490 research outputs found

    Deep learning for unsupervised domain adaptation in medical imaging: Recent advancements and future perspectives

    Full text link
    Deep learning has demonstrated remarkable performance across various tasks in medical imaging. However, these approaches primarily focus on supervised learning, assuming that the training and testing data are drawn from the same distribution. Unfortunately, this assumption may not always hold true in practice. To address these issues, unsupervised domain adaptation (UDA) techniques have been developed to transfer knowledge from a labeled domain to a related but unlabeled domain. In recent years, significant advancements have been made in UDA, resulting in a wide range of methodologies, including feature alignment, image translation, self-supervision, and disentangled representation methods, among others. In this paper, we provide a comprehensive literature review of recent deep UDA approaches in medical imaging from a technical perspective. Specifically, we categorize current UDA research in medical imaging into six groups and further divide them into finer subcategories based on the different tasks they perform. We also discuss the respective datasets used in the studies to assess the divergence between the different domains. Finally, we discuss emerging areas and provide insights and discussions on future research directions to conclude this survey.Comment: Under Revie

    Machine Learning Methods for Image Analysis in Medical Applications, from Alzheimer\u27s Disease, Brain Tumors, to Assisted Living

    Get PDF
    Healthcare has progressed greatly nowadays owing to technological advances, where machine learning plays an important role in processing and analyzing a large amount of medical data. This thesis investigates four healthcare-related issues (Alzheimer\u27s disease detection, glioma classification, human fall detection, and obstacle avoidance in prosthetic vision), where the underlying methodologies are associated with machine learning and computer vision. For Alzheimer’s disease (AD) diagnosis, apart from symptoms of patients, Magnetic Resonance Images (MRIs) also play an important role. Inspired by the success of deep learning, a new multi-stream multi-scale Convolutional Neural Network (CNN) architecture is proposed for AD detection from MRIs, where AD features are characterized in both the tissue level and the scale level for improved feature learning. Good classification performance is obtained for AD/NC (normal control) classification with test accuracy 94.74%. In glioma subtype classification, biopsies are usually needed for determining different molecular-based glioma subtypes. We investigate non-invasive glioma subtype prediction from MRIs by using deep learning. A 2D multi-stream CNN architecture is used to learn the features of gliomas from multi-modal MRIs, where the training dataset is enlarged with synthetic brain MRIs generated by pairwise Generative Adversarial Networks (GANs). Test accuracy 88.82% has been achieved for IDH mutation (a molecular-based subtype) prediction. A new deep semi-supervised learning method is also proposed to tackle the problem of missing molecular-related labels in training datasets for improving the performance of glioma classification. In other two applications, we also address video-based human fall detection by using co-saliency-enhanced Recurrent Convolutional Networks (RCNs), as well as obstacle avoidance in prosthetic vision by characterizing obstacle-related video features using a Spiking Neural Network (SNN). These investigations can benefit future research, where artificial intelligence/deep learning may open a new way for real medical applications

    Stroke Lesion Segmentation and Deep Learning: A Comprehensive Review

    Get PDF
    Stroke is a medical condition that affects around 15 million people annually. Patients and their families can face severe financial and emotional challenges as it can cause motor, speech, cognitive, and emotional impairments. Stroke lesion segmentation identifies the stroke lesion visually while providing useful anatomical information. Though different computer-aided software areavailable for manual segmentation, state-of-the-art deep learning makes the job much easier. This review paper explores the different deep-learning-based lesion segmentation models and the impact of different pre-processing techniques on their performance. It aims to provide a comprehensive overview of the state-of-the-art models and aims to guide future research and contribute to thedevelopment of more robust and effective stroke lesion segmentation models

    Multi-Modal Hypergraph Diffusion Network with Dual Prior for Alzheimer Classification

    Full text link
    The automatic early diagnosis of prodromal stages of Alzheimer's disease is of great relevance for patient treatment to improve quality of life. We address this problem as a multi-modal classification task. Multi-modal data provides richer and complementary information. However, existing techniques only consider either lower order relations between the data and single/multi-modal imaging data. In this work, we introduce a novel semi-supervised hypergraph learning framework for Alzheimer's disease diagnosis. Our framework allows for higher-order relations among multi-modal imaging and non-imaging data whilst requiring a tiny labelled set. Firstly, we introduce a dual embedding strategy for constructing a robust hypergraph that preserves the data semantics. We achieve this by enforcing perturbation invariance at the image and graph levels using a contrastive based mechanism. Secondly, we present a dynamically adjusted hypergraph diffusion model, via a semi-explicit flow, to improve the predictive uncertainty. We demonstrate, through our experiments, that our framework is able to outperform current techniques for Alzheimer's disease diagnosis
    corecore