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Abstract

Vitor Campanholo Guizilini Doctor of Philosophy
The University of Sydney March 2013

Non-Parametric Learning for
Monocular Visual Odometry

This thesis addresses the problem of incremental localization from visual information,
a scenario commonly known as visual odometry. Accurate localization is a fundamen-
tal aspect in autonomous navigation, where a vehicle should be able to position itself
on the surrounding environment in order to perform tasks such as mapping, obstacle
avoidance and path planning. Current visual odometry algorithms are heavily de-
pendent on camera calibration, using a pre-established geometric model to provide
the transformation between input (optical flow estimates) and output (vehicle motion
estimates) information.

A novel approach to visual odometry is proposed in this thesis where the need for
camera calibration, or even for a geometric model, is circumvented by the use of
machine learning principles and techniques. A non-parametric Bayesian regression
technique, the Gaussian Process (GP), is used to elect the most probable transfor-
mation function hypothesis from input to output, based on training data collected
prior and during navigation. Other than eliminating the need for a geometric model
and traditional camera calibration, this approach also allows for scale recovery even
in a monocular configuration by exploring similarities in optical flow, and provides
a natural treatment of uncertainties due to the probabilistic nature of GPs. Several
extensions to the traditional GP framework are introduced and discussed at depth,
and they constitute the core of the contributions of this thesis to the machine learning
and robotics community.

Initially, the standard GP derivation is modified to address a multiple-output sce-
nario (MOGP), and the standard MOGP derivation is further extended to allow the
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estimation of all outputs simultaneously, along with a full covariance matrix, in a
novel technique called Coupled Gaussian Process (CGP). This allows the algorithm
to exploit dependencies between different degrees of freedom in motion, caused by
constraints in vehicle dynamics, to improve localization results. The usual zero mean
assumption in the GP derivation is also explored and modified, and a method of in-
corporating well-established geometric models into the non-parametric framework is
presented, creating a semi-parametric approach to visual odometry. The optimization
of the GP hyperparameters and camera calibration parameters is conducted simul-
taneously, so there is still no need for camera calibration, and if this information is
available it can be incorporated seamlessly. The issue of environment change during
navigation is addressed by introducing online updates to the semi-parametric model,
allowing new information to be incorporated and redundant information to be dis-
carded as a way to maintain computational complexity within a certain boundary.
Finally, an automatic dynamic object removal algorithm is presented as a way to im-
prove the reliability of optical flow information extracted during navigation, since any
relative motion observed should be caused solely by camera rotation and translation.

The proposed framework is tested in a wide variety of scenarios, ranging from ur-
ban and off-road 2D environments, using images collected from a modified vehicle
equipped with a single camera, to 3D environments, using images collected from an
unmanned aerial vehicle UAV) flying over a deserted area. The results show a sig-
nificant improvement over traditional visual odometry algorithms, and also surpass
results obtained using other sensors, such as laser scanners and IMUs. Due to the
natural treatment of uncertainties and recovery of a full covariance matrix, incor-
poration of the visual odometry results obtained using the proposed framework is
straightforward. In particular, the incorporation of these results to a SLAM scenario,
using a Exact Sparse Information Filter (ESIF), is shown as a way to use loop-closure
to decrease global uncertainty.
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Chapter 1

Introduction

1.1 Motivation

This thesis is concerned with vehicle localization, more specifically with vehicle local-
ization based on image information. The ability to position itself on the surrounding
environment, and constantly update this position during navigation, is of key im-
portance in most high-level autonomous tasks, such as mapping, path planning and
exploration. Without localization, a vehicle is limited to reactive behaviour based
solely on current observations, and is incapable of performing actions beyond its sen-

sory range.

There are several sensors capable of performing vehicle localization, with different
ranges of application and degrees of accuracy. Internal sensors, such as wheel encoders
and IMUs, work isolated from the surrounding environment, and thus are only capable
of providing incremental estimates of vehicle velocity and/or acceleration. These
individual estimates are integrated over time, according to a predetermined vehicle
dynamic model, to generate a pose estimate. The main disadvantage of incremental
localization, also known as dead reckoning, is that each individual estimate contains
a component of error (drift) that accumulates as part of the integration process,
increasing monotonically at each iteration. Any improvement in sensor or model

accuracy will serve only to slow, but not prevent, this increase, and eventually the
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Figure 1.1 — Some common applications of visual sensors in robotics: car detection
(upper left), lane segmentation (upper right), face recognition (bottom left) and
people tracking (bottom right).

pose estimate becomes so uncertain that it no longer serves any meaningful purpose.
For this reason, dead reckoning is insufficient for long-term localization, however it
still maintains useful auxiliary information that can be exploited in conjunction with

other forms of localization.

Pose estimation with upper boundaries of uncertainty is possible only through the
availability of absolute measurements, rather than incremental. This is achieved us-
ing ezternal sensors, which interact in one way or another with the environment to
generate pose estimates that are independent of the robot’s previous states. A GPS
is the simplest form of absolute pose estimation, however it has a limited range of
applications as it does not work underwater, indoors or in extra-terrestrial naviga-
tion. Another family of external sensors, which include cameras and range-finders
(i.e. laser, sonar and radar scanners), work by registering information from the envi-
ronment, which the vehicle can then use to perform both incremental (by estimating
relative motion between measurements) and absolute (by detecting previously visited

areas) localization.
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Figure 1.2 — Examples of robotic platforms that use visual information for navigational
purposes.

The use of cameras in lieu of other external sensors has several benefits: cameras
are inexpensive, compact and low-power consumption sensors capable of producing
a dense and rich representation of the environment. They possess a wide field of
view both horizontally and vertically, a range that is only limited by illumination or
image resolution (or solid objects), and are naturally capable of registering motion
in all 6 degrees-of-freedom that constitute 3D navigation. The colour and texture
information provided by a visual representation of the environment can also be used
in a wide variety of other applications (see Fig. 1.1) that pose a challenge to any
other sensor. Furthermore, recent advances in computational power now allow the
real-time processing of this information, which further contributes to the increase in

popularity of cameras in robotics.

The act of performing vehicle localization based on image information is known as
visual odometry, a term chosen due to its similarities with wheel odometry, where mo-

tion is estimated by integrating wheel rotation over time. Likewise, visual odometry
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operates by incrementally estimating camera translation and rotation based on the
relative motion of structures around the vehicle, assuming a static environment. For a
visual odometry algorithm to work effectively, there should be sufficient illumination
and sufficient texture for feature extraction and matching. In addition, consecutive
frames should be captured in such a way that ensures sufficient scene overlapping

between them.

1.2 Overview on Visual Odometry

The use of visual sensors in autonomous navigation is far from new, and can be traced
back at least to 1976, with Gennery and Moravec using feature tracking for course
correction in the Stanford AT Lab Cart [87]. The functionality of theses sensors was
later extended to include egomotion estimation [86], achieved by tracking a set of
stationary landmarks over a sequence of frames and calculating their relative motion.
Since then, visual odometry has been extensively and successfully employed in a
wide variety of applications (Fig. 1.2), such as autonomous aircrafts [56], underwater

vehicles [9], space exploration [15] and indoor/outdoor ground navigation [52, 108].

Solutions to the visual odometry problem can be broadly divided into two cate-
gories: Structure-From-Motion (SFM), which draws from multi-view projective ge-
ometry [47]; and Probabilistic Filtering, which draws from state estimation methods
[129, 139]. Overall, probabilistic filtering approaches produce accurate results in
small environments, however they do not scale well to larger problems where a vast
amount of features is available. SFM approaches can be further divided into two
categories: stereo and monocular configurations. Stereo configurations [56, 146] use a
multi-camera array to capture several images of the environment simultaneously, from
different vantage points. In this scenario, feature depth estimates can be recovered
directly from the binocular disparity between images, and this information is then
used to infer camera translation and rotation. Monocular configurations [108, 128|
use a single camera, which is essentially a bearing-only sensor and therefore incapable

of providing feature depth estimation directly. One well-known limitation of monoc-



1.2 Overview on Visual Odometry >

Y 3 TR

Figure 1.3 — Example of monocular visual odometry and its inherent scale ambiguity.
From visual information alone, it is impossible to distinguish between hypothesis
A and B for vehicle pose and landmark location.

ular visual odometry is scale ambiguity (Fig. 1.3), caused by the parallax effect (an
observed object could be close and moving slowly or far away and moving fast, it is
impossible to know from a single image). This means that, unless special circum-
stances are considered, such as a ground-plane assumption [61] or a particular vehicle
dynamics [109], visual odometry algorithms are only capable of recovering vehicle

translation up to a scaling factor.

All SFM-based approaches to visual odometry, however, are calibration-dependent,
in the sense that the transformation between image information and vehicle motion
is calculated using a geometric model of the visual system [47]. This geometric model
is governed by the camera’s intrinsic parameters, which are obtained via calibration
prior to the beginning of navigation. This means that any localization estimate
provided by such approaches will only be, at most, as accurate as the geometric
model and calibration parameters used. Over the years several methods for camera
calibration have been proposed, however there is no guarantee that the resulting
parameters will not change over time, due to vibration, mechanical shocks or changes
in temperature. The use of self-calibration algorithms [17, 34] is attractive because

it allows the tracking and auto-correction of changes in calibration parameters, but
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they still assume a known fixed geometric model, thus limiting the flexibility of the

solution.

An alternative to explicitly defining a geometric model is the use of machine learning
techniques, a field of research that is concerned with the development of algorithms
that take as input empirical data and attempt to learn the underlying function from
which this data was generated. By introducing a training dataset containing examples
of input-output pairs, it is possible to estimate a transformation function that directly
maps image information to vehicle motion, without any prior knowledge of the visual
system or environment structure. Although intuitive, this approach has been scarcely
used in visual odometry, most notably in [102], where the authors use a KNN-Learner
voting method to estimate changes in pose, with each learner taking as input the
average of the sparse optical flow in a grid-divided image. A similar idea is explored
in [103], where a constant pixel depth is assumed and the Expectation-Maximization
(EM) algorithm [26], in conjunction with an extension to PPCA [131], is used to

perform a linear mapping between optical flow and incremental motion.

1.3 Problem Statement

This thesis introduces the use of Gaussian Processes (GPs), a non-parametric Bayesian
regression technique, as a valid and attractive approach to address the problem of
visual odometry from a machine learning perspective. A GP is a non-parametric
technique in the sense that it does not explicitly define a model between inputs and
outputs, maintaining instead a probabilistic distribution over an infinite number of
possible functions. Overly complex solutions are penalized and data fit is rewarded,
based on a cost function that quantifies the relationship between training inputs,
to elect a continuous approximation of the underlying function that generalizes well
over new inputs. Furthermore, each inference also produces a corresponding uncer-
tainty estimate, that can be used to gauge the resulting model’s confidence in its own
predictions. The proposed algorithm is tested in a wide variety of scenarios, ranging

from highly dynamic urban and unstructured off-road 2D environments, using images
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m— GPS + Inertial
m— SPOGP

Figure 1.4 — Results obtained with the proposed method. (a) Examples of visual infor-
mation used as input (translational and rotational optical flow). (b) Localization
results obtained in an urban environment using a modified vehicle equipped with a
single uncalibrated camera.

collected from a ground vehicle (Fig. 1.4), to 3D unconstrained navigation, using im-
ages collected from an unmanned aerial vehicle (UAV), with results that consistently

outperform traditional, purely geometric, visual odometry techniques.

The objective of this thesis is to create a solution to the problem of visual odometry
that reduces the need for any prior knowledge of the visual system and/or environ-
ment, allowing the system to learn the transformation between image information and
vehicle motion directly from training data, in an online fashion. If such knowledge
(such as the geometric model or the camera calibration parameters) is available, it
can be seamlessly incorporated into this framework and then further refined during
navigation, improving results on any particular visual odometry algorithm currently

available.
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1.4 Contributions

The main contributions of this thesis' are enumerated as follows:

1. Monocular visual odometry algorithm based on machine learning
principles. A Multiple-Output Gaussian Process (MOGP) is used to learn
the transformation function from image information directly into vehicle mo-
tion, eliminating the need for a geometric model or even traditional camera

calibration. The benefits of this approach are three-fold:

e Full covariance matrix recovery. The traditional MOGP derivation is
extended to allow the simultaneous estimation of all outputs (linear and
angular velocities). This new methodology exploits dependencies between
these outputs, generated by constraints in vehicle dynamics, to improve
accuracy on each individual estimate. These dependencies are quantified

as the cross-terms in the resulting covariance matrix.

e Scale recovery in monocular configuration. The proposed framework
uses training data obtained from a different and independent sensor as
ground-truth. If this sensor is capable of scale estimation (i.e. range
sensors), this information is encoded into the resulting non-parametric
model and can be recovered by exploiting structure similarities between

training and testing images.

e Natural treatment of uncertainties. Because Gaussian Processes are
a Bayesian probabilistic technique, all inferences conducted using the pro-
posed framework will naturally provide a measurement of uncertainty. This
is of key importance in further treatments of the results, such as data fusion

or incorporation into a SLAM scenario.

!The majority of the contributions proposed in this thesis (Chapters 3 and 4) was accepted for
publication at the International Journal of Robotics Research (IJRR) 2013, under the title Semi-
Parametric Learning for Visual Odometry.
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2. Temporal dependencies in the Gaussian Process framework. The stan-
dard spatial correlation between features in the same frame used by the Gaus-
sian Process framework is extended to include temporal dependencies between
features in subsequent frames. This approach works under the assumption that
vehicle velocity will change smoothly during navigation, and significantly in-

creases the amount of information available for inference.

3. Semi-parametric Gaussian Processes. The traditional zero-mean assump-
tion in Gaussian Processes is modified and a standard Structure-From-Motion
geometric model is incorporated into the proposed framework, as the new mean
function. The camera calibration parameters are learned simultaneously with
the GP hyperparameters, and if they are available they can be incorporated

seamlessly and further refined during navigation.

4. Online learning of visual odometry estimators. The semi-parametric
model obtained during training is constantly updated during navigation, incor-
porating new information as it becomes available and discarding redundant or
old information, in order to maintain computational time roughly constant. The
online update of the semi-parametric model allows the algorithm to gradually
adapt to new environments, decreasing the sensitivity to similar training and
testing conditions. All new information incorporated is obtained directly from
the GP inference process, so there is still no need for a different sensor during

navigation.

5. Vectorized representation of optical flow information. A novel method
for representing optical flow information is proposed, where it is stored as a
single vector of fixed dimension. This representation also retains the spatial
structure of the image, a valuable characteristic since optical flow patterns tend

to vary radically and consistently throughout each frame.

6. Automatic segmentation of dynamic objects. A novel technique for the
self-supervised segmentation of dynamic objects from a static background is

proposed. The RANSAC algorithm is used to provide an initial classification
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between classes, and these results are used to iteratively train a Gaussian Pro-
cess during navigation. The dynamic objects are then removed before the op-
tical flow vectorization stage, to ensure that only a static background is used
for visual odometry estimation. This technique is shown to radically improve
results obtained during city driving, reducing the influence of pedestrians, cars

and buses in the final localization estimates.

1.5 Thesis Outline

Chapter 2 presents the theoretical background that will form the basis to the remain-
der of the thesis. It starts by providing an overview on regression techniques, starting
with parametric techniques, both deterministic and Bayesian, and later moves on to
non-parametric models, in specific a non-parametric Bayesian regression technique
known as Gaussian processes. The Gaussian process model is presented, along with
the various covariance functions available in the literature, techniques for hyperpa-
rameter optimization and extension to multiple outputs. The chapter then switches to
computer vision, introducing the various aspects in which a camera can be an attrac-
tive sensor in robotic applications. Algorithms for feature extraction and matching
are presented and discussed, and the RANSAC algorithm is described as a valuable
tool for outlier removal. Finally, the camera model used in this thesis is presented,
and the chapter concludes by describing how vehicle motion can be recovered from
image information using this camera model, which forms the basis for visual odometry

estimation.

Chapter 3 introduces the proposed algorithm for visual odometry estimation, in
which the geometric model is substituted by a non-parametric Gaussian process
model, thus eliminating the need for conventional camera calibration. An overview
of a simplified version of the algorithm is presented, and the remainder of the chapter
is dedicated to describing each of its particular stages. Initially it is shown how to
convert image information into a vector that can be used as the input vector for the

GP framework, in such a way that spatial structure is maintained to allow a direct
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comparison between different inputs. The GP framework is then introduced, describ-
ing the two different vehicle models used in the experiments (a 2D constrained ground
vehicle model and an unconstrained 3D aerial vehicle model), the process of covari-
ance function selection and techniques for hyperparameter optimization that address
the high-dimensionality of the problem at hand. Lastly, experimental results obtained
using the proposed algorithm, both in 2D and 3D environments, are presented and
discussed, along with comparisons to a standard structure from motion algorithm and
possible shortcomings of the proposed algorithm that should be addressed before it

becomes a viable solution to the visual odometry problem.

Chapter 4 extends the visual odometry algorithm introduced in the previous section
to address its various shortcomings. Five extensions are proposed: 1) the modelling
of cross-dependencies between different outputs, that allows the recovery of a full
covariance matrix; 2) the introduction of temporal dependencies between outputs of
subsequent frames, that increases the amount of information available for inference;
3) the incremental update of the covariance matrix, that allows the non-parametric
model to gradually adapt to new environments; 4) the incorporation of a geometric
model as the mean function for the GP framework, that provides an initial estimate
that is then further refined by the non-parametric model; 5) and finally an extension
to the SLAM framework, in which all vehicle poses are tracked over time and a loop-
closure algorithm is used to detect when an area is revisited, with this information
being used to globally decrease uncertainty. Further experiments are conducted to
evaluate the effectiveness of such extensions, and also to test the proposed method’s

ability to generalize over different training and testing conditions.

Chapter 5 introduces a novel technique for the segmentation of dynamic objects,
also based solely on visual information and using the GP framework described in
previous chapters. This is done in order to detect and remove dynamic objects during
navigation, which could compromise results by incorporating optical flow information
that is not generated by camera translation and rotation. An unsupervised method
for obtaining ground-truth data, based on the RANSAC algorithm, is presented,

alongside a new descriptor used to generate the vector that serves as input for the
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GP framework. It produces a dense binary classification of the entire image, where
each pixel is classified either as a static or a dynamic object, and a measurement of
confidence in such classification is also provided. Once this classification is available,
it is possible to filter out all objects that are deemed dynamic and use solely static
structures to generate the optical flow information. Experiments are conducted to
validate the proposed algorithm’s ability to correctly segment dynamic objects using
different camera configurations, and also to show the improvement it produces on

visual odometry applications.

Chapter 6 concludes the thesis and provides a brief summary of the contributions,
alongside potential future research directions that can be taken based on the work

conducted here.



Chapter 2

Theoretical Background

This chapter is a review on the main tools and techniques used to develop the visual
odometry algorithm proposed in this thesis. It starts with an overview of para-
metric regression techniques, including the least-squares model, maximum likelihood
and Bayesian inference. Afterwards, it moves on to Gaussian processes as a non-
parametric Bayesian regression technique, including different covariance functions,
techniques for hyperparameter optimization and extension to multiple-outputs. Fi-
nally, it concludes by providing an overview of different computer vision techniques,
highlighting different methods for feature extraction and matching, outlier removal

techniques, and the geometric camera model that will be used during experiments.

2.1 Parametric Regression

Over the years, regression techniques have become increasingly popular in robotics,
as a way to learn a system’s characteristics without having to explicitly define a
model. If a comprehensive set of observations X = {x;,...,xy}, X, € R and their
corresponding outcomes y = {y1,...,yn}, yn € R is available, statistical modelling
is able to provide an estimation of the underlying function y = f(x) and predict

the outcome of new observations. This is especially valuable in situations where the
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phenomenon that generated the data is too complex or unpredictable to be properly

modelled using classical approaches.

This section addresses one form of regression known as parametric regression, in which
the underlying function is modelled by a finite number of quantifiable characteristics,
or parameters. In other words, the underlying function is defined as f(x,w), where
w is the parameter vector and f(x,.) is the functional mapping. Naturally, some
parameters will be better than others at explaining the observed outputs, and the

challenge now is to find the ones that provide the "best" explanation.

2.1.1 Least-Squares Regression

One way of defining the "best" model is by finding the parameters that minimize a
certain cost function L(w). By this definition, better models will be the ones with

lower costs. A common cost function is the sum of squared errors:

Lw) = (o =[x, W), (2.1)

that favours models in which the transformed inputs are closer to the outputs in
the Euclidean space. The solution wysq obtained by minimizing £(w) with respect
to w is known as the [east-squares regression model. Applications of this model
include back-propagation neural network training [104|, where the weights are opti-
mized according to the gradient of Eq. 2.1, and polynomial regression [38], where
the functional mapping is a polynomial and the parameters are the polynomial coef-

ficients.

One problem with least-squares regression is the lack of probabilistic treatment of
uncertainties. The resulting model is capable of providing a scalar prediction at any
point in the input space, however there is no corresponding measure of confidence
in that prediction. Another problem is that of overfitting (Fig. 2.1), in which the
resulting model becomes unable to discern between random noise and the underlying

function it is trying to explain. This is usually caused by an excessively complex
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Figure 2.1 — Example of overfitting in a least-squares regression problem using poly-
nomials. In (a) we can see how the resulting model changes as polynomial order
increases, and (b) shows the corresponding training and testing errors. As expected,
both training and testing errors initially decrease as polynomial order increases, un-
til overfitting takes over (at the 8th polynomial order mark) and the testing error
starts to increase, while the training error continues to decrease.

functional mapping, that interpolates all available inputs to a high degree of precision
but has a poor predictive performance with new inputs (generalization ability), as it

interprets minor fluctuations as trends.

A straightforward solution to overfitting is the use of a simpler functional mapping,
with fewer parameters. However, if the chosen functional mapping is too simple it
will also have a poor predictive performance, as it is unable to correctly follow the
hidden patterns. Other approaches include cross-validation, regularization and early
stopping, which can indicate when further optimization is not resulting in better
generalization. This is achieved by either explicitly penalizing overly complex models
or testing the model’s ability to generalize, by evaluating its performance on a subset

of the training data that is withheld during optimization.

2.1.2 Maximum Likelihood

A popular alternative to the problem of fitting a function to input data is to assume
a probabilistic distribution over X, with a density function p(X|w) that is again

completely characterized by the parameter vector w. Assuming that the observa-
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tions x,, in X are independent and identically distributed (i.i.d), the joint probability

distribution is given by:
p(Xl,XQ, s 7XN|W) = p(X1|W) X p(XQ’W) Koo X p(XN|W> (22>

Alternatively, it is possible to see this problem from a different perspective by con-
sidering the observation set X as fixed and the parameter vector w as variable. This

new distribution is the likelihood function, and it is given by:

N
L(W]X) = p(x1,%2,...,xn[w) = [ [ p(xnlw). (2.3)

n=1
For a variety of reasons, the likelihood function is often expressed in terms of its nat-
ural logarithm, or as the average log-likelihood (Eq. 2.4). The logarithm is a mono-
tonically increasing function, so it achieves its maximum values at the same points as
the original function. Computationally, the product of many small probabilities may
cause instability and loss of precision, and the logarithm function transforms these
multiplications into a more manageable summation. Finding the maximum of a func-
tion usually involves taking the derivative of a function, and this is often easier when
the function being maximized is a log-likelihood rather than the original likelihood

function.

[ = Nlnﬁ (w|X) = Zlnp X | W) (2.4)

The parameters w),;, obtained by maximizing [ with respect to w are known as the
mazimum likelihood (ML) estimates. The procedure for maximizing the log-likelihood
is dependent on the distribution chosen to represent the underlying function. A
common approach is to assume a Gaussian distribution (Fig. 2.2), which is completely
defined by its mean p and variance 0. The log-likelihood of such a distribution is of
the form:

InL(p,0|X)=-— Z(Xn —p)? — gln(OQ) — gln(%r), (2.5)
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Figure 2.2 - Maximum likelihood estimates for a Gaussian distribution N(0,2). (a)
Resulting distributions with different number of observations. (b) Corresponding
mean and variance errors for each distribution, as the number of observations in-
crease.

that gives rise to a simple set of equations (Eq. 2.6) to determine wy . In fact,
it can be shown [45] that under this assumption the maximum likelihood model is

equivalent to the least-squares model:
1 1 &
L= o > x o= ;(xn — jiarr)?. (2.6)

The use of maximum likelihood as a regression tool will be addressed here for the
particular case of linear regression, where the underlying function can be defined as
a linear combination of the input variables and some noise €, here assumed to be of

a Gaussian distribution A(0, o?):

f(x,w) =wo +wizy + ... +wprp = X' W, y=f(x,w)+e (2.7)
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Under these circumstances, the resulting model will be a linear combination on both
the parameters and the inputs, which limits its expressiveness to simple lines. Conse-
quently, it is common to use basis functions ¢(x) to project the D-dimensional inputs
into a higher dimensional space M, thus allowing for more flexible solutions. The
likelihood function (as presented in Eq. 2.3) is now obtained by maintaining both X
and w fixed and varying the outputs y:

5 (_(yn — §(1,)Tw)?

N

= ) — Z N(o(xn)Tw,0?).  (2.8)
n=1

Similarly, converting the above likelihood function to its average logarithmic form (as

shown in Eq. 2.4) provides:

1 N

N2 (yn — D(x0)" W) (2.9)

- 1 1
Ivor = §1n(0'2) ~ 5 In(27) —

The solution wj;;r obtained by maximizing ZMLR with respect to w is known as
the mazimum likelihood regression model, and is of the form wy p = (PPT) 1Py,
where ® is the design matrix obtained by projecting the N input observations into

the M-dimensional basis function space:

¢1(x1)  Pi(x2) ... ¢1(xn)

P — ¢2(.X1) ¢2(.X2) . ¢2(.XN) ‘ (2.10)

| om(x1) om(x2) ... dm(xn) |

2.1.3 Bayesian Inference

Up to this point, the focus was on finding a set of deterministic parameters that
maximize the probability of the outputs given the inputs. A natural progression
to the maximum likelihood regression model, where a probabilistic distribution was

applied to the observation set, is to place a distribution probability on the parameters
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themselves, resulting on a model that is capable of estimating the confidence of its

own predictions.

The Bayesian probability theory allows us to do exactly that, by treating the param-
eters as stochastic latent variables. The core of Bayesian probability lies in the Bayes’
Rule, that is used to find the posterior distribution over the parameters conditioned

on the observations:

] likelihood prior
posterior mfm
——
y 7 W7 o p W
w|X,y,0%) = 2.11
—_———

marginal likelihood

The prior distribution is set according to our prior belief about the distribution of the
parameters. Since Bayesian inference is usually conducted iteratively, as new data
becomes available, the prior distribution in one step is the posterior distribution of the
previous one, and at the beginning of the process the prior is manually determined by
our knowledge of the parameters (or lack thereof) before any data has been presented.
The likelihood function (Eq. 2.8) represents the odds of observing the available data
given a specific set of parameters, and the marginal likelihood is found by integrating

over the likelihood-prior product:

L(y|X, %) = /,C(y|X,w,02)p(w)dw. (2.12)

As the name suggests, the marginal likelihood is independent of any specific parame-
ter, and serves as a normalization constant so that the resulting posterior is a proper
probabilistic distribution. Within the Bayesian framework, assuming a 0-1 indicator
cost function L(y;,y;) = I(y; # y;), the maximum likelihood estimation method can
be combined with the prior distribution to create the parameter estimation technique
known as mazimum a posteriori (MAP). Assuming the Gaussian likelihood function
in Eq. 2.8 and a Gaussian distribution N (u,,%,) for the prior, the mean gy ap

becomes:
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Figure 2.3 - Maximum a posteriori estimates for a Gaussian distribution N (0, 2) (same
observation set as Fig. 2.2, for comparison). (a) Resulting distributions with differ-
ent number of observations. (b) Corresponding mean and variance errors for each
distribution, as the number of observations increase.

N 212, o?

riap = s b T (213)
NZ% + o2 NZZ% + o2

where /7 is obtained according to Eq. 2.6. In fact, ppap is a linear interpola-
tion between p, and gy, weighted by their respective covariances. This introduces
a regularization term to the likelihood function that penalizes larger parameter val-
ues, which are indicative of overfitting, and thus tend to produce simpler models.
For the special case of 0, — 00, we have a non-informative prior that leads to
tarap — - A common criticism of MAP estimation is that they are not very
representative of Bayesian methods in general. This is because MAP estimates are
punctual, whereas Bayesian methods are known to use distributions to characterize
data and draw inferences. Also, unlike ML estimates, the MAP estimate is not in-
variant under reparametrization, which means that the use of a Jacobian to switch

from one parametrization to another has an impact on the location of the maximum.
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Figure 2.4 — Example of Bayesian inference. The red dot represents the true vari-
able value, and observations are conducted based on a Gaussian distribution with
parameters A (0, 10), that serves as the likelihood function. As the number of ob-
servations increase, it is possible to see how the posterior distribution (grey circles,
representing a Gaussian distribution within two standard deviations) becomes both
more precise and accurate.

Within this framework, inference over a single test point x, is a matter of finding the

predictive distribution:

p(Walxs, Xy, 0%) = / Ly, w, 02)p(w|X, y, 0?)dw (2.14)

=N (o)A By 6(x)TA Gk ) (215)

where A = 0?®®" 4+ %!, So, using a single set of parameters to make predictions, the

entire posterior density is integrated over. This means that it is not just a single set of
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parameters that contribute to the predictions, but all parameters, and the predictive
contribution from each particular parameter is given by its corresponding posterior
probability. The consequence of doing so is a predictive model that, while powerful

enough to model a wide variety of underlying functions, is less prone to overfitting.

Another benefit of using Bayesian probability theory is that it provides a full pre-
dictive distribution, rather than just a scalar value at each test point (as shown in
Fig. 2.4). This is very useful as a measure of the resulting model’s confidence on
its own predictions: if the predictive distribution is tightly packed around a single
value, we can be confident of its ability to correctly model the underlying function
(assuming that the chosen parametric form of f(x,w) is appropriate). On the other
hand, if the predictive distribution is spread over a wide range of values, there is a

high uncertainty given that particular test point.

2.2 Non-Parametric Bayesian Regression

The previous section addressed the problem of regression from a parametric stand-
point, in which the functional mapping is assumed known and its coefficients are op-
timized according to a certain function in order to generate the best possible model.
Conversely, non-parametric techniques [138| eschew the need to explicitly define a
functional mapping by using the observations themselves to generate the resulting
model. As the number of observations increase, so does the model’s complexity, and
principles such as the Occam’s Razor |77 are used to counter the effects of overfit-
ting. While this approach allows for much more powerful and flexible solutions, it also
suffers from computational storage and memory requirements, as all data collected
must be kept and processed in order to perform inference, whereas parametric models

discard current observations after the parameters have been optimized.

This section focuses on Gaussian processes (GPs) as a non-parametric Bayesian re-
gression technique [101]. A Gaussian process is a particular case of a stochastic
process, which is a collection of random variables often used to represent the evolu-

tion of a non-deterministic system over time [98]. It maintains a probability density
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f(x)
p(f(1))

Figure 2.5 — Example of stochastic process sampling. (a) Independent sampling paths

obtained based on a function f(z) = exp(a)sin(bz), with a ~ N(0,1) and b ~

N (1,1). (b) Probability density of 10000 sample paths evaluated at f(1).
function p(f,#) defined over a function space F, and different hypotheses for the un-
derlying function are sampled directly from this function space (Fig. 2.5). Because
the parameters in # now govern functions, that in turn have their own parameters,
they are commonly referred to as hyperparameters, and these are optimized based
on a positive-definite function that quantifies the relationship between points in the

input space.

2.2.1 History of Gaussian Processes

The use of Gaussian processes as a tool for prediction can be traced back to the
1940’s, in works such as the Wiener-Kolmogorov prediction theory and time analysis
[76, 77]. More recent (1960’s) is the introduction of kriging [79] as a method for
the interpolation of geostatistical data [20], based on the Gauss-Markov theorem.
Kriging, named after the mining engineer Danie G. Krige, is identical to Gaussian
process regression, but derived and interpreted in a different manner. Furthermore,
as a geostatistical method, it is mainly concerned with low-dimensional problems and
ignores any probabilistic interpretations |77]. In the statistical community, the use
of Gaussian processes to define prior distributions has its origins in 1978, where the

theory was applied in the problem of one-dimensional curve fitting [94].



24 Theoretical Background

In the machine learning community, the use of Gaussian processes for supervised
learning dates back to the 1980’s, with the introduction of back-propagation learning
in neural networks [104]. The original non-probabilistic derivation was later enhanced
by Buntine [14], MacKay [72] and Neal [89], which introduced a Bayesian interpre-
tation that provided a consistent method for handling network complexity [8, 74].
It was shown later [90] that under certain conditions these Bayesian neural networks
converge to a Gaussian process with an infinite number of hidden units. This resulted
in the introduction of Gaussian processes for regression in the machine learning con-
text |77, 113], among other techniques such as least-squares [142]|, support vector

machine [21] and decision trees [12].

2.2.2 The Kernel Trick

In Section 2.1.2, it was shown how projecting the raw data into a high-dimensional
space generates more expressive models, capable of addressing a wider variety of
underlying functions. However, this incurs a computational power cost that increases
cubically with the dimensionality of the input space, caused by the inversion of matrix
A (Eq. 2.15). As the modelling function becomes more complex, the cost of this
inversion quickly becomes infeasible. Kernel methods are able to circumvent this
limitation by using a function that evaluates the relationship between data points
directly, as if they had already been projected into a potentially infinite dimensional

space [110]. Eq. 2.15 can then be rewritten as such:

p(YalXe, X, 7, 0%) ~ N(p(x,)2,2(@T8D + o21) 'y,
(%) E,0(%.) — d(x.) X, 2(PTE,® + 0?)1OTS 0(x,)), (2.16)

where it is possible to notice a reoccurring pattern on the different ways the high-
dimensional terms appear: ®7%,®, ¢ (x,)7E,P or ¢(x.)T3,0(x.). A kernel can now
be defined as a function k(x,x) = ¢(x)3,¢(x’) in the Hilbert space that describes
the relationship between two input vectors x and x’. If this kernel is chosen correctly

(a more thorough discussion about different kernel functions is given in Section 2.2.4),
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it allows the calculation of the high-dimensional dot products directly on the original
space. This process of mapping observations from a general set into an inner product
space, without ever having to compute the mapping explicitly, is known as the kernel
trick [3]. Now, the computational cost is dependent on the number N of training
points, rather than on the dimensionality M of the basis functions. Consequently, it
is possible to use a kernel that represents basis functions with an infinite number of

terms, allowing the estimator to model very complex datasets.

2.2.3 The Gaussian Process Model

A Gaussian process is a particular type of stochastic process in which all random
variables are Gaussian distributed. Moreover, every finite linear combination of such
random variables have a multivariate Gaussian distribution. Assuming two test points
x and x’, and using the Bayesian linear regression model described in Section 2.1.3,
with f(x) = ¢(x)"w and w ~ N(0,%,), the resulting model will have the following

mean and covariance functions:

E[f(x)] = ¢(x)"E[w] = 0 (2.17)

E[f(x)f(x)] = ¢(x)"E[ww’](x') = ¢(x)"S,0(x). (2.18)

These two parameters completely describe a Gaussian process, in the sense that any
finite collection of samples, {f(x.1), f(Xs2),- .., f(x«)}, will have a joint Gaussian
distribution. The zero mean assumption in Eq. 2.17 can be made without any loss of
generality by correctly normalizing the input data (i.e. subtracting the mean training
values), and will be further explored in Section 4.1.4. Furthermore, the covariance
function is numerically equivalent to the kernel function k(x,x’) = ¢(x)E,0(x’) de-
scribed in the previous section. This kernel representation means that inference will
now be performed over a function space governed by the covariance function, which
in turn is governed by a collection of parameters 6§ commonly referred to as the hy-
perparameter set (because they govern an entire family of functions, rather than a

single one). In other words:

f1X,0 ~ N(0, K), (2.19)
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Figure 2.6 — Example of Gaussian process inference. At the beginning (upper left
figure) there are no observations, so the predictive model has zero mean and high
variance (grey area) throughout the entire input space. As more data is collected,
the predictive model becomes more accurate around the observations and local

uncertainty decreases.

where K is a N x N covariance matrix in which the (i, 7)™ elements are equal to

k(x;,x;). Given a test point x,, and its associated latent variable f,, under the

Gaussian process framework (with zero mean) the joint distribution of f and f, is a

multivariate Gaussian, and is found by augmenting Eq. 2.19 with this new informa-

tion:

X, 0 ~N

0,

: (2.20)
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where k = [k(x,,X1), ..., k(x,,xxn)]T is the N x 1 vector formed from the covariance
between x, and X, and k = k(x,,x,). Using the Gaussian noise assumption intro-
duced in Eq. 2.7, the joint distribution over the observed outputs and the unobserved
target v, is given by:

y K+o%l k

X, 0~N|O, ) (2.21)
Ys ' K+ o2

Finally, given that the joint distribution is Gaussian and conditioning on y, the

predictive mean f, and variance V(f,) are:

p(yuly, X,0,0°%) = N(f., V(£.)) (2.22)
fo=kK'(K 402y (2.23)
V(f.) =k + 0> —K'(K +o*I) k. (2.24)

This set of equations allows the calculation of a Gaussian predictive distribution for
any test point x,, given a covariance function k(.,.) and its corresponding hyperpa-
rameter set 0 (as depicted in Fig. 2.6). The marginal likelihood of a Gaussian process

is obtained according to Eq. 2.12, but now integrating over the latent variables f:

L(y|X,0,0%) = /ﬁ(ylf, X,0,0%)p(f| X, 0)df (2.25)

= /N(f, a*I)N (0, K)df (2.26)
1

L 27\—1 )
exp vy (K+0o°l) 'y ), 2.27
(27T)1;|K—|-0'2]|% ( 2 ( ) ( )

which, if converted to the logarithmic form, gives rise to the following marginal log-

likelihood:

N 1 1
InL(y|X,0,0%) = _EIH(QW) — 51n(|K + o?I]) — §yT(K + o)y, (2.28)

In its original derivation, the GP framework has a computational complexity of O(n?)

in time and O(n?) in memory, mostly due to the cost of maintaining and inverting
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the covariance matrix K. Sparse implementations [22] are able to further decrease
the computational cost, by approximating the full covariance matrix using a subset of
points. However, this was not explored in this work because the datasets used during

experiments were not big enough to warrant such approximations.

2.2.4 Covariance Functions

As described in the previous section, the covariance function plays a pivotal role in the
Gaussian process framework, because it encodes the assumptions about the functions
the model is trying to learn. Specifically, it quantifies how similar each point in
the input space is to each other, a concept that is of great importance in supervised
learning techniques where inference on new data is based on previous examples of the
same underlying function. For example, it is a common assumption that two inputs

close to each other will have similar outputs.

Over the years several kernels have been proposed as covariance functions, with dif-
ferent properties that allow the modelling of a wide variety of underlying functions.
Furthermore, operations such as summing, multiplying and convolution have been
defined as valid operations to be performed on kernels [101], and thus arbitrarily
complex covariance functions can be obtained by combining simple kernels and their
corresponding hyperparameter sets. In order to qualify as a covariance function, a
kernel must be positive-definite, or in other words it must satisfy the following equa-
tion:

N N

Z Z wik(x;,x5)w; >0, (2.29)

i=1 j=1
for any x,, € R” and w € R. Broadly, covariance functions can be divided into two
categories: stationary and non-stationary, according to how they react to translation
over the coordinate system.The remainder of this section is dedicated to providing
an overview of these two categories, along with examples of the most commonly used

covariance functions and possible applications.
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Stationary Covariance Functions

Informally, a system is deemed stationary if its properties do not change when there
is a shift in time or space. Similarly, a stationary covariance function is derived from
a kernel in which the relationship between two inputs x; and x; does not depend on
their absolute position on the coordinate system, but rather on their relative position

r;; = (X; — x;) to each other. Or, in other words:

Stationary covariance functions are commonly used to model patterns that occur reg-
ularly on the observed data, however they lack the ability to treat different portions of
the input space differently. For this reason, more complex underlying functions often
require the use of the more generic non-stationary covariance functions, even though

these may still be used in conjunction to model a broader spectrum of behaviours.

Exponential Covariance Function. Considered the quintessential covariance func-
tion, the squared exponential is a subgroup of the broader family of ezponential co-
variance functions, which are governed by the following equation:

k(x;,X;) = exp (M) , (2.31)

where d(x;,x;) is a measure of distance between x; and x; and [ is a scaling factor,
commonly known as the length-scale, that indicates how far two points have to be from
each other for the output to change significantly. The squared exponential covariance

function for a D-dimensional input space can now be defined as:
2 Loy
ksz(rij) = O'f exp _ErijL ry; |, (232)

which is essentially an infinite number of Gaussian basis functions placed over the
input space. The term oy is a signal variance parameter that scales the entire co-

variance function, and is equivalent to the variance X, placed on the Gaussian prior.
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Figure 2.7 — Example of Gaussian prediction using different stationary covariance
functions, showing how smoothness increases as the kernel changes from Matérn
3/2 to Matérn 5/2 to squared exponential (which is essentially Matérn oo).

The matrix L is a D x D length-scale matriz, that models the influence of each input
dimension on the output and can be used as a method of automatic relevance de-
termination [90]. The squared exponential covariance function is infinitely divisible,
and therefore appropriate for modelling smooth functions. Unfortunately, very few
practical datasets are smooth [123]|, which limits the applicability of this covariance

function in most real scenarios.

Matérn Covariance Function. The Matérn may be considered a generalization of
the squared exponential covariance function, that addresses the problem of smooth-

ness (Fig. 2.7) discussed previously. It is defined by:

2 (‘/m) K, <—\/m> (2.33)

I\ L L

ky(rij) =

where v is a positive parameter, L is the length-scale matrix and K, is a modified

Bessel function [1]. The Matérn covariance function is ¥ — 1 times differentiable,
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allowing for a better control over the smoothness, and as v — oo it converges to
the squared exponential covariance function (Eq. 2.32). Other values for v that are
particularly attractive for modelling purposes, and produce elegant simplifications of

the original formulation, are:

ky—s2(ri;) = <1 + @> exp (—@> , (2.34)

L L
\/3ri; 51 \/Bry;
ky=s/2(rij) = (1 7 L+ 3—L3> exp (— 7 J> : (2.35)

When v = 1/2 the resulting covariance function becomes too rough, and for v > 7/2
it is already difficult to distinguish between the Matérn and the squared exponential

covariance function.

Non-Stationary Covariance Functions

A non-stationary covariance function allows for more expressive models by employing
relationships between input points which are dependent on their absolute location
on the coordinate system. Now, different portions of the underlying function may

behave differently, a common feature in most practical datasets.

Linear Covariance Function. Also known as the dot-product covariance function,
the linear covariance function k(x;,x;) = x;-x; is numerically equivalent to a Bayesian
linear regression using a polynomial basis function of degree 1 (see Eq. 2.7). A more

generic formulation of this covariance function is:
k(xi,x;) = 0p + %] Dix;, (2.36)

where o( is a bias term and X; is a general covariance matrix on the components
of x. Although not very powerful, this formulation is commonly used as part of a
more complex covariance function, that models the linear aspects of the underlying

function while other covariance functions tackle the more complex trends.
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Neural Network Covariance Function. The derivation of a neural network co-
variance function [90] is done by assuming a neural network which takes an input x,
has one hidden layer with Ny units and linearly combines the outputs of the hidden

units with a bias b to obtain f(x). This mapping can be written as:

Nu
F&) =b+ > vph(x, ), (2.37)

k=1
where v is a vector containing the hidden-to-output weights and h(x,u) is the hid-
den unit transfer function, which depends on the input-to-hidden weights u. It has
been show [51] that as Ny — oo networks with one hidden layer become univer-
sal approximators for a wide variety of transfer functions. Assuming that b and v
have independent zero-mean distributions of variance o and o2, respectively, and the
weights u; for each hidden unit are independent and identically distributed, it can

be shown [90] for weights w that:
Ew[f(x)] =0 (2.38)
Ew [f(x:).f (x;)]

o7 + Nyo?Ey [h(x;, u)h(x;,u)] . (2.39)

Given that the transfer function h(x,u) is bounded, all moments of the distribution
will also be bounded, and hence the central theory can be applied, showing that this
stochastic process will converge to a Gaussian process when Ny — oo. By evaluating
Ey [h(x;, u)h(x;,u)], the covariance function of the neural network can be obtained.
For example (as deduced in [141]), if the error function erf(z) = 2/y/7 [ e dt is
chosen as the transfer function, resulting in h(x,u) = erf(uo+>_ i = 1Pu;x;), and the
hidden weights have a Gaussian distribution u ~ N(0,X), then the neural network

covariance function is of the form:

2% Y%
knn(x,%;) = 0F arcsin i : (2.40)
\/(1 +2%7%%,) (1 4 287 5%;)
where X = {l,21,...,zp} is an augmented vector and oy is the signal variance

parameter.
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Sparse Covariance Functions

Another interesting and useful family of covariance functions are the sparse covariance
functions, also known as covariance functions with compact (or local) support. This
means that the covariance between any two given points become exactly zero when
their distance exceed a certain threshold, generating a sparse covariance matrix by
design. This property may lead to computational advantages, such as less memory
usage (not all entries on the covariance matrix have to be stored) and faster inference
(sparse matrix multiplication is a much more efficient computational task). Sparse
covariance functions may be both stationary and non-stationary, and here we will
be presenting one that is stationary [81], with non-stationarity being achieved by
multiplying this sparse covariance function with a non-stationary one. For the 1-
dimensional case, assuming the basis function g(z) = cos*(mz)H(1/2 — |z|), where H
is the Heaviside unit step function, and the transfer function h(z,u) = g(x — u), the

following covariance function is obtained:

ki(zi,xj) = o9 /OO h <%,u> h (%,u) du. (2.41)

o0

Due to the chosen form of the basis function, the integral of the equation above can

be evaluated analytically and is of the form:

CcoSs 7'1—é
1 B [W(l—%%r%sm(%%)} ifd <
kSP(Iiuxjaho-O) -

0 itd>1

. (242)

where o0 is a constant coefficient, [ > 0 is the length-scale, and d = |z; — x| is the
distance between points. Extension to multiple dimensions is done by calculating the
direct products for all D dimensions, with 1 = (I1,[s,...,lp) being now the length-

scale vector:
D

kSP(Xz‘; Xj, 1, 0'0) = 0p H kép(l’i’k, ZL’ij, li, 1) (243)
k=1
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2.2.5 Hyperparameter Optimization

Once the non-parametric model for the underlying function is defined, it is necessary
to find a consistent way to determine the hyperparameters . These hyperparameters
are dependent on the covariance function k(.,.) chosen, usually including a signal
variance oy and a length-scale matrix ¥, (for the sake of simplicity, the noise value
o, will from now on be included on the hyperparameter vector). Ideally, we would
like to integrate over all the hyperparameters in order to make our predictions, or in

other words, we would like to find:
py1X) = [ pl|X. 0001 (2.44)

Again, the hyperparameter set is dependent on the covariance function chosen. For
an arbitrary k(.,.) that is analytically intractable, however, it is possible to use sev-
eral methods to obtain approximations for the posterior distribution. This section
provides an overview of three different methods: Evidence Mazimization |73], Cross-

Validation and the Monte Carlo [101]| approach.

Evidence Maximization

Evidence Maximization (EM), also known as Marginal Likelihood Mazimization or
Empirical Bayes, uses an approximation to the integral in Eq. 2.44, based on the

most probable set of hyperparameters 0zy:

[ P, 0)p(61)d8 ~ piy X, O (2.45)

This approximation is based on the assumption that the posterior distribution p(0|X)
is sharply peaked around 6g), relative to the variation in p(y|X, @). This approxima-
tion is generally valid and the resulting EM estimates are often close to those found
using the true predictive distribution [75]. The challenge now becomes one of find-

ing 0gys, which is done by calculating the derivatives of the posterior distribution.
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Rewriting the Bayes’ Rule (Eq. 2.11) under this framework, we obtain:

L(y|X,0)p(0)

P01 X,y) = TLlyIX0?)

(2.46)

which is the same process used to generate the MAP estimates (Eq. 2.13). The
marginal likelihood (denominator) is independent of #, and therefore can be safely
ignored in the derivation process. The two remaining terms, the likelihood of # and
the prior on 0, will be considered in their logarithmic form, for reasons discussed
previously. The marginal log-likelihood of a Gaussian process is given by Eq. 2.12,

and its derivative with respect to 6 is:

58 = "3 C'— +§yTC‘_1—C’_1y, (2.47)

oL 1 ocy 1 aC
BT 00

where C' = |K + o%I|. Interestingly, we can see that this derivative has two terms
that "balance" each other out [101]. The first term penalizes model complexity, and
the second terms rewards data fitting, resulting in a solution that naturally avoids
overfitting (the Occam’s Razor principle [77]). The derivative over the prior is usu-
ally ignored in calculations, however this could generate solutions that are obviously
wrong, since the model is now ignoring our assumptions about the underlying func-
tion. Since the hyperparameters are usually constrained to be positive, [38] proposes
the use of the Gamma (Eq. 2.48) and Inverse Gamma (Eq. 2.49) distributions as

possible distributions for the prior:

a/2m)/?

Ga(@lm, o) = %9‘”2_1 exp(—ad/2m) (2.48)
am a/2+1

Ig(Olm,a) = %9(_0’/%2) exp(—am/20), (2.49)

where m is the mean and « controls the shape of the distribution (larger values
create vaguer priors). From this set of equations it is possible to find 0z, using
standard gradient optimization techniques, such as conjugate gradients. However, this
leads into the first major disadvantage of the Evidence Maximization approach: the

posterior distribution over § may be non-convex (Fig. 2.8), and gradient optimization
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Figure 2.8 — Example of multi-modal log-likelihood for a non-stationary covariance
function (neural network). The x-axis represents different values for the length-
scale hyperparameter, and the y-axis represents different values for the noise value.

is only able to find local solutions. Therefore, different initial conditions could lead
to different results, and multiple random starting points should be used to avoid the
selection of a bad local maximum. The second major disadvantage of this approach,
and perhaps the most important, is that each evaluation of the gradient requires the
evaluation of C~!, generating a computational cost of O(N?) that becomes very time

consuming for large training datasets.

Cross-Validation

Another method for hyperparameter selection is the Leave-One-Out Cross-Validation

(LOOCYV), which attempts to learn a model that generalizes well to an observation
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that was withheld from the training dataset (hence the name). A measure of error is
chosen to estimate the disparity between estimated and true values, and the process
is then repeated for each data point, with their respective errors being combined to
produce a final score for the model. A common measure for error is the log-likelihood

itself, which for this particular case is of the form:

(yi — pi)?

2
2v;

1 1
InL(y;| X, y_;,0) = —3 ln(l/,?) — b In(27), (2.50)

where p and v are the respective mean and variance of x; and -i is the output vector
excluding the i observation. Once all individual log-likelihoods are calculated, they

are added to determine the likelihood of the entire dataset:

N
‘CLOO(Xa y, 6) = Zlnﬁ(yJX, yfiae)' (251)

i=1

In practice, there is often little difference between the optimal hyperparameters pro-
duced using the LOO and EM approaches in most datasets. It is argued in [135] that
EM optimizes better under the correct assumptions of the model, whereas LOO is

independent of those and therefore more robust to model specification errors.

Monte Carlo Approach

The Monte Carlo approach uses sampling methods to calculate an approximation to
the predictive distribution. By approximating the integral in Eq. 2.44 using a Markov

chain, we get:

1 T

p(y*|x*,X, Y) = sz(y*b(*va et)v (2'52)
t=1

where 0, are samples drawn from p(6|X), the posterior distribution over §. Each
term on the above equation is a Gaussian, and so the Monte Carlo approximation to
the predictive distribution is a mixture of Gaussians, with an accuracy that increases
as more samples are drawn. It is important to notice that, since we are sampling

from the posterior over 6, we need priors on the hyperparameters p(f) as stated
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in the EM approach. The method used to sample from the posterior distribution
will heavily influence the efficiency of this technique, because we need samples that
represent the underlying distribution from which they are being taken. If a particular
region of € with a high associated probability is not sampled correctly, then the final
approximation to Eq. 2.44 will be poor.

2.2.6 Multiple-Output Gaussian Processes

So far, the Gaussian process regression models considered only deal with one single
scalar output y, mapped to each input vector x,. Attempts to handle multiple
outputs generally involve the use of an independent model for each output, in a
method commonly referred to as multi-kriging [101], but such models are unable to
capture the covariance between outputs. Fig. 2.9 shows an example of two dependent
outputs in which one output is simply a shifted version of the other. If both outputs
are treated independently, each estimate cannot exploit their obvious similarity to
improve results. Intuitively, a proper model should be able to use information from

output 1 to improve predictions on output 2 and vice-versa.

Joint predictions are possible, using methods such as co-kriging [20], however they
are problematic in the sense that it is not clear how covariance functions should
be defined [39]. Although several different positive-definite auto-covariance functions
(see Section 2.2.4) have already been proposed, it is difficult to define cross-covariance
functions that result in positive-definite covariance matrices. For example, consider

the following covariance matrix between two Gaussian processes g;(x) and go(x):

Ku K
K=| " 7. (2.53)
K21 K22

The definition of positive-definite auto-covariance functions to build the blocks K4
and Ky, is straightforward, however it is not clear how to specify the cross-covariance
functions that compose K5 and Ks; such that K is still positive-definite. Returning

to Eq. 2.29, a 2x2 block-matrix K is a positive-definite matrix if and only if zZ Kz > 0
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Figure 2.9 — Example [10] of dependent outputs in which output 2 is a translated
version of output 1, with independent Gaussian noise of variance 0.025. The solid
lines represent the model, the dotted lines are the true function, and the dots are
samples. The shaded regions represent 1o error bars for the model prediction. (top)
Independent model of the two outputs. (bottom) Dependent model.

for any non-zero vector z7 = [z7zl]. So, if K;; and Ky, are positive-definite, then

for K to be positive-definite it must satisfy the following condition [38]:

z'Kz >0

T T T T
z: Kz + z3 Ki2zs 4+ 25 K121 4 25 Koozo > 0

1
ZleQZQ > —5 {leKHzl + ZgKQQZQ} . (254)

The cross-covariance matrix Ko is built from a cross-covariance function kis(.,.) by

setting the (7, 7)™ matrix element equal to k(xi;,X2;), where x;; is the i'" training
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input for output 1 and x, ; is the j* training input for output 2. It is not clear how
to define a non-zero kis(.,.) such that Eq. 2.54 holds true, as simply setting it to
some positive-definite function will not always work. One possible way of constructing
Gaussian processes capable of modelling multiple outputs is to use kernel convolu-
tions, as described in the works of Boyle and Frean [10, 11]. Under this framework,
a Gaussian process V(x) is obtained by convolving a continuous white noise process

X (x) with a smoothing kernel h(x):
V(x) = h(x) * X(x). (2.55)

A second white noise source, representing measurement uncertainty, can be added
to the resulting Gaussian process (Fig. 2.10a). This convolution approach has been
used to formulate flexible non-stationary covariance functions [97], and can also be
extended to address cross-covariance functions. The remainder of this section presents
and discusses a technique for multiple-output Gaussian process regression using linear
filters as function generations, as described in [10]. Initially the particular case of two

dependent outputs is considered, and later it is extended to address multiple outputs.

Two Outputs

For the simpler case of two outputs, we assume N; observations of the first output
and Ny observations of the second output, generating the training datasets A; =
{X1.1, ylyn}fjgl and Ay = {xo, y27n}7]1\[i1. The combined training dataset is defined as
A = {A1, A2}, and the goal is to learn a model that predicts both y; , and ys, from
a test point x,. As shown in Fig. 2.10b, each output Y;_; o) can be modelled as a
linear sum of three stationary Gaussian processes. One of these (V) arises from a
noise source X; unique to that output, convolved with a kernel h;. The second (Uj;)
is similar, but arises from a separate noise source X, that influences both outputs,
although via different kernels k; and k5. The third is additive noise 7; as before, with

a variance of ;.

Thus, we have Y;(x) = U;(x) + V;(x) + n;(x), and the intermediate processes are
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Figure 2.10 - (a) Gaussian process prior for a single output Y. (b) Gaussian process
prior for two outputs, Y7 and Ys. For the special case in which X is forced to be
zero, Y1 and Y, become independent processes as shown in (a).

defined as U;(x) = k;(x) x Xo(x) and V;(x) = h;(x) * X;(x). For the specific purposes

of this example, the kernels k; and h; are squared exponential covariance functions:

k(%) = 1 exp (—%XTAlx) (2.56)
a (%) = vs exp (-%(x — )T Ay(x — y,)) (2.57)
hi(x) = w; exp (—%XTB,-X> : (2.58)

where A; and B; are positive-definite length-scale matrices. Note that in Eq. 2.57 the
vector x is offset from zero by p to allow modelling of outputs that are coupled and
translated relative to one another. The next step is to calculate the functions cov;;
that define the auto-covariance (i = j) and cross-covariance (i # j) between any two
given inputs x, and X,, separated by a distance vector d = x, — x;. By performing

a convolution integral, the function cov}; (d) can be expressed in closed form and is



42 Theoretical Background

fully determined by the parameters of the squared exponential covariance functions

and the noise variances o?:

covyy(d) = covd) (d) + covy; (d) + bup07 (2.59)
covly(d) = covly(d) ,  covdy(d) = covl(d) (2.60)
covgy(d) = covy(d) + covgy(d) + dup03, (2.61)
where
Do
2 V) 1
cov (d) = T ‘sz’ exp (—ZdTAid) (2.62)
D
2 1
U(d) = ——22 (——d— T App(d — ) 2.63
coviy(d) A, + Ay exp 2( p)" Asa( K) ( )
D
U T2 V109 1 T U
S o d— )T Ay (d—p) ) = - 2.64
covy, (d) A, + A exXp ( 2(d p)" A(d H)) covyy(-d) (2.64)
D 9
- 1
covy, (d) = % exp (—ZdTAid) , (2.65)

with A12 = A21 = A1 (Al + AQ)_lAQ = AQ(Al + AQ)_lAl. Given the formulations for

covg;» (d), it is possible to construct the covariance matrices K;; that together compose

Eq. 2.53 as follows:
cov}?(xm —Xj1) ... covii;(xi’l — Xj7N].)

K;; = : 5 ; . (2.66)

cov)i(Xin, —Xj1) ... covl(Xin, — Xjn;)

The hyperparameter set 0 = {vy, ve, wy, wo, Ay, As, By, B, p, 01, 02} completely parametrize

the above equations. The log-likelihood can now be calculated as:

1 1 .. . N +AN
Ly[A,0) = =5 |K| - Sy K™y - -2

5 In(27), (2.67)
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wherey = [y11,. -, Y18, Y21, - -, Y2.n,) | - Learning a model now becomes a matter of
maximizing the log-likelihood L(y|A,#), which is equivalent to the posterior proba-
bility. The predictive distribution for a test point x, on the i*® output is Gaussian

with mean f, and variance V(f,) is given by:

f.=kK'K'y (2.68)

V() =k - k'K 'k, (2.69)

where k = cov), (0) = v? + w? + ¢? and

1

cov}jl (xe —X11)

cov}jl (% — X1,3,)

(2.70)

cov};(x* —Xa1)

i cov)y(Xe — Xo n,) |

Multiple Outputs

The convolution methodology described above can be extended to build models ca-
pable of addressing T' outputs, each defined over a D-dimensional input space. In
general, we assume M independent Gaussian white noise processes X,,, T outputs
Y, and M x T kernels. The kernel k,,;(x) defines the correlation from input m to
output ¢. The auto-covariance (i = j) and cross-covariance (i # j) functions between

processes ¢ and j become:

M
covz?;(d) = Z

1

/ B () s (% + d)dx, (2.71)

and the block matrix K defined in Eq. 2.53 becomes:
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K=| : -~ |. (2.72)

The combined training dataset is now A = {Ay,..., Az}, composed of T individual
training datasets Ay = {(x¢1,¥11) .- -, (Xe.n, Ye.v,) b, each containing N; observations.
The total number of observations is therefore N = Zthl Ny, and the log-likelihood

function becomes:

1 1 N
L(y|A,0) = ~5 In|K|— EyTK_ly Y In(27), (2.73)
where y = [(y11---yin) - (Y1 - ven,) - (Yra .- yr.ng)|? . Finally, the predictive
distribution for a test point x, on the i output is Gaussian with mean f, and variance

V(f,):
f.=kK'K'y (2.74)

V() =k - k'K 'k, (2.75)

where xk = cov}; (0) = v? +w? + 0?7 and

k=[ki, ... kI . ki (2.76)

kJT = [covl-);(x* —Xj1),- - ,COUZ?;(X* —X;n,))- (2.77)

Under this new framework, both computational time and memory requirements are
increased by a factor of ¢ (the number of outputs), becoming respectively O(n3t?) and
O(n*t?). This is due to the now block covariance matrix K, that has to simultaneously
maintain all available training data for each individual output, in order to correctly
model their correlations during the learning and inference stages. This greatly de-
creases the number of points the GP framework can maintain for each specific task,

making sparse approximations even more attractive.
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2.3 Computer Vision for Motion Estimation

Computer vision is a field that includes methods for acquiring, processing, analysing
and understanding images in order to produce numerical or symbolic information. A
common goal in this field is to duplicate the abilities of human vision by electroni-
cally perceiving and understanding an image. This image understanding can be seen
as the disentanglement of symbolic information encoded on its data, using models
constructed with the aid of geometry, physics, statistics and learning theory. Typi-
cal applications of computer vision in robotics include: object detection/recognition,
content-based image retrieval, pose estimation, optical character recognition, motion
analysis (egomotion, tracking and optical flow estimation), scene reconstruction and

image restoration.

The design of a computer vision algorithm is highly dependent on the task at hand.
Some systems are stand-alone applications that aim to solve a specific measurement
or detection problem, while others constitute a sub-system of a larger design. The
specific implementation of a computer vision algorithm also depends on its function-
ality, if it is pre-determined or if some part of it can be learned or modified during
operation. There are, however, some typical functions that are considered part of

virtually every computer vision application:

e Image Acquisition. A digital image is produced by the use of one or multi-
ple image sensors, that include, other than the typical light-sensitive cameras,
range sensors, tomography devices, radar, ultra-sonic cameras, etc. Depending
on the type of sensor, the resulting image may be an ordinary 2D matrix, a 3D
volume or a sequence of frames. The pixel values usually correspond to light
intensity in one or several spectral bands (monochromatic/colour), but may also
be related to various physical measures, such as depth, absorption or reflectance

of sonic or electromagnetic waves, or nuclear magnetic resonance.

e Pre-Processing. Before a computer vision method is applied, it is usually
necessary to process the raw data in order to assure that it satisfies any partic-

ular set of assumptions implied. Examples of pre-processing techniques include
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re-sampling (to assure that the image coordinate system is correct), noise re-
duction (to minimize the amount of false information provided by the sensor),
undistortion (especially if the images are used for measurement), contrast en-
hancement (to assure the detection of relevant information) and scale-space (to

enhance image structures at specific scales).

Feature Extraction. Image features at various levels of complexity are ex-
tracted from the pre-processed data. These features are obtained either on a
pixel level, by maximizing a certain potential function that allows the detection
of structures such as corners, edges or ridges, or as a sub-portion of the image

(blob detection), using differential or local extrema methods.

Detection/Segmentation. At some point during the feature extraction pro-
cess a decision is made in regards to which image points or regions are relevant
for further processing. This step is highly dependent on the task at hand, and
usually falls in one of these two categories: detection of a specific set of interest
points, or segmentation of one or multiple image regions which contain a specific

object of interest.

High Level Processing. At this point all information deemed available from
the image has already been obtained, and it can be applied to a wide variety
of regression/classification /validation algorithms. Most of these algorithms fall
into one of these categories: estimation of a specific set of parameters (regres-
sion), clustering a specific set of features into different categories (classification)
and verification that the data satisfies a specific model-based assumption (vali-

dation).

Decision Making. After all available data has been obtained and processed,
the computer vision algorithm makes a final decision that is passed on to the

main system.

In the particular case of visual odometry, the challenge is to obtain camera motion

from visual information, more specifically optical flow information extracted from
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a pair of frames. The remainder of this section is dedicated to the various steps
necessary to perform this transformation from a purely geometric stand-point. This
framework is extended in the later chapters to include a non-parametric portion,
creating the semi-parametric solution to visual odometry that comprises the main
contribution of this thesis. It starts by providing an overview of feature extraction
and matching techniques, along with methods for outlier removal and optical flow
parametrization, both sparse and dense. Afterwards, it introduces the camera model
used in the experiments and describes the projective equations used to estimate cam-

era motion based on optical flow information.

2.3.1 Feature Extraction

Feature extraction can be considered a form of dimensionality reduction. When the
input data for an algorithm is too large to be processed, and possibly highly redun-
dant, one possible way to shrink the available data to a manageable size without
losing important information is by transforming it into a particular set of features,
also known as feature vector. The act of transforming raw data into a feature vector is
called feature extraction. If the features extracted are carefully chosen, it is expected

that they will encode the relevant information necessary to perform the desired task.

In the context of visual information, features usually represent portions of the image
that contain a particular set of characteristics that are robust to a wide variety of
transformations (i.e. translation, rotation, scale, affine). This repeatability is im-
portant for the later stage of feature matching, in which features are compared to
determine whether or not they are representative of the same environment struc-
ture. This section provides an overview of two different methods for local feature
extraction: the Shi-Tomasi (ST) corner detection and the Scale-Invariance Feature

Transform (SIFT) algorithm.
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Shi-Tomasi Corner Detection

A corner can be defined as the intersection of two edges, or as a point for which there
are two dominant and different edge directions in its local neighbourhood. One of
the earliest attempts at corner detection can be found in [86], where each pixel in the
image is tested to see if it is a corner by considering how similar a patch centered on
the pixel is to nearby, largely overlapping patches. One of the main problems of this
approach is that it is not isotropic, in the sense that if an edge is not in the direction of
its neighbours it will not be considered as a potential feature. This approach was later
improved by Stephens and Harris [46], by considering the differential of the corner
score with respect to direction directly, instead of using shifted patches. Considering
(without loss of generality) a greyscale 2-dimensional image I, with a patch over the
area (u,v) that is shifted by (z,y), the weighted sum of squared differences (SSD)

between these two patches, denoted as S, is given by:

S(z,y) = Z Zw(u, v) (I(u+z,0+y) — I(u,v))>. (2.78)

The term I(u + z,v + y) can be approximated by a Taylor expansion. Let I, and I,
be the partial derivatives of I, such that:

IHu+z,v+y) = I(u,v) + L (u,v)x + I,(u,v)y. (2.79)

This produces the approximation:
S(x,y) ~ ZZw(uw)(lx(u,v)x+Iy(u,v)y)2, (2.80)

which can be written in the following matrix form:

S(x,y) ~ ( vy )A T, (2.81)
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where A is the structure tensor:

L Ly (17) (L)

A= Z Z w(u,v) = . (2.82)
This matrix is a Harris matrix, and the angle brackets denote averaging (i.e. a
summation over (u,v)). If a circular window (or a circular weighted window, such as
a Gaussian) is used, then the response will be isotropic. The covariance matrix for
the corner position is A™!, calculated as follows:

1 Iy —(I:1,)

Y

YT mmm e |

(2.83)

A corner is characterized by a large variation of S in all directions of the vector (x,y).
By analysing the eigenvalues \; and Ay of A, this characterization can be expressed
in the following way: A should have at least one "large" eigenvalue to be a feature.

Based on the magnitudes of eigenvalues, the following inferences can be made:

e If \; = 0 and Ay =~ 0, then the pixel (z,y) has no features of interest.

o If \; =~ 0 and Ay has some large positive value, or vice-versa, then the pixel

(x,y) is considered an edge.

e If Ay and \; have both some large positive value, then the pixel (z,y) is con-

sidered a corner.

Because the exact calculation of the eigenvalues is computationally expensive, requir-
ing the computation of a square root, it is suggested that the following function M,

be used, where x is a tunable sensitivity parameter:

M, = My — k(A + Ap)? = det(A) — k trace*(A). (2.84)

A different method for calculating M. is proposed by Shi and Tomasi in [117], in
which M, = min(\;, A2). It has been shown that this method produces features that
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are more stable for tracking. A corner detector algorithm that uses this method is

commonly referred to as the Shi-Tomasi corner detector.

Scale-Invariant Feature Transform

SIFT features, as proposed in [68|, possess several invariant properties that make
them especially attractive in a wide range of robotic applications. SIFT features
are invariant to translation, scale and rotation, partially invariant to illumination
changes and robust to local geometric distortion. These properties, combined with
the high-dimensional space in which they are projected during the descriptor generat-
ing process, ensures robustness in tasks such as robot localization and mapping [112],
image stitching [13] and 3D scene recognition and tracking [40], although computa-
tional complexity is an issue. Over the years several techniques have been proposed as
an attempt to generalize and /or improve the applicability of SIFT features in different

situations, such as RIFT [63], G-RIF |59], SURF |7] and PCA-SIFT [55].

Within the SIFT framework, features are obtained by localizing the maximum and
minimum values of a Difference-of-Gaussian (DoG) function applied in the scale-
space to a series of smoothed and resampled images. The use of different scales
ensures the invariant property in regards to changes in the size of the structures

observed. Specifically, a DoG image D(x,y, o) is given by:
D(I7y70-) = L(ZL‘,y, /{310') - L($7y7 kj0->> (285)

where L(z,y, ko) is the convolution of the original image I(z,y) with the Gaussian

blur G(z,y, ko) at a scale ko, or:
L(z,y, ko) = G(z,y, ko) x I(z,y). (2.86)

Therefore, a DoG image between scales ko and kjo is just the difference of the
Gaussian-blurred images at such scales. For the scale-space extrema detection in

the SIFT algorithm, the image is first convolved with a series of Gaussian blurs at
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Figure 2.11 - Image courtesy of [68]|, depicting the feature selection process. (a)
Construction of the scale-space for the SIFT algorithm. (b) Example of DoG images
obtained from Gaussian blurs of different ko.

different and increasing scales. The convolved images are grouped by octave (an
octave represents the doubling of 0), and the value of k; is selected so that we obtain
a fixed number of convolved images per octave. The DoG images are then obtained
(Fig. 2.11) by subtracting adjacent Gaussian-blurred images in each octave. To
increase speed, at each octave the image is downsampled by half (which is effectively

equal to doubling o), generating a structure that is similar to a pyramid.

Once the DoG images have been obtained, features are identified as the local mini-
ma/maxima of the DoG images across scales. This is done by comparing each pixel in
the DoG images to its eight neighbours at the same scale and the nine neighbouring
pixels in each of the adjacent scales. If the pixel value is a minimum or a maxi-
mum in comparison to all these pixels, then it is selected as a potential candidate.
This is a variation of one of the blob detection methods developed by Lindeberg [66],
where features are obtained by detecting scale-space extrema in the scale normalized

Laplacian. The Difference-of-Gaussian operator can be seen as an approximation
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to the Difference-of-Laplacian, with the implicit normalization in the pyramid also

constituting a discrete approximation to the scale normalized Laplacian.

The scale-space extrema detection usually generates a large amount of candidate
features, some of which are unstable. The next step in the algorithm consists of
a detailed fit to the nearby data for accurate location, scale and ratio of principal
curvatures. This process allows the rejection of candidates with low contrast (and
therefore sensitive to noise) or that are poorly localized along an edge. The interpo-
lated location of each extremum is done using the quadratic Taylor expansion of the
Difference-of-Gaussian scale-space function, D(x,y, o), with the candidate feature as
the origin. This Taylor expansion is given by:

oDt 1 4+0°D

X — 2.
. X+ ox R (2.87)

D(x) =D +

where D and its derivatives are evaluated at the candidate feature location y = (u, v)
location, and x = (x,y, o) is the offset from this point. The location of the extremum,
X, is determined by taking the derivative of this function with respect to x and setting
it to zero. If the offset is larger than 0.5 in any dimension, this means that the
extremum lies closer to another candidate feature. In this case, the candidate feature
is changed and the interpolation is performed instead about that point. To discard
features with low contrast, the value of D(x) is computed at the offset %, and if this
value is less than a given threshold the candidate point is discarded. Otherwise, it is

kept with a final location y + x and scale o.

The DoG function will also have strong responses along edges, even if the candi-
date feature is not robust to small amounts of noise. Therefore, features with poorly
determined locations but high edge responses should be eliminated. For poorly de-
fined peaks in the DoG function, the principal curvature across the edge should be
much larger than the principal curvature along it. Finding these principal curvatures

amounts to solving for the eigenvalues of the second order Hessian matrix:

DICE DCE
H= Y (2.88)
Dmy Dyy
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(@ (b)

Figure 2.12 — Results using different feature extraction methods. (a) SIFT features.
(b) Shi-Tomasi features.

The eigenvalues o and [ of H are proportional to the principal curvatures of D, and
the ratio of these two eigenvalues is defined as r = o/, with @ > (. Fortunately, this
ratio can be obtained without calculating the eigenvalues explicitly, using instead the
trace Dy, + D,y and the determinant D, D,, — D7,. The ratio R = tr(H)*/det(H)
is shown to be equal to (r + 1)?/r, which depends only on the ratio of eigenvalues
instead of their individual values. Therefore, the higher the value of R the higher
the absolute difference between o and [ will be, and if R is greater than a certain
threshold the feature is considered poorly localized and discarded. This technique is
a transfer from a corresponding approach in the Harris operator for corner detection,

where the Harris matrix (Eq. 2.82) is used instead of the Hessian (Eq. 2.88).

2.3.2 Feature Matching

As stated previously, a good feature should be robust to a series of transformations, to
allow for posterior matching with features obtained in different images. The feature
matching process is the basis for most computer vision algorithms, where the goal
is to detect and recognize structures on new data based on available information.
This is done by comparing the descriptor of each feature, which is a (usually high-

dimensional) vector d € R° that represents the information encoded in that portion
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of the image. A distance metric is defined to quantify the difference between d; and
d; in this S-dimensional space, usually the L; (Eq. 2.89) or Ly (Eq. 2.90) norms,
and techniques such as k-d trees [85] are used to find the nearest neighbour. If the
dimensionality is too high, k-d trees are inefficient and approximate techniques [105]

are commonly used for speed purposes.

S
Ly(di, dj) = |dis — dj] (2.89)
s=1
S
Lo(di, dy) = (| D (dis — d;.0)? (2.90)
s=1

Visual descriptors can be divided into two categories |78|: General Information De-
seriptors and Specific Domain Information Descriptors. The first category comprises
low-level descriptors, which encode raw information such as colour, shape, texture
and motion. The second category comprises more semantic descriptors that usually
cannot be obtained directly, such as object classification and scene recognition re-
sults. We will focus here on the first category, which can be further divided into the

following sub-groups [78]:

e Colour. The most basic quality of visual information. It can be organized
into five different parameters: Dominant Colour Descriptor (DCD), Scalable
Colour Descriptor (SCD), Colour Structure Descriptor (CSD), Colour Layout
Descriptor (CLD) and Group of Frames (GoF).

e Texture. Another important aspect in image description, texture information
characterizes a region’s homogeneity and is usually obtained using histograms.
It is composed of three different parameters: Homogeneous Texture Descriptor
(HTD), Texture Browsing Descriptor (TBD) and Edge Histogram Descriptor
(EHD).

e Shape. Comprises segmented information similar to that a human would use to

recognize objects. Even though current algorithms are still not able to provide
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such information, there are several methods that are considered a good approx-
imation. It is also composed of three different parameters: Region-based Shape
Descriptor (RSD), Contour-based Shape Descriptor and 3-D Shape Descriptor
(3DSD).

e Motion. Describes movement in a video sequence. This movement may be
due to the presence of dynamic objects or to the camera’s own motion. This
descriptor set is composed of four different parameters: Motion Activity Descrip-
tor (MAD), Camera Motion Descriptor (CMD), Motion Trajectory Descriptor
(MTD) and Warping and Parametric Motion Descriptor (WPMD).

Two different descriptors commonly found in the literature are discussed below:
Colour Patches and Gradient Orientation Histogram, also known as the SIF'T descrip-
tor |68]. Initially the most basic version of the Colour Patch descriptor is presented,

and then gradually improved until it approaches the STFT descriptor.

Colour Patch Descriptor

The naive approach to the Colour Patch descriptor consists in placing a N x N window
(Fig. 2.13) centered at the pixel coordinate (u,v). The pixel intensity of each window
cell is then stored as the descriptor, generating in the case of a monochromatic image
a N2-dimensional descriptor vector. This method is invariant to translation, but
will behave poorly when faced with rotation, blur and illumination changes (or any
transformation that changes the colour space). A weight mask can be used to decrease
the impact of pixels far from the center point in the calculations, thus increasing
the descriptor’s robustness to small changes in orientation. To counter illumination
changes in the scene, and other transformations in the colour space, the patch can
be normalized by enforcing a unit length constraint. Now, global changes in pixel
intensity will not have any effect on the final descriptor. If a RG B image is available,
the descriptor can be extended to include patches in each colour channel, resulting in

a 3N?2-dimensional vector.
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Figure 2.13 — Example of a 7 x 7 window being used to create a pixel intensity matrix,
centered around the red square.

A descriptor vector created directly from a sequential patch will be sensitive to its
orientation, and also to minor changes in local pixel intensity. In this scenario, doing
a value-by-value comparison of descriptors could lead to poor matching performance,
especially if both images are taken from a significantly different vantage point. An
alternative approach to directly storing individual pixel information consists in us-
ing histograms, which eliminate small positional errors by clustering similar values
together. Assuming a histogram with M bins, the resulting descriptor will be a M-
dimensional vector. The same normalization process described previously can also be
applied in this scenario. If the window size is sufficiently large, multiple histograms
may also be applied to different portions of the patch, resulting in a P/N-dimensional

descriptor vector, where P is the number of histograms.

Finally, instead of pixel intensities, the intensity gradients could be used to encode
colour information. The most common method of obtaining these intensity gradients
is to apply the 1-D derivative mask [—1,0, 1] for horizontal gradients and [—1,0, 1]7
for vertical gradients. Other derivative masks can also be used, such as the 3 x 3
Sobel masks, however it has been shown [23] that these usually exhibited poorer per-
formance, along with the use of Gaussian smoothing before applying the masks. The

colour histograms now become orientation histograms, storing the individual orien-
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tation of each pixel according to its neighbours, and the most frequent becomes the
dominant orientation. By aligning the dominant orientation of different descriptors,

it is possible to achieve rotational invariance.

SIFT Descriptor

The SIF'T descriptor combines all techniques described previously, resulting in a 128-
dimensional vector that is invariant to translation, scale and rotation, partially in-
variant to illumination changes and robust to local geometric distortion. Assuming a
Gaussian-smoothed image L(x,y, o), the gradient magnitude m(z,y) and orientation

0(z,y) are precomputed using pixel differences:

m(z,y) = /(L(z +1,y) = Lz — 1,y))* + (L(z,y + 1) = L(z,y — 1))*  (2.91)

(2.92)

0(z,y) = arctan (L(”“"’y 1) = Ly = ”) |

Lz +1,y) — Lz — 1,y)
This magnitude and orientation calculation for the gradient is done for every pixel
in a neighbouring region around the feature. An orientation histogram of 36 bins is
formed, with each bin covering 10 degrees. Each sample in the neighbouring region
added to a histogram bin is weighted by its gradient magnitude and by a Gaussian-
weighted circular window with a ¢ that is 1.5 times higher than that of the feature
scale. The peaks in this histogram correspond to the dominant orientations. Once
the histogram is filled, the orientations corresponding to the highest peak and local
peaks that are within 80% of the highest peak are assigned to the feature. In the case
of multiple orientations being assigned, an additional feature with the same location

and scale as the original feature is created for each additional orientation.

Up to this point the orientation assigned ensures invariance to translation, rotation
and scale. The next step is to convert this information into a vector that is both highly
distinctive and partially invariant to other transformations, such as illumination and
affine. First, a set of orientation histograms is created using values of samples in a
16 x 16 region around the feature, such that each histogram contains samples from

a 4 x 4 subregion of the original neighbourhood region (Fig. 2.14). The magnitudes
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Figure 2.14 — Example of SIFT descriptor. The 16 x 16 square window around the
feature is divided into 4 x 4 histograms, each one composed of 8 bins (the yellow
circle is a Gaussian mask weighting the contribution of each pixel gradient). The
resulting descriptor is therefore a 128-dimensional vector.

are further weighted by a Gaussian function with o equal to half the width of the
descriptor window. The descriptor then becomes a vector of all the values of these
histograms, and since there are 4 x 4 = 16 histograms, each with 8 bins, the vector
has 128 elements. This vector is then normalized to a unit length in order to enhance

invariance to affine changes in illumination.

Even though 128 dimensions may seem a high number, descriptors with lower di-

mensionality do not perform as well across the range of matching tasks [69], and

Figure 2.15 — Example of matching using the SIFT algorithm, and the impact of
outliers on the final result.
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the computational cost remains low by using the Best-Bin-Fit (BBF) approach to
find the nearest neighbour. Longer descriptors continue to perform better but not
by much, and there is an additional chance of increasing sensitivity to distortion and
occlusion. It is also shown that feature matching accuracy is above 50% for viewpoint
changes of up to 50 degrees, thus rendering the descriptor partially invariant to affine

transformations.

2.3.3 Outlier Removal

Regardless of how robust a descriptor might be, there will always be a chance of
obtaining false matches, which are instances of matching in which features corre-
sponding to one structure in the image will be falsely correlated to features belonging
to another structure. This is caused by a variety of reasons, such as structure similar-
ity, radical changes in viewpoint or luminosity, textureless regions or occlusion. Fig.
2.15 is an example of a matching set obtained from two images of the same structure
taken from a different perspective, using the SIFT descriptor and the least-squares
metric for distance. It is possible to see that the matching algorithm was able to
correctly correlate most of the repeating structures, however there are several errors

caused mostly by similar patterns in the sky and rocky terrain.

A false match can be seen as a particular case of an outlier, which is an observation
that is numerically distant from the rest of the data, deviating significantly from the
other members of the sample in which it occurs. Assuming a static environment (as
is the case in Fig. 2.15), it is obvious that all motion experienced by the features will
be caused by the camera’s own translation and rotation between frames. Therefore,
there is a constraint that all pairs of matched features must share, and any pair that

does not comply to this constraint must be an outlier and should be discarded.

A popular method of outlier detection and removal is the RANSAC (RANdom SAm-
ple Consensus) [35], an iterative algorithm used to estimate the parameters of a
mathematical model from a set of observed data which contains outliers (Fig. 2.16).

It is a non-deterministic algorithm in the sense that is produces a reasonable result
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only within a certain probability, with its probability increasing as more iterations
are allowed. In broad terms, it draws a random subset from all available observations,
from which a hypothetical model is generated, and the remaining observations are
then tested against this model, producing a hypothetical inlier set. This process is
repeated many times, and the model with the highest number of hypothetical inliers
is assumed to be the correct one. A pseudo-algorithm describing the RANSAC steps
in more details is shown in Algorithm 2.1. Tt is possible to avoid the explicit deter-
mination of k£ as a fixed number of iterations for the algorithm, enforcing instead a
percentage p that all points used to generate the model are in fact inliers. In this

case, the value of k becomes:
log(1 —
= 1oel=p) (2.93)
log(1 — wn)

where w is the ratio of inliers points to the total number of points (usually obtained

from a rough estimation) and n is the number of points necessary to define the model.
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Figure 2.16 — Effect of RANSAC in linear regression. The red line indicates the
resulting linear model that fits all observed data, and the blue line indicates the
resulting linear model that fits the remaining observations after all outliers have
been removed (95% probability).
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Algorithm 2.1: The RANSAC algorithm

data - set of observations
model - model used to fit the data
n - minimum number of points required to fit the model
k- number of iterations performed by the algorithm
t - threshold for determining whether a point fits a model
d - minimum number of data values required to fit a model
best _model - model parameters that best fit the data
Output: best _set - inlier set for the best model
best _error - the error of best _model relative to the data
iterations = 0
best _model = best _set = null
best _error = oo

while iterations < k do
maybe _inliers = n randomly selected points from data

maybe _model — model parameters fitted to maybe inliers
current__set = maybe _inliers
foreach point not in maybe inliers do

if point fits maybe _model with error <t then
| add point to current set

end

Input

end

if size of current _set > d then
this _model = model parameters fitted to current set

this _error = measure of how well this model fits current set
if this_error < best _error then
best _model = this_model
best _set = current _set
best _error = this_error
end
end

iterations — iterations + 1
end

return best _model,best _set,best _error

In the particular case of visual outliers, this model is the camera model itself, which
is dependent on the type of camera used. The next section will describe the pinhole

camera model, which is used during the experiments conducted in this thesis.



62 Theoretical Background

Figure 2.17 — Matching set after the application of RANSAC (compare to Fig. 2.15).

2.3.4 Pinhole Camera Model

The pinhole camera model describes the mathematical relationship between the co-
ordinates of a 3D point and its projection onto the image plane of an ideal pinhole
camera, where the camera aperture is described as a point and no lenses are used to
focus light. Consider P = (X,Y, Z)T € R to be a point in the tridimensional space
(a world point) that is mapped to the feature point p = (z,y)T € R? in the 2D image
plane (Fig. 2.18a). Initially, we assume that the image plane is mirrored along the
Z-axis in front of the camera between the optical center and point P. There are two
coordinate systems, the camera coordinate system XY Z and the image coordinate

system xy, and the points P and p are fixed in relation to each of them respectively.

Looking at Fig. 2.18b, we see that the distance between the optical center and the
image plane is the focal length f. The following relations can then be obtained using
the Interception Theorem: x = fX/Z and y = fY/Z, which if combined into a vector
become:

) [ IX2) (2.94)

Y Yz

The next step is to project P and p into their projective coordinates, also known
as homogeneous coordinates [47]. These coordinates have the advantage of allowing

the representation of points at infinity using finite values, and formulas involving
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Figure 2.18 — Pinhole Camera model.

homogeneous coordinates are often simpler and more symmetric than their Cartesian

counterparts. The new coordinate values for P and p are now:

T

Using homogeneous coordinates we can rewrite Eq. 2.94 as such:

fX/Z fX
x fX/Z
“\ vz =y =] rviz =] v [, (2.96)
Y 1 Z
which, if put in matrix form, becomes:
f 0 .
x
= 0 00 v (2.97)
Y 7 :
1 0 0
1

From this basic formulation other camera parameters, other than the focal length, can

be added to increase the model’s ability to deal with real situations. For example, we
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can remove the assumption that the origin of the image coordinate system is located
in the image’s center by adding an offset ¢, and ¢, to each axis. Also, in digital
images the vertical and horizontal pixel size may be different, and therefore the focal
lengths f, and f, will also differ in each axis. The angle between the x and y pixel
axes may also be defined as a, modelling lens distortions. Taking all these parameters

into consideration, Eq. 2.97 becomes:

k. f k.c, 0O X f 0 X
0 k,f kyu, O Y 0 f 0 ¥ (2.98)
— C g C , .
Y y yCy 7 y Gy 7
1 0 0 1 0 0 0 1 0
1 1

where k, and k, are the number of pixels per unit of length (resolution) in each
camera axis. Finally, the pinhole camera model should also consider differences in
rotation and translation between the two coordinate systems. This is done by the

introduction of a transformation matriz T', such that:

X
x fo a o Tew Tay Taz to v
U 0 fy ¢ Tyz Tyy Tyz by 7 (2.99)
1 \ 0 0 1 Tew Tay Tzz Lz ]
C T

The matrix C'is the calibration matriz, and governs the camera’s intrinsic parameters,
whereas the transformation matrix 7" governs the camera’s extrinsic parameters. The
intrinsic parameters are internal to the camera and are obtained using calibration
methods, while the extrinsic parameters define the position and orientation of the
camera in relation to a global coordinate system. The next section will delve deeper
into the problem of estimating the extrinsic parameters of one camera in relation to

another, a problem commonly known as the structure from motion problem.
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2.3.5 Structure from Motion

Structure from motion (SFM) refers to the process of finding the three-dimensional
structure of an object by analysing the changes in an observing sensor over time.
Basically, it attempts to recover 3D structure from 2D data, in this case the projection
of the environment on an image. Conversely, if the same point (assumed static)
is observed from a different perspective, it is possible to use this information to
recover the sensor distance between images. In the particular case of a single camera,
this distance is equivalent to the translation and rotation between frames. The set
of equations that governs these homogeneous projections from the 3D space to 2D

images, assuming a pinhole camera model, is known as epipolar geometry [47).

An example of the epipolar geometry between two cameras is shown in Fig. 2.19,

where they are both looking at point X. In reality, the image plane is actually behind

X

o/

_t 5
I\B/Ia
Figure 2.19 — Epipolar geometry between two cameras. The same point P in the 3D

space is observed by images I and I’, generating the respective projections p and

p’. The red lines represent the epipolar lines in each image, with e and e’ being the

epipoles. The transformation between the two cameras is given by the translation
vector t and the rotation matrix R.
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the center of projection and produces a rotated image, however here the projection
problem is simplified by placing a virtual image plane [ in front of the center of
projection O of each camera. The projection of X in image [ creates x, and e is the
epipolar point, representing the projection of Q" also in image I. The line (x — e) is
the epipolar line, and it represents the projection of (X — O’) in image I. Because
the center of projection O is fixed for this particular configuration, this means that
all epipolar lines in I must intersect on e. In fact, any line which intersects e is an
epipolar line, since it can be derived from some 3D point. The same principles can
also be applied to the other camera, generating the image point x’, the epipolar point
e’ and the epipolar line representing the projection of (X —0O) in image I’. The points
X, O and O’ form a plane 3 called the epipolar plane, and all epipolar planes and

epipolar lines must intersect the epipolar points regardless of where X is located.

The epipolar constraints created by this particular geometry can be codified in a
3 x 3 matrix F that describes the correlation between points x and x’, called the
fundamental matriz. If x is observed, then its matching point x’ in the other image
must lie in the epipolar line created by (X — O), as depicted in Fig. 2.20. In other
words, F' must satisfy:

xTFx = 0. (2.100)

(b)

Figure 2.20 — Example of epipolar lines. For each point in (a) there is an epipolar line
defined in (b), and it is possible to see that each of these lines pass on their corre-
sponding points in the other image (these points were selected manually, without a
corresponding match).
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Being of rank two and determined only up to scale (x’ may lie in any point of the
epipolar line defined by x), the fundamental matrix can be estimated given at least
seven point correspondences, X, = (T, yn, 1)T and x/, = (21,,y,,1)T. If eight points
are available, the solution can be obtained by solving a linear system (Eq. 2.101),
and if more than eight points are available the solution can be obtained using least-
squares error. Since the matching set will often contain outliers, techniques such as

RANSAC (Algorithm 2.1) are used to elect the most probable hypothesis.

Jin
Ji2
Ji3
Ty Ty T oyim i Y v oy 1 Jz
: S : fao | =0 (2.101)
TpTn TpYn Tn YpTn YnYn Yp Tn Yo 1 fas
f31
fa2
J33

If the calibration matrix C, as defined in Eq. 2.99, is known, the essential matrizc
can be obtained (Eq. 2.102). The essential matrix further explores the correlation
between two matching points x and x” by using the camera’s intrinsic parameters to
provide an estimation of relative translation t (up to a scale factor) and rotation R
between frames. To be an essential matrix a 3 X 3 matrix must have two singular
values, which are equal to each other, and another which is zero. An essential matrix
has only five degrees of freedom: three from the translation vector t and three from
the rotation matrix R, but there is an element of scalar ambiguity that must be
subtracted from this total, resulting in five degrees of freedom. This means that the
essential matrix is an element of a projective space, that is, two essential matrices are

considered equivalent if one is a non-zero scalar multiplication of the other.

E =C"TFC = R[t] (2.102)
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The following method to determine R and t is derived from [47], and it is based on
performing a singular value decomposition (SVD) of the essential matrix E. It is also
possible to obtain R and t directly, without performing SVD, as shown in [67]. The

singular value decomposition of E gives rise to:
E=Uxv", (2.103)

where U and V' are orthogonal and X is a 3 x 3 diagonal matrix defined as:

s 00
YX=10s 0 |. (2.104)
000

The diagonal entries of 3 are the singular values of F/, which according to the internal
constraints of the essential matrix must consist of two identical values s and one zero
value. If F is approximated from available data, this constraint is usually enforced
by finding the average of the two highest values and setting the third one to zero. An

auxiliary skew-symmetric matrix W is then defined as:

0 -1 0 0 10
W=|1 0 o, with w'l=wr=| -10 0 |. (2.105)
0 0 1 0 01

From the matrices defined above four different configurations are possible, depending
on the sign of t (which direction the camera is pointing) and the orientation of R (if

the camera rotates clockwise or counter-clockwise). These four possible solutions are:

[Rt]; = [UWVT| —VIVEVT] (2.106)
[Rlt]y = [UWVT| + VIWEVT] (2.107)
[R[t]s = [UWTVT| —vIWEVT] (2.108)

[R[t], = [UWTVT| + vIvsVT] (2.109)
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It turns out that only one of these solutions are physically possible (Fig. 2.21),
given the camera configuration. Given a pair of corresponding image coordinates,
three of the solutions will always produce 3D points that are behind at least one of
the cameras, and therefore cannot be seen by it. Only one of the four solutions will
consistently produce 3D points that are in front of both cameras, and obviously this

will be the right one, albeit an undetermined scaling factor.

The resulting translation and rotation matrices are then used as the motion estimates
between frames, providing a full 6 degree of freedom velocity vector. Further process-
ing, such as bundle adjustment [126], could in principle be used to further refine these
estimates, however this was not explored in this thesis since the same techniques could
also be applied to the proposed machine learning based visual odometry algorithm.
The same could be said about any further improvements on this basic geometric model
[17, 92, 109], since in Section 4.1.4 it is shown how to incorporate these estimates into
the GP framework. Better estimates would only lead to a better starting value for
the non-parametric model to improve using training information. In addition, other
techniques were tested, such as 1-Point RANSAC [106] and Mono-SLAM [24], as a
way to show how state-of-the-art traditional visual odometry algorithms compare to

the proposed approach.

It is also important to note that, since this is a monocular configuration, the trans-

lation vector is recovered only up to a scale factor, because of the parallax effect
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Figure 2.21 - Four possible solutions obtained from the singular value decomposition of
the essential matrix. Note that only in (a) the 3D point is in front of both cameras,
and therefore is the correct solution. In (b) the direction of the translation vector
is reversed, and (c¢) and (d) are the "twisted pairs", related to each other by a 180°
rotation about the baseline.
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(an object could be close and moving slowly or far away and moving fast). Several
approaches have been proposed to deal with this limitation, while keeping a monocu-
lar configuration [107, 109, 137], however they usually require either an extra sensor
capable of recovering absolute distance or very specific circumstances (i.e. a ground
planar assumption or pure rotation). Because the focus of this thesis is the develop-
ment of a visual odometry solution capable of addressing situations in which there is
no knowledge of the visual system or environment around the vehicle, using only vi-
sual sensors during the inference stage, these techniques were not explored here. The
geometric model discussed previously was also able to generate reasonable estimates
even in tridimensional unconstrained outdoor navigation (see 4.3.2), a scenario in
which most state-of-the-art visual odometry algorithms struggle with, because they

are mostly focused on ground applications or low-velocity flights.

2.4 Summary

This chapter explored two important areas of research in robotics: regression, in par-
ticular Bayesian regression and Gaussian processes; and computer vision, in particular
the structure from motion problem. The literature in both these areas is vast and the
material presented here is only meant to provide an overview of the techniques used

throughout the remainder of this thesis.

Bayesian inference offers a powerful framework capable of addressing numerous is-
sues present in robotics. It allows the modelling of complex systems within a realistic
probabilistic setting, and this has led to their increase in popularity over the years,
especially as computational power now makes online Bayesian inference possible.
Gaussian process regression has already been responsible for several advancements
in state-of-the-art algorithms in areas such as localization, mapping, control theory,
reinforcement learning, manipulation, among many others. Again, recent increases in
computational power and storage make the use of non-parametric models more and
more attractive, since vast amounts of data can now be maintained and processed in

a timely manner.
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Visual sensors are now common-place in robotics, for a variety of reasons: cameras
are cheap, compact, relatively inexpensive, have a wide field of view both vertically
and horizontally, and are able to provide a rich representation of the environment.
The colour and texture information encoded in an image allow for tasks that no other
sensor can accomplish, such as traffic signs and optical character recognition, and
also substantially improve results on other tasks such as object recognition, tracking,
scene reconstruction, and many others. In the particular case of motion estimation
problems, visual sensors are attractive because they can provide estimations in the
full six degrees of freedom that constitute 3D navigation, and are not dependent on

any particular method of locomotion.
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Chapter 3

Learning Visual Odometry Estimators

The aim of this chapter is to combine the tools and techniques introduced in the
previous chapter to create a unified framework for visual odometry, using information
extracted from a pair of frames to estimate camera translation and rotation!'. As
mentioned previously (Problem Statement, Section 1.2), most current visual odometry
algorithms rely on a geometric model to provide translation and rotation estimates,
and are therefore limited to the complexity of this model and the correct estimation of
its corresponding calibration parameters. In fact, this approach is present in virtually
all visual odometry literature, ranging from monocular [9, 25, 61| to stereo [52, 56,
86, 146| configurations, including the use of omnidirectional cameras [18, 108, 109,
128| and data fusion with other sensors, such as a IMU [57] or a low-cost GPS |2].
Several successful techniques for calibration have been proposed, however there is no
guarantee that the resulting parameters will not change over time, due to vibration,
mechanical shocks or changes in temperature. Self-calibration algorithms [17, 34] are
able to track and auto-correct changes in calibration parameters, however they still

assume a known pre-determined geometric model, which limits flexibility.

Alternative approaches to visual odometry, that rely on machine learning techniques

instead of the standard geometric models, are still scarce and experimental, and

!The contents of this chapter were presented at the International Symposium on Experimental
Robotics (ISER) 2010, under the title Multi- Task Learning of Visual Odometry Estimators [41].
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insofar as this thesis is concerned can be limited to works of Roberts et al. In [102]
the authors use a KNN-learner voting method to estimate a vehicle’s velocity and
turn rate, with each learner taking as input the average of the sparse optical flow in
a grid-divided image. Subsets of the sparse optical flow distribution are used to cope
with a variable dimensionality, and a study is conducted to verify the impact of such
dimensionality reduction in the results. A similar idea is explored in [103], where a
constant pixel depth is assumed and the Expectation-Maximization (EM) algorithm
[26], in conjunction with an extension to PPCA [131], is used to perform a linear
mapping between sparse optical flow and incremental motion. A generative model is
used to estimate each optical flow subspace using only the observed measurements,
and a per-pixel Gaussian mixture outlier process is used to deal with image regions

that violate the constant pixel depth assumption.

The most interesting and attractive aspect of using machine learning techniques, in
particular non-parametric models, to perform the transformation from image infor-
mation to camera motion is that it improves on the aspect of camera calibration.
By eliminating the use of a strictly geometric model, the calibration methodology is
substituted by a training process in which available data is used to optimize a much
more flexible non-parametric model, capable of capturing nuances of the underly-
ing function that a strictly geometric model cannot, due to inevitable simplifications
in the modelling process. This non-parametric model is then able to, by exploiting
similarities in optical flow distribution between training and testing images, provide
motion estimates that do not make a prior assumptions in regards to environment
structure or camera configuration. Thus, the same visual odometry framework can
be readily applied to any visual system and platform, provided that the training and

testing datasets are obtained under similar conditions.

This thesis introduces the use of Gaussian processes (GPs) as the non-parametric tool
used to perform this transformation from image information to camera motion. GPs

possess several properties that make them especially attractive for this application:

e Kernel functions. The Gaussian process literature contains a vast number of

covariance functions that are able to account for different relationships between
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inputs. The correct selection of which covariance function, or combination of
covariance functions, to use allows the GP framework to correctly model global
and local patterns of optical flow throughout the image. The training pro-
cess automatically learns the parameters for these covariance functions, using

examples that serve as samples from the unknown underlying function.

e Bayesian treatment of uncertainty. As a Bayesian inference tool, the GP
framework allows for the introduction of prior distributions, reflecting our be-
liefs on how different aspects of the algorithm should evolve over time. The
treatment of uncertainties in a probabilistic fashion also increases the algo-
rithm’s robustness to differences in training and testing data. As information
obtained during navigation deviates from the information used during training,

the uncertainty in estimation increases.

e Multiple outputs. A visual odometry system is almost always a multiple out-
put algorithm, as most vehicles possess more than one velocity component that
has to be estimated during navigation. This thesis explores both constrained 2D
navigation, with two velocity components (forward and angular motion on the
ground plane) and unconstrained 3D navigation, with six velocity components
(linear and angular velocities in all three axes of motion). The Multiple-Output
GP framework (MOGP) is capable of exploring the dependencies generated by
vehicle constraints to improve results in each particular motion estimate. This
thesis also extends the MOGP framework to allow the simultaneous estimation

of all outputs, providing a full covariance matrix of uncertainties.

e Scale recovery on a monocular configuration. If the ground-truth data
used during training contains scale information (i.e. it was obtained using a
range sensor), the resulting non-parametric model will encode this information
and provide an estimate for scale in new data as well, even in monocular con-
figurations where scale recovery is not a trivial task. Again, as training data
deviates from testing data this scale estimation will become less accurate, and

the corresponding uncertainty will increase to reflect this deviation.
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This chapter presents and describes the proposed visual odometry algorithm using
Gaussian processes, explaining its various stages and components from the initial
feature extraction from a pair of images to the final motion estimation between frames.
It starts by providing an overview of the algorithm, introducing its various stages
and components and how they relate to each other. It then describes how the input
vector for the GP framework is obtained from sparse optical flow information between
frames, in such a way that it maintains a fixed dimensionality and preserves spatial
structure. Afterwards, the GP inference process is described, with emphasis on the
vehicle models used in the 2D and 3D scenarios and on the selection of the covariance
function that best models the optical flow distribution throughout the image. Finally,
it concludes by presenting and discussing experimental results obtained using both
ground and aerial vehicles, along with comparisons with other techniques and possible

shortcomings that will be addressed in the next chapter.

3.1 Algorithm Overview

A diagram of the proposed visual odometry algorithm is presented in Fig. 3.1, with all
its main steps and stages. This is a simplified version of the algorithm, containing only
the basic components necessary to perform visual odometry. This basic algorithm will
be further extended in the next chapter to include more functionalities (compare to
Fig. 4.1). It is iterative, in the sense that it estimates camera translation and rotation
between frames, and this motion estimate is then integrated over time to generate a

pose estimate according to a global coordinate system.

As input the algorithm receives two images, IM G, and IMG,, obtained using the
same camera at different time intervals. It is assumed that these images contain a
significant amount of overlapping, enough to allow a substantial matching between
them, and also that the environment is static, so all motion observed is due to the
camera’s own translation and rotation (an assumption that will be relaxed in Chapter
5). As output the algorithm returns the velocity vector Y, containing estimates for

all degrees of freedom involved, along with a corresponding ¥, covariance matrix.
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Figure 3.1 — Diagram of the proposed algorithm (simplified version). The Optical Flow
Parametrization stage deals with the processing of a pair of images, generating the
vector X9 that will serve as input for the Gaussian Process Framework, the second
stage. The Gaussian Process Framework can be further divided into Training, where
the optimized hyperparameters are obtained using a training dataset (X, Y )rg, and
Inference, where these hyperparameters are used to map the input vector Xis into
the mean vector Y12 and covariance matrix Y19, that contain the motion estimates
for all degrees of freedom and their corresponding uncertainty values.

In this basic implementation X5 is diagonal, containing one uncertainty estimate
for each degree of freedom. Furthermore, a training dataset is deemed available,
containing a set of images Xrgr and their corresponding ground-truth information
Yrr, obtained from a different and independent sensor. For now we assume that this
training dataset was collected under similar conditions (i.e. using the same vehicle

and camera configuration, but from a different trajectory).

The proposed algorithm can be divided into two main stages: Image Information
Extraction and Gaussian Process Framework. The first stage is responsible for pro-
cessing both images and generates an input vector Xj» containing the optical flow
information between frames. This input vector is then passed to the second stage,
responsible for mapping this input into the velocity estimate YY), and covariance X;s.
This mapping between inputs and outputs is performed using the hyperparameters

obtained during a training process conducted prior to the beginning of navigation,
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utilizing the training dataset (X,Y)rr. The next sections describe these two stages

in further detail.

3.2 Image Information Extraction

The proposed approach uses sparse optical flow information from a pair of monochro-
matic images obtained using a single camera configuration (the camera is pointing
forward in the case of 2D navigation and downwards in the case of 3D navigation).
Dense optical flow methods, such as Lucas-Kanade [71], were also explored but dis-
carded due to the number of parameters that needed to be manually determined,
and also due to a wide variation in performance in different environment and driving
conditions. A histogram filter is applied to all images, to account for global changes
in luminosity. The environment around the vehicle is assumed to be mostly static,
so any optical flow detected is solely due to the camera’s own translation and ro-
tation, and the frames-per-second rate is also assumed to be constant to allow the
direct transformation from vehicle velocity to vehicle displacement. No other prior

knowledge of the environment and/or visual system is necessary.

3.2.1 Optical Flow Parametrization

The initial feature extraction and matching processes are conducted using a combina-
tion of both the SIFT and the Shi-Tomasi corner detection algorithms (as described
in Section 2.3.1), with sub-pixel accuracy and frame-to-frame tracking. This is done
in order to ensure a dense distribution of features throughout the entire image, that
can be translated into optical flow estimations without large gaps. Empirical tests
show that the invariance properties of SIFT features ensure robustness during the
matching process, whereas the Shi-Tomasi corner detector is particularly suitable for
tracking over a series of frames. Any other similar method could be readily applied,

both for speed purposes [7] or as a way to model different environment properties.
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Examples of initial feature sets F'T'R in 2D navigation for two particular frames are
presented in Fig. 3.2a, along with the corresponding matching sets MT'C' obtained
in relation to their subsequent frames (Fig. 3.2b). Each matching pair is depicted by
a line connecting both features, and it is possible to see a substantial amount of false
matches, mostly due to structure similarity, poorly textured regions and occlusion
caused by changes in viewpoint. These false matches are then removed using the
RANSAC algorithm, as described in Section 2.3.3. If the environment is considered
mostly static, it is natural to assume that the most probable motion hypothesis
elected by RANSAC will correspond to the camera’s own motion. This step is also
useful in minimizing the interference of dynamic objects, since their features will
generate matches that are not consistent with the most probable motion hypothesis,

and therefore will be discarded as outliers.

The resulting inlier sets I N L are depicted in Fig. 3.2¢, and the corresponding epipolar
lines generated by RANSAC, representing the most probable motion hypothesis, are
presented in Fig. 3.3. Features were tracked for an average of 6 frames, and the

overlapping regions ranged from 90% (forward motion) to 75% (hard turns).

(b)

Figure 3.2 — Image information extraction in 2D navigation for the particular cases of
forward motion (first row) and counter-clockwise rotation (second row). (a) Initial
feature sets. (b) Initial matching sets. (c) Inlier sets, after RANSAC.
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(a) (b)

Figure 3.3 — Epipolar lines in 2D navigation for the particular cases of (a) forward
motion and (b) counter-clockwise rotation.

3.2.2 Preserving Spatial Structure

A straightforward way of generating the input vector Xi, from the inlier set /N L,
would be to use the individual optical flow information from each matching pair
directly. In this scenario, X5 would be a vector of size N D, where N is the number of
inliers and D is the number of components used to describe each individual optical flow
estimate. However, the direct use of individual optical flow information to generate
X1 would incur two problems that need to be addressed before a suitable input vector

for the GP framework can be produced:

e Different Sizes. Two different pairs of images will most certainly generate
inlier sets of different sizes, which would change the final dimension of X,
as a N D-dimensional vector. This would in turn change the nature of the
underlying function that the GP is attempting to model, as the input space

would be different for each input vector and therefore not comparable.

e Different Distributions. Two different pairs of images will mostly certainly
generate inlier sets with a different distribution throughout the image, reflecting
different portions of the overall optical flow configuration. Since optical flow
information depends heavily on pixel coordinate (each portion of the image
reacts differently to vehicle motion), any comparison between input vectors

would also be rendered moot.
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It is therefore necessary to generate an input vector X5 that both keeps a constant
dimension regardless of the number of inliers detected and also maintains the spatial
structure of optical flow distribution. The method proposed here to achieve these
two conditions consists in dividing the image into equal-sized grids (Fig. 3.4), and
assigning to each of them the subset of inliers whose coordinates lie within its bound-
aries (by convention, we use the feature coordinates on the first frame). The optical
flow values for each grid can now be calculated as the average value of all its inliers’
optical flow information. If a particular grid has no features, its optical flow values
are calculated as the average value of its neighbouring grids, based on the assumption

that changes in optical flow should be smooth throughout the image, varying radi-

Figure 3.4 — Examples of optical flow parametrization into equal-sized grids in 2D
navigation, for the particular cases of (a) forward motion and (b) counter-clockwise
rotation. The average optical flow value of all matched features within each grid
is used, and grids without any matched features receive the average value of its
neighbouring grids (as it can be seen on the upper right portion of the images on
the second column, where the sky does not have any discernible features but still
registers optical flow).



82 Learning Visual Odometry Estimators

cally only around the borders of objects and not inside them. This averaging process
also serves to minimize the impact of dynamic objects on the calculations, since their
optical flow values will now be diluted in the midst of all inliers in the same grid. The
resulting input vector Xis is now of dimension hwD, where h and w are respectively
the number of grids used to divide the image vertically and horizontally, and is gen-
erated by taking the optical flow components for each grid in a specific manner (i.e.

starting on the top left grid and moving horizontally row by row).

Lastly, it is necessary to determine which optical flow components should be used
to generate the input vector Xj5. There are two different methods of parametrizing
a 2D pixel shift throughout the image: the shift magnitude d and orientation 6, or
the horizontal ¢ and vertical s shift displacement. These two methods are correlated
(Eq. 3.1), and therefore contain redundant information that should not be used in
conjunction to generate the input vector, because it would create an unnecessarily
high-dimensional problem. However, they encode optical flow in different ways, and
the careful selection of which components to use could significantly improve GP in-
ference performance.

s = dsin(0) ¢ = dcos(f) (3.1)

Fig. 3.5 depicts how each of the four optical flow components behaves during typical
2D translation and rotation situations. It is clear that d and c are the only ones with
a consistent reaction to camera motion, indication that they encode this information
in a way that can be recovered robustly. As expected, during translation d varies
cyclically throughout the image, assuming higher values near the borders and lower
values towards the center, and it is mostly stable during rotation. The values of ¢
are also consistent, being vertically symmetrical during translation and stable during
rotation. The angle 6 is erratic due to the high angular sensitivity to errors when
small distances are being covered, and s is affected by terrain irregularities, which

even though could be helpful in a 3D scenario are not relevant in ground navigation.

For these reasons, the components d and c¢ are used to generate the final input vector

X9, resulting in a 2hw-dimensional vector. Tests were conducted under the MOGP
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Figure 3.5 — Examples of the behaviour of each of the optical flow components in
typical (a) forward motion and (b) counter-clockwise rotation. Each row indicates

the distribution of a given component throughout the image (starting on the top
left corner and moving horizontally row by row).

framework (Section 3.3) using different values for h and w, and the final values selected
were h = w = 8, with a final dimensionality of 128 for the input vector. A smaller
number of grids would create a poor characterization of local optical flow distributions,
and a larger number of grids would create an excessively high-dimensional problem
and also amplify small errors in optical flow calculation. These tests also validated

the use of d and ¢ to parametrize the final input vector, with the incorporation of

other components leading to poorer performances.

3.2.3 Narrow Field of View

As stated previously, in the 3D experiments the camera was installed pointing down-
wards, observing the ground beneath the aircraft. In this configuration, the high
altitude poses a special challenge in both feature extraction and matching, due to
overall loss in detail and a high sensitivity to angular motion, that translates into

inconsistent (and often small) overlapping regions between frames (see Fig. 3.6).
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Figure 3.6 — Examples of inlier sets in 3D navigation. Red dots indicate matched
features, and the yellow rectangles are the overlapping regions, representing the
boundaries of matched features in each image. Note that these overlapping regions
vary significantly from frame to frame, both in size and in location.

Assuming that the aircraft will maintain a considerable altitude and move roughly
horizontally, it is reasonable to consider the ground plane as homogeneous, and all
features to be at the same ground plane level. Under this assumption, the entire
image will share the same optical flow information, that can be encoded by a single

vector (i.e. by a single grid, using the methodology described in the previous section).

As before, this optical flow vector can be parametrized by either the shift magnitude
d and orientation 6, or the horizontal ¢ and vertical s shift displacement. Since
dimensionality is not an issue in this particular case (the image is composed of a single
grid cell), and motion is much more general and unconstrained (with components in
both axes being equally relevant), all four components are used to generate the input
vector Xio. Also, the position (z,y)$ and size (h,w); of the overlapping regions are
directly related to camera movement, and therefore contain information that could
be useful in the inference process. These parameters are illustrated in Fig. 3.7, and

the final input vector is now of the form:

X12 = {d7 97 S, C, Illz7 ?Jf; Ig» ?/57 h17 wh, h27 w2}~ (32)
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It is important to note that, during the GP training process, the relevance of each
parameter will be learned based on available data, leading to the removal of cer-
tain components and the strengthening of others based on their impact on the final

estimates.

3.3 Gaussian Process Learning

Once the input vector X5 has been generated, the next step is to feed it into the GP
framework to produce the corresponding velocity estimates, as described in Section
2.2.6. The GP inference process uses the optimized hyperparameter set 6 obtained
during the training process, from training data collected prior to the beginning of
navigation. This section is dedicated to the various stages involved in the inference
process. Initially, the 2D and 3D vehicle models are described, indicating which
degrees of freedom are involved in the incremental localization process and how to
go from velocity to pose estimates. Later on, the covariance function used in the
inference process is introduced, along with a method for hyperparameter sharing that
serves to decrease the dimensionality of the optimization problem during the training
stage. Finally, the optimization process itself is described, showing how to obtain the

final hyperparameter set that will be used for inference during navigation.

hy

Figure 3.7 — Diagram of the parameters used to generate the input vector X9 for 3D
unconstrained navigation.
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3.3.1 Vehicle Models

The vehicle model governs how the vehicle navigates around the environment, and
specifically it determines how many degrees of freedom are available for motion. The
number of degrees of freedom (also known as tasks) in turn determines how many
outputs will have to be estimated from each frame, as optical flow may be generated
by a different combination of linear and angular velocities. Once these estimates
are obtained, the vehicle model allows their integration into a pose estimate, that
measures the vehicle’s incremental motion from one frame to another. Two different
vehicle models are described here (Fig. 3.8), a constrained 2D ground vehicle and an
unconstrained 3D aerial vehicle. Similar platforms are used during experiments, and
the unconstrained 3D aerial vehicle model provides a generic platform for any visual

odometry application.

(a) (b)

Figure 3.8 — Vehicle models used in this thesis. (a) 2D vehicle model, with two degrees
of freedom: forward translation v and angular rotation ¢. (b) 3D vehicle model,
with six degrees of freedom: linear velocities &, y and Z and angular velocities «
(roll), B (pitch) and ~ (yaw), in Euler angles. The aircraft used during experiments,
even though most of its linear velocity comes from &, is also capable of experiencing
motion in both other axes due to air resistance and draft, and therefore is modelled
as an unconstrained 3D object.
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Ground Vehicles

The constrained 2D vehicle model is the standard model used in ground navigation,
because it reflects most of the nonholonomic vehicles, in which the degrees of freedom
are limited to a linear forward motion and an angular rotation over the z-axis (a
diagram of this model is depicted in Fig. 3.8a). Within this model, pose is defined by
x = (z,y,0) and motion is divided into two independent steps: a rotation ¢ over the
z-axis followed by a forward motion v = \/m in orientation 6 + ¢. The pair
v = (v, @) is capable of fully describing vehicle motion between frames, and therefore
represents the two degrees of freedom that must be estimated by the GP framework,
based on visual information. The calculation of x;,; for a timestep At, given x; and

vy, is of the form:

Ti41 = Tt + Uy COS(Q + ¢t)At (33)
yt-i—l = yt ‘I— V¢ Sin(é’ + gbt)At (34)
0t+1 - 9,5 + ¢tAt (35)

As the timestep At decreases the order in which each step (forward motion and
rotation) is calculated becomes less and less important. At the limit At — 0, this
implies that dy/dx = tan 6. Since dy/dx = §/2 and tan 6 = sin 0/ cos 6, this condition

can be written as a Pfaffian constraint [16]:

— &sinf + gcosf = 0. (3.6)

This constraint is satisfied if £ = cos 6 and ¢y = sin #. Furthermore, any scalar multiple
of this solution is also a solution, and the scaling factor corresponds directly to the
linear speed v of the vehicle. Thus, the two first scalar components of the configuration
transition equation are © = vcosf and y = vsinf. The next step is to derive the
equation for 0. Denoting s as the actual distance travelled by the car (the integral

of speed, § = v), and p as the radius of the circle that is traversed by the center
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of the rear axle (assuming a fixed steering wheel), it results that ds = pdf. From

trigonometry, p = L/ tan ¢, where L is the distance between axles, which implies:

tan ¢

df = 7 ds. (3.7)
Finally, dividing both sides by dt yields:
=" tano (3.8)
= 7 tan¢. .

Aerial Vehicles

A fully unconstrained object has six degrees of freedom in the 3D space: it can move
forwards and backwards in each of the three zyz-axes and it can also rotate around
each of these axes. The translational part of this motion is given by the corresponding
velocities &, § and Z, while the rotational part is defined here by a (roll), 5 (pitch)
and v (yaw), the Euler angles. The transformation, in homogeneous coordinates,
from point x; = (21,91, 21, 1)T to xo = (22,2, 20, 1) is given by x, = RTx,, where

T is the translation matriz and R is the rotation matriz. They are of the form:

-]_ 0 0 i’- -TH T12 T13 O-
01 0 g To1 Tog Toz 0
T — ) . R= 21 T22 T23 (3.9)
00 1 2z 31 T32 7T33 0
000 1| 0 0 0 1]

The translation matrix 7" has the following properties: the inverse T~! can be obtained
by reversing the velocity vector used to generate it, and the product of two translation
matrices is given by adding their corresponding velocity vectors (the multiplication
of two translation matrices is, therefore, commutative). The rotation matrix R is
special orthogonal, which has the following properties: it is normalized (the squares
of the elements in any row or column sum to one), it is orthogonal (the dot product

of any pair of rows or any pairs of columns is zero), its determinant det(R) is unitary
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Figure 3.9 — Rotation on the zxz-axes. Initially a rotation ¢ is performed over the z
axis, followed by a rotation € on the newly-formed a’-axis and finally a rotation
on the newly-formed z’-axis.

and its inverse R~! is equal to its transpose RT. The combined transformation matriz

Tr = RT can then be written as:

ri1 T2 T3 1T+ Ty + ri3z
To1 T2 Tog To1T + T2l + 232
31 T32 T33 T31T + I3y + 332

0 0 O 1

The elements r;; of R are obtained from the notion that any general rotation can be

described by a series of three individual rotations over orthogonal axes. Since rotation

on tridimensional space is not commutative, it is necessary to define a consistent

rotation order. A common convention, shown in Fig. 3.9, is the zzz convention, where

a rotation ¢ is performed over the z-axis, followed by a rotation 6 over the z’-axis

and finally a rotation v over the z’-axis. The resulting rotation matrix R,,.(¢,0,)

is calculated as follows:

szz<@> 57 fy) = R2(¢)R$(9)RZ(¢) =

cp —sip 0 1 0 O cp —s¢ 0
=\ s cp 0 0 cf —sb s¢p cp 0
0 0 1 0 s cb 0O 0 1
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cpep — shelsp  —csp — spcbep  sish
= | sthep + cpclsp  —sihsg + chchep —cipsh | (3.11)
s0s¢p sfco ct

where s = sin and ¢ = cos. The angles are usually chosen such that —7 < ¢ < T,
0 <0< mand —m < ¢ < 7. Inversely, it is also possible to obtain the angle values

from T'r by solving:

1 Ti2 T3 cpep — shclsp  —cpsp — sipclep  sysl
To1 Toa Tog | = | spco + cpclsd —siso + cpclep —cipsh | (3.12)
31 T32 133 s0s¢ sOcep ct

which results in:

r r
0 =cos ' (ry3) , ¥ =tan (——2) , ¢ =tan '(—2). (3.13)

T'23 T'32
It is also worth noting the problem of singularity, which happens when sinf = 0.
In this particular case, the z and z’-axes coincide, and therefore ¢ and 1) can be
combined in one single rotation. Because of that, it is impossible to calculate their

values separately, and the resulting degenerate rotation matrix R assumes the form:

riu riz 0
R=1 171y 19 0 . (3.14)
0 0 =1

3.3.2 Covariance Function Selection

As stated previously, the covariance function plays a key role in the final performance
of the GP inference process because it quantifies the relationship between points
that will be used to model the underlying function between inputs and outputs.
Thus, its selection must be carefully considered, based on prior knowledge of the
phenomenon that the GP is attempting to learn from training data. Because optical

flow information varies radically in different portions of the image, and also because
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there are angular measurements involved, the neural network covariance function was
selected, due to its non-stationary property and the ability to model sharp transitions
between different cell grids?. Section 2.2.4 provides an overview of different covariance
functions and their properties, including the neural network, and its final equation is

presented here again for convenience:

2~TE~/
kii(x,x") = o} arcsin * ox : (3.15)

V(4 287ER) (14 257 5%)

where X = {1,21,...,2p} is an augmented vector for the input point x and oy is the
signal variance hyperparameter. The remainder of this section addresses two further
issues that arise from the covariance selection process: 1) Cross-covariance func-
tion selection, which is the covariance function that models the relationship between
data points from different outputs; and 2) Hyperparameter sharing, which provides a
method to decrease the dimensionality of the optimization problem during training

by enforcing the same length-scale values for different components of the input vector.

Cross-Covariance Function Selection

Visual odometry is a multiple-output application, meaning that each frame encodes
motion from more than one degree of freedom. The previous section described two
different vehicle models, a constrained 2D ground vehicle, with 2 degrees of freedom,
and an unconstrained 3D aerial vehicle, with 6 degrees of freedom. The neural net-
work covariance function (Eq. 3.15) only correlates input points that correspond to
the same output ¢ = j. It is also necessary to define a positive-definite covariance
function that correlates points from different outputs ¢ # j, thus allowing the GP
framework to use all information available to improve results on all outputs. The
constraints imposed by the vehicle model naturally correlate different degrees of free-

dom to only certain specific combinations (i.e. a ground vehicle can only move forward

2Qther covariance functions, such as the squared exponential and the Matérn, were also con-
sidered, but empirical tests confirmed the assumption that the neural network covariance function
is indeed the most suitable for this particular visual odometry application, mostly because it deals
with angular quantities in the sparse optical flow information.



92 Learning Visual Odometry Estimators

and backwards, and linear velocity tends to decrease as angular velocity increases).
This configuration renders the cross-dependency modelling even more attractive in

the particular case of visual odometry.

We propose a cross-covariance neural network function, in which two smoothing ker-
nels are convolved [49] to obtain a positive-definite function capable of correlating
multiple outputs (Eq. 3.16). This methodology was described and developed in
Section 2.2.6 for the particular case of the squared exponential covariance function,
capable of addressing T" outputs, and here it is extended to generate a non-stationary

cross-covariance function:

arcsin 2% D%
) V(14227 5%) (1423 T5%/)

/{}ij(X,X/) = o-fi’ ) (316)
T (BB DI+ 1
where X = {1,21,...,2p} is again an augmented vector for the input point x, the

signal variance hyperparameter o;;; is now specific for each output pair and ¥ =

0% 5(Zi(Bi + X)),

Hyperparameter Sharing

During the optical flow parametrization stage (Section 3.2) it was determined that,
for a ground vehicle, the final vector that will serve as input for the GP framework
contains 128 dimensions: two optical flow components for each of the sixty-four grids
in which the image was divided, which translates to also 128 length-scale hyperparam-
eters. A ground vehicle contains 2 degrees of freedom (Section 3.3.1), which increases
the number of length-scale hyperparameters to 256, since each output maintains its
own length-scale matrix ;. The neural network covariance function also requires
an augmented vector x for each input, a signal variance hyperparameter for each
output (and one for the cross-covariance function), and two noise parameters. The
total number of hyperparameters is therefore 128 x 2 + 2 + 3 + 2 = 263, which poses
a challenge during the optimization process due to the excessively high-dimensional

space in which the input points are handled.
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Figure 3.10 — Diagram showing the hyperparameter sharing technique. Each square
represents one grid in the image, and the lines represent the row and columns that
are shared by the length-scale of the same colour.

A technique for decreasing the number of hyperparameters necessary to fully describe
the covariance function, and by extension for decreasing the optimization dimension-
ality, is presented here. It is based on the assumption that regions in the grid-divided
image that belong to the same row or column have a similar impact on the underlying
function modelling process, and therefore may share the same length-scale hyperpa-
rameter. Two independent neural network covariance functions are used (Fig. 3.10),
one to model a similar impact in rows and another to model a similar impact in

columns, and both are added in order to generate the final covariance function:

ki (x,x)) = kji(x, X, 01) + ki (x, %, 02) (3.17)

kf(x,x) = ki (x, %, 01) + k7 (x, %X, 0). (3.18)

There is no sharing between length-scales of different outputs, and each optical flow
component (in this case, distance d and cosine ¢) is still modelled independently,
resulting in 16 length-scales for each neural network covariance function and 32 for

the final covariance function. The total number of hyperparameters is now 16 X
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2X 2424342 =71, roughly 25% of the original number. This hyperparameter
sharing technique also reduces the curse of dimensionality problem, where data in
a high-dimensional space becomes sparse and insufficient to correctly represent the
underlying function. By imposing constraints in different dimensions, it becomes
easier to recover correlations between input points in this high-dimensional space

with a reasonable amount of training data.

3.3.3 Hyperparameter Optimization

Once the auto and cross-covariance functions have been defined, along with the cor-
responding hyperparameter set #, an optimization stage is necessary to obtain the
non-parametric model that best represents the underlying function, given by a train-
ing dataset A obtained prior to the beginning of navigation. This training dataset is
composed of a set of N input vectors x,, and their corresponding output vectors y,,,
containing motion estimates for all degrees of freedom. Ideally, the training dataset
should be collected under similar conditions as the ones the vehicle will encounter dur-
ing navigation (i.e. same vehicle, camera configuration and a similar environment), to
minimize the deviation in optical flow distribution between available and new infor-
mation. Variations in each of these aspects are further explored in the next chapter,
providing an insight on how well the algorithm is able to generalize to unforeseen

conditions.

The cost function used during the optimization stage is the multiple-output log-
likelihood function L(y|A, ), as described in Section 2.2.6 and repeated here for
convenience (Eq. 3.19). The optimization starts from a random hyperparameter set,
and Fig. 3.11 shows the influence of initial conditions on the maximization of the
negative log-likelihood function. Even though all initial random hyperparameters
generated similar log-likelihood values, they converged to different values, and one
in specific (light blue line) converged to a value much smaller than all the others,
indicating that it represents a better fit to the training data. This sensitivity to initial

conditions is amplified by the large number of variables involved in the optimization
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Figure 3.11 — Examples of marginal log-likelihood optimization with different hyperpa-
rameter initialization. It is possible to see that, even though the initial log-likelihood
values were similar, different initial hyperparameters converged to different final val-
ues, and one in particular converged to a value much lower than the other ones,
indicating that it represents a better fit to the training data given the model.

process, that translates into a large number of local minima in which a gradient
descent algorithm may get trapped.

1 I N
L(y|A,0) = —5n |K| — 5yTK ly — Eln(Zﬂ) (3.19)

To address this sensitivity to initial conditions, heuristic approaches for initial hy-
perparameter selection, such as the Monte Carlo-based simulated annealing |60], are
considered. The name annealing comes from a namesake technique in metallurgy,
that involves heating and controlled cooling of a material to increase the size of its
crystals and reduce their defects, both attributes that depend on thermodynamic free
energy. While the same amount of cooling brings the same amount of decrease in
temperature, it will bring a bigger or smaller decrease in the thermodynamic free en-
ergy depending on the rate in which it occurs, with a slower rate producing a bigger
decrease. The notion of slow cooling is implemented in the simulated annealing algo-
rithm as a slow decrease in the probability of accepting worse solutions as it explores

the solution space (Fig. 3.12). This is a fundamental property in meta-heuristics, be-
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Figure 3.12 — Example of simulated annealing. The solution is allowed to move into a
higher energy level in the search for the global minimum, and this allowed pertur-
bation decreases over time until convergence.

cause it allows for a more extensive search for the optimal solution. Once this search
is finished, the resulting hyperparameter is further refined by a standard gradient
descent algorithm, converging to the nearest local minima which serves as the final

hyperparameter set.

Another useful technique in hyperparameter selection is the cross-validation (de-
scribed in Section 2.2.5), where part of the training dataset is withheld during the
optimization process and then used to provide a measurement of inference error. A
large error indicates that the current hyperparameter set, although providing a good
fit for the training information, lacks the generalization necessary to address new,
yet unobserved, information. These three techniques (simulated annealing, gradient
descent and cross-validation) comprise the core of the training stage used in the visual
odometry algorithm proposed in this thesis. A random set of hyperparameters goes
through simulated annealing, to find suitable initial conditions for gradient descent,
and the cross-validation error of the resulting hyperparameter set is calculated us-
ing part of the training data withheld during optimization. This process is repeated
a certain number of times, and the hyperparameter set with the lowest values for
negative log-likelihood and cross-validation error are selected and used during the

experimental tests.
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3.4 Experimental Results

The visual odometry methodology described in this chapter was evaluated using real
data, collected from modified vehicles (Fig. 3.13) equipped with a single uncalibrated
camera and other sensors for ground-truth and comparison purposes. These tests are
divided into two categories: ground (using the constrained 2D vehicle model) and
aerial (using the unconstrained 3D vehicle model) experiments. Initial tests were
conducted using ground vehicles, because they are constrained to 2D navigation and
therefore contain fewer degrees of freedom. This translates into fewer outputs for the
GP framework, and also a smaller computational complexity during the training and
inference stages. Once the algorithm was working satisfactorily, the same framework
was extended to 3D environments in the aerial experiments, which provide a platform
for any visual odometry application. It is worth noting that this transition was

seamless, no change in the algorithm was necessary.

This section presents and discusses the results obtained in these experiments, starting

with ground vehicles and later moving on to aerial vehicles. These results are further

(b) Unmanned Aerial Vehicle

(c) Robotic platform for gener-
alization testing

Figure 3.13 — Vehicles used in experiments.
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improved in the next chapter, where extensions to the basic algorithm described in
this chapter are proposed as a way to address some of the limitations discussed here.
The next chapter also provides a quantitative study of the results (Tables 4.2 and
4.3), comparing estimates obtained using different methods and how they relate to

the techniques proposed in this thesis.

3.4.1 2D Experiments

The 2D experiments were conducted using the vehicle in Fig. 3.13a, equipped with
a single camera, wheel odometry, two SICK laser sensors and a GPS (with a bm
precision). The wheel odometry system was not used during the experiments, the
SICK lasers were used to provide ground-truth for the GP framework, and the GPS
was used for comparison purposes only. Images were obtained at a rate of 5 frames per
second and a resolution of 1152x758 pixels, which was then downsampled to 384x252
pixels (one third of the original size) and converted into monochromatic intensity
values. The reasons for this downsample and monochromatic conversion are two-fold:
1) To verify the robustness of the algorithm in low-resolution cameras (marginally
better results were obtained with higher resolutions); 2) To speed up the SIFT (or
equivalent) feature extraction and matching processes. During data acquisition the
vehicle navigated an urban environment at speeds of up to 40 km/h, and interacted

normally with pedestrians and other vehicles.

The training dataset is composed of 2500 images, collected as the vehicle was driven
for roughly 2.5 km in the trajectory shown in Fig. 3.14a. Ground-truth information
was obtained based on laser data, using the Iterative Closest Point (ICP) algorithm
[70], and the resulting localization estimates are also shown in the same figure. Be-
cause they are incremental, these estimates are by themselves subject to drift due to
the accumulation of small errors over time. Even though this drift could in principle
be greatly reduced by fusing the estimates with an absolute sensor (such as GPS),
here it was decided to use the ICP estimates directly as ground-truth information,

with no further refinement. This is done to verify the ability of the proposed visual
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odometry algorithm to average over small errors by using a large training dataset to
learn the underlying function directly from noisy information, and also to minimize
the need for high-precision sensors during the training stage. Empirical tests show
marginal improvements in localization when more accurate ground-truth is used, and
virtually no improvement when the extensions to the basic framework proposed in

the next chapter are incorporated.

The testing dataset is composed of 2000 images collected using the same vehicle and
camera, but from a different trajectory of roughly 2 km, as shown in Fig. 3.14b. The
ICP localization results are also depicted, however they are now calculated solely for
comparison purposes, as no information is used during the inference process other than
visual data. Also for comparison?, the localization results obtained using Mono-SLAM
[24] and the Structure-From-Motion algorithm described in Section 2.3.5 are presented
in Fig. 3.15. The Mono-SLAM algorithm employs Exended Kalman Filters to track
the position of features in the environment, and uses this information to recover the
vehicle position. While this approach minimizes the impact of error accumulation
from relative estimates, it also has a high computational cost and struggles with

failures in the feature matching process. The calibration parameters were obtained

Position (m)
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Figure 3.14 — Training and testing datasets. Even though tests were conducted out-
doors, there are several areas in which the GPS signal (green dots) is not available,
due to tree coverage or the presence of tall buildings nearby.

3The 1-Point RANSAC algorithm [106] was also tested, however it was unable to outperform
SFM in the testing environments, mostly due to sharp turns and sudden changes in luminosity.
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Figure 3.15 — Localization results obtained using standard geometric models. The
purple line shows the Mono-SLAM [24] position estimates, while the blue line shows
the position estimates obtained using the Structure-From-Motion (SFM) algorithm,
with manual scale adjustment and constrained for 2D navigation.

manually [48], and scale was adjusted manually to minimize the overall translational
error of the entire trajectory. Even so, it is possible to see some scale inconsistencies,
especially in the initial portions of the algorithm (upper right corner of the map),
where the vehicle is still moving at low speeds and manual scale adjustment tends
to overestimate linear velocity. The SFM algorithm performed better at angular
motion estimation, mostly due to the presence of distant features that can be used
as fixed landmarks to measure rotation, however there is still some residual drift that
accumulates over time and impacts significantly the localization results towards the

end of the trajectory.

Finally, the localization results obtained using the proposed method, with a multiple-
output Gaussian process (MOGP) to estimate all degrees of freedom, are depicted
in Fig. 3.16. The first interesting aspect of these results is that the GP framework
was capable of recovering scale to a high degree of precision (no scale adjustment was
performed), by exploiting similarities in the optical flow distribution between training
and testing images. Essentially, the scale information provided by the sensor used to

generate the ground-truth estimates (a SICK laser, in this case) was encoded into the
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non-parametric model during the learning stage, and extrapolated to new data using

inference based on the GP framework regression methodology.

The GP framework, however, struggles with angular motion estimation, resulting in
a residual drift that also compromises long-term localization results. We attribute
this angular drift to the presence of smaller overlapping areas between frames, which
compromises the optical flow distribution throughout the entire image, and also to
the presence of fewer vehicle turning samples in the training dataset. Since the vehi-
cle moves mostly in a straight forward motion during navigation, the various smooth
and sharp turns encountered during tests were under-represented and there was not
enough information for a robust recovery. Furthermore, the MOGP framework is not
capable of correctly modelling the cross-dependencies between outputs, generated by
vehicle constraints that limit linear and angular motion to only certain specific combi-
nations, and thus linear velocity information does not translate into a better angular
velocity estimation, and vice-versa. This information exchange between different

outputs would be valuable as a way to decrease the amount of training information
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Figure 3.16 — Localization results obtained using the proposed algorithm, with a
multiple-output Gaussian process (MOGP) to estimate all degrees of motion.
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Figure 3.17 — Motion estimates for each output in 2D navigation. The blue line
indicates ground-truth, the red line indicates the MOGP estimate, and the grey
areas indicate the variance intervals within 2 standard deviations.

necessary, and also to increase performance in under-represented portions of the input

space.

The mean and variance values for each output in all testing frames is shown in Fig.
3.17, where the blue line indicates ground-truth, the red line indicates the GP estimate
and the grey area represents the variance intervals within 2 standard deviations. As
we can see, virtually all ground-truth values fall within the variance intervals provided
by the GP framework, indicating that the proposed approach’s confidence in its own
estimations is correctly represented. As expected, the most noticeable discrepancies
between ground-truth and GP estimation values appear during sharp turns (the peaks
and valleys in angular velocity), that as stated before are under-represented in the
training dataset simply because there are not enough samples of this behaviour in a

real navigational scenario in comparison to forward motion and smooth turns.
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3.4.2 3D Experiments

The same visual odometry algorithm was also tested using data collected from an
unmanned aerial vehicle (UAV, Fig. 3.13b) flight over a deserted area, at a rate of
3 frames per second and an average speed of 110 km/h. Due to the high altitudes
(during training and testing the UAV maintained an average altitude of 80-100 m),
the narrow field of view approach to optical flow parametrization was used to obtain
the input vectors used by the GP framework. The UAV was also equipped with iner-
tial sensors and GPS, that were fused to provide ground-truth data for training and
comparison purposes. The first 4000 frames after stabilization were used for training,
and the following 2000 frames were used for algorithm evaluation. The feature extrac-
tion and matching techniques failed to find any correspondences in around 2% of the
image pairs, due to a lack of overlapping areas caused by severe angular motion, and
in overall there was a wide variation in the size and shape of these overlapping areas
(see Fig. 3.6), which constitutes a challenge for standard visual odometry algorithms.
Frame pairs with no corresponding matches were avoided during training, and during

evaluation the motion estimates from the previous timestep were repeated.

Fig. 3.18a shows the localization results obtained using the SFM algorithm, now un-
constrained to address all six degrees of freedom?. We attribute this poor performance
to three reasons: 1) Small and inconsistent overlapping areas between frames; 2) The
high altitudes create a lack of depth perception in the ground plane; 3) Poor camera
calibration, due to the narrow field of view that influenced the calibration process
negatively. Similarly, the localization results obtained using the proposed approach
are depicted in Fig. 3.18b, where it is possible to see a significant improvement over
SEFM in the sense that the overall shape of the trajectory was maintained throughout
the entire run. However, there is still a substantial drift that compromises localization
in both the vertical and horizontal planes, as it can be seen in Fig. 3.18c where the
same results are presented in a 3D plot. Again, we attribute this drift to the lack of

motion representation in the training dataset, which now becomes even more evident

4The Mono-SLAM algorithm was incapable of outperforming SFM under this new framework,
due to difficulties in tracking features over a reasonable period of time in order to produce an accurate
landmark map of the environment.
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because in the 3D space there is a larger space of possible motion combinations that

the GP framework has to correctly map to optical flow information.
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Figure 3.18 - Localization results in 3D environments. (a) Results obtained using
a structure from motion algorithm. (b) 2D plot of the results obtained using the
proposed approach. (c¢) 3D plot of the results obtained using the proposed approach.
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Figure 3.19 — Motion estimates for each output in 3D navigation. The blue line

indicates ground-truth, the red line indicates the MOGP estimate, and the grey
areas indicate the variance intervals within 2 standard deviations.

The mean and variance values for each output in all testing frames is shown in Fig.

3.19, where the blue line indicates ground-truth, the red line indicates the GP estimate

and the grey area represents the variance intervals within 2 standard deviations. First

of all, we can see that most of the linear motion comes from the x-axis, which is to be

expected since this is the axis that represents forward motion in the UAV’s relative

coordinate system, however there is also some motion in the y and z-axes®, oscillating

both positively and negatively. Again, virtually all ground-truth values fall within

®The UAV was initially modelled with only four degrees of freedom (forward motion 4 and Euler
angles «, 8 and ), however this approach proved to be insufficient for this particular application
and was extended to address all six degrees of freedom.
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the variance intervals provided by the GP framework, indicating that these estimates,
even though less accurate than the ones obtained during the 2D experiments, are
still valid from a probabilistic standpoint. The proximity between ground-truth and
GP estimation values also attest to the degree of accuracy that a visual odometry
algorithm requires in order to provide useful information, as even minor imprecisions

quickly accumulate over time compromising localization results.

3.5 Summary

This chapter introduced and described the first steps in obtaining a solution to the
problem of visual odometry that uses Gaussian processes as the mapping function
between optical flow information and vehicle motion estimates. The information en-
coded in two images is processed to extract a matching set that represents motion
between frames, and this matching set is parametrized in order to generate a vector
that is suitable as an input for the GP framework. Different methodologies are de-
scribed, one to address the traditional scenario in which a camera is placed on top
of a moving vehicle and another to address the more involving scenario of a camera
placed on an aircraft pointing downwards. In the second case, the narrow field of view
and the high sensitivity to angular motion pose a challenge in the feature extraction

and matching processes.

Afterwards, the GP framework as a viable solution to the visual odometry problem
is presented, introducing the vehicle models from which the GP outputs are defined,
the choice of which covariance function to use and the process of hyperparameter
optimization during the training stage. The goal of the proposed GP framework
is to eliminate the need for a explicitly defined model, thus allowing the system
to automatically learn the best transformation between inputs (sparse optical flow
information) and output (motion estimates) given the available data. It is natural
do assume that similar motions will generate similar optical flow patterns, and the
GP framework is capable of exploiting these correlations to create a regression model

robust enough to infer the behaviour of new, unobserved data.
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Finally, experiments conducted in both 2D and 3D navigation scenarios are presented
and discussed, showing the initial results of the proposed method in comparison with
standard Structure-from-Motion algorithms. These results validate the assumption
that GPs can indeed serve as a modelling tool for visual odometry applications,
and achieve accuracies that are comparable to state-of-the-art traditional motion
estimation techniques. The next chapter will focus on further improving this basic
algorithm, addressing the various issues raised in this chapter and providing tools

that increase the overall robustness and precision of the proposed method.
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Chapter 4

Semi-Parametric Coupled Gaussian

Processes

The previous chapter introduced the proposed visual odometry algorithm, describing
its basic functionalities that allow image information to be mapped directly into
vehicle motion estimates. The traditional camera calibration process, which optimizes
a parametric model (the geometric camera model), is substituted by a much more
powerful non-parametric model, the GP framework, that is capable of capturing and
encoding nuances that a strictly geometric model struggles with. The GP framework
eschews the need for any assumption in regards to the visual system utilized (the same
algorithm can be transferred seamlessly to any camera configuration) or environment
structure. The GP framework is also capable of encoding scale information into its
non-parametric model, thus allowing the recovery of absolute scale even on a single

camera configuration, a task that is non-trivial in monocular visual odometry.

However, as it was also stated in the previous chapter, there are still several short-
comings in the proposed method that need to be addressed before it can be truly used
as a robust visual odometry solution!. One of these shortcomings is the algorithm’s

inability to correctly model cross-dependencies between different outputs, that would

!The techniques described in this chapter were presented at the International Conference on
Robotics and Automation (ICRA) 2011 and 2012, under the titles Visual Odometry Learning for
Unmanned Aerial Vehicles [42] and Semi-Parametric Models for Visual Odometry [43].
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allow the GP framework to exploit the constraints created by vehicle dynamics and
facilitate correlation on the high-dimensional input space. The MOGP framework,
as described in Section 2.2.6, is capable of estimating each output using information
from all inputs, but each output is still calculated individually, and thus there is no
cross-dependency modelling (the resulting covariance matrix is diagonal). The cal-
culation of these cross-dependencies would also improve the use of the estimates in
filtering and SLAM scenarios, since now uncertainty is fully modelled and encoded

into the covariance matrix.

Another shortcoming mentioned in the previous chapter is the algorithm’s inability
to generalize over different optical flow distributions. Once the GP hyperparameters
have been optimized in the training stage, they are fixed and will not change during
navigation, even though there is a constant flow of new information that could be
used to improve the non-parametric model. As training data deviates from testing
data, so does the algorithm’s overall performance, even though there is also a corre-
sponding increase in uncertainty, which maintains the validity of the solution from
a probabilistic standpoint. Regions in the input space that are under-represented
in the training dataset suffer the most, such as sharp turns and other uncommon
behaviours. By allowing the non-parametric model to be iteratively updated, with
new information being incorporated and redundant information being discarded, the

algorithm would be able to gradually learn new optical flow distributions.

This chapter is devoted to address these shortcomings, and some others, in an attempt
to improve the proposed method to a point in which it can be robustly used as a visual
odometry solution, with results that are on par with traditional parametric solutions.
It starts by providing an overview of the proposed visual odometry algorithm, with
all the extensions proposed in this thesis, and it continues by exploring each of the

following subjects in more detail:

e Coupled Gaussian Processes. The CGP (Coupled Gaussian Processes) is
an extension to the MOGP (Multiple Output Gaussian Processes) framework

in which all outputs are calculated simultaneously, based on all available input
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information. This technique also allows the recovery of a full covariance ma-
trix, containing not only the uncertainty estimates for all outputs but also the
cross uncertainty estimates between each individual output pair. Hence, if one
particular output is well-represented in the input space, this information can be
used to improve results on outputs that are under-represented, creating a more
robust solution that does not require an exceedingly large training dataset to

provide accurate results.

e Temporal Dependency between Frames. This extension was conceived
as a way to increase the amount of information available as input for the GP
framework, especially in the particular case of a narrow field of view (Section
3.2.3), where the entire image is considered homogeneous and therefore repre-
sented by a single optical flow vector. In this scenario, a similar optical flow
distribution may be responsible for several distinct motion combinations in dif-
ferent degrees of freedom, creating ambiguities in the estimation process that
could compromise results. By assuming that vehicle velocity changes gradually
between frames, we propose using the outputs in a given timestep as part of the
input vector for the next one, thus constraining the space of possible solutions

to those that are similar to the ones obtained previously.

e Incremental Updates of the Covariance Matrix. A truly generic visual
odometry algorithm should be able to provide accurate motion estimates regard-
less of the environment the vehicle encounters during navigation, which is clearly
not the case if a fixed training dataset is used to generate the non-parametric
model and optimize the hyperparameters. This shortcoming is addressed here
by allowing the iterative incorporation of new data into the non-parametric
model, along with the removal of data considered redundant. Assuming that
the environment changes smoothly as the vehicle moves, the resulting algorithm
is now able to gradually adapt to new environments and learn new (and poten-
tially useful) optical flow distributions. The hyperparameters, and consequently
the transformation function between inputs and outputs, are also iteratively up-

dated to reflect this environment change.
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e Semi-Parametric Visual Odometry. The GP framework eliminates the
need for a geometric model by learning the transformation function from image
information to vehicle motion directly from training data in a non-parametric
fashion. However, geometric models have been extensively studied and are
known to provide accurate results in a wide variety of situations, so there is no
reason to avoid their use completely if this could lead to better estimates. We
propose the combination of a geometric parametric model with a non-parametric
GP model to create a semi-parametric solution to visual odometry (SPCGP, as
in Semi-Parametric Coupled Gaussian Processes), where the geometric model
provides an initial estimate that is then further refined by the CGP framework.
The camera calibration parameters are treated as hyperparameters and learned
during the training stage, thus maintaining the assumption that no traditional

camera calibration is necessary.

e Simultaneous Localization and Mapping. The ability of the CGP frame-
work to recover a full covariance matrix is exploited here in an extension to a
SLAM scenario. A loop-closure algorithm is implemented to determine when an
area is being revisited by the vehicle, and an Ezact Sparse Information Filter
(ESIF) [136] is used to keep track of all pose estimates, along with their corre-
sponding covariance matrices. If an area is assumed revisited, these poses are
updated to decrease global uncertainty, eliminating residual drifts and imposing
an upper bound on uncertainty that allows for accurate localization estimates

even after long periods of navigation.

The chapter then describes the experiments, presenting and discussing results ob-
tained using the proposed method in both 2D and 3D scenarios, which testify to
the various benefits gained from incorporating different extensions into the main al-
gorithm. FExperiments that address the generalization capabilities of the proposed
method are also presented, testing its limits in handling deviations between training
and evaluation conditions and showing how much similarity is necessary before the
algorithm starts to fail and no longer provides useful estimates. Finally, the chapter

concludes by providing a summary of contributions and delineating the motivation
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behind the implementation of the dynamic object removal algorithm described in the

next chapter.

4.1 Algorithm Extensions

A simplified version of the proposed visual odometry algorithm was presented in Sec-
tion 3.1, and here this simplified version is extended to include all modules described
in this chapter. A complete diagram of the proposed method is shown in Fig. 4.1,
where it is possible to see that most of the changes take place in the Gaussian Pro-
cess Framework stage, which now follows the SPCGP framework principles. Prior
to the beginning of navigation, the optimized calibration parameters and optimized
SPCGP parameters are obtained based on training information, which now also in-
cludes the set Frr containing the fundamental matrices obtained from the training
images. These fundamental matrices encode the epipolar constraints that allow the
geometric model to estimate camera translation and rotation between frames, which
in turn acts as the SFM estimate, the parametric portion of this semi-parametric ap-
proach to visual odometry. A random set of hyperparameters and calibration param-
eters may be used as the starting point for the training process, and if an estimate is
already available it can be used instead, thus increasing algorithm convergence speed.
It is important to note that both camera calibration parameters and SPCGP hy-
perparameters are optimized simultaneously, as equal layers in the semi-parametric
framework, and therefore the resulting calibration parameters may not reflect the

actual camera intrinsic parameters.

Once the training process is completed, the optimized calibration parameters are
used to generate the SFM estimate based on Fjs, which serves as an initial guess
that is then further refined by the SPCGP Inference process based on the current
non-parametric model (XY, F))yp, the input vector X;5 and the optimized SPCGP
hyperparameters. The final output is comprised of the mean vector Yi,, containing
the vehicle motion estimates for all degrees of freedom, and the covariance matrix

Y12, containing the auto-covariance values for all degrees of freedom and the cross-
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Figure 4.1 — Diagram of the proposed algorithm (final version, with all extensions).
The Optical Flow Parametrization stage deals with the processing of a pair of
images, generating the vector X5 and the fundamental matrix Fis that will serve
as input for the Gaussian Process Framework, the second stage. The Gaussian
Process Framework can be further divided into three modules: Training, where
the optimized hyperparameters are obtained from the training dataset prior to the
beginning of navigation; Update, where the optimized hyperparameters are further
refined using new information, iteratively incorporating and removing data from the
non-parametric model; and Inference, where the current optimized hyperparameters
are used to calculate an initial SFM estimate that is then further refined by the non-
parametric model, generating the mean vector Y19 and covariance matrix 35 from
the input vector Xis. If temporal dependency is being used, the motion estimates
Yo1 are used to complete the input vector Xi2 and the resulting motion estimates
Y12 are maintained to be incorporated into the input vector Xo3 from the next
timestep.
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covariance values between each degree of freedom. If the temporal dependency module
is active (dotted lines), both output components are stored and used in the next
iteration to complete the input vector Xs3, to increase the amount of information

available for the SPCGP Inference process.

Afterwards, the mean vector Yj,, the input vector X, and the fundamental ma-
trix Fio are used as input in the SPCGP Update process, where the non-parametric
model is updated as new information becomes available. If X, resides in an under-
represented portion of the input space, it would be desirable to incorporate it into
the non-parametric model, thus increasing accuracy in a new family of optical flow
distributions. The next step is to check the values in X5, because if the correspond-
ing uncertainty is high this indicates that the algorithm is not confident about Yis,
and therefore this estimate may not be reliable enough to be incorporated into the
non-parametric model. These two aspects (the benefit of incorporating Xo versus
the inherent uncertainty in Yi,) are weighted, and if the result is favourable the cur-
rent estimate is added as a new data point into the non-parametric point. If this
incorporation makes the covariance matrix surpass a certain size, a data point must
also be removed in order to keep the computational cost roughly constant. This point
is selected among those in a well-represented portion of the input space, to minimize

the amount of information discarded from the non-parametric model.

4.1.1 Coupled Gaussian Processes

The multiple-output Gaussian process (MOGP) derivation [10] improves on standard
Gaussian processes by allowing the simultaneous modelling of T" outputs, using the
assumption that there is a latent correlation between them (Fig. 2.9). This correlation
is quantified using a cross-covariance function, that quantifies the relationship between
input points that are mapped to different outputs. This approach allows the sharing
of information between different outputs, and if they are indeed correlated this sharing
improves on results by constraining the solution space. However, each output is still

calculated independently, and therefore there is no modelling of cross-dependencies
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between outputs. These cross-dependencies (the off-diagonal terms in the covariance
matrix ¥3) represent the uncertainty values of each output pair, indicating how much
the knowledge of one output increases the information available for the estimation of

the other one.

An extension to the standard MOGP derivation is presented here, where all out-
puts are calculated simultaneously from the same input information. This approach
allows the recovery of a full covariance matrix V(f), containing both auto and cross-
dependencies between each output. The higher a particular cross-dependency value
is, the more correlated the corresponding output pair will be, and by exploiting these
dependencies the algorithm is capable of further constraining the solution space to
reduce uncertainty and improve results. This ability to quantify the correlation be-
tween different outputs, and determine specific coupling pairs whose correlation could
be exploited, gives this extension the name of Coupled Gaussian Process (CGP). This
is the GP framework used in the proposed visual odometry algorithm, as a way to

correctly model the constraints generated by vehicle dynamics, that naturally limits

motion to only certain specific combinations.

As in the standard MOGP framework, the training dataset A is divided into T" sepa-
rate Ay = {X,,, Y+ })_, datasets, each containing N observations x,, and their corre-
sponding ground-truth y, ; information for that particular output®. The covariance

matrix K is now defined as:
K=K;oK,+%,, (4.1)

where ® denotes the Kronecker product, Ky is a T' x T positive-definite matrix that
models the correlation amplitude between each output (a two-dimensional analogue
to the signal variance values o7 in Egs. 3.15 and 3.16) and %, is a T x T matrix

containing noise values. The matrix K, is a T' x T" block matrix that encodes the

2In principle, each particular training dataset may be composed of a different set of observations,
and may also be of different sizes. However, since in the visual odometry scenario this is generally
not the case (each image has a corresponding motion estimate for all degrees of freedom), for the sake
of simplicity we will assume from now on that all training datasets A; contain the same observation
set X = {Xl7 . 7XN}.
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auto and cross-covariance values between training inputs x,, ;;, for each output pair,

and it is given by:

Kll KIT
KTl Ce KTT
where
k,‘j(Xl,Xl) kij(XIuXN)
kij(XNaxl) kij(XhXN)

and k;; is the auto-covariance function k;(x,x’) if ¢ = j and the cross-covariance
function k;;(x,x’) if ¢ # j. The covariance functions used here are slightly different
from the ones proposed previously (Egs. 3.15 and 3.16), due to the introduction of
the correlation matrix Ky, and are positive-definite (a proof can be found in [134])

and of the form:

2~Tz~/
5i(x,x") = arcsin X =X )
k ! i 4.4
V(1 2%7R)(1 + 287K
: 2%y’
arcsin
ks (x, %) = <\/(1+2>2T2>2)(1+2>2'T2>2’)) (4.5)
] I - .
(15l 1551 * /1% + 55
In the equations above, x = {1,z,...,xp} is an augmented vector for the input

point x and ¥ = 3;(3; + ¥;)7'%;. The hyperparameter set 6 is now composed of
the length-scales ¥; for each particular output, the correlation parameters in K; and
the noise values in ¥,,. The hyperparameter sharing technique introduced in Section
3.3.2 still applies, and the training stage is conducted by optimizing the marginal

likelihood function as described in Eq. 3.19. Once training is complete, the optimized



118 Semi-Parametric Coupled Gaussian Processes

hyperparameters are used for inference, which for a test point x, is defined as:

f.=K/'K'y (4.6)
V() =K, - KK 'K, (4.7)
where y = [(y11---v1z) - Wea - weN,) - (Y1 - yrng)]T s a vector containing

the ground-truth information for all outputs and

kn(X*,X*) k1T<X*aX*)

K, = : : (4.8)

kry (X, Xi) oo kpp(Xe, Xy)

is a matrix containing the auto-covariance values for the test point x, for each output
Yst, and the corresponding cross-covariance values for each output pair. Lastly, K is
a T-column matrix that contains the covariance values between the test point x, and
the training points x,, for all outputs (again, we assume that all training datasets A,

are composed of the same set of observations), and it is defined as:

k{lkl,l(x*a Xl) e ]{5,_{«71]{?T71(X*7 Xl)
k{}lk‘l,l(x*, XN) .. k;lk;p,l(x*, XyN)
K, = (4.9)
k{Tk’LT(X*, Xl) e k,’%Tk’ﬂT(X*, Xl)
i kiTkl,T(X*; XN) .. k‘;TkT’T(X*, XN> i

This new inference methodology is the main contribution of CGPs over the stan-
dard MOGP framework, allowing the simultaneous recovery of all vehicle motion
estimates f, and also a full covariance matrix V(f*), as seen in Fig. 4.2. The CGP
inference methodology comprises the core of the proposed visual odometry algorithm,

and results presented later on in the experiments section (Section 4.3) testify to the
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improvement given by this approach over the MOGP results shown in the previous
chapter. The next sections are devoted to further improve the CGP framework by
introducing temporal dependencies between frames, the iterative incorporation and
removal of information from the covariance matrix, and the introduction of a geomet-
ric model as the mean function for the posterior distribution (thus eliminating the

standard zero mean assumption mentioned in Section 2.2.3).
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Figure 4.2 — Motion estimates obtained using the CGP framework (compare with
Fig. 3.17). The bottom figure shows the cross-covariance values between linear
and angular velocities, and it is possible to see that it consistently increases during
rotation. This is to be expected, as it is when the vehicle turns that its dynamic
constraints become more prominent, and the CGP framework is able to exploit
these constraints to further improve the accuracy of its estimates even in under-
represented regions of the input space.
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4.1.2 Temporal Dependency between Frames

The previous section explored the nature of cross-dependencies between outputs,
which is a natural assumption in visual odometry applications, where the dynamic
vehicle model naturally constrains motion and correlates different degrees of freedom.
However, this is not the only one, and here another type of correlation between out-
puts is explored: temporal dependency. It is safe to assume that a real vehicle will
change its velocity in a smooth manner, without discontinuities, and therefore its
motion estimates will also vary smoothly over time. A first-order temporal depen-
dency between outputs implies that y,_; will be correlated to y,, with £ being the
timestep for each frame. This is modelled into the CGP framework by incorporating
the motion estimate f;,_, into the input vector x;. For a test point x; at timestep k

the new augmented input vector zj is defined as:

7 = {xi.5,_}. (4.10)

The introduction of z as an augmented input vector does not interfere with the CGP
inference methodology, other than requiring the corresponding augmentation of the
length-scale matrix >; to deal with the new input dimensions that were incorpo-
rated. However, this new framework disturbs the traditional training methodology
because the new complete set of observations Z = {z,}_, is not readily available
for evaluation, since it needs to be calculated incrementally based on information
obtained in the previous iteration. It is possible to use ground-truth information to
complete Z, but this would generate a best-case scenario that is not consistent with

real applications, where small estimation errors propagate over successive iterations.

A new training methodology is proposed here, which allows an incremental hyper-
parameter optimization while maintaining temporal dependency by using motion es-
timates obtained using the CGP inference process to generate the input vectors z,
in the training dataset. This new methodology is described in details in Algorithm
4.1, and it requires the division of the training dataset A into two subsets, A' and

A2, each composed of half the training data. In the first subset, the ground-truth
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Algorithm 4.1: Temporal Dependency Training

A and A? - Training datasets

0 - Initial hyperparameter set
Output: 6 - Optimized hyperparameter set
likelthood _old < oo
likelihood _new <« 0

while likelihood _new — likelihood _old # 0 do
likelthood _old = likelihood new
foreach z; in A do
‘ Zzl <~ (Xiaygfl)
end
% Expectation step
foreach z; in A, do
Yoap = CGP_INFER(Z',x;,0)
Z7 + (xi,Ycep)
end
% Maximization step
(likelihood_new,0) = CGP_TRAIN(Z?* y?,0)
AL+ A?
end
return 0

Input

values of y' are used to complete Z! directly (lines 4-6), in such a manner that y; ,
completes z;.. The observation set Z' is then used to evaluate Z? iteratively (lines

8-11), according to the CGP inference methodology described previously.

Once this evaluation process is complete, the observation set Z?2 is used to optimize the
hyperparameters (line 13) according to the marginal log-likelihood function (Eq. 3.19)
and using a gradient-descent method. After this optimization is complete, the process
is repeated with inverted subsets (A! is now used for inference and A? for training)
until the cost function converges (lines 14-15). It was determined empirically that
the hyperparameters assigned as length-scales for the m;_; components of z; should
be kept from taking too low values, since this would increase the sensitivity to small
errors in estimation. Also, the gradient-descent method should be limited to only a
few steps, in order to increase convergence speed and discourage over-fitting to any

particular iteration of the training process.
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This technique resembles the ezpectation-mazimization (EM) algorithm [26], in the
sense that it alternates between computing motion estimates from current hyperpa-
rameters (the expectation step) and optimizing hyperparameter values using current
motion estimates (the maximization step). There is no guarantee of convergence to
the global minimum, so heuristic approaches for escaping local minima, such as ran-
dom restart or simulated annealing, should still be considered as discussed previously.

The intermediary results of this new training methodology are depicted in Fig. 4.3,
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Figure 4.3 — Intermediary results of the new training methodology introduced to ad-
dress temporal dependency between outputs. (a) Optimization of the marginal
log-likelihood function. (b) Accumulated errors for each output and for each itera-
tion (assuming all six degrees of freedom).
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where it is possible to see a steady decrease in the cost function value for each iter-
ation. The corresponding accumulated errors for each output are also depicted and
show a steady decrease as well, even though there are some occasional increases due
to the multiple-output nature of the optimization process (certain errors might in-
crease as others decrease). This particular training methodology is particularly useful
in 3D aerial visual odometry, where the narrow field of view imposed by the camera
limits the information available for the CGP framework. By incorporating temporal
dependencies it is possible to severely constrain the solution space and significantly

improve results, as shown in Section 4.3.2.

4.1.3 Incremental Updates of the Covariance Matrix

As stated previously, the performance of the CGP framework is heavily dependent
on similarities between optical flow distributions in the training and testing datasets,
since inference is performed by comparing available data (and their corresponding
ground-truth) with new unobserved information. As new information deviates from
available data, the input space becomes under-represented and the CGP framework
does not have enough samples to generate accurate estimates, even though the cor-
responding uncertainty increases to balance this phenomenon from a probabilistic
standpoint. Since it is infeasible to produce a training dataset with all possible opti-
cal flow distributions in all possible environments, both due to sheer logistical reasons
and the computational complexity of the resulting model, another solution would be
to allow the incremental update of the covariance matrix, incorporating useful data

and removing redundant data as they become available.

Since ground-truth information is not available during navigation, this data incor-
poration framework must use CGP estimates as ground-truth, obtained iteratively
during the inference process. Any data incorporated should represent a previously
poorly described portion of the input space, to increase the overall knowledge of the
underlying function without excessive redundancy. As a new point is incorporated,

if the resulting covariance matrix K surpasses a pre-determined size, another point
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should be removed to maintain computational complexity roughly constant. This
point is selected among those that describe an already well-represented portion of
the input space (and are therefore considered redundant). These rules are observed
by determining the k£ nearest neighbours of the test point x, in the input space, and

performing the following three steps:

e Uncertainty check. To avoid the incorporation of inaccurate estimates, the
test point is discarded if its inherent uncertainty >, is the highest among its
neighbours, of if it is higher than a certain threshold «,. This step assumes that
the environment in which the vehicle is navigating changes smoothly, to allow
the gradual incorporation of new accurate data throughout this transition and

"prepare" the vehicle for the new environment.

e Data Incorporation. If the number of neighbours of the test point within a
certain radius is lower than a certain threshold k;, then the point is accepted for
incorporation (it represents a previously unknown portion of the input space).

This incorporation process is performed according to Eqs. 4.11 and 4.12.

e Data removal. If the size of the covariance matrix K exceeds a certain thresh-
old k,, a point must be selected for removal. This is done by selecting the point
in the current non-parametric model with the highest number of neighbours
(and therefore it is considered redundant). This removal process is done ac-

cording to Eqgs. 4.13 and 4.14.

This neighbourhood information can be implemented efficiently using structures such
as kd-trees [85], and new points are incorporated and removed iteratively from this
structure (which can also be done efficiently since only one new input point is gen-
erated at each iteration). The parameter set K = {ky, k;, Kk} is selected according
to the speed in which the environment is expected to change over time (k,) and the
expected size of the covariance matrix (k; and k). The incorporation and removal
of points in the covariance matrix is conduced using Cholesky decompositions, a com-

mon approach in GP literature [96, 111|. The Cholesky factor is an upper triangular
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matrix C such that K = CTC, and it allows for a faster and more numerically stable
computation of the inverse K~!. Assuming that the covariance matrix K and the

Cholesky matrix C' are defined [118] as:

K ki Kis Cii ¢ Cis
K= k1T2 kao  kas C= 0 o9 Co3 | (4.11)
K%; k§3 K33 0 0 033

the resulting Cholesky matrix C” obtained by marginalizing (removing) the central
row and column is given by:
Chy CL

C' = , (4.12)
0 ’}/(037;5033 + C%})ng)

where v is the Cholesky update operator, readily available in packages such as |28, 80|
and which exploits the special structure of ¢l,c93 to attain a computational complexity
of O(n?). The marginalization of K is obtained simply by removing its middle row
and column. Similarly, if the covariance matrix K and the Cholesky matrix C are

defined as:

K, K Cn CL
K=| " Bloo= T B (4.13)
KlS Kgg 0 CY33

the resulting Cholesky matrix C” obtained by expanding (adding) a central row and

column is given by:

Cll Cfl\k12 013
C'=| 0 \hn—chep  |oths , (4.14)
0 0 Y(C5C33 + €33€03)

where the operator \ is used to indicate the solution of ¢5 in the equation C’lTlclg =
k1o, obtained by the use of backwards or forward substitution for the upper triangular
matrix C;. Again, the expansion of K is done directly by incorporating the middle

row k, = [k, ko, k3] and column k! obtained by calculating the covariance between
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x, and all training points x,, (points prior to the middle are part of ko, points after the
middle are part of koz, and ks is the diagonal term of the new row and column). The
above equations address the particular case of one single output, and the extension to
multiple-outputs is done by updating each individual covariance matrix K;; in the now
block-matrix K (Eq. 4.2). It is worth noting that each point incorporated into the
covariance matrix increases its overall size by T, the number of outputs, and therefore
the problem of scalability becomes even more pronounced. In principle this update
process may be conducted independently for each output, incorporating estimates for
particular degrees of freedom that are under-represented in that specific portion of
the input space and discarding estimates for others that are already well-represented,

however this was not explored in this thesis.

4.1.4 Semi-Parametric Visual Odometry

The standard GP derivation presented in Section 2.2.3 assumes that the joint dis-
tribution of any finite set of samples removed from the Gaussian process will have a
mean value equal to zero. This zero mean assumption can be made without any loss
of generalization, by correctly normalizing the input information, and is indeed very
common throughout the literature. Another way of interpreting this assumption is
to imagine that there is no prior knowledge about the underlying function the GP
is trying to model, and therefore the initial guess is simply zero in the entire input
space. From this initial "unknown" state the non-parametric model then attempts to
learn the correlation between different input points from training data and extrapolate

these correlations to address new unobserved data.

There are some applications, however, where the underlying function can be roughly
estimated using a parametric model, which is a much more compact and efficient way
of performing regression. For example, if we know that the underlying function is
roughly linear, it is possible to incorporate this knowledge into the non-parametric
model by introducing a linear function f(x) = Ax + b as the mean vector for the

GP framework. The coefficients in A and b are treated as hyperparameters and
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Figure 4.4 — Effects of using a mean function to estimate a quadratic function f(z) =
ax? +b with a noise value ~ N(0, 10). The black line shows the estimates obtained
with a zero mean assumption and no training (random hyperparameters). The
red line shows the estimates obtained with a zero assumption and gradient-descent
training, where it is possible to see that the resulting model interprets the quadratic
behaviour as noise. The blue line shows the results obtained using a quadratic
function f(z) = ax?+bx +c as the mean function, with parameters {a, b, ¢} trained
alongside the GP hyperparameters.

optimized as such, thus maintaining the same methodology described previously but
introducing a new component that constrains the solution space according to our prior
beliefs about the phenomenon at hand. The result is a semi-parametric model that
benefits from the best of both worlds: the compactness and efficiency of a parametric
model and the flexibility of a non-parametric model. In this new framework, the
non-parametric model no longer has to completely estimate the underlying function
and all its intricacies, since now it only has to refine the initial estimate provided by

the parametric model.

The visual odometry scenario is one of such applications, where the various geomet-
ric models available for different camera configurations could be used as the mean
function that is then further refined by the GP framework. We propose here the in-

corporation of the standard SFM algorithm?, as described in Section 2.3.5, to generate

3The Mono-SLAM algorithm was also considered as the mean function, however its high com-
putational cost would not allow the calculation of real-time estimates during navigation. Any other
algorithm could in principle be readily incorporated without any further modifications to the frame-
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the initial SFM estimates for each degree of freedom. The fundamental matrix F),
necessary for this geometric model is already calculated during the RANSAC stage,
where outliers are removed from the initial matching set before the input vector x,, is
generated. The calibration parameters {f,, f,, @, ¢, ¢}, as defined in Eq. 2.99, are
treated as hyperparameters and optimized alongside the GP hyperparameters, thus
maintaining the assumption that no traditional camera calibration is necessary. If a
different geometric model is used, any other parameter involved in the calculations
may also be included as an extra hyperparameter, still eliminating the traditional cal-
ibration stage. Indeed, this proposed semi-parametric approach to visual odometry
(SPCGP) can be used in conjunction with any of the current available visual odom-
etry algorithms, introducing an extra non-parametric layer that refines their initial
estimates based on training data. Since the incremental aspect of visual odometry is
highly sensitive to errors, the flexibility of the GP framework allows the modelling of

nuances in the underlying function that a strictly parametric model struggles with.

The training methodology remains the same, except for the introduction of the SFM
calibration parameters as a new set of hyperparameters to be optimized alongside
the CGP hyperparameters. These hyperparameters are optimized iteratively as de-
scribed in Fig. 4.1, where an initial SFM estimate is calculated, refined by the CGP
framework, and then used to generate a new set of hyperparameters in an attempt to
minimize the cost function. The marginal log-likelihood still serves as the cost func-
tion, however it has to be slightly modified to incorporate the presence of a non-zero

mean vector f. The new marginal log-likelihood cost function is now of the form:

1 1 N
L(y|A,0) = —5n K| — §eTK*16 ) In(27), (4.15)
where € = (y — m(x)) is an error vector that quantifies the distance between the
initial SEM estimates m(x) and the ground-truth values y. If € is small, this means
that the initial SFM estimate is already accurate and there is no need for further
improvement. On the other hand, if € is large, the non-parametric model takes over

and tries to compensate the difference using training data. The inference methodology

work.
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(Egs. 4.6 and 4.7) is also slightly modified to incorporate the presence of a non-zero

mean vector:

f. =m(x,) + KK Yy —m(x)) (4.16)

Vf.,) =k - KK 'K,. (4.17)

By incorporating the mean function into the inference methodology we assure that,
as testing data deviates from training data, the outputs will converge to the SFM
estimates, as the non-parametric model will have less information to further improve
results. Hence, this methodology also decreases the impact of dissimilarities between
training and testing data, as now the SPCGP framework will, in the worst case
scenario, be at least as accurate as the geometric model used. As these similarities
start to emerge, the non-parametric model becomes able to exploit them as a way to

refine the initial estimates and further improve results.

4.2 Simultaneous Localization and Mapping

Up to this point, the problem of visual odometry has been addressed from an incre-
mental perspective, meaning that motion estimates are obtained independently from
each other. Even the temporal dependency between frames established in Section
4.1.2 does not enforce any correlation among estimates from different timesteps, but
rather generates an extra constraint in the input space that the CGP framework is
able to exploit as a way to resolve ambiguities and improve results. Because of that,
any imprecision in these motion estimates will propagate to the next iterations, gen-
erating an error component (drift) that quickly accumulates to compromise global
localization results. Any improvement in such estimates will serve only to delay, but
never prevent, this error accumulation, and therefore purely incremental localization
methods are inherent flawed in long-term navigation. A reliable long-term naviga-
tion algorithm should be able to provide absolute localization estimates, that are not

dependent on the vehicle’s previous states.
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This section explores the extension of the proposed visual odometry algorithm into
a Simultaneous Localization and Mapping (SLAM) framework [25, 65, 82|, where
absolute localization estimates are obtained by incrementally building a map of the
environment during navigation. The vehicle pose x; at each instant is given by a
Gaussian distribution N (p,, %), where p, is the current pose estimate and ¥, is
its corresponding covariance matrix. Intuitively, >; should increase over time due to
drift, causing the vehicle to be less and less certain of its true position and orientation
in regards to a global coordinate system. Similarly, each landmark m; observed is
stored as a Gaussian distribution N (w;,;), where p, is the landmark’s position
estimate in the environment and X; is its corresponding covariance matrix. This
covariance matrix >; has two components: one generated by the sensor model used
by the vehicle to observe the environment (which is roughly constant and given by ;)
and one generated by the vehicle’s own pose uncertainty at the moment in which the
landmark was observed (which increases monotonically over time due to drift). An

example of this increase in uncertainty is shown in Fig. 4.5a, where the grey ellipses

(a) (b)

Figure 4.5 — Example of uncertainty reduction in SLAM. The vehicle starts moving
(top left portion of the image) and its pose uncertainty increases monotonically over
time (grey ellipses), alongside the uncertainty of observed landmarks (red ellipses).
The last timestep before loop-closure is shown in (a), and (b) shows the effects of
this loop-closure on the uncertainty ellipses after the first landmark is revisited. The
loop-closure information is used to remove all drift accumulated since the beginning
of navigation, and this information is then propagated backwards throughout the
entire trajectory, causing a global decrease in vehicle and landmark uncertainty.
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represent vehicle uncertainty and the red ellipses represent landmark uncertainty. The
vehicle starts at the top left corner of the image, and as it moves clock-wise its pose
uncertainty increases over time due to drift, which in turns increases the uncertainty

of the landmarks it observes during navigation.

However, when there is a loop-closure (i.e. a previously observed landmark is revis-
ited), the vehicle is able to generate a pose estimate that is not dependent on its
previous state x;_;, but rather on the landmark’s position m; as it is stored on the
map. Since Y, increases monotonically over time due to drift, it is natural to assume
that >; < X, because the landmark m; was observed on a previous timestep ¢; < t. It
is possible then to combine these two estimates into a new more accurate estimate x;,
eliminating the drift error accumulated between ¢; and ¢ and estimating the vehicle’s
position more accurately. Additionally, since the vehicle poses in different timesteps
are correlated (they were obtained incrementally), it is also possible to propagate this
information backwards over the entire trajectory, causing a global decrease in vehicle
pose uncertainty. Lastly, since landmark uncertainty is correlated to the vehicle’s
own uncertainty at the time they were observed, this information can be used to
globally decrease landmark position uncertainty. An example of this global decrease
in uncertainty is shown in Fig. 4.5b, where the vehicle is revisiting the first landmark
it observed at the beginning of navigation (top left corner). This landmark estimate
does not contain any drift error component, and the vehicle is capable of using this
information to refine its pose estimate and retroactively decrease the uncertainty of
the entire trajectory, alongside the uncertainty of all observed landmarks up to this

point.

This section describes a SLAM algorithm based on the works of [33] and [125], where a
FEzact Sparse Information Filter (ESIF) is used to track all vehicle and landmark poses
over time, along with their corresponding uncertainties and the various correlations
between estimates. The use of information filters, instead of the more traditional
covariance filters [139], is beneficial due to its natural sparsity, with most of its non-
diagonal elements being very close to zero. It is shown in [130] how to approximate

these elements to be exactly zero, thus creating a near-constant time solution to
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the SLAM problem, where new information can be incorporated and recovered very
efficiently. This concept is further explored in [136], where weak robot-landmark
correlations are actively broken to enforce a desired level of sparsity. By relocalizing
the robot within the map it is possible to produce estimates that are both globally

and locally accurate relatively to a non-sparse solution.

4.2.1 Marginalization and Conditioning

We start by defining ¢, as a random vector distributed according to a multivariate
Gaussian probability distribution, such that ¢, ~ N(p,, X;), where p, is the mean
vector and 3, is the covariance matrix. Expanding the quadratic term within the

Gaussian exponential, we arrive at an equivalent representation for the multivariate

distribution N "1(n,, A):
p(ct) = N(y’h Et)

1 1

1 1 _ _ _
= —F——=¢€Xp (—§(CtTEt ICt - QNtTZt ICt + lLtTEt 1#1:))

\/ |27T2t|

1 _ _
= —F——€xXp (—ﬁCtTEt 1Ct + HtTZt 1Ct)

(4.18)

2 1
- —_1| eXp (_§CtTAtCt + ntTCt)

The canonical form of the Gaussian distribution above is completely parametrized by
the information vector m, and the information matrix A;, which are related to the

mean vector and covariance matrix as follows:

Ay=37" n =37 By (4.19)
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Figure 4.6 — Sparsity of the information matrix A in comparison to the covariance
matrix 2.

This canonical parametrization for the multivariate Gaussian distribution is the dual
form of the standard derivation in regards to the marginalization and conditioning
operations, as demonstrated in Table 4.1. Marginalizing over variables with the stan-
dard form is simple, since it involves the removal of the corresponding elements from
the mean vector and covariance matrix. However, the same operation for the canoni-
cal form involves calculating a Schur complement and is computationally costly. The
opposite is true when calculating the conditional from the joint distribution: it is

complex with the standard form and simple with the canonical parametrization.

An advantageous property of the canonical parametrization is that the information
matrix provides an explicit representation for the structure of the corresponding Gaus-
sian Markov Random Field (GMRF) [99]. This property follows from the factorization

of a general Gaussian probability density:

p() o exp (—%CTAC 4 nTC)
~ Moo (3066 -00) IT v (-3606) @)
i 1,5 (1#£7)

:H\I’Z(Cz) H \IJ(CMCJ')v
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where

W;(Gi) = exp (%(Az‘z@f - mQ)) (4.21)

1
‘Ifij(Ci, Cj) = exXp (§Ci)\ijCj> (4-22)

are the node and edge potentials for the corresponding undirected graph. Random
variable pairs with zero off-diagonal elements in the information matrix (i.e. A\;; = 0)
have an edge potential U,;((;, (;) = 1, signifying the absence of a link between the
nodes representing the variables. Conversely, non-zero shared information indicates
that there is a link joining the corresponding nodes with a strength of the edge pro-
portional to );;. As the link topology for an undirected graph explicitly captures
the conditional dependencies among variables, so does the structure of the informa-
tion matrix. The presence of off-diagonal elements equal to zero implies that the
corresponding variables are conditionally independent, given the remaining states.
Interestingly, the same conclusion can be obtained from a simple analysis of the con-
ditioning operation for the information form. As stated in Table 4.1, conditioning a
pair of random variables o« = [C;TFC]T}T on the remaining states B involves extracting
the A, sub-block from the information matrix. When there is no shared information
between ¢; and (;, the sub-block A, is diagonal, as is its inverse (i.e. the covari-

ance matrix). Conditioned upon 3, the two variables are uncorrelated and therefore

conditionally independent, or p(¢;, {;18) = p((;18)p(¢;18).

Marginalization Conditioning

pla) = [pla,B)dB | p(a]B) = p(e, B)/p(B)
Covariance | g = p,, pw=p,+ Eagzggl (B — ms)
Form Y =Yaa Y =% — ZagEggE,Ba
Information | n =n, — AagAgéma N =1, — NapB
Form A=ANyo — AQBAgﬂlABQ N = Ao

. Mo Yoo Lagp A1 Na Ao Aozﬁ
plex f) N(_“ﬁ‘}’{zﬁa EﬁﬁD N ({”5}’{/\% ABﬁD

Table 4.1 — Duality between Covariance and Information Filters. Covariance filters are
more efficient in marginalization, whereas Information filters are more efficient in
Conditioning.
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4.2.2 State Augmentation

We describe here the method for state augmentation, which is how the state vector
¢, is augmented to receive a new vehicle pose estimate x;. This operation occurs
whenever there is a new state that is deemed worth storing. In our framework, a new
state in principle could be added at each iteration, augmenting the state vector to
include the new vehicle pose estimate. However, since this would quickly generate an
excessively large and mostly redundant state vector, we choose to add a new state
only when the Euclidean distance between the previous stored vehicle pose estimate

and the current one is larger than a certain threshold d.

Adding a Delayed-State

Assume for the moment that the estimate at time ¢ is described by the following

distribution expressed in both covariance and information form:

Eztxt El't 1
p(Xt,M‘Zt, ut) — N /"“act ’ M
s EMxt Ynm
- (4.23)
:N Ir'q;t Amtﬂ’,‘f, A.Z’t]\f
Ny AMa:t A

where M is the environment map, z’ is the entire measurement history and u’ is the
entire control history. The environment map M is used here in a general sense, and
could include a set of sparse landmarks, or raw sensor data, or any information that
may be used to enforce a loop-closure. For now this is not important, and we will
focus on what happens when the state vector ¢ is augmented to include the time-
propagated vehicle state x;, 1, generating the distribution p(x;,1,x;, M|z’, u'™) that

can be factored as:

t+1) —

p(Xt—&—l’ Xt7M|Zt7 u

= p(x¢y1|x, M, z', utH)p(Xt, 1\/I]zt7 utH)
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= p(Xt+1|Xta U—t+1)P(Xt7 M|Zta ut)- (4-24)

Eq. 4.24 is obtained by factoring the posterior into the product of a probabilistic state-
transition multiplied by the prior, using the common assumption that the robot state
evolves according to a first-order Markov process. The general non-linear discrete-
time Markov vehicle motion model is then given by Eq. 4.25, and the first-order
linearized form is given by Eq. 4.26, where F' is the Jacobian evaluated at p,, and

w, o« N (0, Q) is a white noise process.

X1 = f(Xe, Wep1) + Wy (4.25)

~ f(l’l'a:t7 ut+1) + F<Xt + l’l’act) + Wy (426)

Augmentating the Information Form

Before obtaining the information form of the augmented state vector, it is neces-
sary to obtain its covariance form. This is done according to the first-order Markov

factorization described in Eq. 4.24, and is of the form:

P(Xt41, %, Mlz!, u'™h) = N (i1 Ziia) (4.27)
f(l’l’:pta ut+1) sztathT + Q Fzzmt szt]\l

u;-{—l = I’l’xt 2—‘,—1 = Z.’Etfl'tFT ZIt{L't Z{L’ﬁ]\f ° (428)
759, S FT YMe,  SMM

The lower 2 x 2 sub-block of ¥} ; corresponds to the covariance between the delayed-
state element x; and the map m, and has remained unchanged from the prior. The
first row and column, on the other hand, contain the cross-covariances associated with
the time-propagated vehicle state x;.1, which includes the vehicle motion model. This
covariance form can now be transformed into the information form, which requires

the inversion of the 3 x 3 block-covariance matrix 3, and is given by:
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P(Xe1, X4, M|Zt7 utH) = N_l(ﬂ;Ha A2+1) (4.29)

Q" (f(Hyyuipr) — Fpay,)
M1 = n,, — F'Q~" (f(l“l’az,n Ury1) — F”’a:t)
L Ui
] (4.30)
Q1 —-Q'F 0
Ny = | =FTQ7" Ao, + FTQ'F Ay
0 At AMM

4.2.3 Measurement Updates

One of the most attractive properties of the information form is that measurement
updates are done in constant-time [130], in contrast to the covariance form which is
of quadratic complexity per update. Assume the following general non-linear mea-

surement model and its first-order linearized form:

Zy — h(Ct) + vy
~ W) + H(C — ) + Ve, (4.31)
where , is the predicted state vector distributed according to ¢, ~ N(j1,,%;) =
N_1(1;, A;), v, is the white measurement noise v, ~ A(0, R) and H is the Jacobian

evaluated at fi,. The covariance form update [139] requires the computation of the

Kalman gain and the updating of 1, and 3;:

! (4.32)

K =%H" (HS,H" + R)™
pe = by + K (2 — h(f,)) (4.33)

S, = —-KH)S, (I — KH)" + KRK”. (4.34)
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This calculation modifies all elements in the covariance matrix, resulting in a quadratic
computational complexity per update. In contrast, the corresponding information
form is given by:
="M+ HTR™! (ze — h(py) + Hpzy)
(4.35)
A=A +H'R'H.

4.2.4 Motion Prediction

Motion prediction corresponds to a time propagation of the vehicle state from time
t to time t 4+ 1. Expressions for the information form of the augmented distribution
p(X¢11, X, M|z, ul™), containing the time predicted vehicle state x;,; and its pre-
vious state x;, are given in Eq. 4.30. To derive the time-propagated distribution
p(x¢11, M|zt ut*t), it is necessary to marginalize out the previous state x;. Going
back to Table 4.1 for the marginalization of a Gaussian distribution in the information

form we arrive at:

p(xe1, M|z!, u't) = /p(XtH,Xa M|z", u")dx, = N_l(ﬁt+17At+1) (4.36)

_ Q_l (f(l’l’xp ut+1) - Fuzt _Q_IF 1 %
N1 = - Q Nz,
Ny AMxt

Q_IFQ_lnxt + v (f(l'l’xw ut+1) - F’“l’wf)
My — Mz, Q71005

] (4.37)
_ L0 —Q'F
At+1 _ Q . Q Qfl |: _FTQfl AxtM :|
0 AMM Asz
v Q- 1FO1A,,

)

AMxtQ_lFTQ_l Ay — A]WxtQ_lAact]V[
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where

nzt = T’Z‘z - FTQ_l (f(l‘l’xtv ut+1) - Fl»lfxt) (438)

Q=Ago, + FTQ'F (4.39)
and
\I/ — Q—l . Q—IFQ—IFTQ—I

_ Q—l - Q_lF (FTQ—lF + Axmyl FTQ—I

-1

= (Q+FALFT) (4.40)

4.2.5 State Recovery

The information form of the Gaussian distribution is parametrized by its information
vector 7, and matrix A;. However, the expressions for motion prediction (Eq. 4.37)
and measurement update (Eq. 4.35) still require sub-elements from the mean vector
Wy, so that the non-linear models in Eqs. 4.26 and 4.31 can be linearized. Therefore,
in order for the information form to be a computationally efficient parametrization
for delayed-states, it is necessary to find a way to easily recover portions of the mean
vector. Fortunately, this can be done by exploiting the sparse structure of the infor-
mation matrix A;. Two different approaches are described here: the direct approach,
where the entire state estimate is recovered, and the more efficient approach, where

only the relevant portion of the state estimate is recovered.

Full State Recovery

The naive recovery of the entire state estimate involves matrix inversion and is there-
fore of cubic complexity, eliminating any efficiency gained by using the information

form over the covariance form. Fortunately, it turns out that the recovery of the
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state mean p, can be posed more efficiently as the solution of a sparse, symmetric,

positive-definite linear system of equations:

A, = my, (4.41)

which can be solved via the classic iterative method of conjugate gradients [116]. In
general, conjugate gradients can solve this system in n iterations with cost O(n) per
iteration, with a maximum cost of O(n?) that could be a lot smaller if the initialization
is suitable. Additionally, since the state mean p, typically does not change signif-
icantly with each measurement update (excluding key events such as loop-closure),
this relaxation can take place over multiple timesteps using a fixed number of iter-
ations per update [29]. The problem with this approach is that convergence, and
therefore an optimal state recovery, is not guaranteed. Other techniques [36] pro-
pose computational complexity reduction by subsampling poses and performing the

relaxation over multiple spatial resolutions.

Partial State Recovery

A key observation about the expressions for motion prediction (Eq. 4.37) and mea-
surement update (Eq. 4.35) is that they only require the knowledge of subsets of the
state mean vector pu,. Because of that, instead of always solving for the complete state

mean vector, it is possible to partition Eq. 4.41 into two sets of coupled equations:

Aaa Aab M, _ 7, (4 42)

Apo  App oy ny

This partitioning of p, into two subsets allows for the sub-optimal solution for local
portions of the state vector in constant-time. By holding the current estimate for p,

fixed, Eq. 4.42 can be solved for an estimate of pu, as such:

fro = Mot (Mg — Manfly) - (4.43)
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The equation above provides a method for recovering an estimate f1, of p,, given
that the initial estimate f, is a decent approximation of p,. In particular, it is used
to provide an accurate approximation for recovering the state mean during motion
prediction and measurement updates. Since the vehicle state is only serially connected
to the map, A, has only one non-zero block-element, and therefore Eq. 4.43 can be

solved in constant time.

4.3 Experimental Results

In the previous chapter results were presented using a basic version of the visual
odometry algorithm proposed in this thesis, containing only the minimum stages nec-
essary to generate motion estimates from optical flow information based on a training
dataset. This section evaluates the proposed visual odometry algorithm, now includ-
ing all extensions described in this chapter as a way to address the shortcomings men-
tioned previously. The CGP framework (Section 4.1.1) allows the correct modelling
of cross-dependencies between outputs, exploiting constraints in vehicle dynamics to
generate more accurate motion estimates. The temporal dependency (Section 4.1.2)
increases the amount of information available for inference, and is used in the 3D
aerial experiments due to the camera’s narrow field of view, generating ambiguity in
optical flow distributions. The online update of the covariance matrix (Section 4.1.3)
allows the visual odometry algorithm to gradually adapt to new environments, by
incorporating new information as it becomes available and discarding redundant in-
formation to maintain computational cost roughly constant. The SPCGP framework
(Section 4.1.4) improves on the CGP inference process by incorporating a geometric
model as the mean function, providing an initial estimate that is then further refined
by the non-parametric model. The SLAM framework (Section 4.2) takes advantage of
the full covariance matrix recovered by the CGP framework to generate absolute pose
estimates, allowing the removal of drift accumulated during navigation by recognizing

when a determined area is revisited.

Initially, the same experiments from the previous chapter are repeated, both in 2D
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and 3D environments, adding the proposed extensions. Comparisons, both qualita-
tive and quantitative, are provided as a way to evaluate the improvements generated
by the proposed extensions on the final motion estimates. These results testify to
their ability to address the shortcomings inherent to the basic algorithm described
in the previous chapter and provide a much more reliable and robust approach to
visual odometry. Experiments testing the proposed algorithm’s ability to generalize
to different conditions are presented and discussed, including changes in camera con-
figuration and environment while navigating. Extreme tests are conducted to test the
limit of such generalization ability, showing how much similarity between training and
testing datasets is necessary before the algorithm starts to fail (i.e. the uncertainty
becomes too high to generate any useful estimates). Finally, the section concludes
with a brief discussion on the impact of dynamic objects in visual odometry, which
is the motivation for the automatic segmentation of dynamics objects algorithm de-

scribed in the next chapter.

4.3.1 2D Experiments

The same training and testing datasets depicted in Fig. 3.14, collected by a ground
vehicle navigating in an urban environment with a single pin-hole camera, are used to
evaluate the improvements generated by the proposed extensions. For convenience,
Figs. 4.7a and 4.7b show the results presented in the previous chapter: the localiza-
tion estimates obtained using the structure from motion (SFM) algorithm described
in Section 2.3.5 and the localization estimates obtained using the basic algorithm
(MOGP) described in Section 3.3. The SFM estimates were adjusted manually to
account for the inability to recover scale using a purely geometric single camera ap-
proach, while the MOGP framework is capable of recovering scale to a high degree
of precision by exploring similarities between training and testing data (ground-truth
information was, as before, obtained from ICP based on laser data). In both cases,
it is clear that the algorithm struggles mostly with angular drift, which quickly accu-

mulates to compromise global localization results.
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Localization results obtained using the CGP framework without the incorporation of
the semi-parametric model (assuming f, = 0) are depicted in Fig. 4.7c, where the first
noticeable aspect is that scale is also recovered to a high degree of precision. Also,
angular drift is much less pronounced, allowing the vehicle to correctly return to its
initial pose even after a trajectory of roughly 2 km. We attribute this improvement
over the MOGP framework to the modelling of cross-dependencies between outputs,
that allows the algorithm to use linear information to improve angular estimates
and vice-versa. Vehicle turns are under-represented in the training dataset, simply
because in real situations a vehicle mostly drives forward in a straight road, and by
exploiting these cross-dependencies it is possible to constrain the solution space and
generate better estimates even in under-represented areas (see Fig. 4.2 for the motion

estimates used to generate these localization results).
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Figure 4.7 — Localization results using different methods. (a) Structure From Mo-
tion algorithm. (b) Multiple-Output Gaussian Processes. (c¢) Coupled Gaussian
Processes. (d) Semi-Parametric Coupled Gaussian Processes.
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Method Trans. Error Rot. Error
(rmse) (1072 m) | (rmse) (1072 rad)
It. Closest Point 2.92+4.70 0.06 +£0.14
Struct. Motion 9.75 £ 12.12 0.23 £0.16
Mono-SLAM 4.24 +2.25 0.11 £0.09
MOGP 5.82+£9.21 0.12£0.19
CcGP 5.74 £8.18 0.07 £0.08
SPCGP 5.12 £7.49 0.05 £ 0.07
SPCGP + SLAM 5.98 £6.54 0.03 £0.05

Table 4.2 — Linear and angular errors per frame for different methods in ground ex-
periments (with ICP + ESIF as ground-truth).

Finally, localization results obtained using the SPCGP framework are depicted in
Fig. 4.7d, where we can see that the incorporation of the geometric model was able to
marginally improve results, both in scale (especially on the bottom street) and angular
motion (especially on the top street, that is revisited by the vehicle). This marginal
improvement is attributed to the use of the same vehicle and similar environments for
training and testing, that creates an ideal scenario for the CGP framework that leaves
little space for improvement. The impact of the SPCGP framework becomes more
apparent as training and testing data deviate from each other, because under these
conditions the mean function has more weight on the final estimates. This will be
explored further during the generalization experiments, where the algorithm’s ability

to deal with such dissimilarities is evaluated in a variety of different situations.

A quantitative comparison of such approaches is presented in Table 4.2, in terms of
root mean square error (rmse) per frame. The ground-truth for such comparisons
was obtained using laser-based ICP estimates integrated into the ESIF algorithm
described in Section 4.2. As expected, ICP has the lowest translational error, because
distances can be measured directly from a laser scanner. Even with manual scale
adjustment, the SFM estimates show the highest translational error, and all GP-
based estimates performed similarly in the scale recovery aspect. Rotational errors,
on the other hand, decreased significantly with the introduction of the GP framework,
and continued to decrease consistently with the incorporation of cross-dependency

modelling and a geometric model as the mean function. Even though ICP has a
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Loop-Closures
SPCGP (SLAM)

Figure 4.8 — Localization results from the proposed visual odometry algorithm incor-
porated into a SLAM framework.

rotational error comparable to the SPCGP framework, its variance shows that this
error is not spread evenly throughout the entire trajectory, but rather concentrated
in only a few frames (Fig. 3.14b), whereas the CGP framework is able to smooth
out these errors and generate more consistent results, without any large localized

discrepancies.

The SPCGP estimates were also incorporated into a SLAM framework, where all vehi-
cle poses are tracked during navigation and a loop-closure algorithm was implemented
to recognize when an area is revisited. The loop-closure process is done by matching
features from the current frame with features from previous frames (downsampled by
a factor of 5 for speed purposes, without impacting results), and an area is assumed
revisited if the number of successful matches is higher than a given threshold. The
localization results obtained using this framework are shown in Fig. 4.8, where it
is possible to see how the loop-closure algorithm was able to correctly recognize the
second pass over the top street and use this information to correct residual misalign-
ments in this area. The loop-closure algorithm was also capable of recognizing when
the vehicle returned to its starting position, connecting these two points in the state

vector and minimizing the effects of drift in the entire trajectory.
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4.3.2 3D Experiments

For the 3D experiments, the same dataset introduced in the previous chapter, ob-
tained from a UAV flying over a deserted area with a camera pointing downwards,
was also used to evaluate the improvement generated by the proposed extensions. It
can be seen from the results in Fig. 3.18 that this dataset is much more challenging
for a visual odometry algorithm, due to the small and inconsistent overlapping areas
between frames, the ambiguity in optical flow distribution and the narrow field of
view in the camera. To address these shortcomings, the temporal dependency ex-
tension described in Section 4.1.2 was introduced into the SPCGP framework, and
the results are depicted in Fig. 4.9, alongside results obtained by using the structure

from motion algorithm as described in Section 2.3.5.

As expected, a combination of accumulated error and lack of matching features gen-
erated a drift over time that could not be avoided, however it is clear that the SPCGP
framework was able to improve significantly over the results obtained using only the
geometric model. The absolute scale was recovered to a high degree of precision, and
the overall shape of the trajectory was also recovered, without any missing corners or
changes in the plane of navigation. In Fig. 4.9b it is possible to see the cyclical changes
in altitude during flight, ranging from 80 to 100 meters, which poses a challenge for
the GP framework as a regression tool due to the difficulty in separating what is a
trend and should be modelled and what is noise and should be ignored. Interestingly,
the use of temporal dependencies between frames generated a "smooth and delay"
effect as a response to sudden variations, because of the proximity constraint imposed

to outputs in subsequent timesteps.

A quantitative comparison of these results is presented in Table 4.3, in terms of root
mean square error (rmse) per frame based on GPS and inertial information. From this
table we can see the same progression as shown in Table 4.2, which depicts the errors
in 2D experiments. The purely geometric approach is not capable of recovering scale
and therefore has the highest translational error, while all GP-based approaches have
similar translational errors regardless of further extensions to the basic algorithm.

Rotational error, on the other hand, decreased significantly with the introduction
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Task SFM MOGP CGP SPCGP

X 1384.10 £25.72 | 20.47 £0.1552 | 8.49 £0.0668 | 8.11 £0.0727
Y 453.56 £ 5.76 6.84 £0.0541 | 5.95£0.0472 | 5.71 £ 0.0269
Z 325.50 £6.69 | 10.16 = 0.0806 | 10.23 £ 0.0812 | 9.89 £ 0.0714
Roll 11.48 £+ 0.56 0.69 £0.0056 | 0.66 £ 0.0053 | 0.47 £ 0.0051
Pitch 5.09 +0.01 0.35£0.0027 | 0.26 £0.0021 | 0.18 £ 0.0025
Yaw 19.07 £ 0.55 0.41+£0.0032 | 0.33 £0.0027 | 0.25 +=0.0021

Table 4.3 - Root Mean Square linear (1072 m) and angular (10~2 rad) errors per frame
for different methods in aerial experiments (with IMU + GPS as ground-truth).

of the GP framework and continued to decrease consistently with the incorporation
of cross-dependency modelling and a geometric model as the mean function. The
wide variation in overlapping areas precluded the detection of revisited areas by the
loop-closure algorithm, and therefore the SPCGP results were not incorporated into
a SLAM framework. The fusion of this SPCGP information with GPS could lead
to further improvements in the results, by introducing absolute pose estimates to

eliminate drift accumulated during the incremental visual odometry estimation.

4.3.3 Generalization Experiments

This section focuses on testing the generalization ability of the proposed visual odom-
etry algorithm in regards to changes between training and testing datasets. As a
non-parametric regression technique, the GP framework essentially depends on sim-
ilarities between available information and new, unobserved information to uncover
patterns that can be used to provide accurate estimates, assuming the same underly-
ing function. Thus, as the optical flow distributions that the vehicle encounters during
navigation deviate from those available for the non-parametric inference, uncertainty
increases and the resulting estimates will be less accurate. This chapter described two
techniques that are capable of minimizing the influence of such dissimilarities: the
online update of the covariance matrix (Section 4.1.3) and the SPCGP framework
(Section 4.1.4). By incorporating new information into the non-parametric model,

it is possible to gradually learn new useful optical flow distributions and adapt to
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new environments seamlessly. A geometric model is not affected by dissimilarities
between training and testing data, since its constraints depend solely on the camera
configuration, and so the SPCGP framework will provide reasonable results even if

the non-parametric model is unable to further refine the initial estimates.

Even so, dissimilarities between training and testing conditions still affect negatively
the performance of the proposed visual odometry algorithm, and here this impact is
measured in several different situations. Basically, this dissimilarity in optical flow
distributions can be attributed to three distinct causes: changes in the environment,
changes in camera configuration and changes in vehicle dynamics. These three sce-
narios are addressed here in the particular case of 2D navigation, and both qualitative
and quantitative results are presented. Initially, the impact of changes in the envi-
ronment is measured by training the non-parametric model in an urban environment
and testing it in an off-road environment, composed mostly of trees and open ar-
eas. The impact of changes in camera configuration is then measured by training the
non-parametric model with one camera and testing it with a different camera in the
same environment. Lastly, the impact of changes in vehicle dynamics is measured by
training the non-parametric model with one vehicle in particular and testing it with
a different robotic platform. The section concludes by providing a study on gradual
increases in dissimilarity, showing when the algorithm starts to fail and is no longer

capable of providing useful estimates.

Changing Environments

To test the proposed algorithm’s ability to generalize over different environments, a
new dataset was collected using the same vehicle (Fig. 3.13a) and camera configu-
ration, but now in a public park (the Victoria Park dataset, a common benchmark
used in the SLAM literature). This dataset is composed of 4000 images and cover a
trajectory of roughly 4 km, in which the vehicle navigated mostly over grass terrain.
The same urban training dataset from Fig. 3.14a was used for initial optimization,
and there was no further training conducted using information from the new environ-

ment. The localization results obtained using the SPCGP framework are shown in
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Figure 4.10 — SPCGP localization results in ground experiments with different envi-
ronments.

Fig. 4.10, along with sample images used as input for the algorithm. The green dots
represent GPS information and the blue line represents the localization results ob-
tained using the structure-from-motion algorithm, with automatic camera calibration
and manual scale adjustment. As expected, the SFM algorithm provides reasonably
accurate estimates at the beginning of navigation, however drift quickly accumulates

and compromises global localization results towards the end of the trajectory.

The localization results obtained using the SPCGP framework are represented by
the red line, and even though this is also an incremental technique we can see that
the proposed approach was capable of reducing the effects of drift over time, main-
taining consistency in estimates throughout the entire trajectory. We attribute this
improvement to the semi-parametric aspect of the SPCGP framework, that allows
the non-parametric model to focus on the nuances of the training data, while the
parametric model provides an initial estimate that already contains the overall shape
of the underlying function. Although the structures the vehicle encounters during
navigation are quite different (buildings and cars vs. trees and open fields), the
optical flow distributions are similar enough to provide useful information that the

non-parametric model can use to further refine results. A quantitative comparison
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Figure 4.11 — Localization results in ground experiments with different environments,
in a SLAM framework.

of these results with other generalization experiments is given in Table 4.4, showing
that translational and rotational errors are indeed higher than when a similar envi-
ronment is used, however they are still smaller than the ICP and SFM estimates. This
decrease in overall performance should become more prominent as the optical flow
patterns available for training differ more and more from those encountered during
evaluation (i.e. lack of structures around the vehicle, greater proximity to objects,

radically different shapes).

These localization results were also incorporated into a SLAM framework as described
in Section 4.2, with a loop-closure algorithm based on feature matching between
frames. The results are depicted in Fig. 4.11, where we can see that the loop-closures
(yellow dots) occurred as the vehicle returned to the beginning of its trajectory. This

information allowed the retroactive correction of localization estimates at the left
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portion of the image, reducing misalignments and increasing accuracy in a global
scale. These results testify to the algorithm’s ability to generalize over different
environments without further training, a valuable attribute that a visual odometry
algorithm should have in order to be truly useful in real applications. Experiments
with online updates of the covariance matrix are conducted later on, as a way to
stress test the proposed algorithm and determine how much similarity is necessary

before it starts to fail.

Changing Cameras

Here we explore the impact on the localization results of changing the camera from
which the images are acquired. This was done in order to verify the SPCGP frame-
work’s ability to deal with variations in camera parameters, as well as variations in
optical flow distributions that are not caused solely by different structures in the en-
vironment. The same training dataset from Fig. 3.14a is used, and for testing the
same trajectory from Fig. 3.14b is adopted, however now the images are obtained
using a second camera placed on the same vehicle. The new camera has a lower reso-

lution of 640x480 (which was then downsampled to the same 384x252 as the training

Figure 4.12 — Examples of images taken at the same vehicle position with different
cameras. The first row corresponds to the original camera and the second row
corresponds to the new camera (the new camera can be seen in the images captured
by the original camera). The displacement between cameras is approximately 1.4
m horizontally and 0.5 m vertically, with a pitch change of roughly 10°.
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Figure 4.13 — SPCGP localization results in ground experiments with different cam-
eras.

images) and was positioned in such a way that it captures the same portion of the
environment as the other camera, but from a different perspective (see Fig. 4.12).
Again, no further training was conducted once the optimized camera parameters and

GP hyperparameters were obtained from the training dataset.

The localization results obtained using the SPCGP framework are presented in Fig.
4.13, both using the same camera (blue line) and different cameras (red line) for
training and testing. The first noticeable aspect in these results is the impact that
changing cameras has on scale recovery, which is noticeably less accurate. This is to
be expected, since a GP’s ability to recover scale in visual odometry from a monocular
configuration is dependent on optical flow similarities between training and testing
data. The inference process assumes that the environment reacts in a predictable
manner to vehicle motion, and is able to extrapolate scale information based on
ground-truth data. If the camera changes this assumption is weakened, since the
environment now reacts differently to vehicle motion due to new geometric constraints
that were not modelled during training. The rotational error also increases, however
not as much as translational error, since angular motion is not subject to scaling and

can therefore still be modelled accordingly using training information.
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Scenario Trans. Error Rot. Error
(rmse) (1072 m) | (rmse) (1072 rad)

It. Closest Point 2.92+4.70 0.06 +£0.14

Struct. Motion 9.75 £ 12.12 0.23 £0.16

Same Configuration 5.124+7.49 0.05 +0.07

Different Environment 6.57 £ 8.07 0.09 £0.09

Different Camera 8.42 £+ 9.96 0.11 £0.19

Table 4.4 — Root Mean Square linear and angular errors per frame for each output in
ground generalization experiments.

These assumptions are confirmed by the quantitative results in Table 4.4, which show
that changes in camera configuration have a bigger impact on localization results
than changes in the environment. Also, it confirms that translational errors are in-
deed more affected by such changes, whereas rotational errors also increase but not so
significantly. Interestingly, we can see that these increases in error are accompanied by
an increase in uncertainty, showing that these results, even though less accurate, are
still valid from a probabilistic standpoint and can be used in conjunction with other
sensors to provide robust estimates. The translational and rotational errors obtained
from these two generalization experiments are still lower than those obtained using
the SFM algorithm, indicating that the SPCGP framework still outperforms tradi-
tional visual odometry techniques even with unforeseen changes in the environment

or camera configuration.

Changing Vehicles

As a final generalization experiment, the SPCGP framework was tested using a com-
pletely different robotic platform (Fig. 3.13c), also equipped with a single camera,
GPS and inertial sensors that provide ground-truth information. This new config-
uration, other than changing the environment and visual sensor, also introduces a
different cinematic model that changes between the training and inference stages.
The new evaluation dataset is composed of 14500 images obtained in a highly dy-
namic urban environment (downtown Sydney during work hours), over a trajectory

of roughly 10 km. Throughout this trajectory the vehicle interacted normally with
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pedestrians and other moving vehicles, and experienced several changes in environ-
ment structures and lighting conditions (some examples of images collected for this

dataset are shown in Fig. 4.14).

Initially, we present the results obtained using half of this dataset for training and half
for testing (thus maintaining the same camera configuration and vehicle dynamics in
a similar environment) in Fig. 4.15a. Even though the overall shape of the trajectory
is maintained, it is possible to see a significant amount of drift occurring in specific
places, which quickly compromises global localization results. We attribute this lo-
calized drift to the presence of dynamic objects in the environment, that generate
optical flow patterns that do not correspond to vehicle motion and therefore should
have been discarded during the outlier removal process. The influence of dynamic
objects in visual odometry is further explored in the next chapter, where a novel

technique for automatic dynamic object segmentation and removal is presented.

Afterwards, localization results obtained using the urban dataset in Fig. 3.14a for
training (thus changing all three components: camera configuration, vehicle dynamics
and environment structures) are depicted in Fig. 4.15b. These results show that the
proposed visual odometry algorithm indeed suffers from dissimilarities between train-
ing and testing datasets, and if they are radically different performance could decrease
up to a point in which no further useful estimates can be obtained. To determine
the progression of this decrease in performance with the increase in dissimilarities,

a series of tests were conducted using different percentages of information from each

Figure 4.14 — Examples of images collected for the generalization tests with different
vehicles.
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Figure 4.15 — Localization results in tests with different vehicles. (a) Similar training
and testing datasets (the red circles indicate places in which the vehicle is not
moving). (b) Vastly dissimilar training and testing datasets.

dataset for training. A percentage of 100% indicates that the training and testing
datasets were obtained entirely under the same conditions, and a percentage of 0%
indicates that the training and testing datasets were obtained entirely under different

conditions (different vehicle, camera configuration and environment structures).

The results of such tests are presented in Fig. 4.16, where it is possible to see that the
translational error increases roughly linearly with the percentage of dissimilarity be-
tween training and testing datasets. The rotational error also increases monotonically
with the percentage of dissimilarity, however the rate in which this error increases
has a significant jump at around 50%, indicating the point in which the algorithm
starts to fail. When the training and datasets are completely dissimilar, translational
error is roughly 5 times higher than when they are obtained under similar conditions,
whereas rotational error is roughly 10 times higher. The error bars of such mea-
sures also increase monotonically with the dissimilarity percentage, indicating that

measurements become more irregular and sensitive to noise.
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Another series of tests was designed to evaluate the impact of dissimilarities between
training and testing datasets, but now this dissimilarity was generated by skipping
frames in the testing dataset, thus creating an artificial change in scale. This frame

skipping technique creates optical flow distributions that were not learned during
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Figure 4.16 — Decrease in performance as the percentage of dissimilarities between
training and testing datasets increases.
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training, as now the vehicle traverses a longer distance between frames (essentially,
the constant frame rate assumption no longer holds true). The results of such tests
are presented in Fig. 4.17, where we can see a similar trend in how translational

and rotational errors increase with the number of frames skipped. Translational error
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Figure 4.17 — Decrease in performance as number of skipped frames in the training
dataset increases.
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increases roughly linearly with the number of frames skipped, whereas rotational
error initially increases slowly and has a significant jump midway through the tests
(we attribute this jump to the increasingly smaller overlapping area between frames).
When 4 frames are being skipped (only one for every 5 are used), translational error
is roughly 40 times higher than in the initial configuration, and rotational errors are
roughly 15 times higher, an indication that the algorithm has failed and no more

useful information can be obtained.

4.4 Summary

This chapter improved on the visual odometry algorithm proposed in Chapter 3,
addressing its various shortcomings. Five different extensions to the GP framework
were proposed: 1) The modelling of cross-dependencies between different outputs
(Coupled GPs, Section 4.1.1), that allows the full recovery of the covariance matrix
and improves estimates in under-represented portions of the input space; 2) The
introduction of temporal dependencies between outputs of subsequent frames (Section
4.1.2), that increases the amount of information available for inference and further
constrains the solution space to remove ambiguities; 3) The incremental update of the
covariance matrix (Section 4.1.3), that allows the non-parametric model to gradually
adapt to new environments and learn useful optical flow distributions as they become
available; 4) The incorporation of a geometric model as the mean function for the GP
framework (Semi-Parametric CGPs, Section 4.1.4), that provides an initial estimate
that is then further refined by the non-parametric model; 5) and an extension to
SLAM (Section 4.2), in which all vehicle poses are tracked over time and a loop-
closure algorithm is used to detect revisited areas, with this information being used

to globally decrease uncertainty.

Experiments are conducted to evaluate the improvements provided by such extensions
over the basic visual odometry algorithm, both in 2D and 3D environments. Qual-
itative and quantitative comparisons between different visual odometry techniques

are presented and discussed, and they testify to the proposed algorithm’s ability to
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generate accurate estimates even in challenging situations to traditional approaches.
Generalization experiments are conducted to verify the algorithm’s sensitivity to dis-
similarities between training an testing dataset, a common trait in machine-learning
based techniques, that require a well-represented input space in order to generate
accurate results. These generalization experiments include changes in environment
structure, camera configuration and vehicle dynamics, and serve to delineate the point

in which the proposed algorithm is no longer capable of providing useful estimates.

However, during these generalization experiments another issue was detected: the
presence of dynamic objects in the environment. Visual odometry algorithms assume
a static environment, meaning that any optical flow detected is due to the camera’s
own translation and rotation between frames. Any dynamic object will, therefore,
introduce a component of error in the optical flow distribution, essentially tricking
the algorithm into thinking that the camera has moved in a different way (see Fig.
4.15a). Sporadic and localized dynamic objects are removed by the outlier detection
algorithm and averaged out by the optical flow parametrization process, however
if the scene is highly dynamic these techniques are not enough and these objects
must be actively detected and removed before the image is deemed useful for visual
odometry purposes. The next chapter is devoted to a novel technique for automatic
segmentation and removal of dynamic objects, where each pixel in the image receives a
probability of being either static or dynamic, along with a corresponding uncertainty
measurement in regards to this classification. Features that are classified as dynamic
are removed before the optical flow parametrization process, thus maintaining the

assumption of a static environment around the vehicle during navigation.



Chapter 5

Automatic Segmentation of Dynamic

Objects

The previous chapter described several techniques capable of addressing the various
shortcomings in using a non-parametric machine learning approach to visual odome-
try. Cross-dependencies between outputs were modelled using a new extension called
Coupled GPs, capable of recovering a full covariance matrix that quantifies the cor-
relation between different outputs. Temporal dependencies were introduced as a way
to increase the amount of information available for inference, especially on the par-
ticular case of narrow field of view. Incremental updates of the covariance matrix
provide means for the non-parametric model to gradually adapt to new environments
and learn new and useful optical flow distributions. The introduction of a geometric
model as the mean function for the GP framework reduces the need for compre-
hensive training datasets, since an initial estimate is already available that is then
further refined by the non-parametric model. Finally, the SLAM extension allows the
algorithm to exploit the full covariance matrix recovered by the CGP framework to

provide absolute motion estimates, when there is a loop-closure.

However, during the experiments a general issue was raised, that is not related to
the GP framework used in this thesis but could compromise the results of any visual

odometry algorithm. This issue is the presence of dynamic objects in the environment,
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that generate optical flow that is not consistent with the camera’s own rotation and
translation. An example of the impact of such dynamic objects is depicted in Fig.
4.15a, where we can see that most of the overall shapes throughout the trajectory are
maintained, however there is a systematic drift component that skews the localization
results and also some localized sharp turns that do not exist in reality. The systematic
component of drift occurs due to the constant flux of cars in the same portion of the
image (the right one, in Sydney), that generates an optical flow contrary to vehicle
movement and tricks it into thinking that it is moving faster in that portion of the
image than in the other side, and therefore it is slowly turning left. The sharp turns
occur mostly when the vehicle is not moving (i.e. in a traffic light), when there are
pedestrians and other vehicles crossing its path and generating optical flow in different
directions randomly. This random optical flow tricks the algorithm into thinking it is

rotating on its axis, and when it starts moving again its orientation is compromised.

The visual odometry algorithm proposed in this thesis has some components that
allow the filtering of dynamic objects, both by removing outliers using RANSAC
and averaging out dynamic features by dividing the image into equal-sized grids and
combining its optical flow values into a single component. However, if a substantial

portion of the image is dynamic these two techniques are no longer valid, and erro-

() (b)

Figure 5.1 — Examples of dynamic objects in visual odometry. (a) Constant flux of
cars in one portion of the image, generating a contrary optical flow that creates
systematic drift. (b) Pedestrians crossing the vehicle’s path while it is not moving,
generating random optical flow that compromises orientation.
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neous information will be used both for training and testing. A solution would be to
actively segment and remove the dynamic objects from the image, and the remain-
ing (static) optical flow information is then used normally for visual odometry. This
chapter presents and describes a novel technique for the automatic segmentation of
dynamic objects that is based on the same GP principles used throughout this the-
sis, thus creating an elegant solution that can be incorporated seamlessly into the

proposed visual odometry framework!.

The assumption that no prior knowledge of the environment and/or camera calibra-
tion is maintained, and no ground-truth (i.e. manual labelling of images or expensive
3D laser sensors for direct distance measurements) is necessary during the segmen-
tation process. Instead, the ground-truth is composed of the initial classification
between inliers/outliers provided by the RANSAC algorithm, and the output is the
probability that each pixel in the image belongs to a dynamic object (in a range
from 0 to 1, zero meaning static and 1 meaning dynamic). The continuous function
generated by the GP framework allows the dense classification of the entire image,
even though sparse optical flow information is used as input, and a measure of uncer-
tainty for each pixel classification is also obtained, due to the probabilistic nature of
GGaussian processes. New information is incorporated online during navigation, thus
allowing the algorithm to learn the characteristics of new dynamic objects and react
accordingly to gradual changes in the environment, while redundant information is

discarded to maintain computational cost roughly constant.

The remainder of this chapter is dedicated to introducing and describing the proposed
algorithm for the automatic segmentation of dynamic objects. It starts by providing
a brief overview of the currently available techniques for dynamic object segmenta-
tion, and how the proposed algorithm fits within the related literature. Afterwards,
its various components are presented and discussed in detail, including the initial
RANSAC classification, the novel method for parameterizing the optical flow infor-
mation that serves as input for the GP framework, and the probabilistic least-squares

classification method used to transform a regression technique such as GPs into a

!This technique was presented at the International Conference on Robotics and Automation
(ICRA) 2013, under the title Online Self-Supervised Segmentation of Dynamic Objects [44].
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binary classification technique. The tools for incremental update of the covariance
matrix, that serve to decide which information is useful and should be incorporated
into the non-parametric model and which is redundant and/or erroneous and should
be discard, are also presented and discussed, along with a method for obtaining dense
pixel-by-pixel classification of the entire image based on sparse optical flow informa-
tion. Finally, experimental tests are conducted and the results are shown as a way
to validate the proposed algorithm both as a tool for dynamic object segmentation
and as a way of improving visual odometry results. Initial results on dynamic ob-
ject clustering are also presented, and the chapter concludes with a summary of its

contributions.

5.1 Related Work

Several applications of dynamic object detection assume a static camera, which im-
plies that any non-dynamic object will maintain its position over time. In this scenario
it is possible to statistically model the background, essentially "filtering it out", and
treat any change in pixel intensity as a potential dynamic object. In [143] each pixel of
the image is modelled as a Gaussian distribution, whose parameters are learned from
observations in consecutive frames, and in [62] a Kalman Filter is used in a similar
fashion. When a uni-modal solution is ill-suited (i.e. when the background changes
in a predictable manner, such as trees swaying, fans rotating or water flowing), a mix-
ture of Gaussian models has been applied with satisfactory results [30, 37, 122|, and
in [121, 124] a Hidden Markov Model (HMM) is used to model the background while
exploiting spatial dependencies between pixels. Other approaches forego pixel-wise
locality in favour of regional models of intensity, such as eigenvalue decomposition [95]
and autoregressive moving averages [84, 145]. A mixture of local and regional models
is employed in [132], and in [115] a foreground model is explicitly maintained in order

to improve the detection of dynamic objects without using tracking information.

In other applications, however, the visual sensor is mobile, usually mounted on top

of a robotic platform. In this scenario it is impossible to separate background and
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foreground solely by tracking pixel intensity changes, as static objects will also ex-
perience relative motion due to camera rotation and translation between frames. A
straightforward way of segmenting this sort of image is to model the ground plane
and treat everything else as an object [91, 119, 144|, however this approach tends
to fail in crowded environments where the ground plane is not readily visible. A
weaker ground plane constraint is presented in [32], where a coupling between object

detection and scene geometry is maintained using a Bayesian network.

If a significant portion of the environment is assumed static, the relative motion of
static objects can be filtered out by calculating the optical flow |50] of the image and
using a voting method, such as RANSAC [35], to elect the most probable motion
hypothesis. Any region that does not comply to this constraint is assumed to be
dynamic, and can be tracked using classical approaches such as Extended Kalman
Filters [139] or Particle Filters [133] (robust data association algorithms [19] and
occlusion-handling techniques [30, 32| are necessary to deal with very cluttered envi-
ronments). If more than one camera are available, a stereo triangulation can provide a
3D position estimate for matched features [47], incorporating extra information that
could be used to facilitate and improve object clustering and tracking [4, 127]. A
more accurate detection can also be achieved by applying category-specific models to
separate the static background from already established dynamic objects, either on a
3D point-cloud [5, 53], directly on the camera images [23, 64| or in a combination of
both [31, 120]. The static background information can also be readily used to improve
visual odometry applications [6, 43, 93], since its optical flow values now reflect solely

the camera’s own rotation and translation.

5.2 Algorithm Overview

A diagram of the proposed algorithm for the segmentation of dynamic object is shown
in Fig. 5.2, where we can see several similarities with the simplified version of the
proposed visual odometry algorithm as depicted in Fig. 3.1. First of all, the same

input data, IM G, and I MG, is used by both algorithms, which is important since
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it does not create any need for additional processing. The same stages of feature
extraction and matching are also conducted, and the resulting matching set MTC},
is filtered according to RANSAC to generate the inlier set /N L5 that serves as the
input information for the visual odometry GP framework. Here, the matching set
is used directly as input for the Initial RANSAC classification, that provides the
ground-truth data R;s for training and covariance matrix update. This classification

is performed based on the fundamental matrix Fjs, that encodes the geometrical
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Figure 5.2 — Diagram of the proposed algorithm for the automatic segmentation of dy-
namic objects. Again, it is divided into two stages, the Optical Flow Parametriza-
tion and the Gaussian Process Framework. At the beginning of navigation, the non-
parametric model (X, R)yp is empty, and random hyperparameters are selected.
At each timestep, a matching set MTC1s containing optical flow information is
extracted from the current frame IM Gy and the previous one, IMG1. An ini-
tial classification Rypo is performed using RANSAC, assuming outliers as dynamic
objects and inliers as static objects, and each matching pair is parametrized to
generate the input vector Xis for the GP framework. Both Xio and Rjs are used
as input for the GP Update stage, where it is decided whether or not this infor-
mation is relevant, and should therefore be incorporated into the non-parametric
model (X, R)yp, or if it is redundant and should therefore be discarded. The GP
hyperparameters are updated according to this information and used by the GP
Classification to provide a final classification Y79 and variance 319 estimates for the
input vector Xio.
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constraints of the camera between frames and serves as the geometric model used in

the proposed visual odometry algorithm.

Additionally, the matching set also undergoes a parametrization process, which gen-
erates the input vector Xy, for the GP Classification and GP Update stages. It is
important to note that, although the same information is used to generate this input
vector, it is not the same as the one used by the proposed visual odometry algorithm
since different properties are relevant in each application. Visual odometry requires
optical flow information between frames, whereas object segmentation utilizes image
coordinates and pixel intensity values. The resulting pair (X, R)1 is used as input for
the GP update stage, where it is decided whether or not this information is relevant
(and should be incorporated into the non-parametric model (X, R)yp), or redundant
(and should be discarded). This non-parametric model is empty at the beginning of
navigation and the hyperparameters are selected randomly, indicating that no prior
knowledge of the environment is necessary. If these hyperparameters are available

(i.e. from a previous run) they can be incorporated seamlessly.

The GP hyperparameters are updated according to this new information, and the
resulting optimized GP hyperparameters are used by the GP framework to generate
the final classification Yj, for each matching pair Xi,, along with the corresponding
uncertainty estimate Xi5. Since this final classification does not require an initial
classification Rjy, or even a successful match (the input vector is based solely on
image coordinates and colour intensities), it can be performed equally in any image
pixel, thus allowing a pixel-by-pixel dense classification of the entire image. For speed
purposes, this dense classification is performed at every 5th pixel of the image, both
horizontally and vertically, and the spaces between pixels are classified using linear
interpolation for both the mean Yi5 and variance ¥15 values. The result is a 2 x h x w
structure (where (h,w) are respectively the image’s height and width), containing a
value ranging from [0, 1] that indicates the probability that each pixel in the image
belongs to a dynamic object, along with the corresponding uncertainty in regards to

that measurement.
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5.2.1 Initial RANSAC Classification

The initial RANSAC classification provides the ground-truth used by the training and
covariance matrix update processes, thus eliminating the need for manual labelling or
extra sensors that are capable of providing such information directly. As explained in
Section 2.3.3, the RANSAC is an iterative algorithm used to estimate the parameters
of a mathematical model from a set of observed data which contains outliers. For
the application at hand, the mathematical model is the fundamental matrix F', that
encodes the geometric constraints correlating the visual system between frames, and
the outliers are the dynamic objects in the environment, that generate optical flow
that cannot be explained away by the camera’s own translation and rotation. The
RANSAC algorithm basically elects a random sample from the available data, builds a
model and then tests all remaining data points against this model, and the model with
the highest number of inliers is determined to be correct. If most of the environment
is assumed static, it is natural to expect that RANSAC should elect the model that
represents a static environment, and therefore any matching pair that does not comply

to these constraints should belong to a dynamic object.

The same techniques for feature extraction and matching used for the proposed visual
odometry algorithm are used here, thus eliminating the need for further processing of
visual information. Examples of such feature extraction and matching processes are
depicted in Fig. 5.3, in the particular cases where the camera is moving (left column)
and static (right column). The first row shows the initial sets of features extracted
from each image, and the second row shows the corresponding matching sets with
the immediately subsequent frames. An average of 7000 features are extracted per
frame, and it is immediately possible to see a substantial amount of obviously false
matches throughout the image, that do not belong to either dynamic or static objects

and should therefore be removed.

This outlier removal is done using RANSAC, however now a distinction has to be
made between outliers (false matches) and dynamic features, that were correctly
matched but have an optical flow different than that generated by static features. We

can see in Fig. 5.3 that, even though a large portion of the environment is dynamic
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Figure 5.3 — Examples of the feature extraction and matching processes for automatic
dynamic object segmentation. The first row shows the features obtained from
two different images, and the bottom row shows the resulting matches with their
immediately subsequent frames. In the left column the vehicle is moving, whereas
in the right column the vehicle is not moving (all optical flow comes from dynamic
objects).

(especially in the right column), there are still enough static features to ensure that
RANSAC will converge to a model that represents a static environment, mostly in
the street and in the upper portions of the image. Once this model is obtained, each
matching pair is tested against it and a measurement of error is calculated, based
on the Euclidean distance between the match and its corresponding epipolar line. If
the match falls in the epipolar line, the projection error is zero and its optical flow
is consistent to that of a static object, and the higher the error is the further away
the match is from the epipolar line. This error measurement provides a metric for
the determination of which features are dynamic and which are static, and matching

pairs with a projection error above a certain threshold are discarded as outliers.
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(@ (b)

Figure 5.4 — Initial RANSAC classification, based on the image information presented
in Fig. 5.3. Each line segment has a colour ranging from red (static object) to
green (dynamic object), and matching pairs considered outliers were discarded.

This threshold is also used to normalize the remaining projection errors to values
ranging from [0, 1], which indicate the probability that each matching pair belongs to

a dynamic object.

Examples of this initial RANSAC classification are shown in Fig. 5.4, where the
projection error values ranging from [0, 1] were converted to colours ranging from red
(static objects) to green (dynamic objects). In Fig. 5.4a the vehicle is moving for-
ward, generating a relative optical flow component that also influences static features.
Because of that, even though most dynamic objects were correctly classified, there
are several portions of the image that are wrongly classified as dynamic, especially
towards the border where the relative optical flow component of camera motion is
stronger. The street also contains several features that were wrongly classified, mostly
due to the lack of texture that increases ambiguity during the matching process and
increases the chances of false positives. In Fig. 5.4b the vehicle is not moving, and so
any optical flow detected is solely due to the presence of dynamic objects. It is clear
that this scenario greatly facilitates classification, as now any feature that experiences
motion between frames can be safely classified as dynamic. However, we can also see
several dynamic objects that are not represented by any features, and thus are not
detected by the algorithm. We attribute this lack of representation to occlusion, the

presence of deformable objects and local luminosity changes.
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This is the visual information that is currently used as input for the visual odometry
algorithm described in the previous chapter. However, this information is not ideal
and contains a significant amount of dynamic objects that were incorrectly classified
as static, and will therefore introduce a component of error to the final optical flow
distribution that describes the image. Because of that, a second layer of classification
is proposed here, that uses this initial classification as ground-truth and a novel
descriptor to generate the corresponding input vector. The goal is to provide a more
robust and reliable classification between static and dynamic objects by removing
these errors, and also a dense classification capable of addressing the gaps in the

image where there are no discernible features.

5.2.2 Optical Flow Parametrization

For a variety of reasons, the descriptor used to parametrize the optical flow infor-
mation for dynamic object segmentation is different than the one used for visual
odometry estimation, even though they are both generated from the same visual in-
formation. Dynamic object segmentation is binary, so there is no need to parametrize
the magnitude and/or orientation of the optical flow, which now becomes the output
given by the initial RANSAC classification. Also, the classification is now individual,
rather than collective for the entire image, so each matching pair should have its own
descriptor based on the area of the image in which it was detected. For these reasons,
the new descriptor used to generate the input vector x,, for the GP classification is
given by:

X, = {u,v,m,r, g,b}. (5.1)

In the equation above, u and v are the pixel coordinates of the feature in the image
(as a convention, the image coordinates of the feature in the first frame are used).
This information is necessary in order to correctly model different motion patterns
throughout the image (i.e. upper portions are mostly static, whereas right portions
usually present motion contrary to the vehicle), and compose the spatial component

of the descriptor. The four other components, {m,r, g,b}, are the colour components
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and are calculated by placing a w-by- w window centered on (u,v) and extracting the
average of pixel intensities in this area (a 7-by-7 window is used in the experiments).
The value of m is obtained by applying this method on a monochromatic version of
the image, while {r,b, g} are obtained by applying this method respectively on the
red, blue and green channels of the coloured version of the image. This information
is necessary in order to correctly model transitions between objects, delineating their
borders and allowing the algorithm to "fill in the gaps" where no features were de-
tected. The assumption that objects will have features of a similar colour is made,
however the division of colour information into four components reduce the impact
of such assumption, and since the goal is the removal of dynamic objects the divi-
sion of any one single object into several sub-objects is not an issue. Other possible
parametrizations, such as HSV', could lead to better results by removing redundancies

in the colour spectrum, and future work will focus on exploring such variations.

It is important to note that, since this descriptor does not require matching informa-
tion between features in different frames, it is possible to used it to parametrize any
pixel in the image. These pixels will not have a corresponding ground-truth (obtained
using RANSAC, that requires matching information), and therefore cannot be used
to update the non-parametric model, however they can still be used for the inference
process that provides the final classification between static and dynamic objects. By
performing this inference on all image pixels, a dense classification of the entire im-
age can be obtained, even though only sparse optical flow information is available for

training.

5.2.3 Gaussian Process Classification

While the predictive mean f provided by the GP framework is useful in determining
the most likely hypothesis, it can also be misleading if considered in isolation, be-
cause it does not provide any insight in the accuracy of such estimate. One of the key

advantages in using Gaussian processes is the ability to calculate the variance V(f)

of each prediction, that acts not only as a way of identifying areas with a high uncer-
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Figure 5.5 — Examples of the sigmoid function used to bound the GP regression results
between [0, 1], for different values of a.

tainty measurement but also can be combined with the predictive mean to generate a
probability distribution that acts as a classifier for the entire input space. One of the
possible methods for performing such classification is the Probabilistic Least-Squares
Classification (PLSC) [101], which "squashes" the prediction using a bounded func-
tion in order to obtain a regression output ranging from [0, 1]. Other methods, such
as the Laplace Approximation [140] and Expectation Propagation [83], are equally
valid, however they require multiple iterations before convergence to a single query
unit, which generates an undesirable computational cost that PLSC manages to avoid

by directly modifying the regression model to perform classification.

The bounded function used here is the sigmoid function (as introduced in [100]),
a special case of the logistic function that is real-valued, differentiable and has a
pair of asymptotes at 0 and 1 as x — oo. Its two parameters, a and [, define the
sharpness of the transition between classes (Fig. 5.5) and are determined using the
cross-validation technique, as described in Section 2.2.5. The implemented version

for parameter training is given by:

(5.2)

DX, ys, 0) = @ (M> ,

1 + o?0;
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where ®(.) is the cumulative unit Gaussian, y_; refers to the output values of all train-
ing data excluding the pair (x;,%;), p; and o; are the predictive mean f and variance
V(f), and 0 represents the optimized hyperparameters of the covariance function.
The training of o and 3 can be performed by partitioning the original matrix K1 to
eliminate the influence of x;, thus eliminating the need of recalculating the entire co-
variance matrix for each training point [135]. The new expressions for the predictive
mean and variance are presented in Eq. 5.3, and they allow the classification of each

pixel in the image as a static, dynamic or unsure object, according to user-defined

thresholds.

Hi = Yi — [—1 o; = [ - (5.3)

5.3 Incremental Updates

The proposed algorithm for the automatic segmentation of dynamic objects does not
make any assumptions about the environment and/or visual system utilized, which
means that it should be able to provide robust estimates in any scenario where visual
information is a valid way of obtaining information. There are two possible ways of
doing so in the GP framework: either by maintaining a comprehensive training dataset
that contains every possible sample of dynamic objects the vehicle might encounter
during navigation, or by allowing it to learn and adapt to new circumstances as they
are presented. Even so, the first solution fails due to the unpredictable nature of
dynamic objects (they might start/stop moving suddenly) and a myriad of random

phenomena that a single training dataset will never be able to truly address.

Hence, the only solution becomes to allow the algorithm to adapt to new circum-
stances as they are presented, gradually learning the behaviour of objects around the
vehicle and constantly changing its beliefs to reflect the current environment state.
With this approach, a dynamic object that stops moving would eventually become
static and vice-versa, maximizing the information available for visual odometry with-

out generating errors, and new objects that enter the camera’s field of view would



5.3 Incremental Updates 175

be incorporated seamlessly into the non-parametric model. The recalculation of the
entire covariance matrix is of computational complexity O(n?) and therefore infea-
sible for an online approach, so the solution proposed here involves the use of the
covariance matrix update equations presented in Section 4.1.3, that allow the itera-
tive incorporation of new information into the covariance matrix and the removal of

redundant information.

The issue now becomes determining which information is relevant and which is re-
dundant, thus incorporating enough data to provide an accurate classification while
maintaining computational complexity at a reasonable level. The next section is ded-
icated to introducing and describing a novel method for information filtering that
is able to maintain the number of data points in the non-parametric model stable
even after long periods of navigation, thus keeping computational cost roughly con-
stant. Afterwards, a technique for obtaining a dense classification of the entire image
without performing inference in every pixel (again, a naive and very computationally

costly approach) is discussed.

5.3.1 Information Filtering

The information filtering technique described here is composed of four individual
steps, that are performed at every timestep when new information becomes available.
The first step is to enforce a density constraint on the new data points, as a way
to eliminate redundant information. Inference is then performed on the remaining
data points in an attempt to discard those that lie on an already well-represented
portion of the input space. The same inference process is then performed on the non-
parametric model itself, which serves as an outlier removal and maintains consistency
even after long periods of navigation. Lastly, the density constraint is now enforced
on the non-parametric model itself, again to eliminate redundant information. Each

of these four steps are described below in more detail:
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Density Constraint on Input Data

The combination of SIF'T and corner detector algorithms used in this thesis to extract
image information produces an average of 7000 features per frame, which is a very
large number for this particular application and prohibits the direct incorporation
of all new data points into the non-parametric model. Fortunately, most of this
information is redundant, since features tend to be clustered into specific portions
of the image and may share a similar classification. This allows them to be safely
discarded without compromising results by performing a nearest-neighbour search in
the input space for each feature and discarding those whose classification is similar
to their closest neighbours, according to a certain distance threshold. This process
is repeated until only one feature of any given class remains in each portion of the
input space determined by the distance threshold, and if any portion is represented

by both classes then two features are maintained, one for each class.

Inference on Remaining Input Data

The next step consists of performing inference on the remaining input data points,
that were not discarded in the previous step. This inference process provides a final
GP classification for these data points based on the current non-parametric model
(this step is skipped on the first iteration), which is then compared to the initial
RANSAC classification. Data points that are correctly classified (the GP classification
is the same as the RANSAC classification) are discarded, because their position in
the input space is already well-represented and does not require more information to
provide accurate estimates. Those that were incorrectly classified are assumed to be
relevant and are incorporated into the non-parametric model, increasing the amount

of information available for inference.

Inference on Non-Parametric Model

The next step is to perform inference on the non-parametric model itself. This time,

data points that are incorrectly classified are removed, thus decreasing the amount of
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information available for inference. This step is important in eliminating RANSAC
misclassification (outliers), as they are assumed to be a minority and therefore less
representative of their position in the input space. The removal of such misclassifica-
tions allows the non-parametric model to maintain consistency even after long periods
of navigation, essentially forgetting old environment behaviours and adapting to new

ones.

Density Constraint on Non-Parametric Model

Lastly, the density constraint is enforced on the non-parametric model itself, by re-
moving data points with similar classification that are close to each other according
to a certain distance threshold. As in the first step, this serves as a way to decrease
the amount of redundant information available for the non-parametric model while

still maintaining its spatial distribution in the input space.

Fig. 5.7 shows the progression of the size of the non-parametric model during navi-
gation. It starts empty, without any information, and at the first iterations a large
number of data points are incorporated, because the algorithm is still learning the
different static and dynamic structures of the environment. When the number of
incorporated data points reaches roughly 4000 the size of the non-parametric model
stabilizes, with roughly the same number of data points being incorporated and re-
moved at each iteration. This is to be expected, since as a general rule the environment
changes gradually with each frame, and the algorithm is capable of learning new be-
haviours at the same rate in which it is forgetting old ones. When there is a sudden
change in the environment (i.e. the camera started/stopped moving, or a previously
dynamic object became static or vice-versa) there is a spike on the number of data
points incorporated, indicating that the environment suddenly became more complex
and the algorithm is trying to learn this new configuration. Once it has managed to
do so, the size of the non-parametric model stabilizes and returns to the 4000 level,
which is maintained even after an undetermined long period of navigation. This level
can be adjusted by fine-tuning the value for the distance threshold in the density

constraint, according to requirements in performance and computational efficiency.
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(e) (f)

Figure 5.6 — Stages of information filtering (red dots are features classified as static,
and blue dots are features classified as dynamic). (a) Initial input data points.
(b) Input data points after density constraint. (c) Data points after inference that
are incorporated into the non-parametric model. (d) Non-parametric model data
points after inference. (e) Non-parametric model after density constraint. (f) Final
GP classification of all input points, ranging from red (static) to green (dynamic).
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5.3.2 Pixel by Pixel Classification

In principle, the entire image can be classified using the Probabilist Least-Squares
Classification technique described in Section 5.2.3, by calculating the input vector
for each pixel according to the descriptor introduced in Section 5.2.2 and performing
GP inference based on the current non-parametric model. However, inference has a
computational complexity of O(n?), with n being the number of data points in the
non-parametric model, and for a 600 x 400 image a total of 240000 inferences would
have to be performed. Needless to say, these numbers make a dense classification of

the entire image infeasible for an online algorithm.

Since each inference is performed independently, sharing the same covariance matrix
K and ground-truth vector y, one straightforward solution would be to parallelize

the inference process, or to perform the matrix multiplications in a GPU (Graphic
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Figure 5.7 — Number of data points maintained by the non-parametric model at each
iteration. Note that this number stabilizes at around 4000, with spikes indicating
moments in which there was a radical change in the environment (i.e. the camera
started /stopped moving, or a static object suddenly became dynamic or vice-versa).
As the algorithm learns these new behaviours, the number of data points in the non-
parametric model stabilizes and returns to the 4000 level.
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(a) (b)

Figure 5.8 — Example of pixel subsampling. In (a), only every 5th pixel in each row
and column is classified, providing an outline for the final classification that is then
completed in (b) using linear interpolation.

Process Unit). Another solution proposed here is pizel subsampling, in which only
certain pixels are selected for inference and the remaining are calculated based on
their neighbours’ properties. For this particular application, a predetermined number
of rows and columus are skipped during inference (i.e. every other row and column
are skipped), and their classification is calculated using linear interpolation based on
their nearest neighbours both horizontally and vertically. This approach decreases
the computational complexity by a factor of n?, where n is the number of rows and
columns skipped, and by fine-tuning the value of n it is possible to achieve the desired
computational complexity. It also has the added benefit of blurring the borders of
dynamic objects, thus providing a "safety zone" that minimizes the chances of using
false information for visual odometry and filling in the gaps in small patches where

no texture is available.

An example of such interpolation is shown in Fig. 5.8, in which each pixel in the
image is depicted by its probability of belonging to a dynamic object. In Fig. 5.8a,
only every 5th pixel in each row and column is classified, providing an outline of the
final classification that is then completed via interpolation as shown in Fig. 5.8b.
The resulting probabilistic classification can then be transformed into a discrete clas-
sification of static/dynamic/unsure objects, based on user-defined thresholds and the
uncertainty estimates for each pixel. Matching pairs classified as dynamic or un-

sure are simply discarded and no longer used to generate the input vector x,, for the
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SPCGP framework. It is important to note that the entire image does not need to
be classified for visual odometry purposes, since only matched features provide the

optical flow information necessary to estimate vehicle motion between frames.

5.4 Experimental Results

The proposed algorithm for the automatic segmentation of dynamic objects was tested
using the same dataset used for the generalization experiments with different vehi-
cles, as described in Section 4.3.3. This dataset is highly dynamic, with the vehicle
interacting normally with cars, buses and pedestrians at speeds ranging from zero
(traffic lights and traffic jams) to roughly 50 km/h. Initially, dense segmentation
results are presented as a way to validate the algorithm, where the entire image is
classified according to the pixel-by-pixel classification technique described in Section
5.3.2, using subsampling and linear interpolation for speed purposes. The proposed
algorithm’s performance is compared with traditional approaches for the segmenta-
tion of dynamic objects, and tests are conducted with a different dataset to show its

ability to generalize to different camera configurations and vehicle dynamics.

Afterwards, experimental results for the clustering of dynamic objects are presented
and discussed. The algorithm for the automatic segmentation of dynamic objects as
described in this chapter does not make any assumptions about the nature of the
dynamic object, and also does not make any distinctions about different dynamic
objects. This is not necessary for visual odometry purposes, where all dynamic ob-
jects are treated similarly and discarded, however by exploiting similarities in optical
flow patterns and colour information it is possible to group different sets of dynamic
features into separate objects, each with specific characteristics. These characteristics
can then be used to perform a higher-level form of classification, in which dynamic
objects are clustered into different semantic categories, such as cars, pedestrians, etc.
This technique allows the creation of a library of dynamic objects during naviga-
tion, with no prior assumptions in regards to environment structures and/or camera

configuration, that could serve a wide variety of purposes.
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Afterwards, experiments conducted previously with the proposed visual odometry al-
gorithm are repeated with the incorporation of the algorithm for the segmentation of
dynamic objects described in this chapter, as a way to show the improvements in vi-
sual odometry estimation provided by this technique. For this particular application,
no dense classification is necessary, since only the features matched between frames
are capable of providing optical flow information and therefore contribute to the in-
put vector used by the SPCGP framework. Results with different extensions of the
proposed visual odometry algorithm are presented, including the extension to SLAM
which generates absolute localization estimates as a way to remove drift accumulated
during navigation. These results complete the experimental portion of this thesis,
and testify to the proposed visual odometry algorithm’s ability to provide accurate
motion estimates using a GP framework based solely on visual information, with
no prior knowledge of the environment, camera configuration/calibration or vehicle

dynamics.

5.4.1 Dynamic Object Segmentation

Examples of the initial RANSAC classification used as ground-truth for the proposed
algorithm were introduced in Fig. 5.4, and here the results of the final GP classi-
fication based on such information are presented (Fig. 5.9). A dense classification
was performed, with inference being conducted using every 5th pixel in each row
and column to provide an outline of the entire image, and the remaining pixels were
classified using linear interpolation for speed purposes. This process was done for
both the predictive mean (Fig. 5.9b) and variance (Fig. 5.9¢) values, which indicate
respectively the best hypothesis for each probability distribution and the confidence

in regards to such hypothesis.

Right from the start, it is possible to see in Fig. 5.9b that the algorithm was able to
correctly detect most of the dynamic objects in the environment, segmenting them
from the static background according to their probability of being truly dynamic.
Virtually all misclassifications given by the initial RANSAC classification in Fig. 5.4a
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(c)

Figure 5.9 — Examples of the final GP classification results, based on the initial
RANSAC information depicted in Fig. 5.4. (a) Original images. (b) Predictive
mean, defined by a number ranging from 0 (black, static object) to 1 (white, dy-
namic object). (c) Predictive variance, normalized to values ranging from 0 (lowest)

to 1 (highest).

were removed, especially on the top left and right corners of the image, and also in

the areas where the street was represented. We attribute this to the filtering process,
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which is capable of removing outliers and detecting the correct tendency of each
portion of the image even in the presence of significant noise. Also, virtually all the
featureless regions in Fig. 5.4b were correctly filled by the dense classification process
provided by the GP framework, allowing the complete delineation of all dynamic
objects and their boundaries in relation to the static background. Because they
are also moving, shadows were classified as dynamic objects as well, which is not a
problem for visual odometry applications since their removal will not introduce any

error to the final optical flow procedure.

Another key benefit of using the GP framework for segmentation is its ability to
calculate the uncertainty inherent to each estimate, thus providing a measurement
of variance for each pixel alongside the predictive mean. In the context of object
detection, this variance can be used to determine which portions of the image are
most likely to be correctly classified and which require more information before a final
classification can be made, forming the basis for active learning [27, 114|. Examples of
such variance are shown in Fig. 5.9¢, with darker areas representing lower uncertainty
values and lighter areas representing higher uncertainty values. It is clear that most
of the variance is concentrated in the borders of the image, which is to be expected
since this region is where the feature density is lowest (lots of features disappear
and appear between frames due to vehicle motion) and also where new objects are
detected for the first time. As we move to the central portions of the image new
objects and features are gradually incorporated into the non-parametric model and

the variance decreases.

More examples of the predictive mean obtained using the proposed algorithm are
shown in Fig. 5.10. These results were obtained in the same run, meaning that the
non-parametric model, starting empty and with random hyperparameters, had to
constantly adapt to changes in the environment in order to learn the characteristics
of each individual frame. The information filtering process described in Section 5.3.1
was used to keep computational complexity manageable during navigation, and the
number of data points maintained at each iteration for the first 1000 frames is depicted

in Fig. 5.7. From these images note that even though the vehicle experienced radical
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Figure 5.10 — Automatic dynamic object segmentation results. Each pixel is defined
by a number ranging from 0 (black, static object) to 1 (white, dynamic object).
These results were obtained in the same run as the non-parametric model con-
stantly adapts to new environment characteristics, without any prior information
and without any human intervention.

changes in both local and global luminosity, environment structures and a wide range
of different dynamic objects, it was still capable of providing accurate segmentation

results.

The proposed algorithm for the segmentation of dynamic objects was compared with
other approaches to dynamic object segmentation, and the results are presented in
Fig. 5.11. These results were obtained based on information from 200 hand-labelled
images randomly selected from the 14500 images available for testing. The dotted
line represents the initial RANSAC classification results, the black line indicates the
proposed algorithm, and the red line indicates the proposed algorithm but with a
square-exponential covariance function, instead of the neural network covariance func-
tion. The blue line indicates results obtained using Support Vector Machine (SVM)
[21] as the self-supervised classification method instead of GPs, and the green line
indicates the Optical Flow Classification (OFC) results obtained based on [88|. The
OFC uses motion potentials based on geometry to build a graph-like structure from

dense optical flow and feature tracking (the SLAM component was not implemented
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Figure 5.11 — Comparison of the proposed algorithm for the segmentation of dynamic
objects with other similar approaches. (a) ROC (Receiver Operating Characteris-
tics) curves for each approach. (b) Area under the ROC curves for each approach
in different frames.

here, as it can be equally applied to any methodology). This graph is then clustered
together and nodes with similar potentials become motion segments that generate
a single structure. The ROC curves for each of these approaches are shown in Fig.
5.11a, where it is possible to see that the proposed algorithm outperforms the others
in all threshold levels, and in particular that it improves over the initial RANSAC
classification by a significant margin. It is also possible to see the importance of
covariance function selection, since the same algorithm performed significantly worse

when the squared exponential covariance function was used.

Fig. 5.11b depicts the area under the ROC curve for each subsequent frame at the
beginning of navigation, indicating how accuracy changes as new data is incorporated
into the non-parametric model. As expected, the OFC approach does not improve
over time, since it is not based on learning techniques, using instead individual in-
formation from each frame. The accuracies of the three other approaches increase
steadily over time, with occasional drops that indicate moments in which there was
a significant change in the environment (i.e. the camera started/stopped moving,
or a new object entered the camera’s field of vision), and the proposed algorithm
consistently outperforms the other two. It is interesting to note that, at the begin-

ning of navigation, the OFC is the best solution, since there was no time for the
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non-parametric model to learn the environment characteristics. However, after a few
frames the proposed algorithm improves and becomes the best solution, while the

OFC oscillates heavily at each iteration.

The same algorithm was also tested, without any further modifications, using images
obtained from a portable camera device (Fig. 5.12a), as a way to qualitatively explore
its ability to generalize over different camera configurations and environments. Again,
the non-parametric model was initialized empty from random hyperparameters, and
the shakiness of the camera posed a challenge to the framework, since now the baseline
between frames is much smaller and its motion is unconstrained by traditional two-
dimensional vehicle dynamics. The results obtained using this configuration are shown
in Fig. 5.12b, where it is possible to see that again there is a wide variation in
luminosity and structures, and the proposed algorithm was still capable of correctly
segmenting most of the dynamic objects in each frame (results were similar to the ones
depicted in Fig. 5.11). Tt is also worth mentioning that these results were obtained
without any human intervention, based solely on raw visual information collected

from a single uncalibrated camera.

Camera

Figure 5.12 — Dynamic object segmentation results in different frames using a portable
camera device.



188 Automatic Segmentation of Dynamic Objects

5.4.2 Dynamic Object Clustering

The dynamic objects obtained during the segmentation process were subjected to a
second processing stage, as a way to further segmenting them into different categories
(i.e. pedestrians, cars). The segmentation algorithm, as described in this chapter,
does not make any distinctions in regards to different dynamic objects, since its main
purpose is to remove them and allow the use of a static background during visual
odometry estimation. However, by exploiting discrepancies in optical flow patterns
and colour information from different features it is possible to determine the bound-
aries between objects. It is natural to assume that an object would have features that
share a similar optical flow distribution, and that this distribution changes gradually
during navigation, which allows the tracking of different objects over time, as a way
to increase robustness and decrease ambiguity in object segmentation. The dense
classification of the entire image also allows the segmentation of dynamic objects
according to their spatial coordinates, since large gaps between pixels classified as

dynamic indicate the beginning of a new object.

An example of such segmentation is presented in Fig. 5.13, where a rectangle was
placed over the original images delineating the boundaries of each individual dynamic

object. This segmentation is conducted according to the following iterative process:

1. A random feature is selected on the image, forming the core of a new dynamic

object cluster.

2. All its neighbours within a certain radius are checked. Features with an optical
flow pattern whose magnitude/orientation are similar within a certain threshold

are added as part of the same dynamic object cluster.

3. Step (2) is repeated for all newly added features, increasing the size of the

current dynamic object cluster.

4. When there are no newly added features, the process stops and the current
dynamic object cluster is determined. Step (1) is repeated for a new random

feature that still does not belong to any cluster.
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Figure 5.13 — Different objects obtained during the segmentation process.

5. When all features already belong to a cluster, a merging process is conducted to
join clusters whose magnitude/orientation average are similar within a certain
threshold, and their features share an overlapping area in the image. This step
is important to reduce the number of sub-clusters of a single object, due to

small variations in the optical flow distribution.

6. Once the merging process is done, filtering is conducted to remove clusters with
a number of features that falls below a certain threshold. This step is important

as it removes small clusters generated by noise in the segmentation algorithm.

7. Each dynamic object cluster is expanded to include pixels that do not contain
features with optical flow distributions, according to the dense classification

created by the GP framework. Each feature in each cluster is expanded to
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include its neighbouring dynamic pixels, in a process that is repeated until there
are no more pixels to expand to. If the same pixel is neighbour to two different
dynamic object clusters, a linear combination between colour information and
distance to the nearest matched feature is used to determine which cluster it

should be incorporated to.

Once all dynamic objects are obtained, the next step is to further divide them into
different categories, according to the object each one represents (in an urban envi-
ronment, mostly cars and pedestrians). This is done using data collected from 1000
consecutive images, all segmented according to the algorithm described previously,
for a total of 2077 objects. Each object is described using a histogram for each one of
its colour components (red, green and blue), divided into 6 bins. These histograms
are normalized to have an unitary sum, to account for objects of different size. These
descriptors are then categorized using k-means [54], a clustering method which aims
to partition n observations into k clusters, where each observation belongs to the
cluster with the nearest mean. For the experiments presented here, we selected 8 as
the number of clusters to be formed, as a way to minimize the impact of random

objects that do not fall within any other category.

Fig. 5.14 shows the results for the three clusters with the most samples, obtained
using the method described above, along with some examples belonging to the other
five clusters. It is important to note that these categories do not imply any knowledge
of the environment, and were generated based solely on the dynamic objects collected
during navigation. Nevertheless, we can see a clear pattern present in each one of
them, indicating that k-means was able to correctly cluster these dynamic objects
into semantically meaningful categories. Fig. 5.14a contains mostly pedestrians, Fig.
5.14b contains mostly cars and other vehicles, and Fig. 5.14c¢ contains mostly shad-
ows from pedestrians. Other clusters include mostly partial objects, that were not
merged into a single group for some reason, shadows from static objects, that were
classified as dynamic due to the learning nature of the self-supervised algorithm, and
other sporadic misclassifications. A ground-truth dataset was generated by manually

labelling 200 dynamic objects between these three main categories, and the proposed
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algorithm shows an accuracy of around 70% in object classification (a confusion ma-

trix for these results is presented in Table 5.1). Tests were conducted using different

giiiﬁﬁiiix &

(d)

Figure 5.14 - Clustering results for different dynamic objects. (a) Pedestrians. (b)
Vehicles. (c) Pedestrian shadows. (d) Example of Objects that do not belong to
any of the three main categories.
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numbers of clusters, and while a higher number did not show any significant im-

provement, smaller numbers show a merging between different clusters that affected

results.
Cars | Pedestrians | Shadows | Others
Cars 58 3 2 8
Pedestrians 4 43 11 6
Shadows 4 7 21 8
Others 2 3 5 15

Table 5.1 — Confusion matrix for the clustering results.

5.4.3 Visual Odometry

We show here the improvement generated by the proposed dynamic object segmenta-
tion algorithm in a visual odometry application. As shown in Sec. 4.3.3, the presence
of dynamic objects in the environment creates optical flow information that is not gen-
erated by camera motion, and therefore will incorporate a component of error into the
visual odometry estimation. The purpose of the dynamic object segmentation then
becomes the removal of such dynamic objects, to allow the use of only optical flow
information belonging to static objects during visual odometry estimation. The same
localization results obtained in Sec. 4.3.3, using 14500 images obtained in a highly
dynamic urban environment, are shown in Fig. 5.15a, where it is possible to see sev-
eral sharp turns and systematic drift caused by the presence of dynamic objects. No
training and/or model refinement would be able to deal with such shortcomings, so
the automatic dynamic object segmentation algorithm described in this chapter was

proposed as a way to solve such ambiguities.

Localization results obtained after incorporating the proposed dynamic object seg-
mentation algorithm are shown in Fig. 5.15b, using the SPCGP approach. Dynamic
objects were removed during both the training and testing stages, and there was
no hand-labelling or human intervention at any point. As expected, there is still
some residual drift caused by the incremental nature of visual odometry estimates,

however virtually all sharp turns are removed, allowing the system to recover the
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Figure 5.15 — Localization results in a highly dynamic environment using the SPCGP
approach. (a) Without dynamic object removal. (b) With dynamic object removal.
(¢) With dynamic object removal and online information incorporation. (d) SLAM
extension of the localization results obtained using dynamic object removal and

online information incorporation.
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overall trajectory shape in great detail. Moreover, when the online information incor-
poration extension is included (Fig. 5.15¢), this residual drift decreases even more.
We attribute this to the large variation in environment structures and behaviours
throughout navigation, since the trajectory is long and comprises several different
portions of the city. By gradually incorporating new information as it becomes avail-
able, the algorithm is capable of learning these new structures and react accordingly
to produce accurate estimates. Finally, Fig. 5.15d shows the localization results ob-
tained using these estimates in a SLAM framework, as described in Sec. 4.2. The
loop-closures were mostly done in the lower right portion of the map (beginning and
end of the trajectory), and thus most of the drift accumulated during navigation could

be removed by globally decreasing uncertainty throughout the entire run.

A quantitative comparison between these methods is given in Table 5.2. It is interest-
ing to note that, due to the sporadic and concentrated nature of errors generated by
the presence of dynamic objects, there was not a significant improvement in rmse per-
formance. This is to be expected, as these errors were diluted by the frames in which
the environment was more conducive with visual odometry estimation. As before,
translational error remained roughly the same regardless of which GP approach was
used, and rotational error decreased steadily as more extensions were added to the
SPCGP framework (which also accounts for the removal of systematic drift caused
by dynamic objects), along with the uncertainty in regards to such errors. Also,
a different performance metric was introduced, in which the distance between the
ground-truth and estimated locations of the vehicle at each frame (in the xy plane)

is calculated. This allows a quantitative comparison of these different approaches,

Method Trans. Error Rot. Error xy Eucl. Dist.
(rmse) (1072 m) | (rmse) (1072 m) (rmse)
SPCGP 6.05 £ 7.91 0.08£0.13 27.82 +14.58
SPCGP + DOR 0.94 £ 7.44 0.06 £ 0.09 10.34 £ 6.48
OSPCGP + DOR 2.57 £6.97 0.05 £0.08 8.57 £5.12
ESIF + OSPCGP + DOR 0.71 £6.58 0.04 £0.05 0.83 £3.14

removal (DOR).

Table 5.2 — Linear and angular errors per frame in experiments with dynamic object
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Figure 5.16 — Localization results obtained using the SPCGP approach and dynamic
object removal.

since now the few sporadic drifts (especially in angular velocities) will generate a sig-
nificant cumulative error over time. As expected, the error greatly decreases as new

extensions are incorporated, which can be clearly seen in Fig. 5.15.

Finally, localization results obtained using the proposed SPCGP approach with all
extensions (except the SLAM framework, since it could in principle be used in con-
junction with any visual odometry application) are shown in Fig. 5.16. A map of the
environment was superimposed (courtesy of Google Maps) to facilitate the compari-
son with ground-truth information, and sample frames encountered during navigation

are depicted to show some of the challenges faced by the visual odometry algorithm.

5.5 Summary

This chapter provided a novel technique for the automatic segmentation of dynamic

objects, conceived as a way to improve visual odometry results in highly dynamic en-
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vironments. This is done in a non-supervised fashion, without any manual labelling
or human intervention whatsoever. The RANSAC algorithm provides an initial clas-
sification that is then further refined by the GP framework, to remove outliers and fill
in the gaps where there is not enough texture to generate robust features. The result
is a dense probabilistic classification of every pixel in the image between static and
dynamic, alongside a measurement of confidence in regards to such classification. A
novel descriptor was introduced, that both preserves the spatial structure of features
in the image and also their colour intensity, thus allowing the precise segmentation
of object borders. The non-parametric training is conducted online, starting from an
empty covariance matrix and empty hyperparameters. As new information becomes
available, it is filtered to remove redundancies and information deemed useful is in-
corporated into the non-parametric model, which is then able to gradually learn new

environment behaviours as it forgets old ones.

Experiments were conducted initially to validate the proposed algorithm’s ability to
correctly segment dynamic objects from a static background, both when the cam-
era is static and when it is moving alongside the vehicle. Qualitative results were
presented, and a quantitative comparison with other techniques was provided using
manual labelling of random frames that served as ground-truth. The proposed al-
gorithm outperformed every other technique tested, and also showed a significant
improvement over the initial RANSAC classification. Experiments in dynamic object
clustering were conducted, providing a further classification where each dynamic ob-
ject is divided into possibly several categories, such as cars, pedestrians and so forth.
Although this clustering in principle has no effect in visual odometry applications, it
could lead to a library of dynamic objects that is generated online during navigation,
again in an unsupervised manner. Finally, the proposed algorithm was incorporated
into a visual odometry application, in which the images used for training and testing
were filtered to remove features that are deemed dynamic. Results show a significant
improvement over the standard approach of using the entire image to generate optical

flow estimates, virtually removing all instances of sharp turns and systematic drifts.



Chapter 6

Conclusion and Future Work

This thesis addresses the problem of visual odometry from a machine learning stand-
point, where the transformation between image information and vehicle motion es-
timates is treated as a regression problem with unknown parameters. By using a
Gaussian process we eliminate the need of a known model, using instead a training
dataset composed of pairs of images and their corresponding ground-truth informa-
tion, obtained using a different and independent sensor. This framework eliminates
the need for any prior knowledge in regards to the visual system used (including cam-
era calibration parameters), and is capable of recovering scale even in a monocular

configuration.

Initially, a basic version of the algorithm is introduced and described, and this basic
algorithm is then extended to include several modules that comprise the core of this
thesis’ contributions. These extensions include: 1) The ability to simultaneously
calculate all degrees of freedom in motion from a single pair of images, thus capturing
the cross-dependencies between outputs; 2) The introduction of temporal dependency
between frames, that increases the amount of information available for inference; 3)
Incremental updates of the covariance matrix, which allows the system to iteratively
learn new and useful behaviours; 4) A semi-parametric extension to visual odometry
that benefits from both the non-parametric GP model and the traditional camera

geometric model. An extension to the SLAM framework using information filters was
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also discussed, where loop-closure is used to globally decrease uncertainty and remove
accumulated drift. Finally, a self-supervised technique for the automatic segmentation
of dynamic objects is proposed, as a way to remove optical flow information generated
by dynamic objects in the environment, which would introduce a component of error

that could compromise results.

6.1 Summary of Contributions

1. Monocular Non-Parametric Visual Odometry Algorithm
The problem of visual odometry is addressed from a machine learning perspec-
tive, using a Gaussian process framework to learn the transformation function
from image information directly into vehicle motion. This approach eliminates
the need for a geometric model or even traditional camera calibration, using in-
stead a non-parametric model whose hyperparameters are optimized according
to training data and a carefully chosen covariance function. The benefits of this

approach are three-fold:

e Full Covariance Matrix Recovery
Since visual odometry is essentially a multiple-output problem (each im-
age is mapped to more than one degree of freedom in motion), a Multiple-
Output Gaussian Process (MOGP) derivation is used for inference. The
traditional MOGP derivation is extended to allow the simultaneous estima-
tion of all outputs (linear and angular velocities). This new methodology
exploits dependencies between outputs, generated by constraints in vehicle
dynamics, to improve accuracy on each individual estimate. These depen-
dencies are quantified as the cross-terms in the resulting full covariance

matrix.
e Scale Recovery in Monocular Configuration

The proposed framework uses training data obtained from a different and
independent sensor as ground-truth. If this sensor is capable of scale esti-

mation (i.e. range sensors), this information is encoded into the resulting
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non-parametric model and can be recovered by exploiting structure simi-
larities between training and testing images. As the dissimilarity between
training and testing data increases, so does the uncertainty inherent to
each measurement, indicating that the results, although less accurate, are

still valid from a probabilistic standpoint.

e Natural Treatment of Uncertainties

Because Gaussian processes are a Bayesian probabilistic technique, all in-
ferences conducted using the proposed framework will naturally provide a
measurement, of uncertainty. This measurement of uncertainty is useful in
determining the level of confidence that should be put into each estimate,
and is of key importance in further treatments of the results, such as data

fusion or incorporation into a SLAM scenario.

2. Temporal Dependencies Between Frames

The standard spatial correlation between features in the image used by the
Gaussian process framework is extended to include temporal dependencies be-
tween features in subsequent frames. Within this new framework, the outputs
from each iteration are used as inputs in the next one, thus increasing the
amount of information available for inference. This approach works under the
assumption that vehicle velocity will change smoothly during navigation, and is
especially useful in situations where optical flow information is ambiguous due
to the various degrees of freedom available for camera rotation and translation

(such as 3D unconstrained navigation).

3. Semi-Parametric Gaussian Processes

The traditional zero-mean assumption in Gaussian processes is modified and a
standard Structure from Motion (SFM) geometric model is incorporated into
the proposed framework, as the new mean function. The camera calibration pa-
rameters are learned simultaneously with the GP hyperparameters, and if they
are already available they can be incorporated seamlessly. The geometric model

provides an initial estimate that is then further refined by the non-parametric
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model, and as training data deviates from testing data the geometric model
results become more prominent. The result is a semi-parametric approach to
visual odometry (and by extension to any other problem in which a previously
defined model and training data is available) that benefits from both the infor-
mation encoded into a parametric model and the flexibility of a non-parametric

model.

. Online Updates of the Covariance Matrix

The semi-parametric model obtained during training is constantly updated dur-
ing navigation, incorporating new information as it becomes available and dis-
carding redundant or old information, in order to maintain roughly constant
computational time. The online update of the semi-parametric model allows
the algorithm to gradually adapt to new environments, decreasing the sensitiv-
ity to similar training and testing conditions. All new information incorporated
is obtained directly from the GP inference process, so there is still no need for a
different sensor during navigation, and if another sensor is available (such as in-
ertial data or wheel odometry) this information can be incorporated seamlessly

as ground-truth during the update stage.

. Vectorized Representation of Optical Flow Information

A novel method for representing optical flow information is proposed, as a single
vector of fixed dimension. This representation retains the spatial structure of
the image, a valuable characteristic since optical flow patterns vary radically
and consistently throughout each frame. The clustering of features in different
portions of the image, by averaging their optical flow components, also mini-

mizes the impact of false matches and dynamic objects.

. Automatic Segmentation of Dynamic Objects

A novel technique for the self-supervised segmentation of dynamic objects from
a static background is proposed, in which the camera is moving alongside the
vehicle. The RANSAC algorithm is used to provide an initial classification, and

these results serve as ground-truth to iteratively train a Gaussian process during
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navigation. No hyperparameter optimization and/or environment knowledge is
necessary prior to the beginning of navigation, and new information is incor-
porated and removed in an online fashion to allow the system to adapt to new
circumstances while maintaining a roughly constant computational time. Fea-
tures deemed dynamic are then removed before the optical flow vectorization
stage, to ensure that only a static background is used for visual odometry esti-

mation.

6.2 Future Research

This section briefly describes possible research directions that can be taken based on
the work developed throughout this thesis. These research directions aim both to
further develop the proposed solution to visual odometry and to take the framework

introduced here to different areas of robotics, thus increasing its range of applications.

Covariance Matrix Sparsity

It is natural to assume that the covariance matrix produced during both visual odom-
etry estimation and dynamic object segmentation will be sparse, since features from
distant portions of the image will have a near-zero impact on predictions. By utiliz-
ing a covariance function with local support (Section 2.2.4) it is possible to exactly
round these values to zero, and therefore generate a truly sparse matrix that can be
exploited to generate a substantial increase in computational time. Preliminary tests
show that, for the automatic dynamic object segmentation algorithm, up to 95% of
the covariance matrix can be zeroed out using a sparse covariance function without
significantly impacting classification, and similar results should be expected for the

visual odometry algorithm as well.
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GPU Processing

The use of graphics processing units (GPUs) is becoming increasingly popular as a
way to rapidly solve basic computational calculations, such as matrix multiplications
[58], that compose the core of more complex tasks. Most of the feature extrac-
tion and matching algorithms described in this thesis have already been ported to
GPU, achieving real-time performance even in scenarios with thousands of features
per frame. The GP framework, due to its marginalization properties, is also highly
favourable to parallelization, and therefore could benefit immensely from the use of

multiple GPU cores during training and inference.

Data Fusion with Other Sensors

All results obtained in this thesis rely solely on visual information, except during
training when a different and independent sensor is used to obtain ground-truth data.
During testing, this extra sensor can be removed without impacting the algorithm’s
performance whatsoever. However, if another sensor is still available during navi-
gation (i.e. wheel encoders, inertial measurements or GPS data), it can be used to
further refine the results by incorporating its information into the estimates. The
probabilistic nature of Gaussian processes provides the perfect environment for such

data fusion, especially within the SLAM framework described in Section 4.2.

Application to Other Areas

Even though the SPCGP framework developed in this thesis was used to address the
visual odometry problem, it can in principle be extended to any scenario in which
there is a parametric model and available training data. This parametric model can be
seamlessly incorporated as the new mean function for the SPCGP framework, provid-
ing initial estimates that are then further refined by the non-parametric model, based
on the chosen covariance function and training data. Since these semi-parametric

estimates converge to the purely parametric estimates as training data deviates from
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testing data, results will in the worst case scenario be as accurate as the ones ob-
tained without the non-parametric component, and therefore this approach can only

improve results.



204 Conclusion and Future Work




Bibliography

]

2]

3]

4]

[5]

6]

|7l

18]

19]

[10]

M. Abramowitz and 1. A. Stegun. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Dover Publications, 1965.

M. Agrawal and K. Konolige. Rough terrain visual odometry. International
Conference on Advanced Robotics (ICAR), August 2007.

A. Aizerman, M. Braverman, and L. I. Rozoner. Theoretical foundations of
the potential function method in pattern recognition learning. Automation and
Remote Control, 25:821-837, 1964.

D.-L. Almanza-Ojeda and M.-A. Ibarra-Manzano. Recent Advances in Mobile
Robotics, chapter 3D Visual Information for Dynamic Objects Detection and
Tracking During Mobile Robot Navigation. InTech Publishing, 2011.

K. Arras, M. Mozos, and W. Burgard. Using boosted features for the detection

of people in 2d range data. International Conference on Robotics and Automa-
tion (ICRA), April 2007.

A. Bak, S. Bouchafa, and D. Aubert. Dynamic Objects Detection Through
Visual Odometry and Stereo-Vision: A Study of Inaccuracy and Improvement
Sources. Machine Vision and Applications, special issue on Car Navigation and
Vehicles Systems, 2011.

H. Bay, T. Tuytelaars, and L. van Gool. Surf: Speeded up robust features.
European Conference on Computer Vision (ECCV), May 2006.

C. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
1992,

S. Botelho, P. Drews, G. Oliveira, and M. Figueiredo. Visual odometry and
mapping for underwater autonomous vehicles. Latin American Robotics Sym-
posium (LARS), October 2009.

P. Boyle and M. Frean. Multiple output gaussian process regression. Technical
report, University of Wellington, 2005.



206

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

P. Boyle and M. Frean. Dependent gaussian processes. Advances in Neural
Information Processing Systems, 17:217-224, 2005.

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Wadsworth and Brooks, 1984.

M. Brown and D. G. Lowe. Recognising panoramas. International Conference
on Computer Vision (ICCV), 2:1218-1225, 2003.

W. Buntine and A. Weigend. Bayesian backpropagation. Complex Systems, 5:
603-642, 1991.

Y. Cheng, M. Maimone, and L. Matthies. Visual odometry on the mars ex-
ploration rovers. International Conference on Systems, Man and Cybernetics,
October 2005.

H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun. Principles of Robot Motion: Theory, Algorithms, and
Implementations. MIT Press, 2005.

J. Civera, D. R. Bueno, A. J. Davison, and J. M. M. Montiel. Camera self-
calibration for sequential bayesian structure from motion. International Con-
ference on Robotics and Automation (ICRA), May 2009.

P. Corke, D. Strelow, and S. Singh. Omnidirectional visual odometry for a
planetary rover. International Conference on Intelligent Robots and Systems

(IROS), September 2004.

I. J. Cox. A review of statistical data association techniques for motion corre-
spondence. International Journal of Computer Vision (IJCV), 10:53-66, 1993.

N. Cressie. Statistics for Spatial Data. Wiley Series in Probability and Statistics,
1993.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods. Cambridge University Press, 2000.

Lehel Csato and Manfred Opper. Sparse on-line gaussian processes. Technical
report, Massachusetts Institute of Technology, 2002.

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
Computer Vision and Pattern Recognition Conference (CVPR), June 2005.

A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. Monoslam: Real-time
single camera slam. Pattern Analysis and Machine Intelligence (PAMI), 2007.



Bibliography 207

[25]

[26]

27]

28]

29]

[30]

31]

32|

33]

[34]

[35]

[36]

37]

A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. Monoslam: Real-
time single camera slam. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), August 2007.

F. Dellaert. The expectation maximization algorithm. Technical report, Georgia
Institute of Technology, 2002.

C. Dima. Active learning for outdoor perception. Technical report, Carnegie
Mellon University, 2006.

J. J. Dongara, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK’s User
Guide. Society for Industrial and Applied Mathematics, 1979.

T. Duckett, S. Marsland, and J. Shapiro. Learning globally consistent maps
by relaxation. International Conference on Robotics and Automation (ICRA),
May 2000.

T. Ellis and M. Xu. Object detection and tracking in an open and dynamic
world. Workshop on Performance Evaluation of Tracking and Surveillance, June
2001.

A. Ess, B. Leibe, and L. van Gool. Depth and appearance for mobile scene
analysis. International Conference on Computer Vision (ICCV), October 2007.

A. Ess, B. Leibe, K. Schindler, and L. Van Gool. Moving obstacle detection in
highly dynamic scenes. International Conference on Robotics and Automation

(ICRA), May 2009.

R. M. Eustice, H. Singh, and J. Leonard. Exactly sparse delayed-state filters
for view-based slam. IEEE Transactions on Robotics, 22:1100-1114, 2006.

O. D. Faugeras, Q.-T. Luong, and S. J. Maybank. Camera self-calibration:
Theory and experiments. Furopean Conference on Computer Vision (ECCV),
May 1992.

M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24:381-395, 1981.

U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm for
simultaneous localisation and mapping. [FEE Transactions on Robotics, 21:
196-207, 2004.

N. Friedman and S. Russell. Image segmentation in video sequences: A prob-
abilistic approach. Conference on Uncertainty in Artificial Intelligence (UAI),
August 1997.



208

Bibliography

38]

[39]

[40]

[41]

42]

[43]

|44]

[45]

|46]

[47]

48]

[49]

[50]

[51]

M. Gibbs. Bayesian Gaussian Processes for Classification and Regression. PhD
thesis, Cambridge University, 1997.

M. Gibbs and D. J. C. MacKay. Efficient implementation of gaussian processes.
Technical report, Cambridge University, 1997.

I. Gordon and D. G. Lowe. Toward Category-Level Object Recognition, chapter
What and Where: 3D Object Recognition with Accurate Pose. Springer-Verlag
Berlin Heidelberg, 2006.

V. Guizilini and F. Ramos. Multi-task learning of visual odometry estima-
tors. 12th International Symposium on Ezperimental Robotics (ISER), Decem-
ber 2010.

V. Guizilini and F. Ramos. Visual odometry learning for unmanned aerial
vehicles. International Conference on Robotics and Automation (ICRA), May
2011.

V. Guizilini and F. Ramos. Semi-parametric models for visual odometry. In-
ternational Conference on Robotics and Automation (ICRA), May 2012.

V. Guizilini and F. Ramos. Online self-supervised segmentation of dynamic
objects. International Conference on Robotics and Automation (ICRA), May
2013.

A. Hald. On the history of maximum likelihood in relation to inverse probability
and least squares. Statistical Science, 14:214-222, 1999.

C. Harris and M. Stephens. A combined corner and edge detector. Alvey Vision
Conference, February 1988.

R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2004.

J. Heikkila and O. Silven. A four-step camera calibration procedure with im-
plicit image correction. Computer Vision and Pattern Recognition Conference

(CVPR), June 1997.

D. Higdon. Quantitative Methods for Current Environmental Issues, chapter
Space and Space-Time Modeling Using Process Convolutions. Springer-Verlag
London, 2002.

B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial Intelli-
gence, 17:185-203, 1980.

K. Hornik. Some new results on neural network approximation. Neural Net-
works, 6:1069-1072, 1993.



Bibliography 209

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

62]

[63]

[64]

A. Howard. Real-time stereo visual odometry for autonomous ground vehicles.
International Conference on Intelligent Robots and Systems (IROS), September
2008.

M. Keck Jr., J. Davis, and A. Tyagi. Tracking mean shift clustered point clouds
for 3d surveillance. International Workshop on Video Surveillance and Sensor
Networks, October 2006.

T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, and A. Wu. An efficient k-
means clustering algorithm: Analysis and implementation. IEEFE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 2002.

Y. Ke and R. Sukthankar. Pca-sift: a more distinctive representation for lo-

cal image descriptors. Computer Vision and Pattern Recognition Conference
(CVPR), June 2004.

J. Kelly and G. Sukhatme. An experimental study of aerial stereovisual odom-
etry. Symposium on Intelligent Autonomous Vehicles, September 2007.

J. Kelly, S. Saripalli, and G. Sukhatme. Combined visual and inertial navigation
for an unmanned aerial vehicle. International Conference on Field and Service
Robotics (FSR), July 2007.

J. T. Kider, M. Henserson, M. Likhachev, and A. Safonova. High-dimensional
planning on the gpu. International Conference on Robotics and Automation
(ICRA), May 2010.

S. Kim, K.-J. Yoon, and I. S. Kweon. Object recognition using a generalized
robust invariant feature and gestalt’s law of proximity and similarity. Pattern
Recognition, 41:726-741, 2008.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671-680, 1983.

B. M. Kitt, J. R., A. D. Chambers, M. Schonbein, H. Lategahn, and S. Singh.
Monocular visual odometry using a planar road model to solve scale ambiguity.
Furopean Conference on Mobile Robots (ECMR), October 2011.

D. Koller, J. Weber, T. Huang, J. Malik, G. Ogasawara, B. Rao, and S. Rus-
sell. Towards robust automatic traffic scene analysis in real-time. International
Conference on Pattern Recognition (ICPR), October 1994.

S. Lazebnik, C. Schmid, and J. Ponce. Semi-local affine parts for object recog-
nition. British Machine Vision Conference (BMCV), September 2004.

B. Leibe, A. Leonardis, and B. Schiele. Robust object detection with interleaved
categorization and segmentation. International Journal of Computer Vision
(IJCV), 77:259-289, 2008.



210

Bibliography

|65]

|66]

67]

|68

[69]

[70]

[71]

[72]

73]

[74]

[75]

|76]

77|

78]

[79]

T. Lemaire, C. Berger, I.-K. Jung, and S. Lacroix. Vision-based slam: Stereo
and monocular approaches. International Journal of Computer Vision (IJCV),
74:343-364, 2007.

T. Lindeberg. Feature detection with automatic scale selection. International
Journal of Computer Vision (IJCV), 30:79-116, 1998.

H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from
two projections. Morgan Kaufmann Publishers Inc., 1987.

D. G. Lowe. Object recognition from local scale-invariant features. International
Conference on Computer Vision (ICCV), November 1999.

D. G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision (IJCV), 60:91-110, 2004.

F. Lu and E. Milios. Robot pose estimation in unknown environments by
matching 2d range scans. Computer Vision and Pattern Recognition Conference

(CVPR), June 1994.

B. D. Lucas and T. Kanade. An iterative image registration technique with
an application to stereo vision. DARPA Image Understanding Workshop, April
1981.

D. MacKay. Bayesian Methods for Adaptive Models. PhD thesis, California
Institute of Technology, 1992.

D. MacKay. Bayesian interpolation. Neural Computation, 1992.

D. MacKay. Probable networks and plausible predictions - a review of practical
bayesian methods for supervised neural networks. Network: Computation in
Neural Systems, 6:469-510, 1995.

D. MacKay. Hyperparameters: Optimize or integrate out. Mazimum FEntropy
and Bayesian Methods, 11:1035-1068, 1996.

D. MacKay. Introduction to gaussian processes. Neural Networks and Machine
Learning, 1998.

D. MacKay. Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press, 2003.

B.S. Manjunath, P. Salembier, and T. Sikora. Introduction to MPEG-7: Multi-
media Content Descriptor Interface. Wiley et. Sons, 2002.

G. Matheron. Principles of geostatistics. FEconomic Geology, 58:1246-1266,
1963.



Bibliography 211

[80]

[81]

82]

[83]

[84]

[85]

[86]

187]

38

[89]

190]

[91]

92|

(93]

[94]

MATLAB. wversion 7.18 (R2011b). The MathWorks Inc., 2011.

A. Melkumyan and F. Ramos. A sparse covariance function for exact gaussian
process inference in large datasets. linternational Joint Conference on Artifical

Intelligence (IJCAI), October 2009.

M. Milford. Single camera vision-only slam on a suburban road network. In-
ternational Conference on Robotics and Automation (ICRA), May 2008.

T. Minka. Expectation propagation for approximate bayesian inference. Asso-
ciation for Uncertainty in Artificial Intelligence (AUAI), August 2001.

A. Monnet, A. Mittal, N. Paragios, and V. Ramesh. Background modelling and

subtraction of dynamic scenes. International Conference on Computer Vision
(ICCV), October 2003.

A. Moore. An introductory tutorial on kd-trees. Technical report, Cambridge
University, 1991.

H. P. Moravec. Obstacle Avoidance and Navigation in the Real World by a
Seeing Robot Rover. PhD thesis, Stanford University, 1980.

H. P. Moravec and D. B. Gennery. Cart project progress report. Technical
report, Stanford University, July 1976.

R. K. Namdev, A. Kundu, K. M. Krishna, and C. V. Jawahar. Motion segmen-
tation of multiple objects from a freely moving monocular camera. International
Conference on Robotics and Automation (ICRA), May 2012.

R. Neal. Bayesian training of backpropagation networks by the hybrid monte
carlo method. Technical report, University of Toronto, 1992.

R. M. Neal. Bayesian Learning for Neural Networks. Lecture Notes in Statistics,
Springer-Verlag, 1996.

S. Nedevschi, R. Danescu, D. Frentiu, T. Graf, and R. Schmidt. High accu-
racy stereovision approach for obstacle detection on non-planar roads. IFEFE
Proceedings on Intelligent Engineering Systems (INES), October 2004.

D. Nister. Preemptive ransac for live structure and motion estimation. Machine
Vision and Applications, 2005.

D. Nister, O. Naroditsky, and J. Bergen. Visual odometry for ground vehicle
applications. Journal of Field Robotics, 23:3-20, 2006.

A. O’Hagan. Curve fitting and optimal design for prediction (with discussion).
Journal of the Royal Statistical Society, 40:1-42, 1978.



212

Bibliography

[95]

[96]

197]

(98]

[99]

[100]

[101]

102]

[103]

[104]

[105]

[106]

[107]

N. Oliver, B. Rosario, and A. Pentland. A bayesian computer vision system
for modelling human interactions. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), August 2000.

M. A. Osborne, S. J. Roberts, A. Rogers, S. D. Ramchurn, and N. R. Jennings.
Towards real-time information processing of sensor network data using compu-
tationally efficient multi-output gaussian processes. International Conference
on Information Processing in Sensor Networks (IPSN), April 2008.

C. Paciorek. Nonstationary Gaussian Processes for Regression and Spatial Mod-
elling. PhD thesis, Carnegie Mellon University, 2003.

A. Papoulis. Probability, Random Variables and Stochastic Processes. McGraw-
Hill Companies, 3rd Edition, 1991.

M. A. Paskin. Thin junction tree filters for simultaneous localization and map-
ping. International Joint Conference on Artificial Intelligence (IJCAI), August
2003.

J. C. Platt. Probabilities for SV Machines. Advances in Large Margin Classifiers,
MIT Press, 2000.

C. E. Rasmussen and K. I. Williams. Gaussian Processes for Machine Learning.
The MIT Press, 2006.

R. Roberts, H. Nguyen, N. Krishnamurthi, and T. Balch. Memory-based learn-
ing for visual odometry. International Conference on Robotics and Automation

(ICRA), May 2008.

R. Roberts, C. Potthast, and F. Dellaert. Learning general optical flow sub-
spaces for egomotion estimation and detection of motion anomalies. Computer
Vision and Pattern Recognition Conference (CVPR), June 2009.

D. Rumelhart, G. Hinton, and R. Williams. Learning representations by back-
propagating errors. Nature, 323:533-536, 1986.

H. Samet. Foundations of Multidimensional and Metric Data Structures (Mor-
gan Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan
Kaufmann Publishers Inc., 2005.

D. Scaramuzza. Performance evaluation of 1-point-ransac visual odometry.
Journal of Field Robotics, 2011.

D. Scaramuzza and F. Fraundorfer. Visual odometry tutorial. Robotics and
Automation Magazine, 18:80-92.



Bibliography 213

[108]

[109]

[110]

[111]

[112]

[113]

114)

|115]

[116]

[117]

[118]

[119]

[120]

[121]

D. Scaramuzza and R. Siegwart. Appearance guided monocular omnidirectional
visual odometry for outdoor ground vehicles. IEEE Transactions on Robotics,
special 1ssue on Visual SLAM, October 2008.

D. Scaramuzza, F. Fraundorfer, M. Pollefeys, and R. Siegwart. Absolute scale in
structure from motion from a single vehicle mounted camera by exploiting non-
holonomic constraints. International Conference on Computer Vision (ICCV),
October 20009.

B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, 2001.

B. Scholkopf and A. J. Smola. Learning with Kernels. The MIT Press, 2002.

S. Se, D. Lowe, and J. Little. Vision-based mobile robot localization and map-
ping using scale-invariant features. International Conference on Robotics and
Automation (ICRA), May 2001.

M. Seeger. Gaussian processes for machine learning. International Journal of
Neural Systems, 14:69-106, 2004.

B. Settles. Active learning literature survey. Technical report, University of
Wisconsin-Madison, 2010.

Y. Sheikh and M. Shah. Bayesian modelling of dynamic scenes for object detec-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
February 2005.

J. R. Shewchuk. An introduction to the conjugate gradient method without the
agonizing pain. Technical report, Carnegie Mellon University, 1994.

J. Shi and C. Tomasi. Good features to track. Computer Vision and Pattern
Recognition Conference (CVPR), June 1994.

M. Smith, I. Posner, and P. Newman. Efficient non-parametric surface repre-
sentations using active sampling for push broom laser data. Robotics: Science
and Systems (RSS), June 2010.

M. Soga, T. Kato, M. Ohta, and Y. Ninomiya. Pedestrian detection with stereo
vision. International Conference on Data Engineering, July 2005.

L. Spinello, R. Triebel, and R. Siegwart. Multimodal people detection and
tracking in crowded scenes. International Conference on Artificial Intelligence
(Physically Grounded AI Track), July 2008.

C. Stauffer and W. Grimson. A probabilistic background model for tracking.
European Conference on Computer Vision (ECCV), August 2000.



214

Bibliography

[122]

[123]

124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

133

[134]

C. Stauffer and W. Grimson. Learning patterns of activity using real-time
tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), August 2000.

M. L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer
Series in Statistics, 1999.

B. Stenger, V. Ramesh, N. Paragios, F. Coetzee, and J. Buhmann. Topology
free hidden markov models: Application to background modeling. Furopean
Conference on Computer Vision (ECCV), June 2000.

Z. Sun, J. van de Ven, F. Ramos, X. Mao, and H. Durrant-Whyte. Inferring
laser-scan matching uncertainty with conditional random fields. Robots and
Autonomous Systems, 60:83-94, 2012.

N. Sunderhauf, K. Konolige, S. Lacroix, and P. Protzel. Visual Odometry using
Sparse Bundle Adjustment on an Autonomous Qutdoor Vehicle. Tagungsband
Autonome Mobile Systeme. Springer Verlag, 2005.

A. Taluker and L. Matthies. Real-time detection of moving objects from moving
vehicles using dense stereo and optical flow. Intelligent Robots and Systems
(IROS), September 2004.

J.-P. Tardif, Y. Pavlidis, and K. Daniilidis. Monocular visual odometry in urban

environments using an omnidirectional camera. International Conference on
Intelligent Robots and Systems (IROS), September 2008.

S. Thrun. Particle filters in robotics. Conference on Uncertainty in Artificial
Intelligence (UAI), August 2002.

S. Thrun, Y. Liu, A. Koller, Z. Ng, and H. Durrant-Whyte. Simultaneous
mapping and localization with sparse extended information filters. International
Journal of Robotics Research (IJRR), 23:693-716, 2004.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis.
Journal of the Royal Statistical Society, Series B, 61:611-622, 1999.

K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: Principles and
practice of background maintenance. International Conference on Computer

Vision (ICCV), September 1999.

R. van der Merwe, N. de Freitas, A. Doucet, and E. Wan. The unscented particle
filter. Advances in Neural Information Processing Systems (NIPS), December
2001.

S. Vasudevan, F. Ramos, E. Nettleton, and H. Durrant-whyte. Non-stationary
dependent gaussian processes for data fusion in large-scale terrain modeling.
International Conference on Robotics and Automation (ICRA), May 2011.



Bibliography 215

[135]

[136]

[137]

[138]

[139]

[140]

141

[142]

[143]

[144)

[145]

[146]

G. Wahba. Spline models for observational data. Conference Series in Applied
Mathematics, January 1990.

M. R. Walter, R. M. Eustice, and J. J. Leonard. Exactly sparse extended
information filters for feature-based slam. International Journal of Robotics

Research (IJRR), 26:335-359, 2007.

H. Wang, K. Yuan, W. Zou, and Q. Zhou. Visual odometry based on locally pla-
nar ground assumption. International Conference on Information Acquisition,
2005.

L. Wasserman. All of Nonparametric Statistics. Springer Texts in Statistics,
2007.

G. Welch and G. Bishop. An introduction to the kalman filter. Technical report,
University of North Carolina, 1995.

C. K. Williams and D. Barber. Bayesian classification with gaussian processes.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
November 1998.

C. K. I. Williams. Computation with infinite neural networks. Neural Compu-
tation, 10:1203-1216, 1998.

J. Wolberg. Data Analysis Using the Method of Least Squares: Extracting the
Most Information from Experiments. Springer Verlag, 2005.

C. Wren, A. Azarbayejani, T. Darrel, and A. Pentland. Pfinder: Real time
tracking of the human body. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (PAMI), July 1997.

L. Zhao and C. Thorpe. Stereo and neural network-based pedestrian detection.
IEEFE Transactions on Intelligent Transportation Systems, pages 148—154, 2000.

J. Zhong and S. Sclaroff. Segmenting foreground objects from a dynamic tex-
tured background via a robust kalman filter. International Conference on Com-

puter Vision (ICCV), October 2003.

Z. W. Zhu, T. Oskiper, O. Naroditsky, S. Samarasekera, H. S. Sawhney, and
R. Kumar. An improved stereo-based visual odometry system. Workshop of
Performance Metrics for Intelligent Systems, August 2006.



	Copyright_Statement
	guizilini_vcg_thesis.pdf
	Declaration
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Overview on Visual Odometry
	1.3 Problem Statement
	1.4 Contributions
	1.5 Thesis Outline

	2 Theoretical Background
	2.1 Parametric Regression
	2.1.1 Least-Squares Regression
	2.1.2 Maximum Likelihood
	2.1.3 Bayesian Inference

	2.2 Non-Parametric Bayesian Regression
	2.2.1 History of Gaussian Processes
	2.2.2 The Kernel Trick
	2.2.3 The Gaussian Process Model
	2.2.4 Covariance Functions
	2.2.5 Hyperparameter Optimization
	2.2.6 Multiple-Output Gaussian Processes

	2.3 Computer Vision for Motion Estimation
	2.3.1 Feature Extraction
	2.3.2 Feature Matching
	2.3.3 Outlier Removal
	2.3.4 Pinhole Camera Model
	2.3.5 Structure from Motion

	2.4 Summary

	3 Learning Visual Odometry Estimators
	3.1 Algorithm Overview
	3.2 Image Information Extraction
	3.2.1 Optical Flow Parametrization
	3.2.2 Preserving Spatial Structure
	3.2.3 Narrow Field of View

	3.3 Gaussian Process Learning
	3.3.1 Vehicle Models
	3.3.2 Covariance Function Selection
	3.3.3 Hyperparameter Optimization

	3.4 Experimental Results
	3.4.1 2D Experiments
	3.4.2 3D Experiments

	3.5 Summary

	4 Semi-Parametric Coupled Gaussian Processes
	4.1 Algorithm Extensions
	4.1.1 Coupled Gaussian Processes
	4.1.2 Temporal Dependency between Frames
	4.1.3 Incremental Updates of the Covariance Matrix
	4.1.4 Semi-Parametric Visual Odometry

	4.2 Simultaneous Localization and Mapping
	4.2.1 Marginalization and Conditioning
	4.2.2 State Augmentation
	4.2.3 Measurement Updates
	4.2.4 Motion Prediction
	4.2.5 State Recovery

	4.3 Experimental Results
	4.3.1 2D Experiments
	4.3.2 3D Experiments
	4.3.3 Generalization Experiments

	4.4 Summary

	5 Automatic Segmentation of Dynamic Objects
	5.1 Related Work
	5.2 Algorithm Overview
	5.2.1 Initial RANSAC Classification
	5.2.2 Optical Flow Parametrization
	5.2.3 Gaussian Process Classification

	5.3 Incremental Updates
	5.3.1 Information Filtering
	5.3.2 Pixel by Pixel Classification

	5.4 Experimental Results
	5.4.1 Dynamic Object Segmentation
	5.4.2 Dynamic Object Clustering
	5.4.3 Visual Odometry

	5.5 Summary

	6 Conclusion and Future Work
	6.1 Summary of Contributions
	6.2 Future Research

	Bibliography


