The feature mapping layer in ELM need not

be tuned. It is also possible to use kernels if the mapping function is unknown.

RBF regression is another example of the methods working in weight-space. The set

of basis functions fi(x) are Gaussians and their parameters can be obtained by unsuper-

vised clustering of the data or fitting a Gaussian mixture model to our data using the EM

algorithm [55]. Then, we can obtain the linear weights ai using linear regression. It is

also possible to learn the RBF parameters in an unified manner by back-propagation of the

error using chain rule [56]. RBFs are popular for modeling, regression and interpolation.

32

Therefore, there are many works on improvement of the training and performance of these

models. One approach is to use regularization in order to improve the generalization abil-

ity of the model and avoid overfitting (e.g., [87]). However, most regularization schemes

are general techniques and can be applied to many other methods including our proposed

structure. It is well known that an RBF network suffers from the curse of dimensionality

[88]. In other words, as the number of dimensions grow, the number of radial basis

functions required grows exponentially.

Another work similar to our approach is Sum-Product Networks (SPN) [73]. SPNs

are probabilistic models that provide tractable inferences. SPN is based on the notion

of network polynomial and represents unnormalized probability distributions. This leads

to a deep structure with interleaved layers of sums and products. SPN is similar to our

proposed structure because it uses sum units to mix different submodels with mixing

weights corresponding to ai. It also uses products that combine features of submodels.

However, our approach is different. Our proposed structure is based on a flexible set of

basis functions. Unlike SPNs, we use logistic sigmoid functions before the product layer

to approximate half-spaces. Then, we use products to form basis functions that are convex

polytopes. Sigmoid functions are not present in SPNs but are crucial components of our

approach. These basis functions are able to provide both local and nonlocal coverage of

high-dimensional space which leads to more efficient representation of data space.

3.3 Methods
3.3.1 Network Architecture

In our proposed structure, we build the basis functions fi(x) by the intersection \
Mi
j=1Hij

of Mi half-spaces. Hij is defined in terms of its indicator function

hij(x) =
⇢

1, Ân
k=1 wijkxk + bij � 0

0, otherwise (3.3)

where wijk and bij are the weights and the bias term. Intersection of the half-spaces forms

a convex polytope that covers desired parts of a multidimensional space. However, unlike

RBFs, this is not necessarily a local coverage and we can cover the space more efficiently

using flexible basis functions.

The indicator functions are binary variables. Therefore, it is possible to rewrite the

intersection of half-spaces as the conjunction of the indicator functions
VMi

j=1 hij(x). Our

33

next step is to find a differentiable approximation for this general form. We replace the

conjunctions by the product ’Mi
j=1 hij(x). This product can be considered as a soft AND

gate that implements the conjunction. hij(x) can be approximated with logistic sigmoid

functions

sij(x) =
1

1 + e�Ân
k=1 wijkxk+bij

, (3.4)

We can replace Mi with M = maxi Mi. Based on our experiments, this replacement does

not hurt the performance by overfitting. Hence, our basis functions will be in the form

fi(x) = ’M
j=1 sij(x) and we can construct the final fitting function as

f (x) =
N

Â
i=1

ai

M

’
j=1

sij(x)

!
(3.5)

This function can be visualized as a network shown in Figure 3.1. We refer to the proposed

network architecture as LPBN. In this structure, N is the number of the basis functions

which is the same as the number of soft AND gates and M is the number of the logistic

sigmoid functions per basis function. This structure is referred to as a N ⇥ M LPBN.

𝜎 , (𝒙)𝜎 , (𝒙)

𝑥 𝑥 𝑥

𝜎 , (𝒙) 𝜎 , (𝒙) 𝜎 , (𝒙) 𝜎 , (𝒙)

𝜙 (𝒙) 𝜙 (𝒙) 𝜙 (𝒙)

𝑓(𝒙)

𝒙

Figure 3.1: LPBN architecture. The first hidden layer is composed of M ⇥ N logistic
sigmoid functions. The second hidden layer computes N conjunctions using soft AND
gates. The output layer is a linear combination of the soft gates. The soft AND gates are
implemented as continuous functions by product of their inputs.

34

3.3.2 Model Initialization

The specific choice of the basis functions allows for a simple and intuitive initialization

of the weights and biases of the logistic sigmoid functions. We can partition training data

points {xi 2 Rn
}

p
i=1 into N clusters. For the i’th cluster, we let vij = ci � cj where c are

the cluster centroids and j 6= i. We initialize the weight vectors as wij = vij/|vij| for i 6= j.

Finally, we initialize the bias terms bij such that the logistic sigmoid functions sij(x) take

the value 0.5 at the midpoints of the lines connecting ci and cj. In other words, let

bij = hwij, 0.5(ci + cj)i (3.6)

where ha, bi denotes the inner product of the vectors a and b. This procedure initilizes

fi(x), the i’th basis function, to a convex polytope that separates the training instances in

the i’th cluster from all other training data. This creates a N ⇥ N � 1 LPBN.

3.3.3 Model Optimization

The LPBN model can be trained by choosing the parameters W = {ai, wijk, bij} that

minimize the quadratic error

E(W , G) = (y(x)� f (x))2, x 2 G (3.7)

Starting from initialization described in Section 3.3.2 for logistic functions and random

initialization for ai, we minimize (3.7) using gradient descent. In order to get the update

equations, we need to find the partial derivatives of the error with respect to all the net-

work weights and biases. It is done via chain rule

∂E
∂wijk

=
∂E
∂ f

∂ f
∂fi

∂fi
∂sij

∂sij

∂wijk

= �2(y � f (x))ai(’
l 6=j

sil(x))sij(x)(1 � sij(x))xk

= 2(f (x)� y)aifi(x)
�
1 � sij(x)

�
xk (3.8)

Similarly, we obtain the derivative of the error function with respect to the network

biases as

∂E
∂bij

= 2(f (x)� y)aifi(x)
�
1 � sij(x)

�
(3.9)

Partial derivatives with respect to ai are

35

∂E
∂ai

= fi(x) (3.10)

3.4 Experiments
First, we compare RBF and LPBN using a set of synthetic 1-dimensional data points

shown in Figures 3.2a and 3.3a. We trained both networks with 3 basis functions. Network

predictions are shown in the same figures using solid lines. We can see that RBF failed to

provide a good prediction for this data. On the other hand, LPBN fits the data efficiently.

The basis functions learned by the networks are shown in Figures 3.2b and 3.3b. We

observe that every basis function of the LPBN corresponds to a specific part of our data

and they are not necessarily local. We repeated the experiment for RBF using 10 basis

functions. The network predictions and basis functions are shown in Figures 3.3c and

3.3d, respectively. We can see that RBF still doesn’t fit the data very well.

Next, we experimented with 8 regression datasets from the UCI Machine Learning Repos-

itory [75] and the LIBSVM Tools webpage [76]. We tried to include datasets with different

sizes and dimensions. However, datasets with too few or extremely high dimensions were

excluded. We also avoided datasets with missing values. The Energy Efficiency dataset has

2 different targets. We compared LPBN with Random Forests, e-SVR, Neural Networks

with one hidden layer, ELM and RBFs.

−6 −4 −2 0 2 4 6
0

1

2

3

4

5

6

7

x

y

prediction
training data

(a)

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

x

b
a
si

s
fu

n
ct

io
n
s

(b)

Figure 3.2: LPBN performance on synthetic data using 3 basis functions: (a) training data
and LPBN predictions, and (b) basis functions after training.

36

−6 −4 −2 0 2 4 6
0

1

2

3

4

5

6

7

x

y

prediction
training data

(a)

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

x

b
a
si

s
fu

n
ct

io
n
s

(b)

−6 −4 −2 0 2 4 6
0

1

2

3

4

5

6

7

x

y

prediction
training data

(c)

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

x

b
a
si

s
fu

n
ct

io
n
s

(d)

Figure 3.3: RBF performance on synthetic data: training data and RBF predictions with (a)
3 kernels and (c) 10 kernels, and the Gaussian kernels after training with (b) 3 kernels and
(d) 10 kernels.

3.4.1 Dataset Normalization, Training/Testing Set Split

Datasets were normalized as follows: For LPBN, Neural Networks, ELM and RBF, all

the datasets were normalized by centering each dimension of the feature vector at the

origin by subtracting its mean and then scaling by dividing it with its standard deviation.

For e-SVR training, each dimension of the feature vector was linearly scaled to the range

[0, 1]. For all the datasets with the exception of MSD, we randomly picked half of the

instances for training and the other half for testing. We used (10%) of the training data as

a cross-validation set to find the optimal training parameters.

37

3.4.2 Model and Classifier Training Parameter Selection

For LPBN, we need to choose the number of basis functions (N), which is also the

number of clusters for initialization process. For every dataset, we tried different numbers

of basis functions in the range of 2 to 20 in order to find the selection that gives the best

accuracy on the cross-validation set. Similarly, we found the gradient descent parameters

(i.e., step size and number of training epochs) using the cross-validation set. For Neural

Network, the number of hidden nodes and parameters of gradient descent were found

using the cross-validation set.

We performed our experiments on Random Forest using the code available in [89].

For RF training, the first parameter is the number of trees. We choose a sufficiently large

number of trees to ensure that the out of bag error rate converges. The second parameter is

the number of features that will be considered in every node of the tree. We tried a range

of numbers around the square root of the number of features [5]. The last parameter is the

fraction of total samples that will be used in the construction of each tree. We tried 3/4,

2/3, 1/2, 1/3, 1/4 and 1/5 as possible values for this parameter.

For e-SVR training, a RBF kernel was used for all the datasets. The main parameters are

g of RBF kernel, penalty coefficient (C) and e [90]. We performed a grid search to find these

parameters using the cross-validation set. For the first 6 datasets, we trained ELMs with

Gaussian kernels. We found the kernel width (g) and regularization parameter (C) using

a grid search similar to e-SVR. It was not possible to use kernel-based ELM for the last 2

datasets because of their size. Therefore, we used ELMs with Gaussian basis functions.

The main parameters are the number of basis functions (N) and regularization parameter

(C). We obtained these parameters by performing a grid search on the cross-validation set.

RBFs were trained using Netlab [78]. Netlab performs a few steps of k-means to initial-

ize unsupervised learning of a Gaussian Mixture Model using an Expectation-Maximization

(EM) algorithm. The predicted value is calculated by linearly combining Gaussian kernels.

Linear weights are obtained by least squares fitting. For every dataset, we need to find the

number of basis functions. Therefore, we tried up to 50 basis functions to pick the best

using the cross-validation set. We evaluate the regression methods using the coefficient of

determination (R2 value). The training and model parameters selected for all models are

listed in Table 3.1.

38

Table 3.1: Column 1: Regression datasets, their source, number of training/testing ex-
amples and data dimensionality. Column 2: Method of regression. Column 3-4: Average
testing over 50 rounds, [min,max] testing R2. Best average testing results are shown in
bold. Column 5: Model and classifier training parameters used. Ep: Epochs. LPBN: N
number of basis functions and e step size. RF: t number of trees, f number of features
considered per node and s training instance sampling rate for each tree. e-SVR: C penalty
factor, g RBF kernel width and e margin of tolerance. NN: N number of hidden nodes
and e step size. ELM: C regularization parameter, g kernel width and N number of basis
functions. k: Kernel

Dataset Method Av. test Test R2 range Model Parameters
R2

Concrete LPBN 0.8750 [0.8598, 0.8901] N = 7, e = 0.001, Ep = 300
strength RBF 0.7663 [0.7531, 0.7804] No of RBF functions = 30
UCI RF 0.8485 [0.8429, 0.8553] t = 100, f = 5, s = 2/3
Train: 515 e-SVR 0.8456 — C = 150, g = 2.85, e = 0.1
Test: 515 NN 0.8840 [0.8641, 0.9051] N = 42, e = 0.001, Ep = 300
Dim = 8 ELM 0.8629 — C = 45, g = 12, k = RBF
Energy efficiency LPBN 0.9886 [0.9784, 0.9932] N = 6, e = 0.01, Ep = 100
Heating Load RBF 0.9898 [0.9867, 0.9922] No of RBF functions = 45
UCI RF 0.9940 [0.9932, 0.9948] t = 100, f = 6, s = 2/3
Train: 384 e-SVR 0.9892 — C = 600, g = 2.25, e = 0.1
Test: 384 NN 0.9842 [0.9813, 0.9878] N = 30, e = 0.01, Ep = 700
Dim = 8 ELM 0.9963 — C = 55000, g = 24, k = RBF
Energy efficiency LPBN 0.9708 [0.9399, 0.9839] N = 12, e = 0.02, Ep = 150
Cooling Load RBF 0.9653 [0.9642, 0.9663] No of RBF functions = 45
UCI RF 0.9605 [0.9584, 0.9629] t = 100, f = 6, s = 2/3
Train: 384 e-SVR 0.9577 — C = 390, g = 2.2, e = 0.2
Test: 384 NN 0.9673 [0.9403, 0.9818] N = 132, e = 0.02, Ep = 150
Dim = 8 ELM 0.9675 — C = 1500, g = 12.5, k = RBF
Abalone LPBN 0.5825 [0.5734, 0.5904] N = 5, e = 0.001, Ep = 100
Libsvm RBF 0.5411 [0.5181, 0.5551] No of RBF functions = 12
Train: 2088 RF 0.5542 [0.5511, 0.5575] t = 400, f = 6, s = 1/5
Test: 2088 e-SVR 0.5511 — C = 10, g = 2.1, e = 0.1
Dim = 8 NN 0.5816 [0.5660, 0.5912] N = 20, e = 0.001, Ep = 100

ELM 0.5797 — C = 20, g = 18, k = RBF
Cpusmall LPBN 0.9728 [0.9710, 0.9739] N = 15, e = 0.0005, Ep = 150
Libsvm RBF 0.9615 [0.9590, 0.9631] No of RBF functions = 30
Train: 4096 RF 0.9740 [0.9733, 0.9741] t = 200, f = 8, s = 2/3
Test: 4096 e-SVR 0.9732 — C = 250, g = 2.2, e = 0.1
Dim = 12 NN 0.9719 [0.9649, 0.9732] N = 210, e = 0005, Ep = 150

ELM 0.9700 — C = 1500, g = 100, k = RBF
MG LPBN 0.7195 [0.7085, 0.7289] N = 10, e = 0.02, Ep = 500
Libsvm RBF 0.7032 [0.6934, 0.7120] No of RBF functions = 40
Train: 692 RF 0.7270 [0.7197, 0.7309] t = 200, f = 3, s = 2/3
Test: 692 e-SVR 0.7033 — C = 17, g = 3, e = 0.1
Dim = 6 NN 0.6315 [-0.0340, 0.7174] N = 90, e = 0.02, Ep = 500

39

Table 3.1 – continued
Dataset Method Av. test Test R2 range Model Parameters

R2

ELM 0.7169 — C = 15, g = 5, k = RBF
Space GA LPBN 0.7341 [0.7090, 0.7450] N = 8, e = 0.1, Ep = 300
Libsvm RBF 0.6949 [0.6769, 0.7065] No of RBF functions = 37
Train: 1553 RF 0.6137 [0.6102, 0.6165] t = 200, f = 5, s = 3/4
Test: 1553 e-SVR 0.7105 — C = 21, g = 3.2, e = 0.06
Dim = 6 NN 0.6470 [0.4607, 0.7150] N = 56, e = 0.1, Ep = 300

ELM 0.6986 — C = 370, g = 41, k = RBF
Million Song LPBN 0.3138 — N = 4, e = 10�7, Ep = 1500
Dataset (MSD) RBF 0.2554 — No of RBF functions = 145
UCI RF 0.2693 — t = 100, f = 30, s = 4/5
Train: 463715 e-SVR 0.2827 — C = 20, g = 60, e = 0.1
Test: 51630 (1/2 of training data)
Dim = 90 NN 0.2888 — N = 12, e = 10�7, Ep = 1500

ELM 0.2972 — C = 105, N = 5000
(basis functions = Gaussian)

Relative location LPBN 0.9942 — N = 17, e = 2 ⇥ 10�6

of CT slices Ep = 7000
UCI RBF 0.8617 — No of RBF functions = 360
Train: 26750 RF 0.9955 — t = 200, f = 40, s = 4/5
Test: 26750 e-SVR 0.9953 — C = 10, g = 0.1, e = 0.1
Dim = 385 NN 0.9970 — N = 272, e = 2 ⇥ 10�6

Ep = 7000
ELM 0.9574 — C = 107, N = 15000

(basis functions = Gaussian)

40

3.4.3 Results

All of the regression methods we consider, with the exception of e-SVR and ELM with

kernels, are stochastic. Therefore, each experiment on the first 6 datasets was repeated 50

times for stochastic methods in order to obtain mean, minimum and maximum of R2 on

test sets which are reported in Table 3.1 for all the methods. For the last 2 datasets, it was

not possible to repeat experiments 50 times mainly because of training times. It was also

infeasible to train e-SVR on all training samples of MSD dataset. It can be seen that LPBNs

performed better than other methods in 4 out of 9 regression problems and performed

close to the best on the rest. LPBNs also outperform RBFs in 8 out of 9 problems.

We also compared LPBN with RBF in terms of number of learning parameters. We

trained various LPBNs with N = [3, 8] and RBFs with N = [10, 50] for the number of

basis functions. For every setting, we repeated the experiments 50 times and computed

the average of the R2 value for the test set for each model. The results are plotted against

the degrees of freedom (total number of parameters) in Figure 3.4 for different datasets.

The variance of different experiments for every model is shown by error bars. We can

see that LPBNs provide better performance with fewer degrees of freedom. This is more

obvious when both methods have a small number of learning parameters. This is mainly

because LPBNs provide nonlocal basis functions which provide better coverage of the

space compared to local basis functions of RBFs. LPBNs also offer better coverage in higher

dimensions. Consider the results on the last 2 datasets in Table 3.1. These datasets are

relatively large with high dimensions. We can see that LPBNs perform better than RBFs

with significantly less basis functions. This is mainly because RBFs require exponentially

more basis functions as the number of dimensions grow. On the other hand, the basis

functions of LPBNs are nonlocal which can allow for a more efficient representation in

higher dimensions.

However, it must be noted that unlike RF, our method is not designed for very high

dimensional data. Finally, we also tried using back-propagation to fine-tune the RBF

networks further [56], but this resulted in only minor accuracy improvements.

41

0 100 200 300 400 500 600
0.8

0.85

0.9

0.95

1

Degrees of freedom

C
o
e
ff
ic

ie
n
t
o
f
d
e
te

rm
in

a
tio

n

LPBN
RBF

(a) Energy - Heating Load

0 100 200 300 400 500
0.45

0.5

0.55

0.6

0.65

0.7

0.75

Degrees of freedom

C
o
e
ff
ic

ie
n
t
o
f
d
e
te

rm
in

a
tio

n

LPBN
RBF

(b) Space GA

0 200 400 600 800
0.88

0.9

0.92

0.94

0.96

0.98

Degrees of freedom

C
o
e
ff
ic

ie
n
t
o
f
d
e
te

rm
in

a
tio

n

LPBN
RBF

(c) Cpusmall

0 100 200 300 400 500
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

Degrees of freedom

C
o
e
ff
ic

ie
n
t
o
f
d
e
te

rm
in

a
tio

n

LPBN
RBF

(d) MG

Figure 3.4: Coefficients of determination vs. degrees of freedom for the LPBN and RBF
models: These graphs compare LPBN and RBF in terms of number of learning parameters
for 4 datasets. Every experiments is repeated 50 times and the mean of R2 is shown versus
the number of free parameters. Variance of the experiments is shown by error bars.

3.5 Conclusion
We introduced LPBN as a general method of regression and proposed a training algo-

rithm and an effective initialization scheme. The training algorithm learns all the weights

simultaneously. We showed that LPBNs provide competitive results compared to popu-

lar regression methods. Especially, we showed that LPBNs provide more efficient space

coverage compared to RBFs because of a more flexible set of nonlocal basis functions that

leads to a feature space that represents the data distribution very well.

CHAPTER 4

MUTUAL EXCLUSIVITY LOSS FOR

SEMISUPERVISED DEEP LEARNING

In this chapter, we consider the problem of semisupervised learning with deep Con-

volutional Neural Networks (ConvNets). Semisupervised learning is motivated on the

observation that unlabeled data is cheap and can be used to improve the accuracy of

classifiers. We propose an unsupervised regularization term that explicitly forces the clas-

sifier’s prediction for multiple classes to be mutually-exclusive and effectively guides the

decision boundary to lie on the low density space between the manifolds corresponding

to different classes of data. Our proposed approach is general and can be used with any

backpropagation-based learning method. We show through different experiments that

our method can improve the object recognition performance of ConvNets using unlabeled

data.

4.1 Introduction
Training high accuracy classifiers often requires a very large amount of labeled training

data. Recently, ConvNets [25]-[26] have shown impressive results on many vision tasks

including but not limited to classification, detection, localization and scene labeling [28].

However, ConvNets work best when a large amount of labeled data is available for su-

pervised training. For example, the state-of-the-art results for large the 1000-category ’Im-

ageNet’ [91] dataset was significantly improved using ConvNets [6],[92]. Unfortunately,

building large labeled datasets is a costly and time consuming process. For example, the

ImageNet dataset is the result of significant manual effort. On the other hand, unlabeled

data is easy to obtain. For example, there are plenty of online resources for images and

video sequences of different types. There has been an increased interest in exploiting the

readily available unlabeled data to improve the performance of classifiers.

Several works have tried to use unlabeled data for training ConvNets. Convolutional

43

deep belief networks [93] is a generative model for natural images which is based on

deep belief networks [40] and trained using unlabeled data. Unlabeled data has also

been used for pretraining of convolutional layers in a ConvNet [94]-[95] in an effort to

reduce the amount of labeled data required during supervised training. One example is

Predictive Sparse Decomposition (PSD) [96] for learning the filter coefficients in the filter

bank layer. However, many recent supervised models trained on large datasets usually

start from a random initialization of the filter weights which shows that these solutions

are not computationally justified. Ladder networks [97] and region embedding [98] are 2

more recent examples of semisupervised learning in ConvNets.

There are different approaches to semisupervised learning in general [2],[15]. The

classical approaches include self-training, cotraining and in general multiview learning

[99]-[100]. In these methods, the strong predictions of a single classifier or multiple clas-

sifiers will be added to the training set of the same classifier or other classifiers. Another

class of methods for semisupervised learning is called generative models. There are dif-

ferent methods in this category which are based on Gaussian Mixture Models (GMM) and

Hidden Markov Models (HMM) [101]. These generative models generally include the

unlabeled data in modeling the probability distribution of the training data and labels.

Another approach to semisupervised learning is Transductive SVM (TSVM) [102] or S3VM

[103]. The goal of these methods is to maximize the classification margin by using the

unlabeled data. A large body of semisupervised approaches are graph-based methods.

These methods are generally based on the similarities between labeled and unlabeled

samples [104]-[105]. These similarities are encoded in the edges of a graph.

In this chapter, we propose a semisupervised learning method that makes use of unla-

beled data and pushes the decision boundary of Convolutional Neural Networks (CNN)

to the less dense areas of decision space and provides better generalization on the test data.

4.1.1 Motivation

In many visual classification tasks, it is easy for a human to classify the training samples

perfectly; however, the decision boundary is highly nonlinear in the space of pixel inten-

sities. Therefore, we can argue that the data corresponding to every class lies on a highly

nonlinear manifold in the high-dimensional space of pixel intensities and these manifolds

44

don’t intersect with each other. An optimal decision boundary lies between the manifolds

of different classes where there are no or very few samples. Decision boundaries can be

pushed away from training samples by maximizing their margin. Furthermore, it is not

necessary to know the class labels of the samples to maximize the margin of a classifier as

in TSVMs. However, finding a classifier with a large margin is only possible if the feature

set is chosen or found appropriately. For TSVMs, the burden is on the kernel of choice. On

the other hand, since ConvNets are feature generators without their final fully connected

classification layer, if there is a feature space that allows a large margin classifier, they

should be capable of finding it in theory. Our argument then is that since object recognition

is a relatively easy task for a human, there must be such a feature space that ConvNets can

generate with a large margin.

Motivated by this argument, we propose a regularization term that uses unlabeled data

to encourage the classification layer of a ConvNet to have a large margin. In other words,

we propose a regularization term which makes use of unlabeled data and pushes the

decision boundary to a less dense area of decision space and forces the set of predictions

for a multiclass dataset to be mutually-exclusive.

4.2 Unsupervised Regularization Function
Let’s assume that L = {(xi, yi)}i=L

i=1 is the set of labeled training data and U = {(xi)}i=N
i=L+1

is the set of unlabeled training data. We also assume that yi belongs to one of the K classes

{c1, c2, . . . , cK}. Consider f(w, x) to be the output vector of a general classifier with learning

parameters w and input vector x. We define lL(f(w, xi), yi) to be the loss function defined

for the classifier which is calculated based on labeled data of L. This loss function can

be quadratic error, cross-entropy or any other form of loss function. We can assume that

in ideal case, the output vector f(w, x) is a multidimensional binary indicator function

f : Rn
! BK where B = {0, 1} and n is the dimension of input data. If sample xi belongs

to class ck, then this binary function is in the following form:

f j(w, xi) =

⇢
1, j = k
0, j = 1 . . . K, j 6= k , (4.1)

It can be seen that this indicator function cannot take any arbitrary vector of the space BK.

In fact, it belongs to a very specific subset of this multidimensional space which has only

one nonzero element. We call this subset BK
s . We define another binary indicator function

45

I(f(x, w)) which determines if a binary vector f 2 BK also belongs to BK
s or not. We define

this Boolean function I : BK
! B using disjunction of conjunctions, also known as the

disjunctive normal form [12]:

I(f) =
K_

j=1

0

@
K̂

k=1, k 6=j
¬ fk

^
f j

1

A (4.2)

The output of this indicator function for a valid prediction f(x, w) of an ideal classifier

should be one. This is typically achieved indirectly in a supervised learning setting by

one-vs.-rest classification which assigns a target value of 1 to the correct class and a target

value of 0 to the other classes. However, the labels of the samples are not required if

we directly enforce Eq. (4.2). In this chapter, we enforce this condition in form of a

regularization term. To this end, we approximate the binary I(f) with a differentiable

function that can be optimized with gradient descent. We replace the conjunction of a set

of binary variables
VK

i=1 xi by their product ’K
i=1 xi. We also approximate not operation

of a binary variable ¬xi with 1 � xi. Finally, we substitute the disjunction of the binary

variables
WK

i=1 xi with their sum ÂK
i=1 xi. Now relaxing f to be the output of classifiers

which are not binary but continuous valued between 0 and 1, I(f) becomes a differentiable

function between 0 and 1. By applying the above-mentioned approximations, we define

the following unsupervised loss function which is calculated using both samples of L and

U :

lU (f(w, xi)) = �

K

Â
j=1

f j(w, xi)
K

’
k=1, k 6=j

(1 � fk(w, xi)) (4.3)

It must be noted that our goal was to maximize I(f). Therefore, we needed to add the

minus sign in Eq. (4.3) when we define it as a loss function to be minimized. Total loss

functions to be minimized are defined as follows:

ltot = lL + llU (4.4)

This unsupervised loss function lU can be combined with any other loss function and can

be used with any backpropagation-based learning.

Intuitively, this loss function forces the classifier’s prediction to be mutually-exclusive

for every class. In addition, it can be observed that this regularization term forces the

decision boundary to be as far as possible from any data sample and as a result, it will

46

be placed in a less dense area of decision space. We show this by an example. Figure 4.1

shows a synthetic dataset with 3 classes of diamonds, circles and crosses. Labeled samples

are shown with black circles. We trained a simple 2 layer neural network on this dataset.

Decision areas of the neural networks are shown with different colors. Figure 4.1 (a) shows

the result of the network trained without unsupervised regularization and Figure 4.1 (b)

is the result of the network with proposed unsupervised regularization. We can see that

unsupervised regularization places the decision boundary in a less dense area of space.

On the other hand, the network trained using only the labeled data without regularization

provides poor decision boundaries. A number of studies [106]-[107] show that unlabeled

data can be more informative if the classes overlap less. A measure for class overlap is

conditional entropy H(X|Y). The empirical conditional entropy can be defined as:

H(Y|X) = �
1
N

N

Â
i=1

K

Â
k=1

P(ck|xi) log P(ck|xi) (4.5)

Note that P(ck|xi) can be estimated with fk(w, xi). It is shown in [108] that this entropy

minimization can be used to form a regularization term based on unlabeled data. Similar

to our proposed method, they try to minimize a loss function which is based on labeled

samples and also use a regularization term which is based on Eq. (4.5) and calculated using

unlabeled data. However, in multiclass problems, our regularization term explicitly forces

the classifier’s prediction for different classes to be mutually-exclusive. We experimen-

(a) (b)

Figure 4.1: Example showing that unsupervised regularization moves the decision bound-
ary to a less dense area. (a) Without and (b) With unsupervised regularization.

47

tally show that our proposed regularization term generally performs better than entropy

minimization which is based on Eq. (4.5) on some datasets, especially when we have few

labeled examples.

4.3 Experiments
In this section, we present the results of applying our regularization term for object

recognition using ConvNets. We show extensive results on MNIST [26], CIFAR10 [109],

NORB [110] and SVHN [111] datasets. We also show some preliminary results on ILSVRC

2012 [91] using the AlexNet model [6].

In general, we divide the training data of each dataset into 2 sets and consider one

set to be the labeled data L and the other set to be unlabeled data U . In this section,

we mainly compare the performance of a ConvNet trained using only labeled data and

a ConvNet trained using labeled data and our regularization term calculated using both

labeled and unlabeled data. The entropy minimization regularization of [108] is also used

for training ConvNets in comparison. For all the datasets with the exception of MNIST

and ImageNet, we also trained ConvNets with entropy minimization regularization and

compared the results with our proposed regularization scheme. It must be noted that the

entropy regularization has not been previously used with ConvNets to the best of our

knowledge.

For every dataset, we train the ConvNet using different ratio of labeled and unlabeled

data. In separate experiments, we randomly pick 1%, 10%, 50% and 100% of training data

as the labeled set and the rest is reserved for the unlabeled set. Then for each setting, we

evaluate the improvement obtained by using unlabeled data. We repeat each experiment

5 times for each setting and report the average and standard deviation over error rates

of different experiments. The update for model parameters is constituted of 2 parts. The

first part is based on labeled data and the second part is from unlabeled data. These 2

are combined with parameter l according to Eq. (4.4). However, in our experiments, the

labeled set is usually smaller than the unlabeled set. Therefore, at each epoch, we use every

labeled sample multiple times in order to compensate for the difference in size of labeled

and unlabeled datasets. In most of our experiments, l is fixed to 1. We experimentally

observed that the performance of our regularization method is not overly sensitive to l.

48

We incorporated our unsupervised regularization term into cuda-convnet which is a

GPU implementation of ConvNet and publicly available at [112]. With the exception of

MNIST, all other experiments were performed using this GPU implementation. Our setup

for all datasets except MNIST and ImageNet consists of 2 convolutional layers followed

by 2 locally connected layers. There are 64 maps in each convolutional layer and 32 maps

in each locally connected layer. Filters are 5⇥5 in convolutional layers and 3⇥3 in locally

connected layers (the same as ’layers-conv-local-13pct.cfg’ of [112] for CIFAR10). We

added a fully-connected layer of the size 256 before the output. In all the experiments, we

found the number of epochs and learning rates using cross-validation on a small portion

of training data and repeat the training on all training data.

4.3.1 MNIST

MNIST is the most frequently used dataset in the area of digit classification. It contains

60000 training and 10000 test samples of size 28⇥28 pixels. We trained MNIST using a

ConvNet with 2 convolutional layers. The first layer uses 7⇥7 filters and produces 20

maps. The second layer also uses 7⇥7 filters but produces 15 maps. A hidden layer

with 256 nodes was added before the final layer. No preprocessing was performed on

this dataset. We did not use annealing or momentum. For MNIST, we also trained a model

with only 80 labeled samples (8 per class). This is equal to 0.13% of labeled data. The

results are given in Table 4.1. We can see that when there is a small number of labeled

data available (0.13% and 1% in Table 4.1), the proposed unsupervised regularization term

significantly improves the accuracy.

Table 4.1: Performance comparison on test data for MNIST dataset. Error rates: average
(%) ± std. dev

semisupervised labeled data only
0.13% 14.82 ± 0.89 20.96 ± 2.19

1% 1.77 ± 0.07 4.09 ± 0.22
10% 1.28 ± 0.10 1.54 ± 0.08
50% 0.87 ± 0.06 0.86 ± 0.08
100% 0.79 ± 0.05 0.85 ± 0.06

49

4.3.2 NORB

NORB is a collection of stereo images in 6 classes. The training set of NORB contains

10 folds of 29160 images. It is common practice to use only the first 2 folds for training.

The test set contains 2 folds totalizing 58320. The original images are 108⇥108. However,

we scaled them down to 48⇥48 similar to [29]. Data translation was used during training.

Image translation was obtained by randomly cropping the training images to 44⇥44. The

results are given in Table 4.2. We can see that in the case with 1% of labeled data, our

supervised term performs better than entropy regularization. The reason is that in this

case, 1% of labeled data is not sufficient to guarantee mutual exclusiveness of the predic-

tions of the entropy regularization method. However, our method explicitly forces mutual

exclusiveness.

In another set of experiments, we fixed the labeled set to be 1% of total training samples.

Then, we increased the size of unlabeled set in 4 steps. We used 25%, 50%, 75% and 100%

of training data as the unlabeled set in separate experiments. The results are given in Table

4.3. It can be seen that by adding more unlabeled data, we can improve the performance

of classifier.

4.3.3 SVHN

SVHN is another digit classification task similar to MNIST. SVHN contains around

70000 images for training and more than 500000 easier images for validation. We did not

use the validation set at all. The test set contains 26032 images, which are RGB images

of size 32 ⇥ 32. Generally, SVHN is a more difficult task than MNIST because of the large

variations in the images. We did not do any kind of preprocessing for this dataset. We sim-

Table 4.2: Semisupervised performance comparison on test data for NORB dataset. Error
rates: Average (%) ± std. dev

proposed labeled data entropy
method only minimization

1% 19.02 ± 1.56 26.77 ± 1.60 21.12 ± 0.73
10% 6.55 ± 0.37 8.42 ± 0.62 7.14 ± 0.70
50% 4.58 ± 0.25 4.98 ± 0.35 4.91 ± 0.21

100% 4.38 ± 0.24 4.58 ± 0.31 4.24 ± 0.17

50

Table 4.3: Performance comparison on test data for NORB dataset with fixed labeled set
and variable unlabeled set.

size of unlabeled set error rates: average (%) ± std. dev
labeled data only 26.77 ± 1.60

25% of training set 21.81 ± 1.24
50% of training set 21.48 ± 2.16
75% of training set 20.75 ± 1.21

100% of training set 19.02 ± 1.56

ply converted the color images to grayscale by removing hue and saturation information.

The results are given in Table 4.4.

Similar to NORB, we performed a set of experiments by fixing the size of the labeled

set and changing the size of unlabeled data. We increased the size of the unlabeled set in

4 steps. The results are shown in Table 4.5. Here again, we observe that by increasing the

size of unlabeled data, we can actually improve the classification performance.

4.3.4 CIFAR10

CIFAR10 is a collection of 60000 tiny 32⇥32 images of 10 categories (50000 for training

and 10000 for test). We augmented the training data using image translations, which is

done by taking 24⇥24 cropped versions of the original images at random locations. A

common preprocessing for this dataset is to subtract the per pixel mean of the training set

from every image. The results are given in Table 4.6.

Similar to NORB and SVHN, we fixed the labeled set at 1% of training data and in-

creased the size of the unlabeled set in 4 steps. The results are given in Table 4.7. We can

Table 4.4: Semisupervised performance comparison on test data for SVHN dataset. Error
rates: Average (%) ± std. dev

proposed labeled data entropy
method only minimization

1% 15.30 ± 0.74 21.53 ± 0.53 15.23 ± 0.36
10% 7.94 ± 0.15 9.88 ± 0.21 7.93 ± 0.17
50% 5.65 ± 0.11 6.17 ± 0.19 5.55 ± 0.22

100% 4.60 ± 0.02 5.08 ± 0.07 4.68 ± 0.09

51

Table 4.5: Performance comparison on test data for SVHN dataset with fixed labeled set
and variable unlabeled set.

size of unlabeled set error rates: average (%) ± std. dev
labeled data only 21.53 ± 0.53

25% of training set 16.15 ± 0.27
50% of training set 15.55 ± 0.14
75% of training set 15.57 ± 0.23

100% of training set 15.30 ± 0.74

Table 4.6: Semisupervised performance comparison on test data for CIFAR10. Error rates:
Average (%) ± std. dev

proposed labeled data entropy
method only minimization

1% 54.48 ± 0.42 57.61 ± 0.71 55.06 ± 0.65
10% 27.71 ± 0.32 31.48 ± 0.27 27.54 ± 0.34
50% 16.87 ± 0.28 18.31 ± 0.31 17.02 ± 0.26

100% 13.67 ± 0.17 14.11 ± 0.23 13.64 ± 0.23

Table 4.7: Performance comparison on test data for CIFAR10 dataset with fixed labeled set
and variable unlabeled set.

size of unlabeled set error rates: average (%) ± std. dev
labeled data only 57.61 ± 0.71

25% of training set 55.34 ± 0.69
50% of training set 55.09 ± 0.32
75% of training set 54.40 ± 0.65

100% of training set 54.63 ± 0.66

see that the performance keeps improving as we add more unlabeled data.

4.3.5 ImageNet

We performed preliminary experiments with ILSVRC 2012 which has 1000 classes. We

randomly picked 10% of each class from training data as the labeled set and the rest was

used for the unlabeled set. We applied our regularization term to the AlexNet model [6].

Using our method, we achieved an error rate of 42.90%. If we don’t use the regularization

term, the error rate is 45.63%. This shows that our model can be effective even when we

52

have large number of classes.

4.4 Discussion
We performed an extensive set of experiments to evaluate the performance of our

unsupervised regularization term. In all of the experiments, we observed performance

improvement by using unsupervised regularization. It must be noted that even for the

case in which the labeled set and unlabeled set are the same (the experiments with 100%

of training data used as labeled data), we still observe improvement in performance. This

is interesting because in these cases, the computational cost of adding our unsupervised

term is negligible. The state-of-the-art accuracy on all the datasets that we used in this

chapter was obtained by ConvNet-based methods that can benefit from our unsupervised

regularization. Therefore, we expect an improvement in their accuracy by using our reg-

ularization term. Our regularization term is also scalable to large number of classes. We

successfully applied our method to the ImageNet dataset with 1000 classes. Based on our

experiments, we can see that for the cases with very few labeled samples, the advantage of

using unsupervised regularization term is more significant when the classification task is

simpler. For example, CIFAR10 is a more challenging dataset compared to MNIST, NORB

and SVHN and benefits less from using unsupervised term. In simpler tasks, ConvNet

is able to create a feature space with less dense areas and provides better discriminative

features for the classifier of final layer. This means that even for more challenging tasks, if

more unsupervised training data becomes available, then large ConvNets can be trained

which might be able to create the feature spaces that will have less dense areas and larger

margins. This means that if we provide the classifier with better discriminative features,

then more challenging tasks could potentially benefit more from unsupervised regulariza-

tion term.

4.5 Conclusion
We introduced an unsupervised regularization term that forces classifier predictions

to be mutually-exclusive for different classes and moves the decision boundary to a less

dense area of decision space. We showed that our method can be applied successfully to

ConvNets to improve the classification accuracy using both labeled and unlabeled data.

53

We showed that it is possible to improve classification accuracy by adding more unlabeled

data. We also showed that entropy regularization can be applied to ConvNets successfully.

CHAPTER 5

TRANSFORMATION/STABILITY LOSS FOR

SEMISUPERVISED LEARNING

Effective convolutional neural networks are trained on large sets of labeled data. How-

ever, creating large labeled datasets is a very costly and time-consuming task. Semisu-

pervised learning uses unlabeled data to train a model with higher accuracy when there

is a limited set of labeled data available. In this chapter, we consider the problem of

semisupervised learning with convolutional neural networks. Techniques such as ran-

domized data augmentation, dropout and random max-pooling provide better general-

ization and stability for classifiers that are trained using gradient descent. Multiple passes

of an individual sample through the network might lead to different predictions due to

the nondeterministic behavior of these techniques. We propose an unsupervised loss

function that takes advantage of the stochastic nature of these methods and minimizes

the difference between the predictions of multiple passes of a training sample through the

network. We evaluate the proposed method on several benchmark datasets. We also show

that proposed loss function can be used to improve the robustness of a learning model

with respect to adversarial examples.

5.1 Introduction
Convolutional neural networks (ConvNets) [25]-[26] achieve state-of-the-art accuracy

on a variety of computer vision tasks, including classification, object localization, detec-

tion, recognition and scene labeling [28],[9]. The advantage of ConvNets partially origi-

nates from their complexity (large number of parameters), but this can result in overfitting

without a large amount of training data. However, creating a large labeled dataset is very

costly. A notable example is the ImageNet [91] dataset with 1000 category and more than

1 million training images. The state-of-the-art accuracy of this dataset is improved every

year using ConvNet-based methods (e.g., [92],[6]). This dataset is the result of significant

55

manual effort. However, with around 1000 images per category, it barely contains enough

training samples to prevent the ConvNet from overfitting [6]. On the other hand, unla-

beled data is cheap to collect. For example, there are numerous online resources for images

and video sequences of different types. Therefore, there has been an increased interest in

exploiting the readily available unlabeled data to improve the performance of ConvNets.

Randomization plays an important role in the majority of learning systems. Stochastic

gradient descent, dropout [19], randomized data transformation and augmentation [29]

and many other training techniques that are essential for fast convergence and effective

generalization of the learning functions introduce some nondeterministic behavior to the

learning system. Due to these uncertainties, passing a single data sample through a learn-

ing system multiple times might lead to different predictions. Based on this observation,

we introduce an unsupervised loss function optimized by gradient descent that takes

advantage of this randomization effect and minimizes the difference in predictions of

multiple passes of a data sample through the network during the training phase, which

leads to better generalization in testing time. The proposed unsupervised loss function

specifically regularizes the network based on the variations caused by randomized data

augmentation, dropout and randomized max-pooling schemes. This loss function can

be combined with any supervised loss function. In this chapter, we apply the proposed

unsupervised loss function to ConvNets as a state-of-the-art supervised classifier. We

show through numerous experiments that this combination leads to a competitive semisu-

pervised learning method.

5.2 Related Work
There are many approaches to semisupervised learning in general. Self-training and

cotraining [99]-[100] are 2 well-known classic examples. Another set of approaches is

based on generative models, for example, methods based on Gaussian Mixture Models

(GMM) and Hidden Markov Models (HMM) [101]. These generative models generally try

to use unlabeled data in modeling the joint probability distribution of the training data

and labels. Transductive SVM (TSVM) [102] and S3VM [103] are another semisupervised

learning approach that tries to find a decision boundary with a maximum margin on both

labeled and unlabeled data. A large group of semisupervised methods is based on graphs

56

and the similarities between the samples [104]-[105]. For example, if a labeled sample is

similar to an unlabeled sample, its label is assigned to that unlabeled sample. In these

methods, the similarities are encoded in the edges of a graph. Label propagation [16] is an

example of these methods in which the goal is to minimize the difference between model

predictions of 2 samples with large weighted edge. In other words, similar samples tend

to get similar predictions.

In this chapter, our focus is on semisupervised deep learning. There has always been

interest in exploiting unlabeled data to improve the performance of ConvNets. One ap-

proach is to use unlabeled data to pretrain the filters of ConvNet [94]-[95]. The goal is

to reduce the number of training epochs required to converge and improve the accuracy

compared to a model trained by random initialization. Predictive sparse decomposition

(PSD) [96] is one example of these methods used for learning the weights in the filter bank

layer. The works presented in [113] and [114] are 2 recent examples of learning features

by pretraining ConvNets using unlabeled data. In these approaches, an auxiliary target is

defined for a pair of unlabeled images [113] or a pair of patches from a single unlabeled

image [114]. Then a pair of ConvNets is trained to learn descriptive features from un-

labeled images. These features can be fine-tuned for a specific task with a limited set of

labeled data. However, many recent ConvNet models with state-of-the-art accuracy start

from randomly initialized weights using techniques such as Xavier’s method [115],[92].

Therefore, approaches that make better use of unlabeled data during training instead of

just pretraining are more desired.

Another example of semisupervised learning with ConvNets is region embedding [98],

which is used for text categorization. The work in [116] is also a deep semisupervised

learning method based on embedding techniques. Unlabeled video frames are also being

used to train ConvNets [117]-[118]. The target of the ConvNet is calculated based on the

correlations between video frames. Another notable example is semisupervised learning

with ladder networks [97] in which the sums of supervised and unsupervised loss func-

tions are simultaneously minimized by backpropagation. In this method, a feedforward

model is assumed to be an encoder. The proposed network consists of a noisy encoder

path and a clean one. A decoder is added to each layer of the noisy path. This decoder is

supposed to reconstruct a clean activation of each layer. The unsupervised loss function

57

is the difference between the output of each layer in clean path and its corresponding

reconstruction from the noisy path.

Another approach by [119] is to take a random unlabeled sample and generate multiple

instances by randomly transforming that sample multiple times. The resulting set of

images forms a surrogate class. Multiple surrogate classes are produced and a ConvNet is

trained on them. One disadvantage of this method is that it does not scale well with the

number of unlabeled examples because a separate class is needed for every training sam-

ple during unsupervised training. In [17], the authors propose a mutual-exclusivity loss

function that forces the set of predictions for a multiclass dataset to be mutually-exclusive.

In other words, it forces the classifier’s prediction to be close to one only for one class and

zero for the others. It is shown that this loss function makes use of unlabeled data and

pushes the decision boundary to a less dense area of decision space.

Another set of works related to our approach try to restrict the variations of the pre-

diction function. Tangent distance and tangent propagation proposed by [120] enforce

local classification invariance with respect to the transformations of input images. Here,

we propose a simpler method that additionally minimizes the internal variations of the

network caused by dropout and randomized pooling and leads to state-of-the-art results

on MNIST (with 100 labeled samples), CIFAR10 and CIFAR100. Another example is Slow

Feature Analysis (SFA) (e.g., [121] and [122]) that encourages the representations of tem-

porally close data to exhibit small differences.

5.3 Method
Given any training sample, a model’s prediction should be the same under any ran-

dom transformation of the data and perturbations to the model. The transformations can

be any linear and nonlinear data augmentation being used to extend the training data.

The disturbances include dropout techniques and randomized pooling schemes. In each

pass, each sample can be randomly transformed or the hidden nodes can be randomly

activated. As a result, the network’s prediction can be different for multiple passes of the

same training sample. However, we know that each sample is assigned to only one class.

Therefore, the network’s prediction is expected to be the same despite transformations

and disturbances. We introduce an unsupervised loss function that minimizes the mean

58

squared differences between different passes of an individual training sample through the

network. Note that we do not need to know the label of a training sample in order to

enforce this loss. Therefore, the proposed loss function is completely unsupervised and

can be used along with supervised training as a semisupervised learning method. Even

if we don’t have a separate unlabeled set, we can apply the proposed loss function on

samples of a labeled set to enforce stability.

Here, we formally define the proposed unsupervised loss function. We start with a

dataset with N training samples and C classes. Let us assume that fj(xi) is the classifier’s

prediction vector on the i’th training sample during the j’th pass through the network. We

assume that each training sample is passed n times through the network. We define the

Tj(xi) to be a random linear or nonlinear transformation on the training sample xi before

the j’th pass through the network. The proposed loss function for each data sample is:

lTS
U

=
N

Â
i=1

n�1

Â
j=1

n

Â
k=j+1

kfj(Tj(xi))� fk(Tk(xi))k
2
2 (5.1)

where ’TS’ stands for transformation/stability. We pass a training sample through the

network n times. In each pass, the transformation Tj(xi) produces a different input to the

network from the original training sample. In addition, each time, the randomness inside

the network, which can be caused by dropout or randomized pooling schemes, leads

to a different prediction output. We minimize the sum of squared differences between

each possible pair of predictions. We can minimize this objective function using gradient

descent. This process is illustrated in Figure 5.1. In Figure 5.1a, we transform a sample

multiple times and pass it through the same network and minimize the difference in

predictions. In Figure 5.1b, we pass the same sample multiple times through the network

and minimize the variation in prediction caused by dropout.

Although Eq. 5.1 is quadratically dependent on the number of augmented versions

of the data (n), calculation of loss and gradient is only based on the prediction vectors.

Therefore, the computing cost is negligible even for large n. Note that recent neural-

network-based methods are optimized on batches of training samples instead of a single

sample (batch vs. online training). We can design batches to contain replications of training

samples so we can easily optimize this transformation/stability loss function. If we use

data augmentation, we put different transformed versions of an unlabeled data in the

59

(a) (b)

Figure 5.1: Illustration of our loss function. (a) Minimizing the variations caused by data
augmentation (b) Minimizing the variations caused by internal network structure.

mini-batch instead of replication. This unsupervised loss function can be used with any

backpropagation-based algorithm. Even though every mini-batch contains replications of

a training sample, these are used to calculate a single backpropagation signal avoiding

gradient bias and not adversely affecting convergence. It is also possible to combine this

loss with any supervised loss function. We reserve part of the mini-batch for labeled data

which are not replicated.

As mentioned in Section 5.2, mutual-exclusivity loss function of [17] forces the clas-

sifier’s prediction vector to have only one nonzero element. This loss function naturally

complements the transformation/stability loss function. In supervised learning, each ele-

ment of the prediction vector is pushed towards zero or one depending on the correspond-

ing element in label vector. The proposed loss minimizes the l2-norm of the difference

between predictions of multiple transformed versions of a sample, but it does not impose

any restrictions on the individual elements of a single prediction vector. As a result, each

prediction vector might be a trivial solution instead of a valid prediction due to lack of

labels. Mutual-exclusivity loss function forces each prediction vector to be valid and

prevents trivial solutions. This loss function for the training sample xi is defined as follows:

lME
U

=
N

Â
i=1

n

Â
j=1

�

C

Â
k=1

f j
k(xi)

C

’
l=1,l 6=k

(1 � f j
l (xi))

!
(5.2)

where ’ME’ stands for mutual-exclusivity. f j
k(xi) is the k-th element of prediction vector

fj(xi). In the experiments, we show that the combination of both loss functions leads to

further improvements in the accuracy of the models. We define the combination of both

60

loss functions as transformation/stability plus mutual-exclusivity loss function:

lU = l1lME
U

+ l2lTS
U

(5.3)

5.4 Experiments
We show the effect of the proposed unsupervised loss functions using ConvNets on

MNIST [26], CIFAR10 and CIFAR100 [109], SVHN [111], NORB [110] and ILSVRC 2012

challenge [91]. We use 2 frameworks to implement and evaluate the proposed loss func-

tion. The first one is cuda-convnet [112], which is the original implementation of the

well-known AlexNet model. The second framework is the sparse convolutional networks

[20] with fractional max-pooling [123], which is a more recent implementation of ConvNets

achieving state-of-the-art accuracy on CIFAR10 and CIFAR100 datasets. We show through

different experiments that by using the proposed loss function, we can improve the ac-

curacy of the models trained on a few labeled samples on both implementations. In Eq.

5.1, we set n to be 4 for experiments conducted using cuda-convnet and 5 for experiments

performed using sparse convolutional networks. Sparse convolutional network allows for

any arbitrary batch sizes. As a result, we tried different options for n and n = 5 is the

optimal choice. However, cuda-convnet allows for mini-batches of size 128. Therefore, it

is not possible to use n = 5. Instead, we decided to use n = 4. In practice, the difference is

insignificant. We used MNIST to find the optimal n. We tried different n up to 10 and did

not observe improvements for n larger than 5. It must be noted that replicating a training

sample 4 or 5 times does not necessarily increase the computational complexity with the

same factor. Based on the experiments, with higher n, fewer training epochs are required

for the models to converge. We perform multiple experiments for each dataset. We use the

available training data of each dataset to create 2 sets: labeled and unlabeled. We do not

use the labels of the unlabeled set during training. It must be noted that for the experiments

with data augmentation, we apply data augmentation to both labeled and unlabeled set.

We compare models that are trained only on the labeled set with models that are trained on

both the labeled set and the unlabeled set using the unsupervised loss function. We show

that by using the unsupervised loss function, we can improve the accuracy of classifiers on

benchmark datasets. For experiments performed using the sparse convolutional network,

we describe the network parameters using the format adopted from the original paper

61

[123]:

(10kC2 � FMP
p

2)5 � C2 � C1

In the above example network, 10k is the number of maps in the k’th convolutional layer.

In this example, k = 1, 2, ..., 5. C2 specifies that convolutions use a kernel size of 2. FMP
p

2

indicates that convolutional layers are followed by a fractional max-pooling (FMP) layer

[123] that reduces the size of feature maps by a factor of
p

2. As mentioned earlier, the

mutual-exclusivity loss function of [17] complements the transformation/stability loss func-

tion. We implement that loss function in both cuda-convnet and sparse convolutional net-

works as well. We experimentally choose l1 and l2 in Eq. 5.3. However, the performance

of the models is not overly sensitive to these parameters, and in most of the experiments,

it is fixed to l1 = 0.1 and l2 = 1.

5.4.1 MNIST

MNIST is the most frequently used dataset in the area of digit classification. It contains

60000 training and 10000 test samples of size 28 ⇥ 28 pixels. A few examples of the MNIST

images are shown in Figure 5.2.

We perform experiments on MNIST using a sparse convolutional network with the

following architecture: (32kC2 � FMP
p

2)6 � C2 � C1. We use dropout to regularize the

network. The ratio of dropout gradually increases from the first layer to the last layer.

We do not use any data augmentation for this task. In other words, Tj(xi) of Eq. 5.1 is

identity function for this dataset. In this case, we take advantage of the random effects of

dropout and fractional max-pooling using the unsupervised loss function. We randomly

select 10 samples from each class (total of 100 labeled samples). We use all available

training data as the unlabeled set. First, we train a model based on this labeled set only.

Figure 5.2: Sample images from MNIST dataset.

62

Then, we train models by adding unsupervised loss functions. In separate experiments,

we add transformation/stability loss function, mutual-exclusivity loss function and the

combination of both. Each experiment is repeated 5 times with a different random subset

of training samples. We repeat the same set of experiments using 100% of MNIST training

samples. The results are given in Table 5.1. We can see that the proposed loss significantly

improves the accuracy on test data. We also compare the results with ladder networks

[97]. Combination of both loss functions reduces the error rate to 0.55% ± 0.16 which

is the state-of-the-art for the task of MNIST with 100 labeled samples to the best of our

knowledge. The state-of-the-art error rate on MNIST using all training data without data

augmentation is 0.24% [124]. It can be seen that we can achieve a close accuracy by using

only 100 labeled samples.

Figure 5.3 shows a few examples of the MNIST test set classified correctly by our

semisupervised learning method trained using 100 labeled samples but classified incor-

rectly using a supervised model trained on the same set of 100 labeled samples.

5.4.2 SVHN and NORB

SVHN is another digit classification task similar to MNIST. This dataset contains about

70000 images for training and more than 500000 easier images [111] for validation. We do

not use the validation set. The test set contains 26032 images, which are RGB images of

size 32 ⇥ 32. Generally, SVHN is a more difficult task compared to MNIST because of the

large variations in the images. We do not perform any preprocessing for this dataset. We

simply convert the color images to grayscale by removing hue and saturation information.

NORB is a collection of stereo images in 6 classes. The training set contains 10 folds of

Table 5.1: Error rates (%) on test set for MNIST (mean % ± std).

100 samples all training samples
labeled data only 5.44 ± 1.48 0.32 ± 0.02

transformation / stability loss [17] 0.76 ± 0.61 0.29 ± 0.02
mutual-exclusivity loss 3.92 ± 1.12 0.30 ± 0.03

both losses 0.55 ± 0.16 0.27 ± 0.02
ladder networks [97] 0.89 ± 0.50 -

ladder networks baseline [97] 6.43 ± 0.84 0.36

63

Figure 5.3: Samples of MNIST test set classified correctly by our semisupervised method
but classified incorrectly using supervised model. The value in parenthesis shows the
wrong prediction of supervised classifier.

29160 images. It is common practice to use only the first 2 folds for training. The test set

contains 2 folds, totaling 58320. The original images are 108⇥ 108. However, we scale them

down to 48 ⇥ 48 similar to [29]. We perform experiments on these 2 datasets using both

cuda-convnet and sparse convolutional network implementations of the unsupervised loss

function. Examples of SVHN and NORB images are shown in Figure 5.4.

In the first set of experiments, we use cuda-convnet to train models with different

ratios of labeled and unlabeled data. We randomly choose 1%, 5%, 10%, 20% and 100%

of training samples as labeled data. All of the training samples are used as the unlabeled

set. For each labeled set, we train 4 models using cuda-convnet. The first model uses the

labeled set only. The second model is trained on the unlabeled set using mutual-exclusivity

(a) (b)

Figure 5.4: Samples of (a) SVHN and (b) NORB datasets.

64

loss function in addition to the labeled set. The third model is trained on the unlabeled

set using the transformation/stability loss function in addition to the labeled set. The

last model is also trained on both sets but combines 2 unsupervised loss functions. Each

experiment is repeated 5 times. For each repetition, we use a different subset of training

samples as labeled data. The cuda-convnet model consists of 2 convolutional layers with

64 maps and kernel size of 5, 2 locally connected layers with 32 maps and kernel size 3.

Each convolutional layer is followed by a max-pooling layer. A fully connected layer with

256 nodes is added before the last layer. We use data augmentation for these experiments.

Tj(xi) of Eq. 5.1 crops every training sample to 28 ⇥ 28 for SVHN and 44 ⇥ 44 for NORB

at random locations. Tj(xi) also randomly rotates training samples up to ±20�. These

transformations are applied to both labeled and unlabeled sets. The results are shown in

Figure 5.5 for SVHN and Figure 5.6 for NORB. Each point in the graph is the mean error

rate of 5 repetitions. The error bars show the standard deviation of these 5 repetitions.

As expected, we can see that in all experiments, the classification accuracy is improved

as we add more labeled data. However, we observe that for each set of labeled data,

we can improve the results by using the proposed unsupervised loss functions. We can

also see that when the number of labeled samples is small, the improvement is more

significant. For example, when we use only 1% of labeled data, we gain an improvement in

accuracy of about 2.5 times by using unsupervised loss functions. As we add more labeled

samples, the difference in accuracy between semisupervised and supervised approaches

becomes smaller. Note that the combination of transformation/stability loss function and

mutual-exclusivity loss function improves the accuracy even further. As mentioned earlier,

these 2 unsupervised loss functions complement each other. Therefore, in most of the

experiments, we use the combination of 2 unsupervised loss functions.

We perform another set of experiments on these 2 datasets using sparse convolutional

networks as a state-of-the-art classifier. We create 5 sets of labeled data. For each set, we

randomly pick a different 1% subset of training samples as the labeled set and all training

data as the unlabeled set. We train 2 models: the first trained only on labeled data, and the

second using the labeled set and a combination of both unsupervised losses. Similarly, we

train models using all available training data as both the labeled set and unlabeled set. We

do not use data augmentation for any of these experiments. In other words, Tj(xi) of Eq.

65

1 5 10 20 100

5

10

15

20

25

Percent of labeled data

E
rr

o
r

ra
te

 (
%

)

SVHN

both unsupervised losses
labeled data only
unsupervised transformation/stability loss
unsupervised mutual−exclusivity loss

Figure 5.5: SVHN dataset: semisupervised learning vs. training with labeled data only.

1 5 10 20 100

4

6

8

10

12

14

16

18

20

22

Percent of labeled data

E
rr

o
r

ra
te

 (
%

)

NORB

both unsupervised losses
labeled data only
unsupervised transformation/stability loss
unsupervised mutual−exclusivity loss

Figure 5.6: NORB dataset: semisupervised learning vs. training with labeled data only.

66

5.1 is identity function. As a result, dropout and random max-pooling are the only sources

of variation in this case. We use the following model: (32kC2 � FMP 3
p

2)12 � C2 � C1.

Similar to MNIST, we use dropout to regularize the network. Again, the ratio of dropout

gradually increases from the first layer to the last layer. The results (average of 5 error rates)

are shown in Table 5.2. Here, we can see that by using unsupervised loss functions, we can

significantly improve the accuracy of the classifier by trying to minimize the variation in

prediction of the network. In addition, for the NORB dataset, we can observe that by

using only 1% of labeled data and applying unsupervised loss functions, we can achieve

accuracy that is close to the case when we use 100% of labeled data.

Figure 5.7 shows a few examples of the SVHN test set classified correctly by our semisu-

pervised learning method trained on 1% of labeled data but classified incorrectly using a

supervised model trained on the same set of labeled samples.

5.4.3 CIFAR10

CIFAR10 is a collection of 60000 tiny 32⇥ 32 images of 10 categories (50000 for training

and 10000 for test). A few examples of CIFAR10 images are shown in Figure 5.8. We use

sparse convolutional networks to perform experiments on this dataset. For this dataset,

we create 10 labeled sets. Each set contains 4000 samples that are randomly picked from

the training set. All 50000 training samples are used as unlabeled set. We train 2 sets of

models on these data. The first set of models is trained on labeled data only, and the other

set of models is trained on the unlabeled set using a combination of both unsupervised loss

functions in addition to the labeled set. For this dataset, we do not perform separate ex-

periments for 2 unsupervised loss functions because of time constraints. However, based

on the results from MNIST, SVHN and NORB, we deduce that the combination of both

Table 5.2: Error on test data for SVHN and NORB with 1% and 100% of data (mean % ±

std).

labeled data only: semisupervised:

SVHN 1% of data 12.25 ± 0.80 6.03 ± 0.62
100% of data 2.28 ± 0.05 2.22 ± 0.04

NORB 1% of data 10.01 ± 0.81 2.15 ± 0.37
100% of data 1.63 ± 0.12 1.63 ± 0.07

67

Figure 5.7: Samples of SVHN test set classified correctly by our semisupervised method
but classified incorrectly using supervised model. The value in parenthesis shows the
wrong prediction of supervised classifier.

Figure 5.8: Sample images from CIFAR10 dataset.

unsupervised losses provides improved accuracy. We use data augmentation for these

experiments. Similar to [123], we perform affine transformations, including randomized

mix of translations, rotations, flipping, stretching and shearing operations by Tj(xi) of Eq.

5.1. Similar to [123], we train the network without transformations for the last 10 epochs.

We use the following parameters for the models: (32kC2 � FMP 3
p

2)12 � C2 � C1. We use

dropout, and its ratio gradually increases from the first layer to the last layer. The results

are given in Table 5.3. We also compare the results to ladder networks [97]. The model

in [97] does not use data augmentation. We can see that the combination of unsupervised

loss functions on unlabeled data improves the accuracy of the models.

Figure 5.9 shows a few examples of the CIFAR10 test set classified correctly by our

semisupervised learning method trained using 4000 labeled samples but classified incor-

rectly using a supervised model trained on the same set of 4000 labeled samples.

68

Table 5.3: Error rates on test data for CIFAR10 with 4000 labeled samples (mean % ± std).

labeled data only: semisupervised:
transformation/stability+mutual-exclusivity 13.60 ± 0.24 11.29 ± 0.24

ladder networks [97] 23.33 ± 0.61 20.40 ± 0.47

Figure 5.9: Samples of CIFAR10 test set classified correctly by our semisupervised method
but classified incorrectly using supervised model. Wrong predictions of supervised classi-
fier are given in parenthesis.

In another set of experiments, we use all available training data as both labeled and

unlabeled sets. We train a network with the following parameters: (96kC2 � FMP 3
p

2)12 �

C2 � C1. We use affine transformations for this task too. Here again, we use transfor-

mation/stability plus the mutual-exclusivity loss function. We repeat this experiments 5

times and achieve 3.18% ± 0.1 mean and standard deviation error rate. The state-of-the-art

error rate for this dataset is 3.47%, achieved by the fractional max-pooling method [123]

but obtained with a larger model (160n vs. 96n). We perform a single run experiment with

160n model and achieve the error rate of 3.00%. Similar to [123], we perform 100 passes

during test time. Here, we surpass state-of-the-art accuracy by adding unsupervised loss

functions.

5.4.4 CIFAR100

CIFAR100 is also a collection of 60000 tiny images of size 32⇥ 32. This dataset is similar

to CIFAR10. However, it contains images of 100 categories compared to 10. Therefore,

we have a smaller number of training samples per category. Similar to CIFAR10, we

perform experiments on this dataset using sparse convolutional networks. We use all

available training data as both labeled and unlabeled sets. The state-of-the-art error rate

for this dataset is 23.82%, obtained by fractional max-pooling [123] on sparse convolutional

networks. The following model was used to achieve this error rate: (96kC2� FMP 3
p

2)12 �

69

C2�C1. Dropout was also used with a ratio increasing from the first layer to the last layer.

We use the same model parameters and add transformation/stability plus the mutual-

exclusivity loss function. Similar to [123], we do not use data augmentation for this task

(Tj(xi) of Eq. 5.1 is identity function). Therefore, the proposed loss function minimizes

the randomness effect due to dropout and max-pooling. We achieve 21.43% ± 0.16 mean

and standard deviation error rate, which is the state-of-the-art for this task. We perform 12

passes during the test time similar to [123].

5.4.5 ImageNet

We perform experiments on the ILSVRC 2012 challenge. The training data consists of

1281167 natural images of different sizes from 1000 categories. We create 5 labeled datasets

from available training samples. Each dataset consists of 10% of training data. We form

each dataset by randomly picking a subset of training samples. All available training data

is used as the unlabeled set. We use cuda-convnet to train the AlexNet model [6] for this

dataset. Similar to [6], all images are re-sized to 256 ⇥ 256. We also use data augmentation

for this task following steps of [6], i.e., Tj(xi) of Eq. 5.1 performs random translations,

flipping and color noise. We train 2 models on each labeled dataset. One model is trained

using labeled data only. The other model is trained on both the labeled and the unlabeled

set using the transformation/stability plus mutual-exclusivity loss function. At each itera-

tion, we generate 4 different transformed versions of each unlabeled sample. Therefore,

each unlabeled sample is forward passed through the network 4 times. Since we use

all training data as the unlabeled set, the computational cost of each iteration is roughly

quadrupled. However, in practice, we found that when we use 10% of training data as

the labeled set, the network converges in 20 epochs instead of the standard 90 epochs

of the AlexNet model. Therefore, overall cost of our method for ImageNet is less than

or equal to AlexNet. The results on the validation set are shown in Table 5.4. We also

compare the results to the model trained on the mutual-exclusivity loss function only. We

can see that even for a large dataset with many categories, the proposed unsupervised loss

function improves the classification accuracy. The error rate of a single AlexNet model on

the validation set of ILSVRC 2012 using all training data is 18.2% [6].

70

Table 5.4: Error rates (%) on validation set for ILSVR 2012 (Top-5).

labeled data only: semisupervised learning:
rep 1 45.73 39.50
rep 2 46.15 39.99
rep 3 46.06 39.94
rep 4 45.57 39.70
rep 5 46.08 40.08

mean ± std 45.91 ± 0.25 39.84 ± 0.23
mutual exclusivity [17] 45.63 42.90

[113] ⇠1.5% of data 85.9 84.2

5.4.6 Improving Robustness with Respect to Adversarial Examples

ConvNets provide state-of-the-art accuracy for many computer vision tasks. As an

example, accuracy of ConvNets on the task of object recognition has surpassed human

accuracy for datasets such as ImageNet. However, it is possible to create data samples

that easily fool a ConvNet [125]. For example, consider an image of a tiger that ConvNet

classifies correctly with high confidence. It is possible to add small disturbances to pixel

values that do not change the visual appearance of the image to human eyes. However,

the new image can fool the ConvNet to switch the label with very high confidence. It is

possible to improve the robustness by increasing the size of labeled data. However, as

mentioned earlier, creating large labeled datasets requires a lot of manual effort.

Here we show that it is possible to use the unsupervised loss function proposed here to

improve the robustness of the network with respect to adversarial examples. The general

idea is to add Gaussian noise to unlabeled samples before passing through the network.

In other words, Tj(xi) of Eq. 5.1 adds Gaussian noise to unlabeled samples. We perform

experiments on MNIST for this task. The robustness of the network is evaluated using

the DeepFool [125] algorithm. For a given ConvNet model and an input image, DeepFool

calculates the disturbance required for each pixel such that the resulting image changes

the prediction of the ConvNet model for the original image. We use the l2-norm of the

disturbance image as a measure of network robustness. If l2-norm of the disturbance image

is higher, it means that the DeepFool needs to perturb the original image more significantly

which means the network is more robust. For this experiment, we implemented our unsu-

71

pervised loss function in the Caffe deep learning framework [21]. Similar to experiments

of Section 5.4.1, we create a labeled set by randomly selecting 10 samples from each class

of MNIST. The unlabeled set is the entire 60000 samples of the MNIST training set. Unlike

experiments of Section 5.4.1, we use random cropping of images for both labeled and

unlabeled sets. In other words, every 28⇥ 28 image of MNIST dataset is cropped to 24⇥ 24

at random locations. The reason is that here we use a much simpler network architecture

compared to the network of Section 5.4.1 and random cropping helps to improve the

accuracy significantly. The network we use is a version of LeNet that is available in Caffe.

In Eq. 5.1, we set n to be 8. The batch size is 128 which contains 64 labeled samples and

repetitions of 8 unlabeled samples. All the input images are divided by 256 such that the

input is between 0 and 1. The first convolutional layer produces 20 maps and the second

one produces 50 maps. There is a 2 ⇥ 2 max-pooling layer after each convolution. The

first fully-connected layer has 500 neurons and uses a ReLU activation unit. We added a

dropout layer with ratio of 0.5 between this layer and the second fully-connected layer that

produces 10 outputs. This layer is connected to a softmax layer. The labeled part of the

batch is connected to a multinomial logistic loss layer and the unlabeled part of the batch

is connected to both transformation/stability and mutual-exclusivity losses. The l is set

to 0.005 for both unsupervised losses.

In separate experiments, we add random Gaussian noise N (0, s2) with different s

values to unlabeled data. In other words, Tj(xi) of unlabeled data is random cropping

and Gaussian noise. It must be noted that we do not add noise to labeled data. The only

transformation on labeled data is random cropping. The reason is that we want to show

that it is possible to improve the robustness of a model by adding noise to unlabeled data

and using unsupervised losses.

In the first experiment, we set the l = 0 to train a model only based on labeled data.

In the second experiment, we set the l = 0.005 for both losses but set s = 0. In other

words, we train a model with unsupervised losses but without any noise. In the next set

of experiments, again we set the l = 0.005 for unsupervised losses and set the s to 0.05,

0.1, 0.15, 0.2, 0.25 and 0.3 accordingly. The goal is to study the effect of unsupervised

loss as we add more noise to unlabeled data. We repeat each of the experiments 5 times.

After running all the experiments with all their repetitions, we select the subset of the

72

samples of the MNIST test set with all the models and all of their repetitions classified

correctly. This subset contains 75% of the test samples. Then we used DeepFool to test all

the models with this subset of test data. For each model, we calculate the l2-norm of the

disturbance image for every sample in this subset and calculate the mean of this l2-norm

as a representative for robustness of that model against adversarial examples. Since for

each setting we trained 5 different models, we report the mean and standard deviation of

this metric over 5 repetitions. The results are given in Table 5.5. The first thing to observe

is that even without adding any noise to unlabeled data, we can considerably improve the

robustness of the model by only using unsupervised loss functions. In addition, we can

observe that as we add more noise to unlabeled data, the resulting model is more robust

to adversarial examples which shows that we can improve the robustness of a model by

applying our unsupervised loss function.

Figure 5.10 shows visual examples from the MNIST test set. In this figure, the left

column shows 3 examples from the subset of MNIST test samples with all the models

and all of their repetitions classified correctly. The middle column is the output of the

DeepFool algorithm for the ConvNet trained with l = 0 which corresponds to the first

row of Table 5.5 and the last column corresponds to our model with l = 0.005 and

s = 0.25. We can observe that the output of the DeepFool algorithm for the conventional

ConvNet is visually similar to original input images which shows that the regular ConvNet

can be easily fooled using DeepFool. However, the output of DeepFool for the model

trained using our method is much noisier compared to the output corresponding to the

Table 5.5: Robustness of the models trained with different settings against adversarial
examples.

l s robustness (mean ± std) accuracy (mean % ± std)
0 0 1.30 ± 0.04 84.76 ± 0.92

0.005 0 1.59 ± 0.03 95.56 ± 1.44
0.005 0.05 1.67 ± 0.05 96.20 ± 0.71
0.005 0.10 1.70 ± 0.03 95.77 ± 1.68
0.005 0.15 1.79 ± 0.05 95.11 ± 1.47
0.005 0.20 1.89 ± 0.06 93.58 ± 0.98
0.005 0.25 1.98 ± 0.06 94.23 ± 0.75
0.005 0.30 1.96 ± 0.05 91.31 ± 0.79

73

Figure 5.10: Visual examples from MNIST test set. Left column: 3 images from MNIST
test set. Middle column: Output of DeepFool algorithm for a conventional ConvNet. Right
column: Output of DeepFool algorithm for our method trained using Gaussian noise with
s = 0.25.

conventional ConvNet which means that DeepFool had to generate disturbances with

higher magnitude to fool our model. However, we as humans can still easily recognize

the images of the DeepFool algorithm that are corresponding to our method. Nonetheless,

we believe that our approach is a good first step.

5.5 Discussion
We can see that the proposed loss function can improve the accuracy of a ConvNet

regardless of the architecture and implementation. We improve the accuracy of 2 rela-

tively different implementations of ConvNets, i.e., cuda-convnet and sparse convolutional

networks. For SVHN and NORB, we do not use dropout or randomized pooling for the

experiments performed using cuda-convnet. Therefore, the only source of variation in

different passes of a sample through the network is random transformations (translation

and rotation). For the experiments performed using sparse convolutional networks on

these 2 datasets, we do not use data transformation. Instead, we use dropout and ran-

domized pooling. Based on the results, we can see that in both cases, we can significantly

improve the accuracy when we have a small number of labeled samples. For CIFAR100, we

achieve state-of-the-art error rate of 21.43% by taking advantage of the variations caused

by dropout and randomized pooling. In ImageNet and CIFAR10 experiments, we use

both data transformation and dropout. For CIFAR10, we also have randomized pooling

74

and achieve the state-of-the-art error rate of 3.00%. In MNIST experiments with 100 labeled

samples and NORB experiments with 1% of labeled data, we achieve accuracy reasonably

close to the case when we use all available training data by applying mutual-exclusivity

loss and minimizing the difference in predictions of multiple passes caused by dropout

and randomized pooling.

5.6 Conclusion
In this chapter, we proposed an unsupervised loss function that minimizes the vari-

ations in different passes of a sample through the network caused by nondeterministic

transformations and randomized dropout and max-pooling schemes. We evaluated the

proposed method using 2 ConvNet implementations on multiple benchmark datasets.

We showed that it is possible to achieve significant improvements in accuracy by using

the transformation/stability loss function along with mutual-exclusivity of [17] when we

have a small number of labeled data available. We also showed that it is possible to use the

proposed loss function to improve the robustness of a model by adding noise to repetitions

of unlabeled data.

CHAPTER 6

CONCLUSION

In this dissertation, learning methods were proposed contributing to both supervised

learning and semisupervised learning. We introduced a disjunctive normal network model

which is based on artificial neural networks and provides efficient coverage of decision

space that can be local or nonlocal. An intuitive deterministic initialization scheme was

also introduced for the network parameters. This initialization method minimizes the

risk of stopping in a poor local minima. We proposed a classification method called

LDNN and a regression method named LPBN based on this idea. Through extensive set

of experiments on synthetic and real-world benchmarks, it was shown that our models are

efficient in terms of number of parameters needed and also provide competitive accuracy

and speed for the tasks of general classification and regression.

We contributed to semisupervised learning by introducing 2 unsupervised loss func-

tions called mutual-exclusivity and transformation/stability. These loss functions make

use of unlabeled data to improve the accuracy of supervised classifiers. The proposed

unsupervised losses are general and can be used with any classifier optimized by gra-

dient descent. Mutual-exclusivity loss encourages the prediction vector associated to an

unlabeled sample to have only one nonzero element. In other words, this loss function

encourages the dimensions of the prediction vector to be mutually-exclusive. It was shown

that this loss function pushes the decision boundary towards less dense areas of decision

space and provides better generalization. It was also experimentally proved that when the

number of labeled data is small, this unsupervised loss can help to improve the accuracy

of a supervised classifier significantly. It was observed that given a fixed labeled set, as we

add more unlabeled data, the accuracy of the trained model increases.

Transformation/stability was introduced as an unsupervised loss function that exploits

the randomness of the training process to improve the accuracy of a supervised classifier.

76

This loss function can use randomized data augmentation and internal random variations

of a network such as dropout and stochastic pooling schemes to improve the representa-

tion power of the learning system.

The combination of mutual-exclusivity and transformation/stability losses with a gen-

eral supervised loss function can create a novel and state-of-the-art semisupervised learn-

ing method. For example, using only 100 labeled samples of MNIST dataset, we trained

a model that in terms of accuracy is reasonably close to a model trained using all 60000

labeled samples. For this purpose, we used all 60000 samples of MNIST as unlabeled data.

Similar results were also shown with the NORB dataset with using only 1% of labeled data.

It was also experimentally demonstrated that we can improve the accuracy of the models

trained on the ImageNet dataset that has 1000 classes and contains more than 1.2 million

images.

We believe that unlabeled data can help to describe the underlying distribution of

the data samples even further. Additionally, the process of learning in human beings is

semisupervised and proper processing of unlabeled data can provide significant informa-

tion for a learning system.

One possible direction to exploit unlabeled data is to design cost functions for stabi-

lizing the gradient of a learning function with respect to input data. For example, we

know that adding small amounts of noise and disturbances to a data sample should not

change the prediction of a learning function. When we change the input data by moving

its corresponding high dimensional data point in the direction of these disturbances, the

prediction of the learning function should not change. In other words, the direction of

the gradient of the learning function should be orthogonal to these disturbances. This

simple observation puts restrictions on the gradient of the decision function that can be

used for regularization of the network. Note that we don’t need the label of a data sample

to enforce this property. So, we can design cost functions to define the behavior of the

gradient function using only unlabeled data.

REFERENCES

[1] T. Hastie, R. Tibshirani, and J. Friedman, Unsupervised Learning, pp. 485–585. New
York, NY: Springer New York, 2009.

[2] O. Chapelle, B. Schölkopf, and A. Zien, Semi-supervised Learning. Adaptive compu-
tation and machine learning, MIT Press, 2006.

[3] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learning, vol. 20,
pp. 273–297, Sep, 1995.

[4] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, pp. 81–106, Mar,
1986.

[5] L. Breiman, “Random forests,” Mach. Learning, vol. 45, pp. 5–32, Oct, 2001.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances Neural Inform. Process. Syst. 25,
pp. 1097–1105, 2012.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in 2016 IEEE Conf. Comput. Vision Pattern Recognition (CVPR), pp. 770–778, Jun. 2016.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[9] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-
tic segmentation,” in 2015 IEEE Conf. Comput. Vision Pattern Recognition (CVPR),
pp. 3431–3440, Jun. 2015.

[10] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. r. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research groups,”
IEEE Signal Process. Mag., vol. 29, pp. 82–97, Nov, 2012.

[11] D. S. Broomhead and D. Lowe, “Radial basis functions, multi-variable functional
interpolation and adaptive networks,” Tech. Rep., DTIC Document, 1988.

[12] M. Hazewinkel, ed., Encylopedia of Mathematics. Springer, 2001.

[13] M. Sajjadi, M. Seyedhosseini, and T. Tasdizen, “Disjunctive normal networks,” Neu-
rocomputing, vol. 218, pp. 276–285, 2016.

[14] M. Sajjadi, M. Seyedhosseini, and T. Tasdizen, “Nonlinear regression with logistic
product basis networks,” IEEE Signal Process. Lett., vol. 22, pp. 1011–1015, Aug, 2015.

[15] X. Zhu, “Semi-supervised learning literature survey,” Tech. Rep. 1530, Computer
Sciences, University of Wisconsin-Madison, 2005.

78

[16] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data with label
propagation,” Tech. Rep. CMU-CALD-02-107, Carnegie Mellon University, 2002.

[17] M. Sajjadi, M. Javanmardi, and T. Tasdizen, “Mutual exclusivity loss for semi-
supervised deep learning,” in 2016 IEEE Int. Conf. Image Process. (ICIP), pp. 1908–
1912, Sep. 2016.

[18] M. Sajjadi, M. Javanmardi, and T. Tasdizen, “Regularization with stochastic transfor-
mations and perturbations for deep semi-supervised learning,” in Advances Neural
Inform. Process. Syst. 29, pp. 1163–1171, 2016.

[19] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” J. Mach.
Learn. Res., vol. 15, pp. 1929–1958, Jan, 2014.

[20] B. Graham, “Spatially-sparse convolutional neural networks,” arXiv preprint
arXiv:1409.6070, 2014.

[21] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” arXiv
preprint arXiv:1408.5093, 2014.

[22] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359 – 366, 1989.

[23] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathemat-
ics Control, Signals Syst., vol. 2, pp. 303–314, Dec, 1989.

[24] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations by back-
propagating errors,” Nature, vol. 323, no. 9, pp. 533–536, 1986.

[25] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard, and
L. D. Jackel, “Handwritten digit recognition with a back-propagation network,” in
Advances Neural Inform. Process. Syst. 2, pp. 396–404, 1990.

[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proc. IEEE, vol. 86, pp. 2278–2324, Nov. 1998.

[27] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical features for
scene labeling,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, pp. 1915–1929, Aug,
2013.

[28] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat:
Integrated recognition, localization and detection using convolutional networks,”
arXiv preprint arXiv:1312.6229, 2013.

[29] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for
image classification,” in 2012 IEEE Conf. Comput. Vision Pattern Recognition, pp. 3642–
3649, Jun. 2012.

[30] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, “Regularization of neural net-
works using dropconnect,” in Proc. 30th Int. Conf. Mach. Learning - Vol. 28, ICML’13,
pp. III–1058–III–1066, JMLR.org, 2013.

79

[31] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, “Maxout
networks,” in Proc. 30th Int. Conf. Mach. Learning - Vol. 28, ICML’13, pp. III–1319–III–
1327, JMLR.org, 2013.

[32] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning architecture,” in
Advances Neural Inform. Process. Syst. 2, pp. 524–532, 1990.

[33] R. Kohn, M. Smith, and D. Chan, “Nonparametric regression using linear combina-
tions of basis functions,” Statist. Computing, vol. 11, pp. 313–322, Oct, 2001.

[34] T. Heskes and B. Kappen, Mathematical Approaches to Neural Networks, vol. 51, ch. On-
line learning processes in artifical neural networks, pp. 199–233. Elsevier, 1993.

[35] G. Orr, Dynamics and Algorithms for Stochastic Learning. PhD thesis, Oregon Graduate
Inst., 1995.

[36] M. Joost and W. Schiffmann, “Speeding up backpropagation algorithms by using
cross-entropy combined with pattern normalization,” Int. J. Uncertain. Fuzziness
Knowl.-Based Syst., vol. 6, pp. 117–126, Apr, 1998.

[37] D. Saad and S. A. Solla, “Exact solution for on-line learning in multilayer neural
networks,” Physical Rev. Lett., vol. 74, no. 21, pp. 4337–4340, 1995.

[38] N. Murata, K.-R. Müller, A. Ziehe, and S. ichi Amari, “Adaptive on-line learning
in changing environments,” in Advances Neural Inform. Process. Syst. 9, pp. 599–605,
1997.

[39] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, Efficient BackProp, pp. 9–48.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[40] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief
nets,” Neural Comput., vol. 18, pp. 1527–1554, Jul, 2006.

[41] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[42] P. K. Simpson, “Fuzzy min-max neural networks. i. classification,” IEEE Trans. Neural
Networks, vol. 3, pp. 776–786, Sep, 1992.

[43] B. G. Song, R. J. Marks, S. Oh, P. Arabshahi, T. P. Caudell, and J. J. Choi, “Adaptive
membership function fusion and annihilation in fuzzy if-then rules,” in [2nd IEEE
Int. Conf. Fuzzy Syst., vol. 2, pp. 961–967, 1993.

[44] A. V. Nandedkar and P. K. Biswas, “A fuzzy min-max neural network classifier with
compensatory neuron architecture,” in Proc. 17th Int. Conf. Pattern Recognition, 2004.
ICPR 2004., vol. 4, pp. 553–556, Aug. 2004.

[45] B. L. Lu, H. Kita, and Y. Nishikawa, “A multi-sieving neural network architecture
that decomposes learning tasks automatically,” in Neural Networks, IEEE World
Congr. Computational Intell., vol. 3, pp. 1319–1324, Jun. 1994.

[46] H.-M. Lee, K.-H. Chen, and I.-F. Jiang, “A neural network classifier with disjunctive
fuzzy information,” Neural Networks, vol. 11, no. 6, pp. 1113–1125, 1998.

80

[47] B.-L. Lu and M. Ito, “Task decomposition and module combination based on class
relations: a modular neural network for pattern classification,” IEEE Trans. Neural
Networks, vol. 10, pp. 1244–1256, Sep, 1999.

[48] R. M. II, S. Oh, P. Arabshahi, T. Caudell, J. Choi, and B. Song, “Steepest descent
adaptations of min-max fuzzy if-then rules,” in Proc Int. Joint Conf. Neural Networks,
vol. III, pp. 471–477, 1992.

[49] H. Nomura, I. Hayashi, and N. Wakami, “A learning method of fuzzy inference
rules by descent method,” in [1992 Proc.] IEEE Int. Conf. Fuzzy Syst., pp. 203–210,
Mar. 1992.

[50] X. Zhang, C.-C. Hang, S. Tan, and P.-Z. Wang, “The delta rule and learning for min-
max neural networks,” in Neural Networks, 1994. IEEE World Congr. Computational
Intell., 1994 IEEE Int. Conf., vol. 1, pp. 38–43, Jun. 1994.

[51] X. Zhang, C.-C. Hang, S. Tan, and P.-Z. Wang, “The min-max function differentiation
and training of fuzzy neural networks,” IEEE Trans. Neural Networks, vol. 7, pp. 1139–
1150, Sep, 1996.

[52] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mixtures of
local experts,” Neural computation, vol. 3, no. 1, pp. 79–87, 1991.

[53] S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture of experts,”
IEEE Trans. Neural Networks Learning Syst., vol. 23, pp. 1177–1193, Aug, 2012.

[54] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,”
Neural Comput., vol. 14, pp. 1771–1800, Aug, 2002.

[55] M. J. Orr, “Recent advances in radial basis function networks,” Tech. Rep., Institute
for Adaptative and Neural Computation, Edinburgh University, 1999.

[56] F. Schwenker, H. A. Kestler, and G. Palm, “Three learning phases for radial-basis-
function networks,” Neural Networks, vol. 14, no. 4, pp. 439 – 458, 2001.

[57] T. Hastie and R. Tibshirani, “Discriminant analysis by gaussian mixtures,” J. Roy.
Statistical Soc.. Series B (Methodological), vol. 58, no. 1, pp. 155–176, 1996.

[58] M. Zhu and A. M. Martinez, “Subclass discriminant analysis,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 28, pp. 1274–1286, Aug, 2006.

[59] T.-K. Kim and J. Kittler, “Locally linear discriminant analysis for multimodally dis-
tributed classes for face recognition with a single model image,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 27, pp. 318–327, Mar, 2005.

[60] J. Wang and V. Saligrama, “Local supervised learning through space partitioning,”
in Advances Neural Inform. Process. Syst. 25, pp. 91–99, 2012.

[61] J. Dai, S. Yan, X. Tang, and J. T. Kwok, “Locally adaptive classification piloted by
uncertainty,” in Proc. Int. Conf. on Mach. Learning, ICML ’06, (New York, NY, USA),
pp. 225–232, ACM, 2006.

81

[62] M. Toussaint and S. Vijayakumar, “Learning discontinuities with products-of-
sigmoids for switching between local models,” in Proc. Int. Conf. on Mach. Learning,
ICML ’05, (New York, NY, USA), pp. 904–911, ACM, 2005.

[63] O. Dekel and O. Shamir, “Theres a hole in my data space: Piecewise predictors
for heterogeneous learning problems,” in Proc. Int. Conf. on Artificial Intell. Mach.
Learning, pp. 291–298, 2012.

[64] H. Cheng, P.-N. Tan, and R. Jin, “Localized support vector machine and its efficient
algorithm,” in Proc. SIAM Int. Conf. on Data Mining, pp. 461–466, 2007.

[65] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Series in Statistics, Springer New York,
2013.

[66] B. Schulmeister and F. Wysotzki, Dipol - a hybrid piecewise linear classifier, ch. Machine
Learning and Statistics: the Interface, pp. 133–151. John Wiley and Sons, 1997.

[67] T. Hastie and R. Tibshirani, “Classification by pairwise coupling,” in Advances Neural
Inform. Process. Syst. 10, pp. 507–513, 1998.

[68] B.-L. Lu, K.-A. Wang, M. Utiyama, and H. Isahara, “A part-versus-part method
for massively parallel training of support vector machines,” in Proc. Int. Joint. Conf.
Neural Networks, vol. 1, pp. 735–740, Jul. 2004.

[69] T.-F. Wu, C.-J. Lin, and R. C. Weng, “Probability estimates for multi-class classifica-
tion by pairwise coupling,” J. Mach. Learn. Res., vol. 5, pp. 975–1005, Dec, 2004.

[70] J. Wu, H. Xiong, P. Wu, and J. Chen, “Local decomposition for rare class analysis,” in
Proc. 13th ACM SIGKDD Int. Conf. Knowledge Discovery Data Mining, KDD ’07, (New
York, NY, USA), pp. 814–823, ACM, 2007.

[71] F. Chen, C. T. Lu, and A. P. Boedihardjo, “On locally linear classification by pairwise
coupling,” in 2008 8th IEEE Int. Conf. Data Mining, pp. 749–754, Dec. 2008.

[72] H. Abbassi, R. Monsefi, and H. Sadoghi Yazdi, “Constrained classifier: a novel
approach to nonlinear classification,” Neural Computing and Appl., vol. 23, pp. 2367–
2377, Dec, 2013.

[73] H. Poon and P. Domingos, “Sum-product networks: A new deep architecture,” in
2011 IEEE Int. Conf. Comput. Vision Workshops (ICCV Workshops), pp. 689–690, Nov.
2011.

[74] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley-Interscience, 2001.

[75] A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.

[76] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector machines,” ACM
Trans. intelligent Syst.Technol. (TIST), vol. 2, no. 3, p. 27, 2011.

[77] C.-C. Chang and C.-J. Lin, “Ijcnn 2001 challenge: generalization ability and text
decoding,” in Int. Joint Conf. Neural Networks, vol. 2, pp. 1031–6, 2001.

82

[78] I. Nabney and C. Bishop, “Netlab neural network software,” Matlab Toolbox, vol. 71,
p. 7, 2003.

[79] T. Mitchell, Machine Learning. McGraw-Hill, 1997.

[80] K. R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, “An introduction to
kernel-based learning algorithms,” IEEE Trans. Neural Networks, vol. 12, pp. 181–201,
Mar, 2001.

[81] N. Meinshausen, “Quantile regression forests,” J. Mach. Learn. Res., vol. 7, pp. 983–
999, Dec, 2006.

[82] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine learning, vol. 1.
MIT press Cambridge, 2006.

[83] D. Huang, R. Cabral, and F. D. l. Torre, “Robust regression,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 38, pp. 363–375, Feb, 2016.

[84] V. Vapnik, S. E. Golowich, and A. J. Smola, “Support vector method for function
approximation, regression estimation and signal processing,” in Advances Neural
Inform. Process. Syst. 9, pp. 281–287, 1997.

[85] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statist.
Computing, vol. 14, pp. 199–222, Aug, 2004.

[86] G. B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for
regression and multiclass classification,” IEEE Trans. Syst., Man, Cybernetics, Part B
(Cybernetics), vol. 42, pp. 513–529, Apr, 2012.

[87] C. Bishop, “Improving the generalization properties of radial basis function neural
networks,” Neural Computation, vol. 3, pp. 579–588, Dec, 1991.

[88] J.-N. Hwang, S.-R. Lay, and A. Lippman, “Nonparametric multivariate density es-
timation: a comparative study,” IEEE Trans. Signal Process., vol. 42, pp. 2795–2810,
Oct, 1994.

[89] A. Jaiantilal, “Classification and regression by randomforest-matlab.” Available at
http://code.google.com/p/randomforest-matlab, 2009.

[90] C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al., “A practical guide to support vector classifi-
cation,” Tech. Rep., National Taiwan University, 2003.

[91] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,”
Int. J. Comput. Vision, vol. 115, no. 3, pp. 211–252, 2015.

[92] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” in 2015 IEEE Conf. Comput.
Vision Pattern Recognition (CVPR), pp. 1–9, Jun. 2015.

[93] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations,” in Proc. 26th
Annu. Int. Conf. Mach. Learning, ICML ’09, (New York, NY, USA), pp. 609–616, ACM,
2009.

83

[94] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and applica-
tions in vision,” in Proc. of 2010 IEEE Int. Symp. Circuits Syst., pp. 253–256, May. 2010.

[95] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-stage
architecture for object recognition?,” in 2009 IEEE 12th Int. Conf. Comput. Vision,
pp. 2146–2153, Sep. 2009.

[96] K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “Fast inference in sparse coding algo-
rithms with applications to object recognition,” arXiv preprint arXiv:1010.3467, 2010.

[97] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko, “Semi-supervised
learning with ladder networks,” in Advances Neural Inform. Process. Syst. 28, pp. 3546–
3554, 2015.

[98] R. Johnson and T. Zhang, “Semi-supervised convolutional neural networks for text
categorization via region embedding,” in Advances Neural Inform. Process. Syst. 28,
pp. 919–927, 2015.

[99] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with co-training,”
in Proc. Eleventh Annu. Conf. Computational Learning Theory, COLT’ 98, (New York,
NY, USA), pp. 92–100, ACM, 1998.

[100] V. R. de Sa, “Learning classification with unlabeled data,” in Advances Neural Inform.
Process. Syst. 6, pp. 112–119, 1994.

[101] D. J. Miller and H. S. Uyar, “A mixture of experts classifier with learning based
on both labelled and unlabelled data,” in Advances Neural Inform. Process. Syst. 9,
pp. 571–577, 1997.

[102] T. Joachims, “Transductive inference for text classification using support vector
machines,” in Proc. 16th Int. Conf. Mach. Learning, ICML ’99, (San Francisco, CA,
USA), pp. 200–209, Morgan Kaufmann Publishers Inc., 1999.

[103] K. P. Bennett and A. Demiriz, “Semi-supervised support vector machines,” in Ad-
vances Neural Inform. Process. Syst. 11, pp. 368–374, 1999.

[104] A. Blum and S. Chawla, “Learning from labeled and unlabeled data using graph
mincuts,” in Proc. 18th Int. Conf. Mach. Learning, ICML ’01, (San Francisco, CA, USA),
pp. 19–26, Morgan Kaufmann Publishers Inc., 2001.

[105] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using gaussian
fields and harmonic functions,” in Proc. 20th Int. Conf. Int. Conf. Mach. Learning,
ICML’03, pp. 912–919, AAAI Press, 2003.

[106] V. Castelli and T. M. Cover, “The relative value of labeled and unlabeled samples in
pattern recognition with an unknown mixing parameter,” IEEE Trans. Inform. Theory,
vol. 42, pp. 2102–2117, Nov, 1996.

[107] T. J. O’neill, “Normal discrimination with unclassified observations,” J. Amer. Statis-
tical Assoc., vol. 73, no. 364, pp. 821–826, 1978.

[108] Y. Grandvalet and Y. Bengio, “Semi-supervised learning by entropy minimization,”
in Advances Neural Inform. Process. Syst. 17, pp. 529–536, 2005.

84

[109] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny im-
ages,” Tech. Rep., Computer Science Department, University of Toronto, 2009.

[110] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic object recogni-
tion with invariance to pose and lighting,” in Proc. IEEE Conf. Comput. Vision Pattern
Recognition, 2004. CVPR 2004., vol. 2, pp. II–97–104 Vol.2, Jun. 2004.

[111] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits
in natural images with unsupervised feature learning,” in NIPS workshop on deep
learning and unsupervised feature learning, vol. 2011, p. 4, Granada, Spain, 2011.

[112] A. Krizhevsky, “cuda-convnet: High-performance c++/cuda implementation of con-
volutional neural networks,” 2012.

[113] P. Agrawal, J. Carreira, and J. Malik, “Learning to see by moving,” in 2015 IEEE Int.
Conf. Comput. Vision (ICCV), pp. 37–45, Dec. 2015.

[114] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learning
by context prediction,” in 2015 IEEE Int. Conf. Comput. Vision (ICCV), pp. 1422–1430,
Dec. 2015.

[115] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Int. Conf. artificial Intell. Statist., pp. 249–256, 2010.

[116] J. Weston, F. Ratle, H. Mobahi, and R. Collobert, Deep Learning via Semi-supervised
Embedding, pp. 639–655. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[117] X. Wang and A. Gupta, “Unsupervised learning of visual representations using
videos,” in 2015 IEEE Int. Conf. Comput. Vision (ICCV), pp. 2794–2802, Dec. 2015.

[118] D. Jayaraman and K. Grauman, “Learning image representations tied to ego-
motion,” in 2015 IEEE Int. Conf. Comput. Vision (ICCV), pp. 1413–1421, Dec. 2015.

[119] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox, “Discriminative unsu-
pervised feature learning with convolutional neural networks,” in Advances Neural
Inform. Process. Syst. 27, pp. 766–774, 2014.

[120] P. Y. Simard, Y. A. LeCun, J. S. Denker, and B. Victorri, Transformation Invariance in
Pattern Recognition — Tangent Distance and Tangent Propagation, pp. 239–274. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1998.

[121] D. Jayaraman and K. Grauman, “Slow and steady feature analysis: Higher order
temporal coherence in video,” in 2016 IEEE Conf. Comput. Vision Pattern Recognition
(CVPR), pp. 3852–3861, Jun. 2016.

[122] L. Sun, K. Jia, T. H. Chan, Y. Fang, G. Wang, and S. Yan, “Dl-sfa: Deeply-learned slow
feature analysis for action recognition,” in 2014 IEEE Conf. Comput. Vision Pattern
Recognition, pp. 2625–2632, Jun. 2014.

[123] B. Graham, “Fractional max-pooling,” arXiv preprint arXiv:1412.6071, 2014.

[124] J.-R. Chang and Y.-S. Chen, “Batch-normalized maxout network in network,” arXiv
preprint arXiv:1511.02583, 2015.

85

[125] S. M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple and accurate
method to fool deep neural networks,” in 2016 IEEE Conf. Comput. Vision Pattern
Recognition (CVPR), pp. 2574–2582, Jun. 2016.

Reproduced with permission of copyright owner. Further reproduction prohibited without permission.

