41,859 research outputs found

    Few-Shot Non-Parametric Learning with Deep Latent Variable Model

    Full text link
    Most real-world problems that machine learning algorithms are expected to solve face the situation with 1) unknown data distribution; 2) little domain-specific knowledge; and 3) datasets with limited annotation. We propose Non-Parametric learning by Compression with Latent Variables (NPC-LV), a learning framework for any dataset with abundant unlabeled data but very few labeled ones. By only training a generative model in an unsupervised way, the framework utilizes the data distribution to build a compressor. Using a compressor-based distance metric derived from Kolmogorov complexity, together with few labeled data, NPC-LV classifies without further training. We show that NPC-LV outperforms supervised methods on all three datasets on image classification in low data regime and even outperform semi-supervised learning methods on CIFAR-10. We demonstrate how and when negative evidence lowerbound (nELBO) can be used as an approximate compressed length for classification. By revealing the correlation between compression rate and classification accuracy, we illustrate that under NPC-LV, the improvement of generative models can enhance downstream classification accuracy.Comment: Accepted to NeurIPS202

    Kernel Feature Extraction for Hyperspectral Image Classification Using Chunklet Constraints

    Get PDF
    A novel semi-supervised kernel feature extraction algorithm to combine an efficient metric learning method, i.e. relevant component analysis (RCA), and kernel trick is presented for hyperspectral imagery land-cover classification. This method obtains projection of the input data by learning an optimal nonlinear transformation via a chunklet constraints-based FDA criterion, and called chunklet-based kernel relevant component analysis (CKRCA). The proposed method is appealing as it constructs the kernel very intuitively for the RCA method and does not require any labeled information. The effectiveness of the proposed CKRCA is successfully illustrated in hyperspectral remote sensing image classification. Experimental results demonstrate that the proposed method can greatly improve the classification accuracy compared with traditional linear and conventional kernel-based methods

    Deep learning for computer vision constrained by limited supervision

    Get PDF
    This thesis presents the research work conducted on developing algo- rithms capable of training neural networks for image classification and re- gression in low supervision settings. The research was conducted on publicly available benchmark image datasets as well as real world data with appli- cations to herbage quality estimation in an agri-tech scope at the VistaMilk SFI centre. Topics include label noise and web-crawled datasets where some images have an incorrect classification label, semi-supervised learning where only a small part of the available images have been annotated by humans and unsupervised learning where the images are not annotated. The principal contributions are summarized as follows. Label noise: a study highlighting the dual in- and out-of-distribution nature of web-noise; a noise detection metric than can independently retrieve each noise type; an observation of the linear separability of in- and out-of-distribution images in unsupervised contrastive feature spaces; two noise-robust algorithms DSOS and SNCF that iteratively improve the state-of-the-art accuracy on the mini-Webvision dataset. Semi-supervised learning: we use unsupervised features to propagate labels from a few labeled examples to the entire dataset; ReLaB an algorithm that allows to decrease the classification error up to 8% with one labeled representative image on CIFAR-10. Biomass composition estimation from images: two semi-supervised approaches that utilize unlabeled images either through an approximate annotator or by adapting semi-supervised algorithms from the image classification litterature. To scale the biomass to drone images, we use super-resolution paired with semi-supervised learning. Early results on grass biomass estimation show the feasibility of automating the process with accuracies on par or better than human experts. The conclusion of the thesis will summarize the research contributions and discuss thoughts on future research that I believe should be tackled in the field of low supervision computer vision

    Transfer of pretrained model weights substantially improves semi-supervised image classification

    Get PDF
    Deep neural networks produce state-of-the-art results when trained on a large number of labeled examples but tend to overfit when small amounts of labeled examples are used for training. Creating a large number of labeled examples requires considerable resources, time, and effort. If labeling new data is not feasible, so-called semi-supervised learning can achieve better generalisation than purely supervised learning by employing unlabeled instances as well as labeled ones. The work presented in this paper is motivated by the observation that transfer learning provides the opportunity to potentially further improve performance by exploiting models pretrained on a similar domain. More specifically, we explore the use of transfer learning when performing semi-supervised learning using self-learning. The main contribution is an empirical evaluation of transfer learning using different combinations of similarity metric learning methods and label propagation algorithms in semi-supervised learning. We find that transfer learning always substantially improves the model’s accuracy when few labeled examples are available, regardless of the type of loss used for training the neural network. This finding is obtained by performing extensive experiments on the SVHN, CIFAR10, and Plant Village image classification datasets and applying pretrained weights from Imagenet for transfer learning

    Hierarchical Metric Learning for Optical Remote Sensing Scene Categorization

    Full text link
    We address the problem of scene classification from optical remote sensing (RS) images based on the paradigm of hierarchical metric learning. Ideally, supervised metric learning strategies learn a projection from a set of training data points so as to minimize intra-class variance while maximizing inter-class separability to the class label space. However, standard metric learning techniques do not incorporate the class interaction information in learning the transformation matrix, which is often considered to be a bottleneck while dealing with fine-grained visual categories. As a remedy, we propose to organize the classes in a hierarchical fashion by exploring their visual similarities and subsequently learn separate distance metric transformations for the classes present at the non-leaf nodes of the tree. We employ an iterative max-margin clustering strategy to obtain the hierarchical organization of the classes. Experiment results obtained on the large-scale NWPU-RESISC45 and the popular UC-Merced datasets demonstrate the efficacy of the proposed hierarchical metric learning based RS scene recognition strategy in comparison to the standard approaches.Comment: Undergoing revision in GRS
    corecore