1,021 research outputs found

    Sparse-to-Dense: Depth Prediction from Sparse Depth Samples and a Single Image

    Full text link
    We consider the problem of dense depth prediction from a sparse set of depth measurements and a single RGB image. Since depth estimation from monocular images alone is inherently ambiguous and unreliable, to attain a higher level of robustness and accuracy, we introduce additional sparse depth samples, which are either acquired with a low-resolution depth sensor or computed via visual Simultaneous Localization and Mapping (SLAM) algorithms. We propose the use of a single deep regression network to learn directly from the RGB-D raw data, and explore the impact of number of depth samples on prediction accuracy. Our experiments show that, compared to using only RGB images, the addition of 100 spatially random depth samples reduces the prediction root-mean-square error by 50% on the NYU-Depth-v2 indoor dataset. It also boosts the percentage of reliable prediction from 59% to 92% on the KITTI dataset. We demonstrate two applications of the proposed algorithm: a plug-in module in SLAM to convert sparse maps to dense maps, and super-resolution for LiDARs. Software and video demonstration are publicly available.Comment: accepted to ICRA 2018. 8 pages, 8 figures, 3 tables. Video at https://www.youtube.com/watch?v=vNIIT_M7x7Y. Code at https://github.com/fangchangma/sparse-to-dens

    Non-Parametric Learning for Monocular Visual Odometry

    Get PDF
    This thesis addresses the problem of incremental localization from visual information, a scenario commonly known as visual odometry. Current visual odometry algorithms are heavily dependent on camera calibration, using a pre-established geometric model to provide the transformation between input (optical flow estimates) and output (vehicle motion estimates) information. A novel approach to visual odometry is proposed in this thesis where the need for camera calibration, or even for a geometric model, is circumvented by the use of machine learning principles and techniques. A non-parametric Bayesian regression technique, the Gaussian Process (GP), is used to elect the most probable transformation function hypothesis from input to output, based on training data collected prior and during navigation. Other than eliminating the need for a geometric model and traditional camera calibration, this approach also allows for scale recovery even in a monocular configuration, and provides a natural treatment of uncertainties due to the probabilistic nature of GPs. Several extensions to the traditional GP framework are introduced and discussed in depth, and they constitute the core of the contributions of this thesis to the machine learning and robotics community. The proposed framework is tested in a wide variety of scenarios, ranging from urban and off-road ground vehicles to unconstrained 3D unmanned aircrafts. The results show a significant improvement over traditional visual odometry algorithms, and also surpass results obtained using other sensors, such as laser scanners and IMUs. The incorporation of these results to a SLAM scenario, using a Exact Sparse Information Filter (ESIF), is shown to decrease global uncertainty by exploiting revisited areas of the environment. Finally, a technique for the automatic segmentation of dynamic objects is presented, as a way to increase the robustness of image information and further improve visual odometry results

    Non-Parametric Learning for Monocular Visual Odometry

    Get PDF
    This thesis addresses the problem of incremental localization from visual information, a scenario commonly known as visual odometry. Current visual odometry algorithms are heavily dependent on camera calibration, using a pre-established geometric model to provide the transformation between input (optical flow estimates) and output (vehicle motion estimates) information. A novel approach to visual odometry is proposed in this thesis where the need for camera calibration, or even for a geometric model, is circumvented by the use of machine learning principles and techniques. A non-parametric Bayesian regression technique, the Gaussian Process (GP), is used to elect the most probable transformation function hypothesis from input to output, based on training data collected prior and during navigation. Other than eliminating the need for a geometric model and traditional camera calibration, this approach also allows for scale recovery even in a monocular configuration, and provides a natural treatment of uncertainties due to the probabilistic nature of GPs. Several extensions to the traditional GP framework are introduced and discussed in depth, and they constitute the core of the contributions of this thesis to the machine learning and robotics community. The proposed framework is tested in a wide variety of scenarios, ranging from urban and off-road ground vehicles to unconstrained 3D unmanned aircrafts. The results show a significant improvement over traditional visual odometry algorithms, and also surpass results obtained using other sensors, such as laser scanners and IMUs. The incorporation of these results to a SLAM scenario, using a Exact Sparse Information Filter (ESIF), is shown to decrease global uncertainty by exploiting revisited areas of the environment. Finally, a technique for the automatic segmentation of dynamic objects is presented, as a way to increase the robustness of image information and further improve visual odometry results

    Fast, Accurate Thin-Structure Obstacle Detection for Autonomous Mobile Robots

    Full text link
    Safety is paramount for mobile robotic platforms such as self-driving cars and unmanned aerial vehicles. This work is devoted to a task that is indispensable for safety yet was largely overlooked in the past -- detecting obstacles that are of very thin structures, such as wires, cables and tree branches. This is a challenging problem, as thin objects can be problematic for active sensors such as lidar and sonar and even for stereo cameras. In this work, we propose to use video sequences for thin obstacle detection. We represent obstacles with edges in the video frames, and reconstruct them in 3D using efficient edge-based visual odometry techniques. We provide both a monocular camera solution and a stereo camera solution. The former incorporates Inertial Measurement Unit (IMU) data to solve scale ambiguity, while the latter enjoys a novel, purely vision-based solution. Experiments demonstrated that the proposed methods are fast and able to detect thin obstacles robustly and accurately under various conditions.Comment: Appeared at IEEE CVPR 2017 Workshop on Embedded Visio

    Learning Depth from Monocular Videos using Direct Methods

    Full text link
    The ability to predict depth from a single image - using recent advances in CNNs - is of increasing interest to the vision community. Unsupervised strategies to learning are particularly appealing as they can utilize much larger and varied monocular video datasets during learning without the need for ground truth depth or stereo. In previous works, separate pose and depth CNN predictors had to be determined such that their joint outputs minimized the photometric error. Inspired by recent advances in direct visual odometry (DVO), we argue that the depth CNN predictor can be learned without a pose CNN predictor. Further, we demonstrate empirically that incorporation of a differentiable implementation of DVO, along with a novel depth normalization strategy - substantially improves performance over state of the art that use monocular videos for training
    • …
    corecore