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Abstract. A novel semi-supervised kernel feature extraction algorithm to combine
an efficient metric learning method, i.e. relevant component analysis (RCA), and
kernel trick is presented for hyperspectral imagery land-cover classification. This
method obtains projection of the input data by learning an optimal nonlinear trans-
formation via a chunklet constraints-based FDA criterion, and called chunklet-based
kernel relevant component analysis (CKRCA). The proposed method is appealing
as it constructs the kernel very intuitively for the RCA method and does not require
any labeled information. The effectiveness of the proposed CKRCA is successfully
illustrated in hyperspectral remote sensing image classification. Experimental re-
sults demonstrate that the proposed method can greatly improve the classification
accuracy compared with traditional linear and conventional kernel-based methods.
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1 INTRODUCTION

Dimensionality reduction is a widely used technique before further information pro-
cessing and plays an increasingly important role in analysis of high-dimensional
data. Hyperspectral remote sensing is a technology that can collect and process de-
tailed spectral and spatial information from across the electromagnetic spectrum [1].
Comparing with the general image, the hyperspectral imagery divides the spectrum
into dozens or hundreds of narrow and adjacent spectral bands, which results in
a great number of bands, high correlation between neighbor bands, and a lot of re-
dundancy information. High-dimensional hyperspectral data also makes the sample
points sparse in a data space. Unlike general image analysis, the basic process-
ing unit of hyperspectral image classification is high-dimensional spectral vector
for categorizing each spectral pixel to one of the classes. Therefore, it often en-
counters the problem of insufficient sample labels because in traditional classifica-
tion methods they are not suitable to be directly introduced in hyperspectral data.
On the other hand, high dimensionality hyperspectral data will greatly increase
the computation time. In order to overcome the curse of dimensionality of hyper-
spectral data [2, 3], it is necessary to transform the high dimension hyperspectral
space to a low dimension subspace, i.e. dimension reduction before conventional
analysis.

Generally, dimension reduction of hyperspectral remote sensing image can be
divided into two areas: feature extraction and band selection (i.e. feature selec-
tion) [4]. In this paper, we focus on feature extraction. According to whether
training samples are exploited, feature extraction can be divided into three cate-
gories: unsupervised, supervised and semi-supervised methods. In general, unsu-
pervised methods do not use prior information and cannot get satisfactory results.
Principal component analysis (PCA) [5] is one of the most common and represen-
tative unsupervised feature extraction method. The PCA gets a transformation
matrix composed by chosen eigenvectors corresponding to larger eigenvalues of data
covariance matrix on the original data to achieve the purpose of dimension reduc-
tion. Supervised methods identify the subset of original spectral bands based on
the class separability transformation of labeled samples. Fisher discriminant ana-
lysis (FDA) [6] is a well-known supervised feature extraction technique. The FDA
can learn a linear transformation matrix by means of maximizing covariance be-
tween classes and minimizing covariance within-class to reduce the dimension of
original data. However, in real application, the collection of labeled samples in
hyperspectral imagery will spend a lot of manpower and material resources. As
a result, some semi-supervised methods [7, 8, 9] fall between the supervised and
unsupervised learning, and has been applied to hyperspectral image dimension re-
duction. Compared with the unsupervised and supervised methods, semi-supervised
methods make use of small amounts of prior information which are more accessi-
ble.

On the other hand, pairwise constraints, i.e., positive (must-link) and negative
(cannot-link) constraints as another common types of prior knowledge can be de-
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rived in an easier way and can be automatically collected by photo interpretation.
Recently, a novel efficient and non-iterative metric learning method, i.e. relevant
component analysis (RCA) [10, 11, 12], has been developed for learning a Maha-
lanobis metric in a semi-supervised fashion. The RCA utilizes prior information
expressed as equivalence constraints which indicate positive relationship between
data instances, but without knowing their labels. According to the given positive
constraints, a new kind of prior information, i.e., chunklet constraints can be formed.
The basic idea of RCA is to learn an optimal data transformation that leads to the
optimal distance metric by minimizing the total variance of data instances within
the same chunklets. Recently, many semi-supervised algorithms based on Chunklet
information have been developed with good results in image retrieval [13], band
selection [14], and face recognition [12].

However, the above-mentioned techniques are limited to learn linear transfor-
mations and cannot exploit the intrinsic nonlinear properties of the hyperspectral
imagery [15]. Therefore, some non-linear methods such as neural networks (NN) [16]
and kernel-based algorithms [17] have been introduced to remote sensing data ana-
lysis. Kernel methods provide a more powerful and unified framework and can be
easily combined with the linear methods. Popular kernel-based feature extraction
algorithms include unsupervised methods, such as kernel principal component ana-
lysis (KPCA) [18, 19] and kernel independent component analysis (KICA) [20], as
well as supervised methods, such as kernel Fisher discriminant component analysis
(KFDA) [21], which are the kernel version of linear methods, i.e. the PCA, ICA,
and FDA, respectively.

In recent work, a kernel version of the RCA, i.e. kernel relevant component
analysis (KRCA) [22], which can produce nonlinear transformation for learning
distance metrics of structural objects, has proved to be effective for retrieval and
clustering tasks. In this paper, we present a semi-supervised kernel feature ex-
traction method based on the RCA, called chunklet-based kernel relevant com-
ponent analysis (CKRCA). Different from [22], the goal of proposed CKRCA is
to learn the optimal nonlinear transformation by the kernel trick for projecting
a nonlinear feature subspace via a chunklet constraints-based FDA criterion. The
feature subspace extracted with this method can be used as input for hyperspec-
tral classification. The readily available prior information (chunklet constraints)
and nonlinearity of chunklet-based KRCA are the key motivation behind study-
ing its benefits in the hyperspectral analysis. The experiments are carried out
on the real hyperspectral imagery. The comparisons between the classical lin-
ear and nonlinear methods are conducted to demonstrate that the chunklet-based
KRCA improves results with the combination of chunklet constraints and kernel
method.

The remaining parts of this paper are organized as follows. Section 2 reviews
standard formulation of the RCA and kernel method. The proposed chunklet-based
KRCA feature extraction method is detailed in Section 3. Section 4 presents the
experiments on real hyperspectral imagery. Finally, Section 5 concludes this pa-
per.
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2 RELATED WORK

2.1 Relevant Component Analysis (RCA)

The RCA [10, 11, 12] method is a simple and efficient algorithm for learning a Ma-
halanobis metric. The RCA changes the feature space for data representation by
learning a whitening transformation matrix using a new prior information, i.e. chun-
klet constraints (small subsets of data points that are known to belong to the same
but unknown class).

Let X = {x1, x2, . . . , xN} ⊂ RN×M be a data set where M is the number of
features and each feature contains N data points. Assume K chunklets can be
generated according to the given positive constraints, the kth chunklet is termed as

Ck =
{
x
(k)
1 , x

(k)
2 , . . . , x(k)nk

}
where nk is the number of data points in the kth chunklet.

In order to perform the RCA, an approximation of the covariance matrix can be
calculated using chunklet constraints. The estimated covariance matrix, i.e. within
chunklet covariance matrix, is defined as

Ĉc =
1

Nc

K∑
k=1

nk∑
i=1

(
x
(k)
i − dk

) (
x
(k)
i − dk

)T
(1)

where x
(k)
i denotes the ith data point of the kth chunklet; dk is mean of the kth

chunklet, dk = 1
nk

∑nk
i=1 x

(k)
i . Nc =

∑K
k=1 | Ck |, | · | denotes the cardinality of a set.

Then, data set is whitened with respect to the estimated covariance matrix. The
whitening transformation assigns lower weights to the directions of large variability,
as this variability is mainly due to in-class changes and irrelevant to the classification
task. The whitening transformation can be computed from the within chunklet
covariance matrix by using the following equation

W = Ĉ
− 1

2
c . (2)

For high dimensional data, the estimated covariance matrix can be used for
semi-supervised dimensionality reduction with a constraints based FDA criterion.
The whitening transformation matrix can be obtained by eigenanalysis of Ĉt · Ĉ−1

c

leading to get the feature subspace, where Ĉt is the total chunklets covariance matrix
and can be written as

Ĉt =
1

Nc

K∑
k=1

nk∑
i=1

(
x
(k)
i − d

) (
x
(k)
i − d

)T
(3)

where d is the mean of all the samples in all chunklets, d = 1
Nc

∑K
k=1

∑nk
i=1 x

(k)
i .

2.2 Kernel Method

Kernel method is a kind of non-linear technology that has been widely applied to
machine learning and pattern recognition, and achieves good results in many fields.



Kernel Feature Extraction Using Chunklet Constraints 209

In theory, a linearly inseparable pattern in low-dimensional space can be converted
to linearly separable ones by mapping into a high-dimensional feature space with
non-linear transformation [17]. There are many problems to be encountered when we
directly process data in the high-dimensional feature space obtained by a non-linear
transformation. First, the form and parameters of non-linear mapping function are
difficult to determine. The following question is that we cannot get the desired result
if a conventional linear processing method is applied to high-dimensional feature
space due to the “curse of dimensionality”. Fortunately, the kernel technology can
achieve this non-linear mapping and get rid of the aforementioned intractable issues
simultaneously.

The projecting principle of kernel function can be briefly described as follows.
Assume X ⊂ RM , with xi, xj ∈ X, where M is the number of dimensions of input
space. Define a nonlinear function Φ(·) mapping the input space to a high dimen-
sional Hilbert space H(X → H). Based on the kernel trick [15], a kernel function
K is defined as

K(xi, xj) = 〈Φ(xi),Φ(xj)〉 (4)

where 〈·, ·〉 denotes the inner product of two vectors. As it can be seen from (4),
the inner product of the projection function of high-dimensional Hilbert space can
be obtained via kernel function in low-dimensional input space.

The performance of kernel method is influenced by the type of kernel function.
In practical application, the choice of kernel function relies on the characteristic of
data set. The functions satisfying Mercer theorem can be used as the kernel func-
tion. Common kernel functions [23] include Gaussian, Polynomial, and Hyperbolic
Tangent (Sigmoid) kernel function, etc.

The procedure of kernel method can usually be divided into following five basic
steps [24].

1. Preprocess original data,

2. Select kernel function and set parameters,

3. Compute kernel matrix by kernel function, i.e. mapping input space to a high
dimensional Hilbert space via non-linear transformation function,

4. Apply kernel matrix to linear algorithm,

5. Get non-linear model of input space.

It is observed that kernel method achieves the goal of nonlinear mapping by
computing the inner products with kernel function. There is no need to work ex-
plicitly with the concrete form of non-linear transformation function. The nonlinear
mapping can be implicitly changed by adjusting the form and parameters of the
kernel function. A variety of kernel-based methods can be readily constructed by
means of combining different linear algorithms with the kernel method.
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3 CHUNKLET-BASED KERNEL FEATURE EXTRACTION

In this section, the description of proposed CKRCA method is given. The detailed
derivation process is demonstrated below.

According to the kernel method, a nonlinear mapping from the input space to
a high dimensional Hilbert space should be obtained firstly, i.e. Φ : RM → H,X →
Φ(X). For learning the optimal nonlinear transformation, the total covariance ma-
trix and within-chunklets covariance matrix in H-space are defined as follows:

ĈH
c =

1

Nc

K∑
k=1

nk∑
i=1

(
Φ
(
x
(k)
i

)
− dHk

) (
Φ
(
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i
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)T
, (5)
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)
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) (
Φ
(
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(k)
i

)
− dH

)T
(6)

where dHk are the mean of the samples in kth chunklet, and dH is the mean of the
samples in all chunklet in the high dimensional space.

The CKRCA can find an optimal nonlinear transformation matrix via maxi-
mizing the total covariance matrix and minimizing the within-chunklets covariance
matrix simultaneously. The objective is to choose an optimal nonlinear transfor-
mation in the H-space via a chunklet constraints-based FDA criterion, and the
following objective function is maximized:

J(W ) = arg max
| W T ĈH

t W |
| W T ĈH

c W |
(7)

where W is the optimal nonlinear transformation matrix which can be represented
as W = [w1, w2, . . . , wm].

The each of the M column vectors is a span of all data points in the feature
space. Then the vector wi can be rewritten as

wi = Φ(X)αi (8)

where αi is the coefficients, αi = [αi1, αi2, . . . , αin]T .
Therefore, the transformation matrix can be represented as

W = Φ(X)α (9)

where α is the coefficients matrix, α = [α1, α2, . . . , αm].
On the basis of (9), the objective function (7) can be rewritten as follows

J(α) = arg max
| αTΦ(X)T ĈH

t Φ(X)α |
| αTΦ(X)T ĈH

c Φ(X)α |
. (10)

Two new matrixes can be defined, such that

Kt = Φ(X)T ĈH
t Φ(X), (11)
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Kc = Φ(X)T ĈH
c Φ(X). (12)

Before giving the concrete form of Kt and Kc, some intermediate quantities
should be expressed as follows:

υ
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i )
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where υ
(k)
i denotes the ith data point of the kth chunklet in inner product space, can

be rewritten as
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µ denotes the mean vector of all chunklets in inner product space and can be defined
as
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1
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µk is the mean vector of the kth chunklet in inner product space and can also be
defined as

υ(k) = Φ(X)TdHk

=
1

Nk

nk∑
i=1
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=
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Combining with (5), (6) and (11), (12), (13), Kt and Kc can be rewritten as
follows:
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1
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Then, the objective function can be represented briefly as follows:

J(α) = arg max
| αTKtα |
| αTKcα |

. (19)

When the coefficients matrix α is confirmed, the transformation matrix W can
be computed by (9). And based on the kernel method, a kernel matrix KM can be
computed as

KM = Φ(X)TΦ(X)

= k(X,X). (20)

Finally, a new feature subspace can be obtained

Xnew = W TΦ(X)

= αTΦ(X)TΦ(X)

= αTKM (21)

where Xnew ⊂ Rm (m << M) represents the learned feature subspace, and has
nonlinear separability compared with the original input data.

The procedure associated with the proposed CKRCA is illustrated in detail as
follows.

4 EXPERIMENTS

4.1 Dataset Description and Experimental Settings

A public data set used in the experiment was acquired by the National Aeronautics
and Space Administration’s Airborne Visible/Infrared Imaging Spectrometer sensor
(AVIRIS), i.e. Indian Pines 92AV3C [25]. The image was gathered in North-western
Indiana in June 1992 with the size of 145 × 145 pixels. The number of original
bands is 220. We selected 200 bands as our experimental data set by removing some
Signal-to-noise (SNR) bands, from 104 to 108, 150 to 163 and 220. The number of
land-cover classes were reduced to 9 from the initial 16 land-cover classes for the
remaining has little label samples and cannot afford the reliable statistical image [26].
Figure 1 a) and b) shows the false color composite image and the corresponding
ground truth areas of Indian Pines data set.

In order to demonstrate the performance of the proposed CKRCA method, we
evaluated the accuracy of several classical linear methods, i.e. the PCA, FDA, and
RCA, and kernel-based nonlinear methods, i.e. the KPCA and KFDA. We also
compared the results with those obtained by using all original features. The clas-
sification process was performed using the support vector machine (SVM) classifier
(LIBSVM library) with Gaussian kernel, and the kernel parameters were selected
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Algorithm 1: The CKRCA Algorithm

Input:
– A data set X = {x1, x2, . . . , xN} ⊂ RN×M

– K chunklets Ck

Output:
– Feature subspace Xnew ⊂ RN×m (m << M)
Procedure:
1. A kernel matrix KM can be computed by (20);
2. Compute Kt and Kc by (17) and (18);
3. Diagonalize Kt by eigenanalysis
3.1 Find U to satisfy UTKtU = Λt and UTU = I, here Λt is a diagonal matrix sorted
in increasing order;

3.2 Form a matrix Û by the last r column vectors of U with the nonzero eigenvalues;

3.3 Let Dt = ÛTKtÛ be the r × r submatrix of Λt;

3.4 Let K̂w = Kw + λI, here λ is a regularized parameter, which is a small and
positive number, is the identity matrix with the same size of Kw;

3.5 Let Z = ÛD
− 1

2
t and Kz = ZT K̂cZ;

4. Diagonalize Kz by eigenanalysis
4.1 Find V to satisfy V TKzV = Λc and V TV = I, here Λc is a diagonal matrix sorted
in descending order;

4.2 Assume the desired dimension is m, then form V̂ by the first m column vectors

of V with the smallest eigenvalues and let Dc = V̂ TKzV̂ ;

5. Obtain optimal transformation matrix α = ZV̂ D
− 1

2
c ;

6. Obtain the feature subspace using (21).

using the grid search strategy with 5-fold cross-validation, and the search range
was set to 2−16 − 216. The overall accuracy (OA) was used to measure the re-
sult of classification. The kernel function employed in the kernel-based feature ex-
traction methods is Gaussian kernel function, and the kernel parameter was set
to 10.

For comparing the performance of the above techniques accurately, we randomly
selected five different percentage of samples (i.e. 5 %, 10 %, 15 %, 30 % and 40 %) as
positive constraints/labeled pixels from the available ground truth data for the RCA
and proposed CKPCA/the FDA and KFDA learning. These positive constraints
have been divided into a number of several sets as chunklet in which any two samples
may belong to the same class. According to the size of AVIRIS data set, the number
of chunklets was set to 19. For each of the 9 classes, 20 % of the labeled pixels were
chosen for SVM training, the classification performance is quantitatively estimated
on the remaining 80 % ground truth pixels. The number of randomly selected five
different percentage of positive constraints, the number of chunklets, and number of
train/test pixels used in the experiments related to different land-cover classes are
given in Table 1.
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a) b)

Figure 1. a) False color composite image (using bands 73, 118, and 196); b) the available
ground truth map with nine land cover classes of the Indian Pines data set

Class
Feature Subspace Learning SVM Classifier

Positive Constraints
Chunklets

Train Test
5 % 10 % 15 % 30 % 40 % (pixels) (pixels)

1 (Corn-notill) 72 135 210 420 630 3 260 1174
2 (corn-min) 48 90 140 280 420 2 156 678
3 (Grass/Pasture) 24 45 70 140 210 1 92 405
4 (Grass/Trees) 24 45 70 140 210 1 145 602
5 (Hay-windrowed) 24 45 70 140 210 1 81 408
6 (Soybeans-notill) 48 90 140 280 420 2 171 797
7 (Soybeans-min) 120 225 350 700 1 050 5 450 2 018
8 (Soybean-clean) 24 45 70 140 210 1 116 498
9 (Woods) 72 135 210 420 630 3 243 1 051

Table 1. The number of positive constraints (chunklets constraints) and total number of
train/test pixels related to classes for the Indian Pines data set

4.2 Comparison with Linear Methods

The classification accuracy obtained by using all the features, the proposed CKRCA
and the other linear methods, i.e. PCA, FDA, and RCA, are shown in Table 2. For
the four feature extraction methods, the reduced feature size is experimentally set
to the optimal feature number, which is corresponding to the best overall accuracy
(OA).

From Table 2, one can see that the proposed CKRCA achieved the best classifi-
cation accuracy compared with the PCA, FDA, and RCA in all different percentage
of chunklet constraints, and had a better performance with extracted features varied
from 12 to 17 than original all 200 features. For the RCA, the OA began to increase
and obtained better performance than original features when the percentage of chun-
klet constraints exceeds 30 %. The classification accuracy got by the FDA increase
was consistent with the percentage of labeled samples. But the classification accu-
racies of the FDA are lower than the PCA when the percentage of labeled samples
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Original Feature
Feature size 200
OA (%) 82.02

PCA
Feature size 13
OA (%) 75.95

Percentage of chunklet
5 % 10 % 15 % 30 % 40 %

constraints/labeled samples

FDA
Feature size 9
OA (%) 66.24 71.84 75.19 79.43 79.32

RCA
Feature size 13 12 11 10 12
OA (%) 70.34 76.62 80.07 84.04 84.34

CKRCA
Feature size 17 12 16 14 17
OA (%) 83.71 84.88 86.45 87.68 88.21

Table 2. Comparison of proposed CKRCA method with the PCA, FDA, and RCA, orig-
inal features in different percentage of chunklet constraints/labeled samples for Indian
Pines data set

was under 15 % and with original features in all percentage of chunklet constraints.
The PCA yielded the lower classification accuracy than with original features.

4.3 Comparison with Kernel-Based Nonlinear Methods

In this section, the kernel-based nonlinear methods were used to compare with the
proposed CKRCA. The classification results based on the KPCA and KFDA are
shown in Table 3. In the KPCA and KFDA, the optimal feature size is experi-
mentally set to seven and nine, while in the CKRCA, the desired feature size is set
according to the eigenanalysis results. From Table 3, we can also observe that the
proposed CKRCA has the best performance compared with the KPCA and KFDA
in all different percentage of chunklet constraints. In details, the classification ac-
curacy of the CKRCA can be increased as much as 7.05 % to 11.93 % with respect
to the KFDA, and 7.32 % to 11.82 % with respect to the KPCA.

4.4 Feature Size of CKRCA

In order to obtain the optimal low-dimensional space, the parameter m is introduced
as the desired feature size in the proposed CKRCA. From the procedure of the
CKRCA, the optimal low-dimensional subspace can be obtained by the eigenvectors
corresponding to the smallest m eigenvalues of Kz. With the purpose of determining
the optimal m, all eigenvalues of Kz with 19 chunklets and different percentages of
positive constraints and the 21 highlighted smallest eigenvalues sorted in increasing
order are shown in Figure 2 a). It can be seen from Figure 2 a) that the eigenvalues of
Kz tend to be horizontal when the index of eigenvalues is greater than 18. Therefore,
we show the overall classification accuracy versus the feature size from 1 to 18 in
Figure 2 b). By contrast, the OA shown in Figure 2 b) at first increased sharply
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Original Feature
Feature size 200
OA (%) 82.02

KPCA
Feature size 7
OA (%) 76.39

Percentage of chunklet
5 % 10 % 15 % 30 % 40 %

constraints/labeled samples

KFDA
Feature size 9
OA (%) 76.66 77.81 77.73 76.74 76.28

CKRCA
Feature size 17 12 16 14 17
OA (%) 83.71 84.88 86.45 87.68 88.21

Table 3. Comparison of proposed CKRCA method with the KPCA and KFDA, original
features in different percentage of chunklet constraints/labeled samples for Indian Pines
data set

by increasing the number of the feature, then it reached the condition of minor
fluctuation when more than 10 features were selected. Based on the aforementioned
analysis, the feature size of the CKRCA can be derived experimentally by analyzing
the eigenvalues of Kz.

4.5 Analysis of Execution Efficiency

From the Sections 4.2 and 4.3, it can be seen that the proposed CKRCA method
achieved the best classification accuracy compared with the three linear methods
(i.e. PCA, FDA and RCA) and two kernel-based nonlinear methods (i.e. KPCA
and KFDA). In general, kernel-based nonlinear methods would take more execution
time than the corresponding linear methods for the computation of kernel matrix.
In this section, we focus our attention to further analyse the execution efficiency
for the kernel-based nonlinear methods (i.e. KPCA, KFDA and CKRCA) (see Ta-
ble 4). Generally, eigenanalysis is the crucial and time-consuming process for the
three kernel-based nonlinear methods. As expected, the computational time of the
KFDA and proposed CKRCA is larger than the KPCA, for the execution of two
eigenanalysis steps during the procedure. In greater detail, the CKRCA exhibited
a smaller execution time than the KFDA with the same percentage of prior informa-
tion. The execution time taken from KFDA significantly increased when increasing
the percentage of labeled samples. While the proposed CKRCA method is not sen-
sitive to the percentage of positive/chunklet constraints and has better efficiency
combining with the classification results.

4.6 Number of Chunklets Impact on CKRCA

Furthermore, we compared the impact of different number of chunklets on the pro-
posed CKRCA method in this section. We carried out the experiments with 19, 38,
and 57 different number of chunklets randomly generated from the available ground
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a)

b)

Figure 2. Feature size analysis of proposed CKRCA with 19 chunklets and different per-
centages of positive constraints. a) Value of all eigenvalues (and zoom on the 21 smallest
one) of Kz sorted in increasing order. b) Classification OA versus the feature size from 1
to 18.

truth. Figure 3 presents the corresponding classification performance with different
number of chunklet yielded by the CKRCA on Indian Pines data set. By analysis
of Figure 3, we can conclude that the accuracy of the CKRCA increased by in-
creasing the number of chunklets in all different percentages of chunklet constraints
except 5 %. In practical application, we can increase the number of chunklets to
improve the accuracy when the available proportion of the chunklet constraints is
limited.
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KPCA 127.14
Percentage of

5 % 10 % 15 % 30 % 40 %Exectution chunklet constraints/
Time(s) labeled samples

KFDA 526.31 667.45 837.39 1 318.2 1 797.6
CKRCA 366.51 358.69 351.49 363.68 360.17

Table 4. Comparison of proposed CKRCA method with the KPCA, and KFDA, original
features in different percentages of chunklet constraints/labeled samples for Indian Pines
data set

Figure 3. Classification performance (OA) of the proposed CKRCA with different per-
centages of chunklet constraints versus number of chunklets on Indian Pines data set

5 CONCLUSIONS

This paper presents a novel nonlinear feature extraction approach for dimension-
ality reduction of hyperspectral remote sensing image. The proposed approach is
devised for addressing problems where the intrinsic nonlinear properties cannot be
exploited by the traditional method and the available number of training samples
is limited. The combination of kernel trick and the RCA with chunklet constraints
in a semi-supervised model can improve the representation of the data. Compar-
ative experiments with three classic linear methods and two popular kernel-based
methods have been executed. Good results obtained on real hyperspectral data set
demonstrated that the proposed approach combining chunklet constraints and ker-
nel method can extract more effective features than the other conventional linear
and kernel-based feature extraction techniques. Future work will consider the uti-
lization of different kernel functions and metric learning methods in semi-supervised
image feature extraction.



Kernel Feature Extraction Using Chunklet Constraints 219

Acknowledgments

This work is supported by the National Natural Science Foundation of China (61572-
228, 61373067, 61373050), the National Key Basic Research Program of China (2015-
CB453000), and the Science Technology Development Project from Jilin Province
(20160101247JC, 20140520070JH). Associate Professor Chen Yang was the corre-
sponding author for this paper.

Author Contributions

Conceived and designed the experiments: Chen Yang. Performed the experiments:
Haishi Zhao. Analyzed the data: Laijun Lu, Renchu Guan. Wrote the paper: Chen
Yang, Haishi Zhao

REFERENCES

[1] Smith, R. B.: Introduction to Hyperspectral Imaging. Microimages. http://www.
microimages.com/documentation/Tutorials/hyprspec.pdf. Retrieved in June,
2008.

[2] Hughes, G. P.: On the Mean Accuracy of Statistical Pattern Recognizers. IEEE
Transactions on Information Theory, Vol. 14, 1968, No. 1, pp. 55–63.

[3] Plaza, A.—Benediktsson, J. A.—Boardman, J. W. et al.: Recent Advances
in Techniques for Hyperspectral Image Processing. Remote Sensing of Environment,
Vol. 113, 2009, pp. 110–122, doi: 10.1016/j.rse.2007.07.028.

[4] Landgrebe, D. A.: Signal Theory Methods in Multispectral Remote Sensing. John
Wiley & Sons, 2005.

[5] Fong, M.: Dimension Reduction on Hyperspectral Images. University California,
Los Angeles, CA, 2007.

[6] Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press,
2013.

[7] Luo, R.—Liao, W.—Philips, W.—Pi, Y.: An Improved Semi-Supervised Local
Discriminant Analysis for Feature Extraction of Hyperspectral Image. Joint Urban
Remote Sensing Event (JURSE 2015), 2015.

[8] Adebanjo, H. M.—Tapamo, J. R.: Semi-Supervised Local Feature Extraction of
Hyperspectral Images over Urban Areas. IEEE International Conference on Adaptive
Science and Technology (ICAST), 2013, pp. 1–5.

[9] Chen, S.—Zhang, D.: Semisupervised Dimensionality Reduction with Pairwise
Constraints for Hyperspectral Image Classification. IEEE Geoscience and Remote
Sensing Letters, Vol. 8, 2011, No. 2, pp. 369–373.

[10] Shental, N.—Hertz, T.—Weinshall, D.—Pavel, M.: Adjustment Learning
and Relevant Component Analysis. Computer Vision – ECCV 2002, Lecture Notes
in Computer Science, Vol. 2353, 2002, pp. 776–790, doi: 10.1007/3-540-47979-1 52.

http://www.microimages.com/documentation/Tutorials/hyprspec.pdf
http://www.microimages.com/documentation/Tutorials/hyprspec.pdf
https://doi.org/10.1016/j.rse.2007.07.028
https://doi.org/10.1007/3-540-47979-1_52


220 H. Zhao, L. Lu, C. Yang, R. Guan

[11] Bar-Hillel, A.—Hertz, T.—Shental, N.—Weinshall, D.: Learning Distance
Functions Using Equivalence Relations. Proceedings of the 20th International Con-
ference on Machine Learning (ICML-2003), Washington, DC, USA, August 21–24,
2003, pp. 11–18.

[12] Bar-Hillel, A.—Hertz, T.—Shental, N.—Weinshall, D.: Learning a Maha-
lanobis Metric from Equivalence Constraints. Journal of Machine Learning Research,
Vol. 6, 2005, No. 6, pp. 937–965.

[13] Hoi, S. C. H.—Liu, W.—Lyu, M. R.—Ma, W.-Y.: Learning Distance Metrics
with Contextual Constraints for Image Retrieval. Proceedings of 2006 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, New York,
USA, Vol. 2, June 2006, pp. 2072–2078.

[14] Yang, C.—Bruzzone, L.—Zhao, H.—Liang, Y.—Guan, R.: Decorrelation–
Separability-Based Affinity Propagation for Semisupervised Clustering of Hyperspec-
tral Images. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, Vol. 9, 2015, No. 2, pp. 568–582.

[15] Bachmann, C. M.—Ainsworth, T. L.: Exploiting Manifold Geometry in Hyper-
spectral Imagery. IEEE Transactions on Geoscience and Remote Sensing, Vol. 43,
2005, No. 3, pp. 441–454.
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