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Abstract

Vitor Campanholo Guizilini Doctor of Philosophy
The University of Sydney March 2013

Non-Parametric Learning for

Monocular Visual Odometry

This thesis addresses the problem of incremental localization from visual information,

a scenario commonly known as visual odometry. Accurate localization is a fundamen-

tal aspect in autonomous navigation, where a vehicle should be able to position itself

on the surrounding environment in order to perform tasks such as mapping, obstacle

avoidance and path planning. Current visual odometry algorithms are heavily de-

pendent on camera calibration, using a pre-established geometric model to provide

the transformation between input (optical �ow estimates) and output (vehicle motion

estimates) information.

A novel approach to visual odometry is proposed in this thesis where the need for

camera calibration, or even for a geometric model, is circumvented by the use of

machine learning principles and techniques. A non-parametric Bayesian regression

technique, the Gaussian Process (GP), is used to elect the most probable transfor-

mation function hypothesis from input to output, based on training data collected

prior and during navigation. Other than eliminating the need for a geometric model

and traditional camera calibration, this approach also allows for scale recovery even

in a monocular con�guration by exploring similarities in optical �ow, and provides

a natural treatment of uncertainties due to the probabilistic nature of GPs. Several

extensions to the traditional GP framework are introduced and discussed at depth,

and they constitute the core of the contributions of this thesis to the machine learning

and robotics community.

Initially, the standard GP derivation is modi�ed to address a multiple-output sce-

nario (MOGP), and the standard MOGP derivation is further extended to allow the
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estimation of all outputs simultaneously, along with a full covariance matrix, in a

novel technique called Coupled Gaussian Process (CGP). This allows the algorithm

to exploit dependencies between di�erent degrees of freedom in motion, caused by

constraints in vehicle dynamics, to improve localization results. The usual zero mean

assumption in the GP derivation is also explored and modi�ed, and a method of in-

corporating well-established geometric models into the non-parametric framework is

presented, creating a semi-parametric approach to visual odometry. The optimization

of the GP hyperparameters and camera calibration parameters is conducted simul-

taneously, so there is still no need for camera calibration, and if this information is

available it can be incorporated seamlessly. The issue of environment change during

navigation is addressed by introducing online updates to the semi-parametric model,

allowing new information to be incorporated and redundant information to be dis-

carded as a way to maintain computational complexity within a certain boundary.

Finally, an automatic dynamic object removal algorithm is presented as a way to im-

prove the reliability of optical �ow information extracted during navigation, since any

relative motion observed should be caused solely by camera rotation and translation.

The proposed framework is tested in a wide variety of scenarios, ranging from ur-

ban and o�-road 2D environments, using images collected from a modi�ed vehicle

equipped with a single camera, to 3D environments, using images collected from an

unmanned aerial vehicle UAV) �ying over a deserted area. The results show a sig-

ni�cant improvement over traditional visual odometry algorithms, and also surpass

results obtained using other sensors, such as laser scanners and IMUs. Due to the

natural treatment of uncertainties and recovery of a full covariance matrix, incor-

poration of the visual odometry results obtained using the proposed framework is

straightforward. In particular, the incorporation of these results to a SLAM scenario,

using a Exact Sparse Information Filter (ESIF), is shown as a way to use loop-closure

to decrease global uncertainty.



All you have to decide is what to do with the time that is given to you.

- Mithrandir
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Chapter 1

Introduction

1.1 Motivation

This thesis is concerned with vehicle localization, more speci�cally with vehicle local-

ization based on image information. The ability to position itself on the surrounding

environment, and constantly update this position during navigation, is of key im-

portance in most high-level autonomous tasks, such as mapping, path planning and

exploration. Without localization, a vehicle is limited to reactive behaviour based

solely on current observations, and is incapable of performing actions beyond its sen-

sory range.

There are several sensors capable of performing vehicle localization, with di�erent

ranges of application and degrees of accuracy. Internal sensors, such as wheel encoders

and IMUs, work isolated from the surrounding environment, and thus are only capable

of providing incremental estimates of vehicle velocity and/or acceleration. These

individual estimates are integrated over time, according to a predetermined vehicle

dynamic model, to generate a pose estimate. The main disadvantage of incremental

localization, also known as dead reckoning, is that each individual estimate contains

a component of error (drift) that accumulates as part of the integration process,

increasing monotonically at each iteration. Any improvement in sensor or model

accuracy will serve only to slow, but not prevent, this increase, and eventually the
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Figure 1.1 � Some common applications of visual sensors in robotics: car detection
(upper left), lane segmentation (upper right), face recognition (bottom left) and
people tracking (bottom right).

pose estimate becomes so uncertain that it no longer serves any meaningful purpose.

For this reason, dead reckoning is insu�cient for long-term localization, however it

still maintains useful auxiliary information that can be exploited in conjunction with

other forms of localization.

Pose estimation with upper boundaries of uncertainty is possible only through the

availability of absolute measurements, rather than incremental. This is achieved us-

ing external sensors, which interact in one way or another with the environment to

generate pose estimates that are independent of the robot's previous states. A GPS

is the simplest form of absolute pose estimation, however it has a limited range of

applications as it does not work underwater, indoors or in extra-terrestrial naviga-

tion. Another family of external sensors, which include cameras and range-�nders

(i.e. laser, sonar and radar scanners), work by registering information from the envi-

ronment, which the vehicle can then use to perform both incremental (by estimating

relative motion between measurements) and absolute (by detecting previously visited

areas) localization.
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Figure 1.2 � Examples of robotic platforms that use visual information for navigational
purposes.

The use of cameras in lieu of other external sensors has several bene�ts: cameras

are inexpensive, compact and low-power consumption sensors capable of producing

a dense and rich representation of the environment. They possess a wide �eld of

view both horizontally and vertically, a range that is only limited by illumination or

image resolution (or solid objects), and are naturally capable of registering motion

in all 6 degrees-of-freedom that constitute 3D navigation. The colour and texture

information provided by a visual representation of the environment can also be used

in a wide variety of other applications (see Fig. 1.1) that pose a challenge to any

other sensor. Furthermore, recent advances in computational power now allow the

real-time processing of this information, which further contributes to the increase in

popularity of cameras in robotics.

The act of performing vehicle localization based on image information is known as

visual odometry, a term chosen due to its similarities with wheel odometry, where mo-

tion is estimated by integrating wheel rotation over time. Likewise, visual odometry
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operates by incrementally estimating camera translation and rotation based on the

relative motion of structures around the vehicle, assuming a static environment. For a

visual odometry algorithm to work e�ectively, there should be su�cient illumination

and su�cient texture for feature extraction and matching. In addition, consecutive

frames should be captured in such a way that ensures su�cient scene overlapping

between them.

1.2 Overview on Visual Odometry

The use of visual sensors in autonomous navigation is far from new, and can be traced

back at least to 1976, with Gennery and Moravec using feature tracking for course

correction in the Stanford AI Lab Cart [87]. The functionality of theses sensors was

later extended to include egomotion estimation [86], achieved by tracking a set of

stationary landmarks over a sequence of frames and calculating their relative motion.

Since then, visual odometry has been extensively and successfully employed in a

wide variety of applications (Fig. 1.2), such as autonomous aircrafts [56], underwater

vehicles [9], space exploration [15] and indoor/outdoor ground navigation [52, 108].

Solutions to the visual odometry problem can be broadly divided into two cate-

gories: Structure-From-Motion (SFM), which draws from multi-view projective ge-

ometry [47]; and Probabilistic Filtering, which draws from state estimation methods

[129, 139]. Overall, probabilistic �ltering approaches produce accurate results in

small environments, however they do not scale well to larger problems where a vast

amount of features is available. SFM approaches can be further divided into two

categories: stereo and monocular con�gurations. Stereo con�gurations [56, 146] use a

multi-camera array to capture several images of the environment simultaneously, from

di�erent vantage points. In this scenario, feature depth estimates can be recovered

directly from the binocular disparity between images, and this information is then

used to infer camera translation and rotation. Monocular con�gurations [108, 128]

use a single camera, which is essentially a bearing-only sensor and therefore incapable

of providing feature depth estimation directly. One well-known limitation of monoc-
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Figure 1.3 � Example of monocular visual odometry and its inherent scale ambiguity.
From visual information alone, it is impossible to distinguish between hypothesis
A and B for vehicle pose and landmark location.

ular visual odometry is scale ambiguity (Fig. 1.3), caused by the parallax e�ect (an

observed object could be close and moving slowly or far away and moving fast, it is

impossible to know from a single image). This means that, unless special circum-

stances are considered, such as a ground-plane assumption [61] or a particular vehicle

dynamics [109], visual odometry algorithms are only capable of recovering vehicle

translation up to a scaling factor.

All SFM-based approaches to visual odometry, however, are calibration-dependent,

in the sense that the transformation between image information and vehicle motion

is calculated using a geometric model of the visual system [47]. This geometric model

is governed by the camera's intrinsic parameters, which are obtained via calibration

prior to the beginning of navigation. This means that any localization estimate

provided by such approaches will only be, at most, as accurate as the geometric

model and calibration parameters used. Over the years several methods for camera

calibration have been proposed, however there is no guarantee that the resulting

parameters will not change over time, due to vibration, mechanical shocks or changes

in temperature. The use of self-calibration algorithms [17, 34] is attractive because

it allows the tracking and auto-correction of changes in calibration parameters, but
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they still assume a known �xed geometric model, thus limiting the �exibility of the

solution.

An alternative to explicitly de�ning a geometric model is the use of machine learning

techniques, a �eld of research that is concerned with the development of algorithms

that take as input empirical data and attempt to learn the underlying function from

which this data was generated. By introducing a training dataset containing examples

of input-output pairs, it is possible to estimate a transformation function that directly

maps image information to vehicle motion, without any prior knowledge of the visual

system or environment structure. Although intuitive, this approach has been scarcely

used in visual odometry, most notably in [102], where the authors use a KNN-Learner

voting method to estimate changes in pose, with each learner taking as input the

average of the sparse optical �ow in a grid-divided image. A similar idea is explored

in [103], where a constant pixel depth is assumed and the Expectation-Maximization

(EM) algorithm [26], in conjunction with an extension to PPCA [131], is used to

perform a linear mapping between optical �ow and incremental motion.

1.3 Problem Statement

This thesis introduces the use ofGaussian Processes (GPs), a non-parametric Bayesian

regression technique, as a valid and attractive approach to address the problem of

visual odometry from a machine learning perspective. A GP is a non-parametric

technique in the sense that it does not explicitly de�ne a model between inputs and

outputs, maintaining instead a probabilistic distribution over an in�nite number of

possible functions. Overly complex solutions are penalized and data �t is rewarded,

based on a cost function that quanti�es the relationship between training inputs,

to elect a continuous approximation of the underlying function that generalizes well

over new inputs. Furthermore, each inference also produces a corresponding uncer-

tainty estimate, that can be used to gauge the resulting model's con�dence in its own

predictions. The proposed algorithm is tested in a wide variety of scenarios, ranging

from highly dynamic urban and unstructured o�-road 2D environments, using images
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(a) (b)

Figure 1.4 � Results obtained with the proposed method. (a) Examples of visual infor-
mation used as input (translational and rotational optical �ow). (b) Localization
results obtained in an urban environment using a modi�ed vehicle equipped with a
single uncalibrated camera.

collected from a ground vehicle (Fig. 1.4), to 3D unconstrained navigation, using im-

ages collected from an unmanned aerial vehicle (UAV), with results that consistently

outperform traditional, purely geometric, visual odometry techniques.

The objective of this thesis is to create a solution to the problem of visual odometry

that reduces the need for any prior knowledge of the visual system and/or environ-

ment, allowing the system to learn the transformation between image information and

vehicle motion directly from training data, in an online fashion. If such knowledge

(such as the geometric model or the camera calibration parameters) is available, it

can be seamlessly incorporated into this framework and then further re�ned during

navigation, improving results on any particular visual odometry algorithm currently

available.
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1.4 Contributions

The main contributions of this thesis1 are enumerated as follows:

1. Monocular visual odometry algorithm based on machine learning

principles. A Multiple-Output Gaussian Process (MOGP) is used to learn

the transformation function from image information directly into vehicle mo-

tion, eliminating the need for a geometric model or even traditional camera

calibration. The bene�ts of this approach are three-fold:

• Full covariance matrix recovery. The traditional MOGP derivation is

extended to allow the simultaneous estimation of all outputs (linear and

angular velocities). This new methodology exploits dependencies between

these outputs, generated by constraints in vehicle dynamics, to improve

accuracy on each individual estimate. These dependencies are quanti�ed

as the cross-terms in the resulting covariance matrix.

• Scale recovery in monocular con�guration. The proposed framework
uses training data obtained from a di�erent and independent sensor as

ground-truth. If this sensor is capable of scale estimation (i.e. range

sensors), this information is encoded into the resulting non-parametric

model and can be recovered by exploiting structure similarities between

training and testing images.

• Natural treatment of uncertainties. Because Gaussian Processes are

a Bayesian probabilistic technique, all inferences conducted using the pro-

posed framework will naturally provide a measurement of uncertainty. This

is of key importance in further treatments of the results, such as data fusion

or incorporation into a SLAM scenario.

1The majority of the contributions proposed in this thesis (Chapters 3 and 4) was accepted for
publication at the International Journal of Robotics Research (IJRR) 2013, under the title Semi-

Parametric Learning for Visual Odometry.
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2. Temporal dependencies in the Gaussian Process framework. The stan-

dard spatial correlation between features in the same frame used by the Gaus-

sian Process framework is extended to include temporal dependencies between

features in subsequent frames. This approach works under the assumption that

vehicle velocity will change smoothly during navigation, and signi�cantly in-

creases the amount of information available for inference.

3. Semi-parametric Gaussian Processes. The traditional zero-mean assump-

tion in Gaussian Processes is modi�ed and a standard Structure-From-Motion

geometric model is incorporated into the proposed framework, as the new mean

function. The camera calibration parameters are learned simultaneously with

the GP hyperparameters, and if they are available they can be incorporated

seamlessly and further re�ned during navigation.

4. Online learning of visual odometry estimators. The semi-parametric

model obtained during training is constantly updated during navigation, incor-

porating new information as it becomes available and discarding redundant or

old information, in order to maintain computational time roughly constant. The

online update of the semi-parametric model allows the algorithm to gradually

adapt to new environments, decreasing the sensitivity to similar training and

testing conditions. All new information incorporated is obtained directly from

the GP inference process, so there is still no need for a di�erent sensor during

navigation.

5. Vectorized representation of optical �ow information. A novel method

for representing optical �ow information is proposed, where it is stored as a

single vector of �xed dimension. This representation also retains the spatial

structure of the image, a valuable characteristic since optical �ow patterns tend

to vary radically and consistently throughout each frame.

6. Automatic segmentation of dynamic objects. A novel technique for the

self-supervised segmentation of dynamic objects from a static background is

proposed. The RANSAC algorithm is used to provide an initial classi�cation
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between classes, and these results are used to iteratively train a Gaussian Pro-

cess during navigation. The dynamic objects are then removed before the op-

tical �ow vectorization stage, to ensure that only a static background is used

for visual odometry estimation. This technique is shown to radically improve

results obtained during city driving, reducing the in�uence of pedestrians, cars

and buses in the �nal localization estimates.

1.5 Thesis Outline

Chapter 2 presents the theoretical background that will form the basis to the remain-

der of the thesis. It starts by providing an overview on regression techniques, starting

with parametric techniques, both deterministic and Bayesian, and later moves on to

non-parametric models, in speci�c a non-parametric Bayesian regression technique

known as Gaussian processes. The Gaussian process model is presented, along with

the various covariance functions available in the literature, techniques for hyperpa-

rameter optimization and extension to multiple outputs. The chapter then switches to

computer vision, introducing the various aspects in which a camera can be an attrac-

tive sensor in robotic applications. Algorithms for feature extraction and matching

are presented and discussed, and the RANSAC algorithm is described as a valuable

tool for outlier removal. Finally, the camera model used in this thesis is presented,

and the chapter concludes by describing how vehicle motion can be recovered from

image information using this camera model, which forms the basis for visual odometry

estimation.

Chapter 3 introduces the proposed algorithm for visual odometry estimation, in

which the geometric model is substituted by a non-parametric Gaussian process

model, thus eliminating the need for conventional camera calibration. An overview

of a simpli�ed version of the algorithm is presented, and the remainder of the chapter

is dedicated to describing each of its particular stages. Initially it is shown how to

convert image information into a vector that can be used as the input vector for the

GP framework, in such a way that spatial structure is maintained to allow a direct
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comparison between di�erent inputs. The GP framework is then introduced, describ-

ing the two di�erent vehicle models used in the experiments (a 2D constrained ground

vehicle model and an unconstrained 3D aerial vehicle model), the process of covari-

ance function selection and techniques for hyperparameter optimization that address

the high-dimensionality of the problem at hand. Lastly, experimental results obtained

using the proposed algorithm, both in 2D and 3D environments, are presented and

discussed, along with comparisons to a standard structure from motion algorithm and

possible shortcomings of the proposed algorithm that should be addressed before it

becomes a viable solution to the visual odometry problem.

Chapter 4 extends the visual odometry algorithm introduced in the previous section

to address its various shortcomings. Five extensions are proposed: 1) the modelling

of cross-dependencies between di�erent outputs, that allows the recovery of a full

covariance matrix; 2) the introduction of temporal dependencies between outputs of

subsequent frames, that increases the amount of information available for inference;

3) the incremental update of the covariance matrix, that allows the non-parametric

model to gradually adapt to new environments; 4) the incorporation of a geometric

model as the mean function for the GP framework, that provides an initial estimate

that is then further re�ned by the non-parametric model; 5) and �nally an extension

to the SLAM framework, in which all vehicle poses are tracked over time and a loop-

closure algorithm is used to detect when an area is revisited, with this information

being used to globally decrease uncertainty. Further experiments are conducted to

evaluate the e�ectiveness of such extensions, and also to test the proposed method's

ability to generalize over di�erent training and testing conditions.

Chapter 5 introduces a novel technique for the segmentation of dynamic objects,

also based solely on visual information and using the GP framework described in

previous chapters. This is done in order to detect and remove dynamic objects during

navigation, which could compromise results by incorporating optical �ow information

that is not generated by camera translation and rotation. An unsupervised method

for obtaining ground-truth data, based on the RANSAC algorithm, is presented,

alongside a new descriptor used to generate the vector that serves as input for the
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GP framework. It produces a dense binary classi�cation of the entire image, where

each pixel is classi�ed either as a static or a dynamic object, and a measurement of

con�dence in such classi�cation is also provided. Once this classi�cation is available,

it is possible to �lter out all objects that are deemed dynamic and use solely static

structures to generate the optical �ow information. Experiments are conducted to

validate the proposed algorithm's ability to correctly segment dynamic objects using

di�erent camera con�gurations, and also to show the improvement it produces on

visual odometry applications.

Chapter 6 concludes the thesis and provides a brief summary of the contributions,

alongside potential future research directions that can be taken based on the work

conducted here.



Chapter 2

Theoretical Background

This chapter is a review on the main tools and techniques used to develop the visual

odometry algorithm proposed in this thesis. It starts with an overview of para-

metric regression techniques, including the least-squares model, maximum likelihood

and Bayesian inference. Afterwards, it moves on to Gaussian processes as a non-

parametric Bayesian regression technique, including di�erent covariance functions,

techniques for hyperparameter optimization and extension to multiple-outputs. Fi-

nally, it concludes by providing an overview of di�erent computer vision techniques,

highlighting di�erent methods for feature extraction and matching, outlier removal

techniques, and the geometric camera model that will be used during experiments.

2.1 Parametric Regression

Over the years, regression techniques have become increasingly popular in robotics,

as a way to learn a system's characteristics without having to explicitly de�ne a

model. If a comprehensive set of observations X = {x1, . . . ,xN}, xn ∈ <D and their

corresponding outcomes y = {y1, . . . , yN}, yn ∈ < is available, statistical modelling

is able to provide an estimation of the underlying function y = f(x) and predict

the outcome of new observations. This is especially valuable in situations where the
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phenomenon that generated the data is too complex or unpredictable to be properly

modelled using classical approaches.

This section addresses one form of regression known as parametric regression, in which

the underlying function is modelled by a �nite number of quanti�able characteristics,

or parameters. In other words, the underlying function is de�ned as f(x,w), where

w is the parameter vector and f(x, .) is the functional mapping. Naturally, some

parameters will be better than others at explaining the observed outputs, and the

challenge now is to �nd the ones that provide the "best" explanation.

2.1.1 Least-Squares Regression

One way of de�ning the "best" model is by �nding the parameters that minimize a

certain cost function L(w). By this de�nition, better models will be the ones with

lower costs. A common cost function is the sum of squared errors:

L(w) =
N∑
n=1

(yn − f(xn,w))2, (2.1)

that favours models in which the transformed inputs are closer to the outputs in

the Euclidean space. The solution wLSQ obtained by minimizing L(w) with respect

to w is known as the least-squares regression model. Applications of this model

include back-propagation neural network training [104], where the weights are opti-

mized according to the gradient of Eq. 2.1, and polynomial regression [38], where

the functional mapping is a polynomial and the parameters are the polynomial coef-

�cients.

One problem with least-squares regression is the lack of probabilistic treatment of

uncertainties. The resulting model is capable of providing a scalar prediction at any

point in the input space, however there is no corresponding measure of con�dence

in that prediction. Another problem is that of over�tting (Fig. 2.1), in which the

resulting model becomes unable to discern between random noise and the underlying

function it is trying to explain. This is usually caused by an excessively complex
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Figure 2.1 � Example of over�tting in a least-squares regression problem using poly-
nomials. In (a) we can see how the resulting model changes as polynomial order
increases, and (b) shows the corresponding training and testing errors. As expected,
both training and testing errors initially decrease as polynomial order increases, un-
til over�tting takes over (at the 8th polynomial order mark) and the testing error
starts to increase, while the training error continues to decrease.

functional mapping, that interpolates all available inputs to a high degree of precision

but has a poor predictive performance with new inputs (generalization ability), as it

interprets minor �uctuations as trends.

A straightforward solution to over�tting is the use of a simpler functional mapping,

with fewer parameters. However, if the chosen functional mapping is too simple it

will also have a poor predictive performance, as it is unable to correctly follow the

hidden patterns. Other approaches include cross-validation, regularization and early

stopping, which can indicate when further optimization is not resulting in better

generalization. This is achieved by either explicitly penalizing overly complex models

or testing the model's ability to generalize, by evaluating its performance on a subset

of the training data that is withheld during optimization.

2.1.2 Maximum Likelihood

A popular alternative to the problem of �tting a function to input data is to assume

a probabilistic distribution over X, with a density function p(X|w) that is again

completely characterized by the parameter vector w. Assuming that the observa-
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tions xn in X are independent and identically distributed (i.i.d), the joint probability

distribution is given by:

p(x1,x2, . . . ,xN |w) = p(x1|w)× p(x2|w)× . . .× p(xN |w). (2.2)

Alternatively, it is possible to see this problem from a di�erent perspective by con-

sidering the observation set X as �xed and the parameter vector w as variable. This

new distribution is the likelihood function, and it is given by:

L(w|X) = p(x1,x2, . . . ,xN |w) =
N∏
n=1

p(xn|w). (2.3)

For a variety of reasons, the likelihood function is often expressed in terms of its nat-

ural logarithm, or as the average log-likelihood (Eq. 2.4). The logarithm is a mono-

tonically increasing function, so it achieves its maximum values at the same points as

the original function. Computationally, the product of many small probabilities may

cause instability and loss of precision, and the logarithm function transforms these

multiplications into a more manageable summation. Finding the maximum of a func-

tion usually involves taking the derivative of a function, and this is often easier when

the function being maximized is a log-likelihood rather than the original likelihood

function.

l̂ =
1

N
lnL(w|X) =

1

N

N∑
n=1

ln p(xn|w) (2.4)

The parameters wML obtained by maximizing l̂ with respect to w are known as the

maximum likelihood (ML) estimates. The procedure for maximizing the log-likelihood

is dependent on the distribution chosen to represent the underlying function. A

common approach is to assume a Gaussian distribution (Fig. 2.2), which is completely

de�ned by its mean µ and variance σ2. The log-likelihood of such a distribution is of

the form:

lnL(µ, σ|X) =
1

2σ2

N∑
n=1

(xn − µ)2 − N

2
ln(σ2)− N

2
ln(2π), (2.5)
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(a) (b)

Figure 2.2 � Maximum likelihood estimates for a Gaussian distribution N (0, 2). (a)
Resulting distributions with di�erent number of observations. (b) Corresponding
mean and variance errors for each distribution, as the number of observations in-
crease.

that gives rise to a simple set of equations (Eq. 2.6) to determine wML. In fact,

it can be shown [45] that under this assumption the maximum likelihood model is

equivalent to the least-squares model:

µML =
1

N

N∑
n=1

xn σ2
ML =

1

N

N∑
n=1

(xn − µML)2. (2.6)

The use of maximum likelihood as a regression tool will be addressed here for the

particular case of linear regression, where the underlying function can be de�ned as

a linear combination of the input variables and some noise ε, here assumed to be of

a Gaussian distribution N (0, σ2):

f(x,w) = w0 + w1x1 + . . .+ wDxD = xTw, y = f(x,w) + ε. (2.7)



18 Theoretical Background

Under these circumstances, the resulting model will be a linear combination on both

the parameters and the inputs, which limits its expressiveness to simple lines. Conse-

quently, it is common to use basis functions φ(x) to project the D-dimensional inputs

into a higher dimensional space M , thus allowing for more �exible solutions. The

likelihood function (as presented in Eq. 2.3) is now obtained by maintaining both X

and w �xed and varying the outputs y:

L(y|X,w, σ2) =
N∏
n=1

exp

(
−(yn − φ(xn)Tw)2

2σ2

)
=

N∑
n=1

N (φ(xn)Tw, σ2I). (2.8)

Similarly, converting the above likelihood function to its average logarithmic form (as

shown in Eq. 2.4) provides:

l̂MLR =
1

2
ln(σ2)− 1

2
ln(2π)− 1

2Nσ2

N∑
n=1

(yn − φ(xn)Tw)2. (2.9)

The solution wMLR obtained by maximizing l̂MLR with respect to w is known as

the maximum likelihood regression model, and is of the form wMLR = (ΦΦT )−1Φy,

where Φ is the design matrix obtained by projecting the N input observations into

the M -dimensional basis function space:

Φ =


φ1(x1) φ1(x2) . . . φ1(xN)

φ2(x1) φ2(x2) . . . φ2(xN)
...

...
. . .

...

φM(x1) φM(x2) . . . φM(xN)

 . (2.10)

2.1.3 Bayesian Inference

Up to this point, the focus was on �nding a set of deterministic parameters that

maximize the probability of the outputs given the inputs. A natural progression

to the maximum likelihood regression model, where a probabilistic distribution was

applied to the observation set, is to place a distribution probability on the parameters
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themselves, resulting on a model that is capable of estimating the con�dence of its

own predictions.

The Bayesian probability theory allows us to do exactly that, by treating the param-

eters as stochastic latent variables. The core of Bayesian probability lies in the Bayes'

Rule, that is used to �nd the posterior distribution over the parameters conditioned

on the observations:

posterior︷ ︸︸ ︷
p(w|X,y, σ2) =

likelihood︷ ︸︸ ︷
L(y|X,w, σ2)

prior︷︸︸︷
p(w)

L(y|X, σ2)︸ ︷︷ ︸
marginal likelihood

. (2.11)

The prior distribution is set according to our prior belief about the distribution of the

parameters. Since Bayesian inference is usually conducted iteratively, as new data

becomes available, the prior distribution in one step is the posterior distribution of the

previous one, and at the beginning of the process the prior is manually determined by

our knowledge of the parameters (or lack thereof) before any data has been presented.

The likelihood function (Eq. 2.8) represents the odds of observing the available data

given a speci�c set of parameters, and the marginal likelihood is found by integrating

over the likelihood-prior product:

L(y|X, σ2) =

∫
L(y|X,w, σ2)p(w)dw. (2.12)

As the name suggests, the marginal likelihood is independent of any speci�c parame-

ter, and serves as a normalization constant so that the resulting posterior is a proper

probabilistic distribution. Within the Bayesian framework, assuming a 0-1 indicator

cost function L(yi, yj) = I(yi 6= yj), the maximum likelihood estimation method can

be combined with the prior distribution to create the parameter estimation technique

known as maximum a posteriori (MAP). Assuming the Gaussian likelihood function

in Eq. 2.8 and a Gaussian distribution N (µp,Σp) for the prior, the mean µMAP

becomes:
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(a) (b)

Figure 2.3 � Maximum a posteriori estimates for a Gaussian distribution N (0, 2) (same
observation set as Fig. 2.2, for comparison). (a) Resulting distributions with di�er-
ent number of observations. (b) Corresponding mean and variance errors for each
distribution, as the number of observations increase.

µMAP =
NΣ2

p

NΣ2
p + σ2

µML +
σ2

NΣ2
p + σ2

µp, (2.13)

where µML is obtained according to Eq. 2.6. In fact, µMAP is a linear interpola-

tion between µp and µML weighted by their respective covariances. This introduces

a regularization term to the likelihood function that penalizes larger parameter val-

ues, which are indicative of over�tting, and thus tend to produce simpler models.

For the special case of σw → ∞, we have a non-informative prior that leads to

µMAP → µML. A common criticism of MAP estimation is that they are not very

representative of Bayesian methods in general. This is because MAP estimates are

punctual, whereas Bayesian methods are known to use distributions to characterize

data and draw inferences. Also, unlike ML estimates, the MAP estimate is not in-

variant under reparametrization, which means that the use of a Jacobian to switch

from one parametrization to another has an impact on the location of the maximum.
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Figure 2.4 � Example of Bayesian inference. The red dot represents the true vari-
able value, and observations are conducted based on a Gaussian distribution with
parameters N (0, 10), that serves as the likelihood function. As the number of ob-
servations increase, it is possible to see how the posterior distribution (grey circles,
representing a Gaussian distribution within two standard deviations) becomes both
more precise and accurate.

Within this framework, inference over a single test point x∗ is a matter of �nding the

predictive distribution:

p(y∗|x∗, X,y, σ2) =

∫
L(y∗|x∗,w, σ2)p(w|X,y, σ2)dw (2.14)

= N
(

1

σ2
φ(x∗)

TA−1Φy, φ(x∗)
TA−1φ(x∗)

)
, (2.15)

where A = σ2ΦΦT +Σ−1
p . So, using a single set of parameters to make predictions, the

entire posterior density is integrated over. This means that it is not just a single set of
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parameters that contribute to the predictions, but all parameters, and the predictive

contribution from each particular parameter is given by its corresponding posterior

probability. The consequence of doing so is a predictive model that, while powerful

enough to model a wide variety of underlying functions, is less prone to over�tting.

Another bene�t of using Bayesian probability theory is that it provides a full pre-

dictive distribution, rather than just a scalar value at each test point (as shown in

Fig. 2.4). This is very useful as a measure of the resulting model's con�dence on

its own predictions: if the predictive distribution is tightly packed around a single

value, we can be con�dent of its ability to correctly model the underlying function

(assuming that the chosen parametric form of f(x,w) is appropriate). On the other

hand, if the predictive distribution is spread over a wide range of values, there is a

high uncertainty given that particular test point.

2.2 Non-Parametric Bayesian Regression

The previous section addressed the problem of regression from a parametric stand-

point, in which the functional mapping is assumed known and its coe�cients are op-

timized according to a certain function in order to generate the best possible model.

Conversely, non-parametric techniques [138] eschew the need to explicitly de�ne a

functional mapping by using the observations themselves to generate the resulting

model. As the number of observations increase, so does the model's complexity, and

principles such as the Occam's Razor [77] are used to counter the e�ects of over�t-

ting. While this approach allows for much more powerful and �exible solutions, it also

su�ers from computational storage and memory requirements, as all data collected

must be kept and processed in order to perform inference, whereas parametric models

discard current observations after the parameters have been optimized.

This section focuses on Gaussian processes (GPs) as a non-parametric Bayesian re-

gression technique [101]. A Gaussian process is a particular case of a stochastic

process, which is a collection of random variables often used to represent the evolu-

tion of a non-deterministic system over time [98]. It maintains a probability density
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Figure 2.5 � Example of stochastic process sampling. (a) Independent sampling paths
obtained based on a function f(x) = exp(a) sin(bx), with a ∼ N (0, 1

4) and b ∼
N (1, 1). (b) Probability density of 10000 sample paths evaluated at f(1).

function p(f, θ) de�ned over a function space F , and di�erent hypotheses for the un-

derlying function are sampled directly from this function space (Fig. 2.5). Because

the parameters in θ now govern functions, that in turn have their own parameters,

they are commonly referred to as hyperparameters, and these are optimized based

on a positive-de�nite function that quanti�es the relationship between points in the

input space.

2.2.1 History of Gaussian Processes

The use of Gaussian processes as a tool for prediction can be traced back to the

1940's, in works such as the Wiener-Kolmogorov prediction theory and time analysis

[76, 77]. More recent (1960's) is the introduction of kriging [79] as a method for

the interpolation of geostatistical data [20], based on the Gauss-Markov theorem.

Kriging, named after the mining engineer Danie G. Krige, is identical to Gaussian

process regression, but derived and interpreted in a di�erent manner. Furthermore,

as a geostatistical method, it is mainly concerned with low-dimensional problems and

ignores any probabilistic interpretations [77]. In the statistical community, the use

of Gaussian processes to de�ne prior distributions has its origins in 1978, where the

theory was applied in the problem of one-dimensional curve �tting [94].
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In the machine learning community, the use of Gaussian processes for supervised

learning dates back to the 1980's, with the introduction of back-propagation learning

in neural networks [104]. The original non-probabilistic derivation was later enhanced

by Buntine [14], MacKay [72] and Neal [89], which introduced a Bayesian interpre-

tation that provided a consistent method for handling network complexity [8, 74].

It was shown later [90] that under certain conditions these Bayesian neural networks

converge to a Gaussian process with an in�nite number of hidden units. This resulted

in the introduction of Gaussian processes for regression in the machine learning con-

text [77, 113], among other techniques such as least-squares [142], support vector

machine [21] and decision trees [12].

2.2.2 The Kernel Trick

In Section 2.1.2, it was shown how projecting the raw data into a high-dimensional

space generates more expressive models, capable of addressing a wider variety of

underlying functions. However, this incurs a computational power cost that increases

cubically with the dimensionality of the input space, caused by the inversion of matrix

A (Eq. 2.15). As the modelling function becomes more complex, the cost of this

inversion quickly becomes infeasible. Kernel methods are able to circumvent this

limitation by using a function that evaluates the relationship between data points

directly, as if they had already been projected into a potentially in�nite dimensional

space [110]. Eq. 2.15 can then be rewritten as such:

p(y∗|x∗, X,y, σ2) ∼ N (φ(x∗)
TΣpΦ(ΦTΣΦ + σ2I)−1y,

φ(x∗)
TΣpφ(x∗)− φ(x∗)

TΣpΦ(ΦTΣpΦ + σ2)−1ΦTΣpφ(x∗)), (2.16)

where it is possible to notice a reoccurring pattern on the di�erent ways the high-

dimensional terms appear: ΦTΣpΦ, φ(x∗)
TΣpΦ or φ(x∗)

TΣpφ(x∗). A kernel can now

be de�ned as a function k(x,x)′ = φ(x)Σpφ(x′) in the Hilbert space that describes

the relationship between two input vectors x and x′. If this kernel is chosen correctly

(a more thorough discussion about di�erent kernel functions is given in Section 2.2.4),
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it allows the calculation of the high-dimensional dot products directly on the original

space. This process of mapping observations from a general set into an inner product

space, without ever having to compute the mapping explicitly, is known as the kernel

trick [3]. Now, the computational cost is dependent on the number N of training

points, rather than on the dimensionality M of the basis functions. Consequently, it

is possible to use a kernel that represents basis functions with an in�nite number of

terms, allowing the estimator to model very complex datasets.

2.2.3 The Gaussian Process Model

A Gaussian process is a particular type of stochastic process in which all random

variables are Gaussian distributed. Moreover, every �nite linear combination of such

random variables have a multivariate Gaussian distribution. Assuming two test points

x and x′, and using the Bayesian linear regression model described in Section 2.1.3,

with f(x) = φ(x)Tw and w ∼ N (0,Σp), the resulting model will have the following

mean and covariance functions :

E[f(x)] = φ(x)TE[w] = 0 (2.17)

E[f(x)f(x′)] = φ(x)TE[wwT ]φ(x′) = φ(x)TΣpφ(x′). (2.18)

These two parameters completely describe a Gaussian process, in the sense that any

�nite collection of samples, {f(x∗1), f(x∗2), . . . , f(x∗i)}, will have a joint Gaussian

distribution. The zero mean assumption in Eq. 2.17 can be made without any loss of

generality by correctly normalizing the input data (i.e. subtracting the mean training

values), and will be further explored in Section 4.1.4. Furthermore, the covariance

function is numerically equivalent to the kernel function k(x,x′) = φ(x)Σpφ(x′) de-

scribed in the previous section. This kernel representation means that inference will

now be performed over a function space governed by the covariance function, which

in turn is governed by a collection of parameters θ commonly referred to as the hy-

perparameter set (because they govern an entire family of functions, rather than a

single one). In other words:

f |X, θ ∼ N (0, K), (2.19)
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Figure 2.6 � Example of Gaussian process inference. At the beginning (upper left
�gure) there are no observations, so the predictive model has zero mean and high
variance (grey area) throughout the entire input space. As more data is collected,
the predictive model becomes more accurate around the observations and local
uncertainty decreases.

where K is a N × N covariance matrix in which the (i, j)th elements are equal to

k(xi,xj). Given a test point x∗, and its associated latent variable f∗, under the

Gaussian process framework (with zero mean) the joint distribution of f and f∗ is a

multivariate Gaussian, and is found by augmenting Eq. 2.19 with this new informa-

tion:

 f

f∗

 X, θ ∼ N

0,
 K k

kT κ

 , (2.20)
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where k = [k(x∗,x1), . . . , k(x∗,xN)]T is the N × 1 vector formed from the covariance

between x∗ and X, and κ = k(x∗,x∗). Using the Gaussian noise assumption intro-

duced in Eq. 2.7, the joint distribution over the observed outputs and the unobserved

target y∗ is given by: y

y∗

 X, θ ∼ N

0,
 K + σ2I k

kT κ+ σ2

 . (2.21)

Finally, given that the joint distribution is Gaussian and conditioning on y, the

predictive mean f̄∗ and variance V(f̄∗) are:

p(y∗|y, X, θ, σ2) = N (f̄∗,V(f̄∗)) (2.22)

f̄∗ = kT (K + σ2I)−1y (2.23)

V(f̄∗) = κ+ σ2 − kT (K + σ2I)−1k. (2.24)

This set of equations allows the calculation of a Gaussian predictive distribution for

any test point x∗, given a covariance function k(., .) and its corresponding hyperpa-

rameter set θ (as depicted in Fig. 2.6). The marginal likelihood of a Gaussian process

is obtained according to Eq. 2.12, but now integrating over the latent variables f:

L(y|X, θ, σ2) =

∫
L(y|f, X, θ, σ2)p(f|X, θ)df (2.25)

=

∫
N (f, σ2I)N (0, K)df (2.26)

=
1

(2π)
N
2 |K + σ2I| 12

exp

(
−1

2
yT (K + σ2I)−1y

)
, (2.27)

which, if converted to the logarithmic form, gives rise to the following marginal log-

likelihood :

lnL(y|X, θ, σ2) = −N
2

ln(2π)− 1

2
ln(|K + σ2I|)− 1

2
yT (K + σ2I)−1y. (2.28)

In its original derivation, the GP framework has a computational complexity of O(n3)

in time and O(n2) in memory, mostly due to the cost of maintaining and inverting
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the covariance matrix K. Sparse implementations [22] are able to further decrease

the computational cost, by approximating the full covariance matrix using a subset of

points. However, this was not explored in this work because the datasets used during

experiments were not big enough to warrant such approximations.

2.2.4 Covariance Functions

As described in the previous section, the covariance function plays a pivotal role in the

Gaussian process framework, because it encodes the assumptions about the functions

the model is trying to learn. Speci�cally, it quanti�es how similar each point in

the input space is to each other, a concept that is of great importance in supervised

learning techniques where inference on new data is based on previous examples of the

same underlying function. For example, it is a common assumption that two inputs

close to each other will have similar outputs.

Over the years several kernels have been proposed as covariance functions, with dif-

ferent properties that allow the modelling of a wide variety of underlying functions.

Furthermore, operations such as summing, multiplying and convolution have been

de�ned as valid operations to be performed on kernels [101], and thus arbitrarily

complex covariance functions can be obtained by combining simple kernels and their

corresponding hyperparameter sets. In order to qualify as a covariance function, a

kernel must be positive-de�nite, or in other words it must satisfy the following equa-

tion:
N∑
i=1

N∑
j=1

wik(xi,xj)wj ≥ 0, (2.29)

for any xn ∈ RD and w ∈ R. Broadly, covariance functions can be divided into two

categories: stationary and non-stationary, according to how they react to translation

over the coordinate system.The remainder of this section is dedicated to providing

an overview of these two categories, along with examples of the most commonly used

covariance functions and possible applications.
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Stationary Covariance Functions

Informally, a system is deemed stationary if its properties do not change when there

is a shift in time or space. Similarly, a stationary covariance function is derived from

a kernel in which the relationship between two inputs xi and xj does not depend on

their absolute position on the coordinate system, but rather on their relative position

rij = (xi − xj) to each other. Or, in other words:

k(xi,xj) = k(xi + h,xj + h) = k(xi − xj) = k(rij). (2.30)

Stationary covariance functions are commonly used to model patterns that occur reg-

ularly on the observed data, however they lack the ability to treat di�erent portions of

the input space di�erently. For this reason, more complex underlying functions often

require the use of the more generic non-stationary covariance functions, even though

these may still be used in conjunction to model a broader spectrum of behaviours.

Exponential Covariance Function. Considered the quintessential covariance func-

tion, the squared exponential is a subgroup of the broader family of exponential co-

variance functions, which are governed by the following equation:

k(xi,xj) = exp

(−d(xi,xj)

l

)
, (2.31)

where d(xi,xj) is a measure of distance between xi and xj and l is a scaling factor,

commonly known as the length-scale, that indicates how far two points have to be from

each other for the output to change signi�cantly. The squared exponential covariance

function for a D-dimensional input space can now be de�ned as:

kSQ(rij) = σ2
f exp

(
−1

2
rTijL

−1rij

)
, (2.32)

which is essentially an in�nite number of Gaussian basis functions placed over the

input space. The term σf is a signal variance parameter that scales the entire co-

variance function, and is equivalent to the variance Σp placed on the Gaussian prior.
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Figure 2.7 � Example of Gaussian prediction using di�erent stationary covariance
functions, showing how smoothness increases as the kernel changes from Matérn
3/2 to Matérn 5/2 to squared exponential (which is essentially Matérn ∞).

The matrix L is a D×D length-scale matrix, that models the in�uence of each input

dimension on the output and can be used as a method of automatic relevance de-

termination [90]. The squared exponential covariance function is in�nitely divisible,

and therefore appropriate for modelling smooth functions. Unfortunately, very few

practical datasets are smooth [123], which limits the applicability of this covariance

function in most real scenarios.

Matérn Covariance Function. The Matérn may be considered a generalization of

the squared exponential covariance function, that addresses the problem of smooth-

ness (Fig. 2.7) discussed previously. It is de�ned by:

kν(rij) =
21−ν

Γ(ν)

(√
2νrij

L

)ν

Kν

(√
2νrij

L

)
, (2.33)

where ν is a positive parameter, L is the length-scale matrix and Kν is a modi�ed

Bessel function [1]. The Matérn covariance function is ν − 1 times di�erentiable,
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allowing for a better control over the smoothness, and as ν → ∞ it converges to

the squared exponential covariance function (Eq. 2.32). Other values for ν that are

particularly attractive for modelling purposes, and produce elegant simpli�cations of

the original formulation, are:

kν=3/2(rij) =

(
1 +

√
3rij

L

)
exp

(
−
√

3rij

L

)
, (2.34)

kν=5/2(rij) =

(
1 +

√
3rij

L
+

5r2
ij

3L2

)
exp

(
−
√

5rij

L

)
. (2.35)

When ν = 1/2 the resulting covariance function becomes too rough, and for ν ≥ 7/2

it is already di�cult to distinguish between the Matérn and the squared exponential

covariance function.

Non-Stationary Covariance Functions

A non-stationary covariance function allows for more expressive models by employing

relationships between input points which are dependent on their absolute location

on the coordinate system. Now, di�erent portions of the underlying function may

behave di�erently, a common feature in most practical datasets.

Linear Covariance Function. Also known as the dot-product covariance function,

the linear covariance function k(xi,xj) = xi·xj is numerically equivalent to a Bayesian
linear regression using a polynomial basis function of degree 1 (see Eq. 2.7). A more

generic formulation of this covariance function is:

k(xi,xj) = σ2
0 + xTi Σlxj, (2.36)

where σ0 is a bias term and Σl is a general covariance matrix on the components

of x. Although not very powerful, this formulation is commonly used as part of a

more complex covariance function, that models the linear aspects of the underlying

function while other covariance functions tackle the more complex trends.
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Neural Network Covariance Function. The derivation of a neural network co-

variance function [90] is done by assuming a neural network which takes an input x,

has one hidden layer with NH units and linearly combines the outputs of the hidden

units with a bias b to obtain f(x). This mapping can be written as:

f(x) = b+

NH∑
k=1

vkh(x,uk), (2.37)

where v is a vector containing the hidden-to-output weights and h(x,u) is the hid-

den unit transfer function, which depends on the input-to-hidden weights u. It has

been show [51] that as NH → ∞ networks with one hidden layer become univer-

sal approximators for a wide variety of transfer functions. Assuming that b and v

have independent zero-mean distributions of variance σ2
b and σ

2
v , respectively, and the

weights uk for each hidden unit are independent and identically distributed, it can

be shown [90] for weights w that:

Ew [f(x)] = 0 (2.38)

Ew [f(xi)f(xj)] = σ2
b +NHσ

2
vEu [h(xi,u)h(xj,u)] . (2.39)

Given that the transfer function h(x,u) is bounded, all moments of the distribution

will also be bounded, and hence the central theory can be applied, showing that this

stochastic process will converge to a Gaussian process when NH →∞. By evaluating

Eu [h(xi,u)h(xj,u)], the covariance function of the neural network can be obtained.

For example (as deduced in [141]), if the error function erf(z) = 2/
√
π
∫ z

0
e−t

2
dt is

chosen as the transfer function, resulting in h(x,u) = erf(u0+
∑
i = 1Duixi), and the

hidden weights have a Gaussian distribution u ∼ N (0,Σ), then the neural network

covariance function is of the form:

kNN(xi,xj) = σ2
f arcsin

 2x̃Ti Σx̃j√
(1 + 2x̃Ti Σx̃i)(1 + 2x̃Tj Σx̃j)

 , (2.40)

where x̃ = {1, x1, . . . , xD} is an augmented vector and σf is the signal variance

parameter.
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Sparse Covariance Functions

Another interesting and useful family of covariance functions are the sparse covariance

functions, also known as covariance functions with compact (or local) support. This

means that the covariance between any two given points become exactly zero when

their distance exceed a certain threshold, generating a sparse covariance matrix by

design. This property may lead to computational advantages, such as less memory

usage (not all entries on the covariance matrix have to be stored) and faster inference

(sparse matrix multiplication is a much more e�cient computational task). Sparse

covariance functions may be both stationary and non-stationary, and here we will

be presenting one that is stationary [81], with non-stationarity being achieved by

multiplying this sparse covariance function with a non-stationary one. For the 1-

dimensional case, assuming the basis function g(x) = cos2(πx)H(1/2− |x|), where H
is the Heaviside unit step function, and the transfer function h(x, u) = g(x− u), the

following covariance function is obtained:

k1(xi, xj) = σ0

∫ ∞
∞

h
(xi
l
, u
)
h
(xj
l
, u
)
du. (2.41)

Due to the chosen form of the basis function, the integral of the equation above can

be evaluated analytically and is of the form:

k1
SP (xi, xj, l, σ0) =

 σ0

[
2+cos(2π d

l )
3

(
1− d

l

)
+ 1

2π
sin
(
2π d

l

)]
if d < l

0 if d ≥ l

, (2.42)

where σ0 is a constant coe�cient, l > 0 is the length-scale, and d = |xi − xj| is the
distance between points. Extension to multiple dimensions is done by calculating the

direct products for all D dimensions, with l = (l1, l2, . . . , lD) being now the length-

scale vector:

kSP (xi,xj, l, σ0) = σ0

D∏
k=1

k1
SP (xi,k, xj,k, li, 1). (2.43)
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2.2.5 Hyperparameter Optimization

Once the non-parametric model for the underlying function is de�ned, it is necessary

to �nd a consistent way to determine the hyperparameters θ. These hyperparameters

are dependent on the covariance function k(., .) chosen, usually including a signal

variance σf and a length-scale matrix Σl (for the sake of simplicity, the noise value

σn will from now on be included on the hyperparameter vector). Ideally, we would

like to integrate over all the hyperparameters in order to make our predictions, or in

other words, we would like to �nd:

p(y|X) =

∫
p(y|X, θ)p(θ|X)dθ. (2.44)

Again, the hyperparameter set is dependent on the covariance function chosen. For

an arbitrary k(., .) that is analytically intractable, however, it is possible to use sev-

eral methods to obtain approximations for the posterior distribution. This section

provides an overview of three di�erent methods: Evidence Maximization [73], Cross-

Validation and the Monte Carlo [101] approach.

Evidence Maximization

Evidence Maximization (EM), also known as Marginal Likelihood Maximization or

Empirical Bayes, uses an approximation to the integral in Eq. 2.44, based on the

most probable set of hyperparameters θEM :∫
p(y|X, θ)p(θ|X)dθ ≈ p(y|X, θEM). (2.45)

This approximation is based on the assumption that the posterior distribution p(θ|X)

is sharply peaked around θEM relative to the variation in p(y|X, θ). This approxima-
tion is generally valid and the resulting EM estimates are often close to those found

using the true predictive distribution [75]. The challenge now becomes one of �nd-

ing θEM , which is done by calculating the derivatives of the posterior distribution.
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Rewriting the Bayes' Rule (Eq. 2.11) under this framework, we obtain:

p(θ|X,y) =
L(y|X, θ)p(θ)
L(y|X, σ2)

, (2.46)

which is the same process used to generate the MAP estimates (Eq. 2.13). The

marginal likelihood (denominator) is independent of θ, and therefore can be safely

ignored in the derivation process. The two remaining terms, the likelihood of θ and

the prior on θ, will be considered in their logarithmic form, for reasons discussed

previously. The marginal log-likelihood of a Gaussian process is given by Eq. 2.12,

and its derivative with respect to θ is:

∂L
∂θ

= −1

2

(
C−1∂C

∂θ

)
+

1

2
yTC−1∂C

∂θ
C−1y, (2.47)

where C = |K + σ2I|. Interestingly, we can see that this derivative has two terms

that "balance" each other out [101]. The �rst term penalizes model complexity, and

the second terms rewards data �tting, resulting in a solution that naturally avoids

over�tting (the Occam's Razor principle [77]). The derivative over the prior is usu-

ally ignored in calculations, however this could generate solutions that are obviously

wrong, since the model is now ignoring our assumptions about the underlying func-

tion. Since the hyperparameters are usually constrained to be positive, [38] proposes

the use of the Gamma (Eq. 2.48) and Inverse Gamma (Eq. 2.49) distributions as

possible distributions for the prior:

Ga(θ|m,α) =
(α/2m)α/2

Γ(α/2)
θα/2−1 exp(−αθ/2m) (2.48)

Ig(θ|m,α) =
(αm/2)α/2+1

Γ(α/2 + 1)
θ(−α/2+2) exp(−αm/2θ), (2.49)

where m is the mean and α controls the shape of the distribution (larger values

create vaguer priors). From this set of equations it is possible to �nd θEM using

standard gradient optimization techniques, such as conjugate gradients. However, this

leads into the �rst major disadvantage of the Evidence Maximization approach: the

posterior distribution over θ may be non-convex (Fig. 2.8), and gradient optimization
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Figure 2.8 � Example of multi-modal log-likelihood for a non-stationary covariance
function (neural network). The x-axis represents di�erent values for the length-
scale hyperparameter, and the y-axis represents di�erent values for the noise value.

is only able to �nd local solutions. Therefore, di�erent initial conditions could lead

to di�erent results, and multiple random starting points should be used to avoid the

selection of a bad local maximum. The second major disadvantage of this approach,

and perhaps the most important, is that each evaluation of the gradient requires the

evaluation of C−1, generating a computational cost of O(N3) that becomes very time

consuming for large training datasets.

Cross-Validation

Another method for hyperparameter selection is the Leave-One-Out Cross-Validation

(LOOCV), which attempts to learn a model that generalizes well to an observation
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that was withheld from the training dataset (hence the name). A measure of error is

chosen to estimate the disparity between estimated and true values, and the process

is then repeated for each data point, with their respective errors being combined to

produce a �nal score for the model. A common measure for error is the log-likelihood

itself, which for this particular case is of the form:

lnL(yi|X,y−i, θ) = −1

2
ln(ν2

i )− (yi − µi)2

2ν2
i

− 1

2
ln(2π), (2.50)

where µ and ν are the respective mean and variance of xi and -i is the output vector

excluding the ith observation. Once all individual log-likelihoods are calculated, they

are added to determine the likelihood of the entire dataset:

LLOO(X,y, θ) =
N∑
i=1

lnL(yi|X,y−i, θ). (2.51)

In practice, there is often little di�erence between the optimal hyperparameters pro-

duced using the LOO and EM approaches in most datasets. It is argued in [135] that

EM optimizes better under the correct assumptions of the model, whereas LOO is

independent of those and therefore more robust to model speci�cation errors.

Monte Carlo Approach

The Monte Carlo approach uses sampling methods to calculate an approximation to

the predictive distribution. By approximating the integral in Eq. 2.44 using a Markov

chain, we get:

p(y∗|x∗, X,y) ' 1

T

T∑
t=1

p(y∗|x∗, X, θt), (2.52)

where θt are samples drawn from p(θ|X), the posterior distribution over θ. Each

term on the above equation is a Gaussian, and so the Monte Carlo approximation to

the predictive distribution is a mixture of Gaussians, with an accuracy that increases

as more samples are drawn. It is important to notice that, since we are sampling

from the posterior over θ, we need priors on the hyperparameters p(θ) as stated
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in the EM approach. The method used to sample from the posterior distribution

will heavily in�uence the e�ciency of this technique, because we need samples that

represent the underlying distribution from which they are being taken. If a particular

region of θ with a high associated probability is not sampled correctly, then the �nal

approximation to Eq. 2.44 will be poor.

2.2.6 Multiple-Output Gaussian Processes

So far, the Gaussian process regression models considered only deal with one single

scalar output yn mapped to each input vector xn. Attempts to handle multiple

outputs generally involve the use of an independent model for each output, in a

method commonly referred to as multi-kriging [101], but such models are unable to

capture the covariance between outputs. Fig. 2.9 shows an example of two dependent

outputs in which one output is simply a shifted version of the other. If both outputs

are treated independently, each estimate cannot exploit their obvious similarity to

improve results. Intuitively, a proper model should be able to use information from

output 1 to improve predictions on output 2 and vice-versa.

Joint predictions are possible, using methods such as co-kriging [20], however they

are problematic in the sense that it is not clear how covariance functions should

be de�ned [39]. Although several di�erent positive-de�nite auto-covariance functions

(see Section 2.2.4) have already been proposed, it is di�cult to de�ne cross-covariance

functions that result in positive-de�nite covariance matrices. For example, consider

the following covariance matrix between two Gaussian processes g1(x) and g2(x):

K =

 K11 K12

K21 K22

 . (2.53)

The de�nition of positive-de�nite auto-covariance functions to build the blocks K11

and K22 is straightforward, however it is not clear how to specify the cross-covariance

functions that compose K12 and K21 such that K is still positive-de�nite. Returning

to Eq. 2.29, a 2×2 block-matrixK is a positive-de�nite matrix if and only if zTKz > 0
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Figure 3.2: Strongly dependent outputs where output 2 is simply a translated version
of output 1, with independent Gaussian noise, σ = 0.025. The solid lines represent the
model, the dotted lines are the true function, and the dots are samples. The shaded
regions represent 1σ error bars for the model prediction. (top) Independent model of
the two outputs. (bottom) Dependent model.

Gaussian prior distributions were set over θ, as follows:

vi ∼ N (1, 0.52)

wi ∼ N (0, 0.52)

αi ∼ N (0.3, 0.12)

τi ∼ N (0.3, 0.12)

βi ∼ N (−3.7, 0.52)

Training data was generated by evaluating the function shown on the left

of figure 3.3 at n = 117 points, and adding Gaussian noise with σ = 0.025.

n1 = 81 samples were placed in the training set D1 and the remaining n2 = 36

Figure 2.9 � Example [10] of dependent outputs in which output 2 is a translated
version of output 1, with independent Gaussian noise of variance 0.025. The solid
lines represent the model, the dotted lines are the true function, and the dots are
samples. The shaded regions represent 1σ error bars for the model prediction. (top)
Independent model of the two outputs. (bottom) Dependent model.

for any non-zero vector zT = [zT1 z
T
2 ]. So, if K11 and K22 are positive-de�nite, then

for K to be positive-de�nite it must satisfy the following condition [38]:

zTKz > 0

zT1K11z1 + zT1K12z2 + zT2K21z1 + zT2K22z2 > 0

zT1K12z2 > −
1

2

{
zT1K11z1 + zT2K22z2

}
. (2.54)

The cross-covariance matrix K12 is built from a cross-covariance function k12(., .) by

setting the (i, j)th matrix element equal to k(x1,i,x2,j), where x1,i is the i
th training
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input for output 1 and x2,j is the j
th training input for output 2. It is not clear how

to de�ne a non-zero k12(., .) such that Eq. 2.54 holds true, as simply setting it to

some positive-de�nite function will not always work. One possible way of constructing

Gaussian processes capable of modelling multiple outputs is to use kernel convolu-

tions, as described in the works of Boyle and Frean [10, 11]. Under this framework,

a Gaussian process V (x) is obtained by convolving a continuous white noise process

X(x) with a smoothing kernel h(x):

V (x) = h(x) ? X(x). (2.55)

A second white noise source, representing measurement uncertainty, can be added

to the resulting Gaussian process (Fig. 2.10a). This convolution approach has been

used to formulate �exible non-stationary covariance functions [97], and can also be

extended to address cross-covariance functions. The remainder of this section presents

and discusses a technique for multiple-output Gaussian process regression using linear

�lters as function generations, as described in [10]. Initially the particular case of two

dependent outputs is considered, and later it is extended to address multiple outputs.

Two Outputs

For the simpler case of two outputs, we assume N1 observations of the �rst output

and N2 observations of the second output, generating the training datasets Λ1 =

{x1,n, y1,n}N1
n=1 and Λ2 = {x2,n, y2,n}N2

n=1. The combined training dataset is de�ned as

Λ = {Λ1,Λ2}, and the goal is to learn a model that predicts both y1,∗ and y2,∗ from

a test point x∗. As shown in Fig. 2.10b, each output Yi={1,2} can be modelled as a

linear sum of three stationary Gaussian processes. One of these (Vi) arises from a

noise source Xi unique to that output, convolved with a kernel hi. The second (Ui)

is similar, but arises from a separate noise source X0 that in�uences both outputs,

although via di�erent kernels k1 and k2. The third is additive noise ηi as before, with

a variance of σi.

Thus, we have Yi(x) = Ui(x) + Vi(x) + ηi(x), and the intermediate processes are
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(a) (b)

Figure 2.10 � (a) Gaussian process prior for a single output Y . (b) Gaussian process
prior for two outputs, Y1 and Y2. For the special case in which X0 is forced to be
zero, Y1 and Y2 become independent processes as shown in (a).

de�ned as Ui(x) = ki(x) ?X0(x) and Vi(x) = hi(x) ?Xi(x). For the speci�c purposes

of this example, the kernels ki and hi are squared exponential covariance functions:

k1(x) = v1 exp

(
−1

2
xTA1x

)
(2.56)

k2(x) = v2 exp

(
−1

2
(x− µ)TA2(x− µ)

)
(2.57)

hi(x) = wi exp

(
−1

2
xTBix

)
, (2.58)

where Ai and Bi are positive-de�nite length-scale matrices. Note that in Eq. 2.57 the

vector x is o�set from zero by µ to allow modelling of outputs that are coupled and

translated relative to one another. The next step is to calculate the functions covij

that de�ne the auto-covariance (i = j) and cross-covariance (i 6= j) between any two

given inputs xa and xb, separated by a distance vector d = xa − xb. By performing

a convolution integral, the function covYij (d) can be expressed in closed form and is
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fully determined by the parameters of the squared exponential covariance functions

and the noise variances σ2
i :

covY12(d) = covU11(d) + covV11(d) + δabσ
2
1 (2.59)

covY12(d) = covU12(d) , covY21(d) = covU21(d) (2.60)

covY22(d) = covU22(d) + covV22(d) + δabσ
2
2, (2.61)

where

covUii (d) =
π

D
2 v2

i√
|Ai|

exp

(
−1

4
dTAid

)
(2.62)

covU12(d) =
π

D
2 v1v2√
|A1 + A2|

exp

(
−1

2
(d− µ)TA12(d− µ)

)
(2.63)

covU21(d) =
π

D
2 v1v2√
|A1 + A2|

exp

(
−1

2
(d− µ)TA21(d− µ)

)
= covU12(-d) (2.64)

covVii (d) =
π

D
2 w2

i√
|Ai|

exp

(
−1

4
dTAid

)
, (2.65)

with A12 = A21 = A1(A1 + A2)−1A2 = A2(A1 + A2)−1A1. Given the formulations for

covYij (d), it is possible to construct the covariance matrices Kij that together compose

Eq. 2.53 as follows:

Kij =


covYij (xi,1 − xj,1) . . . covYij (xi,1 − xj,Nj

)
...

. . .
...

covYij (xi,Ni
− xj,1) . . . covYij (xi,Ni

− xj,Nj
)

 . (2.66)

The hyperparameter set θ = {v1, v2, w1, w2, A1, A2, B1, B2,µ, σ1, σ2} completely parametrize
the above equations. The log-likelihood can now be calculated as:

L(y|Λ, θ) = −1

2
ln |K| − 1

2
yTK−1y− N1 +N2

2
ln(2π), (2.67)
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where y = [y1,1, . . . , y1,N1y2,1, . . . , y2,N2 ]
T . Learning a model now becomes a matter of

maximizing the log-likelihood L(y|Λ, θ), which is equivalent to the posterior proba-

bility. The predictive distribution for a test point x∗ on the ith output is Gaussian

with mean f̄∗ and variance V (̄f∗) is given by:

f̄∗ = kTK−1y (2.68)

V (̄f∗) = κ− kTK−1k, (2.69)

where κ = covYii (0) = v2
i + w2

1 + σ2
i and

k =



covYi,1(x∗ − x1,1)
...

covYi,1(x∗ − x1,N1)

covYi,2(x∗ − x2,1)
...

covYi,2(x∗ − x2,N2)


. (2.70)

Multiple Outputs

The convolution methodology described above can be extended to build models ca-

pable of addressing T outputs, each de�ned over a D-dimensional input space. In

general, we assume M independent Gaussian white noise processes Xm, T outputs

Yt and M × T kernels. The kernel kmt(x) de�nes the correlation from input m to

output t. The auto-covariance (i = j) and cross-covariance (i 6= j) functions between

processes i and j become:

covYij (d) =
M∑
m=1

∫
kmi(x)kmj(x+ d)dx, (2.71)

and the block matrix K de�ned in Eq. 2.53 becomes:
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K =


K11 . . . K1T

...
. . .

...

KT1 . . . KTT

 . (2.72)

The combined training dataset is now Λ = {Λ1, . . . ,ΛT}, composed of T individual

training datasets Λt = {(xt,1, yt,1), . . . , (xt,N , yt,Nt)}, each containing Nt observations.

The total number of observations is therefore N =
∑T

t=1Nt, and the log-likelihood

function becomes:

L(y|Λ, θ) = −1

2
ln |K| − 1

2
yTK−1y− N

2
ln(2π), (2.73)

where y = [(y1,1 . . . y1,N1) . . . (yt,1 . . . yt,Nt) . . . (yT,1 . . . yT,NT
)]T . Finally, the predictive

distribution for a test point x∗ on the i
th output is Gaussian with mean f̄∗ and variance

V (̄f∗):

f̄∗ = kTK−1y (2.74)

V (̄f∗) = κ− kTK−1k, (2.75)

where κ = covYii (0) = v2
i + w2

1 + σ2
i and

k = [kT1 , . . . ,k
T
j , . . . ,k

T
T ] (2.76)

kTj = [covYij (x∗ − xj1), . . . , covYij (x∗ − xjNj
)]. (2.77)

Under this new framework, both computational time and memory requirements are

increased by a factor of t (the number of outputs), becoming respectively O(n3t3) and

O(n2t2). This is due to the now block covariance matrixK, that has to simultaneously

maintain all available training data for each individual output, in order to correctly

model their correlations during the learning and inference stages. This greatly de-

creases the number of points the GP framework can maintain for each speci�c task,

making sparse approximations even more attractive.
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2.3 Computer Vision for Motion Estimation

Computer vision is a �eld that includes methods for acquiring, processing, analysing

and understanding images in order to produce numerical or symbolic information. A

common goal in this �eld is to duplicate the abilities of human vision by electroni-

cally perceiving and understanding an image. This image understanding can be seen

as the disentanglement of symbolic information encoded on its data, using models

constructed with the aid of geometry, physics, statistics and learning theory. Typi-

cal applications of computer vision in robotics include: object detection/recognition,

content-based image retrieval, pose estimation, optical character recognition, motion

analysis (egomotion, tracking and optical �ow estimation), scene reconstruction and

image restoration.

The design of a computer vision algorithm is highly dependent on the task at hand.

Some systems are stand-alone applications that aim to solve a speci�c measurement

or detection problem, while others constitute a sub-system of a larger design. The

speci�c implementation of a computer vision algorithm also depends on its function-

ality, if it is pre-determined or if some part of it can be learned or modi�ed during

operation. There are, however, some typical functions that are considered part of

virtually every computer vision application:

• Image Acquisition. A digital image is produced by the use of one or multi-

ple image sensors, that include, other than the typical light-sensitive cameras,

range sensors, tomography devices, radar, ultra-sonic cameras, etc. Depending

on the type of sensor, the resulting image may be an ordinary 2D matrix, a 3D

volume or a sequence of frames. The pixel values usually correspond to light

intensity in one or several spectral bands (monochromatic/colour), but may also

be related to various physical measures, such as depth, absorption or re�ectance

of sonic or electromagnetic waves, or nuclear magnetic resonance.

• Pre-Processing. Before a computer vision method is applied, it is usually

necessary to process the raw data in order to assure that it satis�es any partic-

ular set of assumptions implied. Examples of pre-processing techniques include
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re-sampling (to assure that the image coordinate system is correct), noise re-

duction (to minimize the amount of false information provided by the sensor),

undistortion (especially if the images are used for measurement), contrast en-

hancement (to assure the detection of relevant information) and scale-space (to

enhance image structures at speci�c scales).

• Feature Extraction. Image features at various levels of complexity are ex-

tracted from the pre-processed data. These features are obtained either on a

pixel level, by maximizing a certain potential function that allows the detection

of structures such as corners, edges or ridges, or as a sub-portion of the image

(blob detection), using di�erential or local extrema methods.

• Detection/Segmentation. At some point during the feature extraction pro-

cess a decision is made in regards to which image points or regions are relevant

for further processing. This step is highly dependent on the task at hand, and

usually falls in one of these two categories: detection of a speci�c set of interest

points, or segmentation of one or multiple image regions which contain a speci�c

object of interest.

• High Level Processing. At this point all information deemed available from

the image has already been obtained, and it can be applied to a wide variety

of regression/classi�cation/validation algorithms. Most of these algorithms fall

into one of these categories: estimation of a speci�c set of parameters (regres-

sion), clustering a speci�c set of features into di�erent categories (classi�cation)

and veri�cation that the data satis�es a speci�c model-based assumption (vali-

dation).

• Decision Making. After all available data has been obtained and processed,

the computer vision algorithm makes a �nal decision that is passed on to the

main system.

In the particular case of visual odometry, the challenge is to obtain camera motion

from visual information, more speci�cally optical �ow information extracted from
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a pair of frames. The remainder of this section is dedicated to the various steps

necessary to perform this transformation from a purely geometric stand-point. This

framework is extended in the later chapters to include a non-parametric portion,

creating the semi-parametric solution to visual odometry that comprises the main

contribution of this thesis. It starts by providing an overview of feature extraction

and matching techniques, along with methods for outlier removal and optical �ow

parametrization, both sparse and dense. Afterwards, it introduces the camera model

used in the experiments and describes the projective equations used to estimate cam-

era motion based on optical �ow information.

2.3.1 Feature Extraction

Feature extraction can be considered a form of dimensionality reduction. When the

input data for an algorithm is too large to be processed, and possibly highly redun-

dant, one possible way to shrink the available data to a manageable size without

losing important information is by transforming it into a particular set of features,

also known as feature vector. The act of transforming raw data into a feature vector is

called feature extraction. If the features extracted are carefully chosen, it is expected

that they will encode the relevant information necessary to perform the desired task.

In the context of visual information, features usually represent portions of the image

that contain a particular set of characteristics that are robust to a wide variety of

transformations (i.e. translation, rotation, scale, a�ne). This repeatability is im-

portant for the later stage of feature matching, in which features are compared to

determine whether or not they are representative of the same environment struc-

ture. This section provides an overview of two di�erent methods for local feature

extraction: the Shi-Tomasi (ST) corner detection and the Scale-Invariance Feature

Transform (SIFT) algorithm.
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Shi-Tomasi Corner Detection

A corner can be de�ned as the intersection of two edges, or as a point for which there

are two dominant and di�erent edge directions in its local neighbourhood. One of

the earliest attempts at corner detection can be found in [86], where each pixel in the

image is tested to see if it is a corner by considering how similar a patch centered on

the pixel is to nearby, largely overlapping patches. One of the main problems of this

approach is that it is not isotropic, in the sense that if an edge is not in the direction of

its neighbours it will not be considered as a potential feature. This approach was later

improved by Stephens and Harris [46], by considering the di�erential of the corner

score with respect to direction directly, instead of using shifted patches. Considering

(without loss of generality) a greyscale 2-dimensional image I, with a patch over the

area (u, v) that is shifted by (x, y), the weighted sum of squared di�erences (SSD)

between these two patches, denoted as S, is given by:

S(x, y) =
∑
u

∑
v

w(u, v) (I(u+ x, v + y)− I(u, v))2 . (2.78)

The term I(u+ x, v + y) can be approximated by a Taylor expansion. Let Ix and Iy

be the partial derivatives of I, such that:

I(u+ x, v + y) ≈ I(u, v) + Ix(u, v)x+ Iy(u, v)y. (2.79)

This produces the approximation:

S(x, y) ≈
∑
u

∑
v

w(u, v)(Ix(u, v)x+ Iy(u, v)y)2, (2.80)

which can be written in the following matrix form:

S(x, y) ≈
(
x y

)
A

 x

y

 , (2.81)
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where A is the structure tensor:

A =
∑
u

∑
v

w(u, v)

 I2
x IxIy

IxIy I2
y

 =

 〈I2
x〉 〈IxIy〉

〈IxIy〉 〈I2
y 〉

 . (2.82)

This matrix is a Harris matrix, and the angle brackets denote averaging (i.e. a

summation over (u, v)). If a circular window (or a circular weighted window, such as

a Gaussian) is used, then the response will be isotropic. The covariance matrix for

the corner position is A−1, calculated as follows:

A−1 =
1

〈I2
x〉〈I2

y 〉 − 〈I2
xI

2
y 〉

 〈I2
y 〉 −〈IxIy〉

−〈IxIy〉 〈I2
x〉

 . (2.83)

A corner is characterized by a large variation of S in all directions of the vector (x, y).

By analysing the eigenvalues λ1 and λ2 of A, this characterization can be expressed

in the following way: A should have at least one "large" eigenvalue to be a feature.

Based on the magnitudes of eigenvalues, the following inferences can be made:

• If λ1 ≈ 0 and λ2 ≈ 0, then the pixel (x, y) has no features of interest.

• If λ1 ≈ 0 and λ2 has some large positive value, or vice-versa, then the pixel

(x, y) is considered an edge.

• If λ2 and λ1 have both some large positive value, then the pixel (x, y) is con-

sidered a corner.

Because the exact calculation of the eigenvalues is computationally expensive, requir-

ing the computation of a square root, it is suggested that the following function Mc

be used, where κ is a tunable sensitivity parameter:

Mc = λ1λ2 − κ(λ1 + λ2)2 = det(A)− κ trace2(A). (2.84)

A di�erent method for calculating Mc is proposed by Shi and Tomasi in [117], in

which Mc = min(λ1, λ2). It has been shown that this method produces features that
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are more stable for tracking. A corner detector algorithm that uses this method is

commonly referred to as the Shi-Tomasi corner detector.

Scale-Invariant Feature Transform

SIFT features, as proposed in [68], possess several invariant properties that make

them especially attractive in a wide range of robotic applications. SIFT features

are invariant to translation, scale and rotation, partially invariant to illumination

changes and robust to local geometric distortion. These properties, combined with

the high-dimensional space in which they are projected during the descriptor generat-

ing process, ensures robustness in tasks such as robot localization and mapping [112],

image stitching [13] and 3D scene recognition and tracking [40], although computa-

tional complexity is an issue. Over the years several techniques have been proposed as

an attempt to generalize and/or improve the applicability of SIFT features in di�erent

situations, such as RIFT [63], G-RIF [59], SURF [7] and PCA-SIFT [55].

Within the SIFT framework, features are obtained by localizing the maximum and

minimum values of a Di�erence-of-Gaussian (DoG) function applied in the scale-

space to a series of smoothed and resampled images. The use of di�erent scales

ensures the invariant property in regards to changes in the size of the structures

observed. Speci�cally, a DoG image D(x, y, σ) is given by:

D(x, y, σ) = L(x, y, kiσ)− L(x, y, kjσ), (2.85)

where L(x, y, kσ) is the convolution of the original image I(x, y) with the Gaussian

blur G(x, y, kσ) at a scale kσ, or:

L(x, y, kσ) = G(x, y, kσ) ? I(x, y). (2.86)

Therefore, a DoG image between scales kiσ and kjσ is just the di�erence of the

Gaussian-blurred images at such scales. For the scale-space extrema detection in

the SIFT algorithm, the image is �rst convolved with a series of Gaussian blurs at
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(a) (b)

Figure 2.11 � Image courtesy of [68], depicting the feature selection process. (a)
Construction of the scale-space for the SIFT algorithm. (b) Example of DoG images
obtained from Gaussian blurs of di�erent kσ.

di�erent and increasing scales. The convolved images are grouped by octave (an

octave represents the doubling of σ), and the value of ki is selected so that we obtain

a �xed number of convolved images per octave. The DoG images are then obtained

(Fig. 2.11) by subtracting adjacent Gaussian-blurred images in each octave. To

increase speed, at each octave the image is downsampled by half (which is e�ectively

equal to doubling σ), generating a structure that is similar to a pyramid.

Once the DoG images have been obtained, features are identi�ed as the local mini-

ma/maxima of the DoG images across scales. This is done by comparing each pixel in

the DoG images to its eight neighbours at the same scale and the nine neighbouring

pixels in each of the adjacent scales. If the pixel value is a minimum or a maxi-

mum in comparison to all these pixels, then it is selected as a potential candidate.

This is a variation of one of the blob detection methods developed by Lindeberg [66],

where features are obtained by detecting scale-space extrema in the scale normalized

Laplacian. The Di�erence-of-Gaussian operator can be seen as an approximation
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to the Di�erence-of-Laplacian, with the implicit normalization in the pyramid also

constituting a discrete approximation to the scale normalized Laplacian.

The scale-space extrema detection usually generates a large amount of candidate

features, some of which are unstable. The next step in the algorithm consists of

a detailed �t to the nearby data for accurate location, scale and ratio of principal

curvatures. This process allows the rejection of candidates with low contrast (and

therefore sensitive to noise) or that are poorly localized along an edge. The interpo-

lated location of each extremum is done using the quadratic Taylor expansion of the

Di�erence-of-Gaussian scale-space function, D(x, y, σ), with the candidate feature as

the origin. This Taylor expansion is given by:

D(x) = D +
∂DT

∂x
x+

1

2
xT
∂2D

∂x2
x, (2.87)

where D and its derivatives are evaluated at the candidate feature location y = (u, v)

location, and x = (x, y, σ) is the o�set from this point. The location of the extremum,

x̂, is determined by taking the derivative of this function with respect to x and setting

it to zero. If the o�set is larger than 0.5 in any dimension, this means that the

extremum lies closer to another candidate feature. In this case, the candidate feature

is changed and the interpolation is performed instead about that point. To discard

features with low contrast, the value of D(x) is computed at the o�set x̂, and if this

value is less than a given threshold the candidate point is discarded. Otherwise, it is

kept with a �nal location y+ x̂ and scale σ.

The DoG function will also have strong responses along edges, even if the candi-

date feature is not robust to small amounts of noise. Therefore, features with poorly

determined locations but high edge responses should be eliminated. For poorly de-

�ned peaks in the DoG function, the principal curvature across the edge should be

much larger than the principal curvature along it. Finding these principal curvatures

amounts to solving for the eigenvalues of the second order Hessian matrix:

H =

 Dxx Dxy

Dxy Dyy

 . (2.88)
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(a) (b)

Figure 2.12 � Results using di�erent feature extraction methods. (a) SIFT features.
(b) Shi-Tomasi features.

The eigenvalues α and β of H are proportional to the principal curvatures of D, and

the ratio of these two eigenvalues is de�ned as r = α/β, with α > β. Fortunately, this

ratio can be obtained without calculating the eigenvalues explicitly, using instead the

trace Dxx + Dyy and the determinant DxxDyy −D2
xy. The ratio R = tr(H)2/det(H)

is shown to be equal to (r + 1)2/r, which depends only on the ratio of eigenvalues

instead of their individual values. Therefore, the higher the value of R the higher

the absolute di�erence between α and β will be, and if R is greater than a certain

threshold the feature is considered poorly localized and discarded. This technique is

a transfer from a corresponding approach in the Harris operator for corner detection,

where the Harris matrix (Eq. 2.82) is used instead of the Hessian (Eq. 2.88).

2.3.2 Feature Matching

As stated previously, a good feature should be robust to a series of transformations, to

allow for posterior matching with features obtained in di�erent images. The feature

matching process is the basis for most computer vision algorithms, where the goal

is to detect and recognize structures on new data based on available information.

This is done by comparing the descriptor of each feature, which is a (usually high-

dimensional) vector d ∈ <S that represents the information encoded in that portion
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of the image. A distance metric is de�ned to quantify the di�erence between di and

dj in this S-dimensional space, usually the L1 (Eq. 2.89) or L2 (Eq. 2.90) norms,

and techniques such as k-d trees [85] are used to �nd the nearest neighbour. If the

dimensionality is too high, k-d trees are ine�cient and approximate techniques [105]

are commonly used for speed purposes.

L1(di,dj) =
S∑
s=1

|di,s − dj,s| (2.89)

L2(di,dj) =

√√√√ S∑
s=1

(di,s − dj,s)2 (2.90)

Visual descriptors can be divided into two categories [78]: General Information De-

scriptors and Speci�c Domain Information Descriptors. The �rst category comprises

low-level descriptors, which encode raw information such as colour, shape, texture

and motion. The second category comprises more semantic descriptors that usually

cannot be obtained directly, such as object classi�cation and scene recognition re-

sults. We will focus here on the �rst category, which can be further divided into the

following sub-groups [78]:

• Colour. The most basic quality of visual information. It can be organized

into �ve di�erent parameters: Dominant Colour Descriptor (DCD), Scalable

Colour Descriptor (SCD), Colour Structure Descriptor (CSD), Colour Layout

Descriptor (CLD) and Group of Frames (GoF).

• Texture. Another important aspect in image description, texture information

characterizes a region's homogeneity and is usually obtained using histograms.

It is composed of three di�erent parameters: Homogeneous Texture Descriptor

(HTD), Texture Browsing Descriptor (TBD) and Edge Histogram Descriptor

(EHD).

• Shape. Comprises segmented information similar to that a human would use to
recognize objects. Even though current algorithms are still not able to provide
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such information, there are several methods that are considered a good approx-

imation. It is also composed of three di�erent parameters: Region-based Shape

Descriptor (RSD), Contour-based Shape Descriptor and 3-D Shape Descriptor

(3DSD).

• Motion. Describes movement in a video sequence. This movement may be

due to the presence of dynamic objects or to the camera's own motion. This

descriptor set is composed of four di�erent parameters: Motion Activity Descrip-

tor (MAD), Camera Motion Descriptor (CMD), Motion Trajectory Descriptor

(MTD) and Warping and Parametric Motion Descriptor (WPMD).

Two di�erent descriptors commonly found in the literature are discussed below:

Colour Patches and Gradient Orientation Histogram, also known as the SIFT descrip-

tor [68]. Initially the most basic version of the Colour Patch descriptor is presented,

and then gradually improved until it approaches the SIFT descriptor.

Colour Patch Descriptor

The naive approach to the Colour Patch descriptor consists in placing aN×N window

(Fig. 2.13) centered at the pixel coordinate (u, v). The pixel intensity of each window

cell is then stored as the descriptor, generating in the case of a monochromatic image

a N2-dimensional descriptor vector. This method is invariant to translation, but

will behave poorly when faced with rotation, blur and illumination changes (or any

transformation that changes the colour space). A weight mask can be used to decrease

the impact of pixels far from the center point in the calculations, thus increasing

the descriptor's robustness to small changes in orientation. To counter illumination

changes in the scene, and other transformations in the colour space, the patch can

be normalized by enforcing a unit length constraint. Now, global changes in pixel

intensity will not have any e�ect on the �nal descriptor. If a RGB image is available,

the descriptor can be extended to include patches in each colour channel, resulting in

a 3N2-dimensional vector.
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Figure 2.13 � Example of a 7×7 window being used to create a pixel intensity matrix,
centered around the red square.

A descriptor vector created directly from a sequential patch will be sensitive to its

orientation, and also to minor changes in local pixel intensity. In this scenario, doing

a value-by-value comparison of descriptors could lead to poor matching performance,

especially if both images are taken from a signi�cantly di�erent vantage point. An

alternative approach to directly storing individual pixel information consists in us-

ing histograms, which eliminate small positional errors by clustering similar values

together. Assuming a histogram with M bins, the resulting descriptor will be a M -

dimensional vector. The same normalization process described previously can also be

applied in this scenario. If the window size is su�ciently large, multiple histograms

may also be applied to di�erent portions of the patch, resulting in a PN -dimensional

descriptor vector, where P is the number of histograms.

Finally, instead of pixel intensities, the intensity gradients could be used to encode

colour information. The most common method of obtaining these intensity gradients

is to apply the 1-D derivative mask [−1, 0, 1] for horizontal gradients and [−1, 0, 1]T

for vertical gradients. Other derivative masks can also be used, such as the 3 × 3

Sobel masks, however it has been shown [23] that these usually exhibited poorer per-

formance, along with the use of Gaussian smoothing before applying the masks. The

colour histograms now become orientation histograms, storing the individual orien-
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tation of each pixel according to its neighbours, and the most frequent becomes the

dominant orientation. By aligning the dominant orientation of di�erent descriptors,

it is possible to achieve rotational invariance.

SIFT Descriptor

The SIFT descriptor combines all techniques described previously, resulting in a 128-

dimensional vector that is invariant to translation, scale and rotation, partially in-

variant to illumination changes and robust to local geometric distortion. Assuming a

Gaussian-smoothed image L(x, y, σ), the gradient magnitude m(x, y) and orientation

θ(x, y) are precomputed using pixel di�erences:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (2.91)

θ(x, y) = arctan

(
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)

)
. (2.92)

This magnitude and orientation calculation for the gradient is done for every pixel

in a neighbouring region around the feature. An orientation histogram of 36 bins is

formed, with each bin covering 10 degrees. Each sample in the neighbouring region

added to a histogram bin is weighted by its gradient magnitude and by a Gaussian-

weighted circular window with a σ that is 1.5 times higher than that of the feature

scale. The peaks in this histogram correspond to the dominant orientations. Once

the histogram is �lled, the orientations corresponding to the highest peak and local

peaks that are within 80% of the highest peak are assigned to the feature. In the case

of multiple orientations being assigned, an additional feature with the same location

and scale as the original feature is created for each additional orientation.

Up to this point the orientation assigned ensures invariance to translation, rotation

and scale. The next step is to convert this information into a vector that is both highly

distinctive and partially invariant to other transformations, such as illumination and

a�ne. First, a set of orientation histograms is created using values of samples in a

16 × 16 region around the feature, such that each histogram contains samples from

a 4× 4 subregion of the original neighbourhood region (Fig. 2.14). The magnitudes



58 Theoretical Background

Figure 2.14 � Example of SIFT descriptor. The 16 × 16 square window around the
feature is divided into 4 × 4 histograms, each one composed of 8 bins (the yellow
circle is a Gaussian mask weighting the contribution of each pixel gradient). The
resulting descriptor is therefore a 128-dimensional vector.

are further weighted by a Gaussian function with σ equal to half the width of the

descriptor window. The descriptor then becomes a vector of all the values of these

histograms, and since there are 4 × 4 = 16 histograms, each with 8 bins, the vector

has 128 elements. This vector is then normalized to a unit length in order to enhance

invariance to a�ne changes in illumination.

Even though 128 dimensions may seem a high number, descriptors with lower di-

mensionality do not perform as well across the range of matching tasks [69], and

200 400 600 800 1000 1200 1400
Figure 2.15 � Example of matching using the SIFT algorithm, and the impact of

outliers on the �nal result.
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the computational cost remains low by using the Best-Bin-Fit (BBF) approach to

�nd the nearest neighbour. Longer descriptors continue to perform better but not

by much, and there is an additional chance of increasing sensitivity to distortion and

occlusion. It is also shown that feature matching accuracy is above 50% for viewpoint

changes of up to 50 degrees, thus rendering the descriptor partially invariant to a�ne

transformations.

2.3.3 Outlier Removal

Regardless of how robust a descriptor might be, there will always be a chance of

obtaining false matches, which are instances of matching in which features corre-

sponding to one structure in the image will be falsely correlated to features belonging

to another structure. This is caused by a variety of reasons, such as structure similar-

ity, radical changes in viewpoint or luminosity, textureless regions or occlusion. Fig.

2.15 is an example of a matching set obtained from two images of the same structure

taken from a di�erent perspective, using the SIFT descriptor and the least-squares

metric for distance. It is possible to see that the matching algorithm was able to

correctly correlate most of the repeating structures, however there are several errors

caused mostly by similar patterns in the sky and rocky terrain.

A false match can be seen as a particular case of an outlier, which is an observation

that is numerically distant from the rest of the data, deviating signi�cantly from the

other members of the sample in which it occurs. Assuming a static environment (as

is the case in Fig. 2.15), it is obvious that all motion experienced by the features will

be caused by the camera's own translation and rotation between frames. Therefore,

there is a constraint that all pairs of matched features must share, and any pair that

does not comply to this constraint must be an outlier and should be discarded.

A popular method of outlier detection and removal is the RANSAC (RANdom SAm-

ple Consensus) [35], an iterative algorithm used to estimate the parameters of a

mathematical model from a set of observed data which contains outliers (Fig. 2.16).

It is a non-deterministic algorithm in the sense that is produces a reasonable result
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only within a certain probability, with its probability increasing as more iterations

are allowed. In broad terms, it draws a random subset from all available observations,

from which a hypothetical model is generated, and the remaining observations are

then tested against this model, producing a hypothetical inlier set. This process is

repeated many times, and the model with the highest number of hypothetical inliers

is assumed to be the correct one. A pseudo-algorithm describing the RANSAC steps

in more details is shown in Algorithm 2.1. It is possible to avoid the explicit deter-

mination of k as a �xed number of iterations for the algorithm, enforcing instead a

percentage p that all points used to generate the model are in fact inliers. In this

case, the value of k becomes:

k =
log(1− p)

log(1− wn)
, (2.93)

where w is the ratio of inliers points to the total number of points (usually obtained

from a rough estimation) and n is the number of points necessary to de�ne the model.

Figure 2.16 � E�ect of RANSAC in linear regression. The red line indicates the
resulting linear model that �ts all observed data, and the blue line indicates the
resulting linear model that �ts the remaining observations after all outliers have
been removed (95% probability).
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Algorithm 2.1: The RANSAC algorithm

Input :

data - set of observations
model - model used to �t the data

n - minimum number of points required to �t the model
k - number of iterations performed by the algorithm
t - threshold for determining whether a point �ts a model
d - minimum number of data values required to �t a model

Output:
best_model - model parameters that best �t the data

best_set - inlier set for the best_model
best_error - the error of best_model relative to the data

iterations = 0
best_model = best_set = null
best_error = ∞
while iterations < k do

maybe_inliers = n randomly selected points from data
maybe_model = model parameters �tted to maybe_inliers
current_set = maybe_inliers
foreach point not in maybe_inliers do

if point �ts maybe_model with error < t then
add point to current_set

end

end
if size of current_set > d then

this_model = model parameters �tted to current_set
this_error = measure of how well this_model �ts current_set
if this_error < best_error then

best_model = this_model
best_set = current_set
best_error = this_error

end

end
iterations = iterations + 1

end
return best_model,best_set,best_error

In the particular case of visual outliers, this model is the camera model itself, which

is dependent on the type of camera used. The next section will describe the pinhole

camera model, which is used during the experiments conducted in this thesis.
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200 400 600 800 1000 1200 1400
Figure 2.17 � Matching set after the application of RANSAC (compare to Fig. 2.15).

2.3.4 Pinhole Camera Model

The pinhole camera model describes the mathematical relationship between the co-

ordinates of a 3D point and its projection onto the image plane of an ideal pinhole

camera, where the camera aperture is described as a point and no lenses are used to

focus light. Consider P = (X, Y, Z)T ∈ <3 to be a point in the tridimensional space

(a world point) that is mapped to the feature point p = (x, y)T ∈ <2 in the 2D image

plane (Fig. 2.18a). Initially, we assume that the image plane is mirrored along the

Z-axis in front of the camera between the optical center and point P . There are two

coordinate systems, the camera coordinate system XY Z and the image coordinate

system xy, and the points P and p are �xed in relation to each of them respectively.

Looking at Fig. 2.18b, we see that the distance between the optical center and the

image plane is the focal length f . The following relations can then be obtained using

the Interception Theorem: x = fX/Z and y = fY/Z, which if combined into a vector

become:  x

y

 =

 fX/Z

fY/Z

 . (2.94)

The next step is to project P and p into their projective coordinates, also known

as homogeneous coordinates [47]. These coordinates have the advantage of allowing

the representation of points at in�nity using �nite values, and formulas involving
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(a) (b)

Figure 2.18 � Pinhole Camera model.

homogeneous coordinates are often simpler and more symmetric than their Cartesian

counterparts. The new coordinate values for P and p are now:

P =


X

Y

Z

⇒


X

Y

Z

1

 = P̃ p =

 x

y

⇒


x

y

1

 = p̃. (2.95)

Using homogeneous coordinates we can rewrite Eq. 2.94 as such:

 x

y

 =

 fX/Z

fY/Z

⇒


x

y

1

 =


fX/Z

fY/Z

1

 =


fX

fY

Z

 , (2.96)

which, if put in matrix form, becomes:


x

y

1

 =


f 0 0 0

0 f 0 0

0 0 1 0




X

Y

Z

1

 . (2.97)

From this basic formulation other camera parameters, other than the focal length, can

be added to increase the model's ability to deal with real situations. For example, we
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can remove the assumption that the origin of the image coordinate system is located

in the image's center by adding an o�set ĉx and ĉy to each axis. Also, in digital

images the vertical and horizontal pixel size may be di�erent, and therefore the focal

lengths fx and fy will also di�er in each axis. The angle between the x and y pixel

axes may also be de�ned as α, modelling lens distortions. Taking all these parameters

into consideration, Eq. 2.97 becomes:


x

y

1

=


kxf α kxĉx 0

0 kyf ky ĉy 0

0 0 1 0




X

Y

Z

1

=


fx α cx 0

0 fy cy 0

0 0 1 0




X

Y

Z

1

 , (2.98)

where kx and ky are the number of pixels per unit of length (resolution) in each

camera axis. Finally, the pinhole camera model should also consider di�erences in

rotation and translation between the two coordinate systems. This is done by the

introduction of a transformation matrix T , such that:


x

y

1

 =


fx α cx

0 fy cy

0 0 1


︸ ︷︷ ︸

C


rxx rxy rxz tx

ryx ryy ryz ty

rzx rzy rzz tz


︸ ︷︷ ︸

T


X

Y

Z

1

 . (2.99)

The matrix C is the calibration matrix, and governs the camera's intrinsic parameters,

whereas the transformation matrix T governs the camera's extrinsic parameters. The

intrinsic parameters are internal to the camera and are obtained using calibration

methods, while the extrinsic parameters de�ne the position and orientation of the

camera in relation to a global coordinate system. The next section will delve deeper

into the problem of estimating the extrinsic parameters of one camera in relation to

another, a problem commonly known as the structure from motion problem.
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2.3.5 Structure from Motion

Structure from motion (SFM) refers to the process of �nding the three-dimensional

structure of an object by analysing the changes in an observing sensor over time.

Basically, it attempts to recover 3D structure from 2D data, in this case the projection

of the environment on an image. Conversely, if the same point (assumed static)

is observed from a di�erent perspective, it is possible to use this information to

recover the sensor distance between images. In the particular case of a single camera,

this distance is equivalent to the translation and rotation between frames. The set

of equations that governs these homogeneous projections from the 3D space to 2D

images, assuming a pinhole camera model, is known as epipolar geometry [47].

An example of the epipolar geometry between two cameras is shown in Fig. 2.19,

where they are both looking at point X. In reality, the image plane is actually behind

Figure 2.19 � Epipolar geometry between two cameras. The same point P in the 3D
space is observed by images I and I ′, generating the respective projections p and
p′. The red lines represent the epipolar lines in each image, with e and e′ being the
epipoles. The transformation between the two cameras is given by the translation
vector t and the rotation matrix R.
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the center of projection and produces a rotated image, however here the projection

problem is simpli�ed by placing a virtual image plane I in front of the center of

projection O of each camera. The projection of X in image I creates x, and e is the

epipolar point, representing the projection of O′ also in image I. The line (x− e) is

the epipolar line, and it represents the projection of (X − O′) in image I. Because

the center of projection O is �xed for this particular con�guration, this means that

all epipolar lines in I must intersect on e. In fact, any line which intersects e is an

epipolar line, since it can be derived from some 3D point. The same principles can

also be applied to the other camera, generating the image point x′, the epipolar point

e′ and the epipolar line representing the projection of (X−O) in image I ′. The points

X, O and O′ form a plane β called the epipolar plane, and all epipolar planes and

epipolar lines must intersect the epipolar points regardless of where X is located.

The epipolar constraints created by this particular geometry can be codi�ed in a

3 × 3 matrix F that describes the correlation between points x and x′, called the

fundamental matrix. If x is observed, then its matching point x′ in the other image

must lie in the epipolar line created by (X −O), as depicted in Fig. 2.20. In other

words, F must satisfy:

x′TFx = 0. (2.100)

(a) (b)

Figure 2.20 � Example of epipolar lines. For each point in (a) there is an epipolar line
de�ned in (b), and it is possible to see that each of these lines pass on their corre-
sponding points in the other image (these points were selected manually, without a
corresponding match).
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Being of rank two and determined only up to scale (x′ may lie in any point of the

epipolar line de�ned by x), the fundamental matrix can be estimated given at least

seven point correspondences, xn = (xn, yn, 1)T and x′n = (x′n, y
′
n, 1)T . If eight points

are available, the solution can be obtained by solving a linear system (Eq. 2.101),

and if more than eight points are available the solution can be obtained using least-

squares error. Since the matching set will often contain outliers, techniques such as

RANSAC (Algorithm 2.1) are used to elect the most probable hypothesis.


x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1
...

...
...

...
...

...
...

...
...

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1





f11

f12

f13

f21

f22

f23

f31

f32

f33



= 0 (2.101)

If the calibration matrix C, as de�ned in Eq. 2.99, is known, the essential matrix

can be obtained (Eq. 2.102). The essential matrix further explores the correlation

between two matching points x and x′ by using the camera's intrinsic parameters to

provide an estimation of relative translation t (up to a scale factor) and rotation R

between frames. To be an essential matrix a 3 × 3 matrix must have two singular

values, which are equal to each other, and another which is zero. An essential matrix

has only �ve degrees of freedom: three from the translation vector t and three from

the rotation matrix R, but there is an element of scalar ambiguity that must be

subtracted from this total, resulting in �ve degrees of freedom. This means that the

essential matrix is an element of a projective space, that is, two essential matrices are

considered equivalent if one is a non-zero scalar multiplication of the other.

E = C ′TFC = R[t] (2.102)
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The following method to determine R and t is derived from [47], and it is based on

performing a singular value decomposition (SVD) of the essential matrix E. It is also

possible to obtain R and t directly, without performing SVD, as shown in [67]. The

singular value decomposition of E gives rise to:

E = UΣV T , (2.103)

where U and V are orthogonal and Σ is a 3× 3 diagonal matrix de�ned as:

Σ =


s 0 0

0 s 0

0 0 0

 . (2.104)

The diagonal entries of Σ are the singular values of E, which according to the internal

constraints of the essential matrix must consist of two identical values s and one zero

value. If E is approximated from available data, this constraint is usually enforced

by �nding the average of the two highest values and setting the third one to zero. An

auxiliary skew-symmetric matrix W is then de�ned as:

W =


0 −1 0

1 0 0

0 0 1

 , with W−1 = W T =


0 1 0

−1 0 0

0 0 1

 . (2.105)

From the matrices de�ned above four di�erent con�gurations are possible, depending

on the sign of t (which direction the camera is pointing) and the orientation of R (if

the camera rotates clockwise or counter-clockwise). These four possible solutions are:

[R|t]1 = [UWV T | − VWΣV T ] (2.106)

[R|t]2 = [UWV T |+ VWΣV T ] (2.107)

[R|t]3 = [UW TV T | − VWΣV T ] (2.108)

[R|t]4 = [UW TV T |+ VWΣV T ]. (2.109)
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It turns out that only one of these solutions are physically possible (Fig. 2.21),

given the camera con�guration. Given a pair of corresponding image coordinates,

three of the solutions will always produce 3D points that are behind at least one of

the cameras, and therefore cannot be seen by it. Only one of the four solutions will

consistently produce 3D points that are in front of both cameras, and obviously this

will be the right one, albeit an undetermined scaling factor.

The resulting translation and rotation matrices are then used as the motion estimates

between frames, providing a full 6 degree of freedom velocity vector. Further process-

ing, such as bundle adjustment [126], could in principle be used to further re�ne these

estimates, however this was not explored in this thesis since the same techniques could

also be applied to the proposed machine learning based visual odometry algorithm.

The same could be said about any further improvements on this basic geometric model

[17, 92, 109], since in Section 4.1.4 it is shown how to incorporate these estimates into

the GP framework. Better estimates would only lead to a better starting value for

the non-parametric model to improve using training information. In addition, other

techniques were tested, such as 1-Point RANSAC [106] and Mono-SLAM [24], as a

way to show how state-of-the-art traditional visual odometry algorithms compare to

the proposed approach.

It is also important to note that, since this is a monocular con�guration, the trans-

lation vector is recovered only up to a scale factor, because of the parallax e�ect

(a) (b) (c) (d)

Figure 2.21 � Four possible solutions obtained from the singular value decomposition of
the essential matrix. Note that only in (a) the 3D point is in front of both cameras,
and therefore is the correct solution. In (b) the direction of the translation vector
is reversed, and (c) and (d) are the "twisted pairs", related to each other by a 180o

rotation about the baseline.
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(an object could be close and moving slowly or far away and moving fast). Several

approaches have been proposed to deal with this limitation, while keeping a monocu-

lar con�guration [107, 109, 137], however they usually require either an extra sensor

capable of recovering absolute distance or very speci�c circumstances (i.e. a ground

planar assumption or pure rotation). Because the focus of this thesis is the develop-

ment of a visual odometry solution capable of addressing situations in which there is

no knowledge of the visual system or environment around the vehicle, using only vi-

sual sensors during the inference stage, these techniques were not explored here. The

geometric model discussed previously was also able to generate reasonable estimates

even in tridimensional unconstrained outdoor navigation (see 4.3.2), a scenario in

which most state-of-the-art visual odometry algorithms struggle with, because they

are mostly focused on ground applications or low-velocity �ights.

2.4 Summary

This chapter explored two important areas of research in robotics: regression, in par-

ticular Bayesian regression and Gaussian processes; and computer vision, in particular

the structure from motion problem. The literature in both these areas is vast and the

material presented here is only meant to provide an overview of the techniques used

throughout the remainder of this thesis.

Bayesian inference o�ers a powerful framework capable of addressing numerous is-

sues present in robotics. It allows the modelling of complex systems within a realistic

probabilistic setting, and this has led to their increase in popularity over the years,

especially as computational power now makes online Bayesian inference possible.

Gaussian process regression has already been responsible for several advancements

in state-of-the-art algorithms in areas such as localization, mapping, control theory,

reinforcement learning, manipulation, among many others. Again, recent increases in

computational power and storage make the use of non-parametric models more and

more attractive, since vast amounts of data can now be maintained and processed in

a timely manner.
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Visual sensors are now common-place in robotics, for a variety of reasons: cameras

are cheap, compact, relatively inexpensive, have a wide �eld of view both vertically

and horizontally, and are able to provide a rich representation of the environment.

The colour and texture information encoded in an image allow for tasks that no other

sensor can accomplish, such as tra�c signs and optical character recognition, and

also substantially improve results on other tasks such as object recognition, tracking,

scene reconstruction, and many others. In the particular case of motion estimation

problems, visual sensors are attractive because they can provide estimations in the

full six degrees of freedom that constitute 3D navigation, and are not dependent on

any particular method of locomotion.
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Chapter 3

Learning Visual Odometry Estimators

The aim of this chapter is to combine the tools and techniques introduced in the

previous chapter to create a uni�ed framework for visual odometry, using information

extracted from a pair of frames to estimate camera translation and rotation1. As

mentioned previously (Problem Statement, Section 1.2), most current visual odometry

algorithms rely on a geometric model to provide translation and rotation estimates,

and are therefore limited to the complexity of this model and the correct estimation of

its corresponding calibration parameters. In fact, this approach is present in virtually

all visual odometry literature, ranging from monocular [9, 25, 61] to stereo [52, 56,

86, 146] con�gurations, including the use of omnidirectional cameras [18, 108, 109,

128] and data fusion with other sensors, such as a IMU [57] or a low-cost GPS [2].

Several successful techniques for calibration have been proposed, however there is no

guarantee that the resulting parameters will not change over time, due to vibration,

mechanical shocks or changes in temperature. Self-calibration algorithms [17, 34] are

able to track and auto-correct changes in calibration parameters, however they still

assume a known pre-determined geometric model, which limits �exibility.

Alternative approaches to visual odometry, that rely on machine learning techniques

instead of the standard geometric models, are still scarce and experimental, and

1The contents of this chapter were presented at the International Symposium on Experimental
Robotics (ISER) 2010, under the title Multi-Task Learning of Visual Odometry Estimators [41].
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insofar as this thesis is concerned can be limited to works of Roberts et al. In [102]

the authors use a KNN-learner voting method to estimate a vehicle's velocity and

turn rate, with each learner taking as input the average of the sparse optical �ow in

a grid-divided image. Subsets of the sparse optical �ow distribution are used to cope

with a variable dimensionality, and a study is conducted to verify the impact of such

dimensionality reduction in the results. A similar idea is explored in [103], where a

constant pixel depth is assumed and the Expectation-Maximization (EM) algorithm

[26], in conjunction with an extension to PPCA [131], is used to perform a linear

mapping between sparse optical �ow and incremental motion. A generative model is

used to estimate each optical �ow subspace using only the observed measurements,

and a per-pixel Gaussian mixture outlier process is used to deal with image regions

that violate the constant pixel depth assumption.

The most interesting and attractive aspect of using machine learning techniques, in

particular non-parametric models, to perform the transformation from image infor-

mation to camera motion is that it improves on the aspect of camera calibration.

By eliminating the use of a strictly geometric model, the calibration methodology is

substituted by a training process in which available data is used to optimize a much

more �exible non-parametric model, capable of capturing nuances of the underly-

ing function that a strictly geometric model cannot, due to inevitable simpli�cations

in the modelling process. This non-parametric model is then able to, by exploiting

similarities in optical �ow distribution between training and testing images, provide

motion estimates that do not make a prior assumptions in regards to environment

structure or camera con�guration. Thus, the same visual odometry framework can

be readily applied to any visual system and platform, provided that the training and

testing datasets are obtained under similar conditions.

This thesis introduces the use of Gaussian processes (GPs) as the non-parametric tool

used to perform this transformation from image information to camera motion. GPs

possess several properties that make them especially attractive for this application:

• Kernel functions. The Gaussian process literature contains a vast number of

covariance functions that are able to account for di�erent relationships between
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inputs. The correct selection of which covariance function, or combination of

covariance functions, to use allows the GP framework to correctly model global

and local patterns of optical �ow throughout the image. The training pro-

cess automatically learns the parameters for these covariance functions, using

examples that serve as samples from the unknown underlying function.

• Bayesian treatment of uncertainty. As a Bayesian inference tool, the GP

framework allows for the introduction of prior distributions, re�ecting our be-

liefs on how di�erent aspects of the algorithm should evolve over time. The

treatment of uncertainties in a probabilistic fashion also increases the algo-

rithm's robustness to di�erences in training and testing data. As information

obtained during navigation deviates from the information used during training,

the uncertainty in estimation increases.

• Multiple outputs. A visual odometry system is almost always a multiple out-

put algorithm, as most vehicles possess more than one velocity component that

has to be estimated during navigation. This thesis explores both constrained 2D

navigation, with two velocity components (forward and angular motion on the

ground plane) and unconstrained 3D navigation, with six velocity components

(linear and angular velocities in all three axes of motion). The Multiple-Output

GP framework (MOGP) is capable of exploring the dependencies generated by

vehicle constraints to improve results in each particular motion estimate. This

thesis also extends the MOGP framework to allow the simultaneous estimation

of all outputs, providing a full covariance matrix of uncertainties.

• Scale recovery on a monocular con�guration. If the ground-truth data

used during training contains scale information (i.e. it was obtained using a

range sensor), the resulting non-parametric model will encode this information

and provide an estimate for scale in new data as well, even in monocular con-

�gurations where scale recovery is not a trivial task. Again, as training data

deviates from testing data this scale estimation will become less accurate, and

the corresponding uncertainty will increase to re�ect this deviation.
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This chapter presents and describes the proposed visual odometry algorithm using

Gaussian processes, explaining its various stages and components from the initial

feature extraction from a pair of images to the �nal motion estimation between frames.

It starts by providing an overview of the algorithm, introducing its various stages

and components and how they relate to each other. It then describes how the input

vector for the GP framework is obtained from sparse optical �ow information between

frames, in such a way that it maintains a �xed dimensionality and preserves spatial

structure. Afterwards, the GP inference process is described, with emphasis on the

vehicle models used in the 2D and 3D scenarios and on the selection of the covariance

function that best models the optical �ow distribution throughout the image. Finally,

it concludes by presenting and discussing experimental results obtained using both

ground and aerial vehicles, along with comparisons with other techniques and possible

shortcomings that will be addressed in the next chapter.

3.1 Algorithm Overview

A diagram of the proposed visual odometry algorithm is presented in Fig. 3.1, with all

its main steps and stages. This is a simpli�ed version of the algorithm, containing only

the basic components necessary to perform visual odometry. This basic algorithm will

be further extended in the next chapter to include more functionalities (compare to

Fig. 4.1). It is iterative, in the sense that it estimates camera translation and rotation

between frames, and this motion estimate is then integrated over time to generate a

pose estimate according to a global coordinate system.

As input the algorithm receives two images, IMG1 and IMG2, obtained using the

same camera at di�erent time intervals. It is assumed that these images contain a

signi�cant amount of overlapping, enough to allow a substantial matching between

them, and also that the environment is static, so all motion observed is due to the

camera's own translation and rotation (an assumption that will be relaxed in Chapter

5). As output the algorithm returns the velocity vector Y12 containing estimates for

all degrees of freedom involved, along with a corresponding Σ12 covariance matrix.
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IMG1  
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Figure 3.1 � Diagram of the proposed algorithm (simpli�ed version). The Optical Flow
Parametrization stage deals with the processing of a pair of images, generating the
vector X12 that will serve as input for the Gaussian Process Framework, the second
stage. The Gaussian Process Framework can be further divided into Training, where
the optimized hyperparameters are obtained using a training dataset (X,Y )TR, and
Inference, where these hyperparameters are used to map the input vector X12 into
the mean vector Y12 and covariance matrix Σ12, that contain the motion estimates
for all degrees of freedom and their corresponding uncertainty values.

In this basic implementation Σ12 is diagonal, containing one uncertainty estimate

for each degree of freedom. Furthermore, a training dataset is deemed available,

containing a set of images XTR and their corresponding ground-truth information

YTR, obtained from a di�erent and independent sensor. For now we assume that this

training dataset was collected under similar conditions (i.e. using the same vehicle

and camera con�guration, but from a di�erent trajectory).

The proposed algorithm can be divided into two main stages: Image Information

Extraction and Gaussian Process Framework. The �rst stage is responsible for pro-

cessing both images and generates an input vector X12 containing the optical �ow

information between frames. This input vector is then passed to the second stage,

responsible for mapping this input into the velocity estimate Y12 and covariance Σ12.

This mapping between inputs and outputs is performed using the hyperparameters

obtained during a training process conducted prior to the beginning of navigation,
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utilizing the training dataset (X, Y )TR. The next sections describe these two stages

in further detail.

3.2 Image Information Extraction

The proposed approach uses sparse optical �ow information from a pair of monochro-

matic images obtained using a single camera con�guration (the camera is pointing

forward in the case of 2D navigation and downwards in the case of 3D navigation).

Dense optical �ow methods, such as Lucas-Kanade [71], were also explored but dis-

carded due to the number of parameters that needed to be manually determined,

and also due to a wide variation in performance in di�erent environment and driving

conditions. A histogram �lter is applied to all images, to account for global changes

in luminosity. The environment around the vehicle is assumed to be mostly static,

so any optical �ow detected is solely due to the camera's own translation and ro-

tation, and the frames-per-second rate is also assumed to be constant to allow the

direct transformation from vehicle velocity to vehicle displacement. No other prior

knowledge of the environment and/or visual system is necessary.

3.2.1 Optical Flow Parametrization

The initial feature extraction and matching processes are conducted using a combina-

tion of both the SIFT and the Shi-Tomasi corner detection algorithms (as described

in Section 2.3.1), with sub-pixel accuracy and frame-to-frame tracking. This is done

in order to ensure a dense distribution of features throughout the entire image, that

can be translated into optical �ow estimations without large gaps. Empirical tests

show that the invariance properties of SIFT features ensure robustness during the

matching process, whereas the Shi-Tomasi corner detector is particularly suitable for

tracking over a series of frames. Any other similar method could be readily applied,

both for speed purposes [7] or as a way to model di�erent environment properties.
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Examples of initial feature sets FTR in 2D navigation for two particular frames are

presented in Fig. 3.2a, along with the corresponding matching sets MTC obtained

in relation to their subsequent frames (Fig. 3.2b). Each matching pair is depicted by

a line connecting both features, and it is possible to see a substantial amount of false

matches, mostly due to structure similarity, poorly textured regions and occlusion

caused by changes in viewpoint. These false matches are then removed using the

RANSAC algorithm, as described in Section 2.3.3. If the environment is considered

mostly static, it is natural to assume that the most probable motion hypothesis

elected by RANSAC will correspond to the camera's own motion. This step is also

useful in minimizing the interference of dynamic objects, since their features will

generate matches that are not consistent with the most probable motion hypothesis,

and therefore will be discarded as outliers.

The resulting inlier sets INL are depicted in Fig. 3.2c, and the corresponding epipolar

lines generated by RANSAC, representing the most probable motion hypothesis, are

presented in Fig. 3.3. Features were tracked for an average of 6 frames, and the

overlapping regions ranged from 90% (forward motion) to 75% (hard turns).

(a) (b) (c)

Figure 3.2 � Image information extraction in 2D navigation for the particular cases of
forward motion (�rst row) and counter-clockwise rotation (second row). (a) Initial
feature sets. (b) Initial matching sets. (c) Inlier sets, after RANSAC.
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(a) (b)

Figure 3.3 � Epipolar lines in 2D navigation for the particular cases of (a) forward
motion and (b) counter-clockwise rotation.

3.2.2 Preserving Spatial Structure

A straightforward way of generating the input vector X12 from the inlier set INL12

would be to use the individual optical �ow information from each matching pair

directly. In this scenario, X12 would be a vector of size ND, where N is the number of

inliers andD is the number of components used to describe each individual optical �ow

estimate. However, the direct use of individual optical �ow information to generate

X12 would incur two problems that need to be addressed before a suitable input vector

for the GP framework can be produced:

• Di�erent Sizes. Two di�erent pairs of images will most certainly generate

inlier sets of di�erent sizes, which would change the �nal dimension of X12

as a ND-dimensional vector. This would in turn change the nature of the

underlying function that the GP is attempting to model, as the input space

would be di�erent for each input vector and therefore not comparable.

• Di�erent Distributions. Two di�erent pairs of images will mostly certainly

generate inlier sets with a di�erent distribution throughout the image, re�ecting

di�erent portions of the overall optical �ow con�guration. Since optical �ow

information depends heavily on pixel coordinate (each portion of the image

reacts di�erently to vehicle motion), any comparison between input vectors

would also be rendered moot.
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It is therefore necessary to generate an input vector X12 that both keeps a constant

dimension regardless of the number of inliers detected and also maintains the spatial

structure of optical �ow distribution. The method proposed here to achieve these

two conditions consists in dividing the image into equal-sized grids (Fig. 3.4), and

assigning to each of them the subset of inliers whose coordinates lie within its bound-

aries (by convention, we use the feature coordinates on the �rst frame). The optical

�ow values for each grid can now be calculated as the average value of all its inliers'

optical �ow information. If a particular grid has no features, its optical �ow values

are calculated as the average value of its neighbouring grids, based on the assumption

that changes in optical �ow should be smooth throughout the image, varying radi-

Figure 3.4 � Examples of optical �ow parametrization into equal-sized grids in 2D
navigation, for the particular cases of (a) forward motion and (b) counter-clockwise
rotation. The average optical �ow value of all matched features within each grid
is used, and grids without any matched features receive the average value of its
neighbouring grids (as it can be seen on the upper right portion of the images on
the second column, where the sky does not have any discernible features but still
registers optical �ow).
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cally only around the borders of objects and not inside them. This averaging process

also serves to minimize the impact of dynamic objects on the calculations, since their

optical �ow values will now be diluted in the midst of all inliers in the same grid. The

resulting input vector X12 is now of dimension hwD, where h and w are respectively

the number of grids used to divide the image vertically and horizontally, and is gen-

erated by taking the optical �ow components for each grid in a speci�c manner (i.e.

starting on the top left grid and moving horizontally row by row).

Lastly, it is necessary to determine which optical �ow components should be used

to generate the input vector X12. There are two di�erent methods of parametrizing

a 2D pixel shift throughout the image: the shift magnitude d and orientation θ, or

the horizontal c and vertical s shift displacement. These two methods are correlated

(Eq. 3.1), and therefore contain redundant information that should not be used in

conjunction to generate the input vector, because it would create an unnecessarily

high-dimensional problem. However, they encode optical �ow in di�erent ways, and

the careful selection of which components to use could signi�cantly improve GP in-

ference performance.

s = d sin(θ) c = d cos(θ) (3.1)

Fig. 3.5 depicts how each of the four optical �ow components behaves during typical

2D translation and rotation situations. It is clear that d and c are the only ones with

a consistent reaction to camera motion, indication that they encode this information

in a way that can be recovered robustly. As expected, during translation d varies

cyclically throughout the image, assuming higher values near the borders and lower

values towards the center, and it is mostly stable during rotation. The values of c

are also consistent, being vertically symmetrical during translation and stable during

rotation. The angle θ is erratic due to the high angular sensitivity to errors when

small distances are being covered, and s is a�ected by terrain irregularities, which

even though could be helpful in a 3D scenario are not relevant in ground navigation.

For these reasons, the components d and c are used to generate the �nal input vector

X12, resulting in a 2hw-dimensional vector. Tests were conducted under the MOGP
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(a) (b)

Figure 3.5 � Examples of the behaviour of each of the optical �ow components in
typical (a) forward motion and (b) counter-clockwise rotation. Each row indicates
the distribution of a given component throughout the image (starting on the top
left corner and moving horizontally row by row).

framework (Section 3.3) using di�erent values for h and w, and the �nal values selected

were h = w = 8, with a �nal dimensionality of 128 for the input vector. A smaller

number of grids would create a poor characterization of local optical �ow distributions,

and a larger number of grids would create an excessively high-dimensional problem

and also amplify small errors in optical �ow calculation. These tests also validated

the use of d and c to parametrize the �nal input vector, with the incorporation of

other components leading to poorer performances.

3.2.3 Narrow Field of View

As stated previously, in the 3D experiments the camera was installed pointing down-

wards, observing the ground beneath the aircraft. In this con�guration, the high

altitude poses a special challenge in both feature extraction and matching, due to

overall loss in detail and a high sensitivity to angular motion, that translates into

inconsistent (and often small) overlapping regions between frames (see Fig. 3.6).
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Figure 3.6 � Examples of inlier sets in 3D navigation. Red dots indicate matched
features, and the yellow rectangles are the overlapping regions, representing the
boundaries of matched features in each image. Note that these overlapping regions
vary signi�cantly from frame to frame, both in size and in location.

Assuming that the aircraft will maintain a considerable altitude and move roughly

horizontally, it is reasonable to consider the ground plane as homogeneous, and all

features to be at the same ground plane level. Under this assumption, the entire

image will share the same optical �ow information, that can be encoded by a single

vector (i.e. by a single grid, using the methodology described in the previous section).

As before, this optical �ow vector can be parametrized by either the shift magnitude

d and orientation θ, or the horizontal c and vertical s shift displacement. Since

dimensionality is not an issue in this particular case (the image is composed of a single

grid cell), and motion is much more general and unconstrained (with components in

both axes being equally relevant), all four components are used to generate the input

vector X12. Also, the position (x, y)ci and size (h,w)i of the overlapping regions are

directly related to camera movement, and therefore contain information that could

be useful in the inference process. These parameters are illustrated in Fig. 3.7, and

the �nal input vector is now of the form:

X12 = {d, θ, s, c, xc1, yc1, xc2, yc2, h1, w1, h2, w2}. (3.2)
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It is important to note that, during the GP training process, the relevance of each

parameter will be learned based on available data, leading to the removal of cer-

tain components and the strengthening of others based on their impact on the �nal

estimates.

3.3 Gaussian Process Learning

Once the input vector X12 has been generated, the next step is to feed it into the GP

framework to produce the corresponding velocity estimates, as described in Section

2.2.6. The GP inference process uses the optimized hyperparameter set θ obtained

during the training process, from training data collected prior to the beginning of

navigation. This section is dedicated to the various stages involved in the inference

process. Initially, the 2D and 3D vehicle models are described, indicating which

degrees of freedom are involved in the incremental localization process and how to

go from velocity to pose estimates. Later on, the covariance function used in the

inference process is introduced, along with a method for hyperparameter sharing that

serves to decrease the dimensionality of the optimization problem during the training

stage. Finally, the optimization process itself is described, showing how to obtain the

�nal hyperparameter set that will be used for inference during navigation.

Figure 3.7 � Diagram of the parameters used to generate the input vector X12 for 3D
unconstrained navigation.
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3.3.1 Vehicle Models

The vehicle model governs how the vehicle navigates around the environment, and

speci�cally it determines how many degrees of freedom are available for motion. The

number of degrees of freedom (also known as tasks) in turn determines how many

outputs will have to be estimated from each frame, as optical �ow may be generated

by a di�erent combination of linear and angular velocities. Once these estimates

are obtained, the vehicle model allows their integration into a pose estimate, that

measures the vehicle's incremental motion from one frame to another. Two di�erent

vehicle models are described here (Fig. 3.8), a constrained 2D ground vehicle and an

unconstrained 3D aerial vehicle. Similar platforms are used during experiments, and

the unconstrained 3D aerial vehicle model provides a generic platform for any visual

odometry application.

(a) (b)

Figure 3.8 � Vehicle models used in this thesis. (a) 2D vehicle model, with two degrees
of freedom: forward translation v and angular rotation φ. (b) 3D vehicle model,
with six degrees of freedom: linear velocities ẋ, ẏ and ż and angular velocities α
(roll), β (pitch) and γ (yaw), in Euler angles. The aircraft used during experiments,
even though most of its linear velocity comes from ẋ, is also capable of experiencing
motion in both other axes due to air resistance and draft, and therefore is modelled
as an unconstrained 3D object.
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Ground Vehicles

The constrained 2D vehicle model is the standard model used in ground navigation,

because it re�ects most of the nonholonomic vehicles, in which the degrees of freedom

are limited to a linear forward motion and an angular rotation over the z-axis (a

diagram of this model is depicted in Fig. 3.8a). Within this model, pose is de�ned by

x = (x, y, θ) and motion is divided into two independent steps: a rotation φ over the

z-axis followed by a forward motion v =
√

∆x2 + ∆y2 in orientation θ+ φ. The pair

v = (v, φ) is capable of fully describing vehicle motion between frames, and therefore

represents the two degrees of freedom that must be estimated by the GP framework,

based on visual information. The calculation of xt+1 for a timestep ∆t, given xt and

vt, is of the form:

xt+1 = xt + vt cos(θ + φt)∆t (3.3)

yt+1 = yt + vt sin(θ + φt)∆t (3.4)

θt+1 = θt + φt∆t. (3.5)

As the timestep ∆t decreases the order in which each step (forward motion and

rotation) is calculated becomes less and less important. At the limit ∆t → 0, this

implies that dy/dx = tan θ. Since dy/dx = ẏ/ẋ and tan θ = sin θ/ cos θ, this condition

can be written as a Pfa�an constraint [16]:

− ẋ sin θ + ẏ cos θ = 0. (3.6)

This constraint is satis�ed if ẋ = cos θ and ẏ = sin θ. Furthermore, any scalar multiple

of this solution is also a solution, and the scaling factor corresponds directly to the

linear speed v of the vehicle. Thus, the two �rst scalar components of the con�guration

transition equation are ẋ = v cos θ and ẏ = v sin θ. The next step is to derive the

equation for θ̇. Denoting s as the actual distance travelled by the car (the integral

of speed, ṡ = v), and ρ as the radius of the circle that is traversed by the center
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of the rear axle (assuming a �xed steering wheel), it results that ds = ρdθ. From

trigonometry, ρ = L/ tanφ, where L is the distance between axles, which implies:

dθ =
tanφ

L
ds. (3.7)

Finally, dividing both sides by dt yields:

θ̇ =
v

L
tanφ. (3.8)

Aerial Vehicles

A fully unconstrained object has six degrees of freedom in the 3D space: it can move

forwards and backwards in each of the three xyz-axes and it can also rotate around

each of these axes. The translational part of this motion is given by the corresponding

velocities ẋ, ẏ and ż, while the rotational part is de�ned here by α (roll), β (pitch)

and γ (yaw), the Euler angles. The transformation, in homogeneous coordinates,

from point x1 = (x1, y1, z1, 1)T to x2 = (x2, y2, z2, 1)T is given by x2 = RTx1, where

T is the translation matrix and R is the rotation matrix. They are of the form:

T =


1 0 0 ẋ

0 1 0 ẏ

0 0 1 ż

0 0 0 1

 , R =


r11 r12 r13 0

r21 r22 r23 0

r31 r32 r33 0

0 0 0 1

 . (3.9)

The translation matrix T has the following properties: the inverse T−1 can be obtained

by reversing the velocity vector used to generate it, and the product of two translation

matrices is given by adding their corresponding velocity vectors (the multiplication

of two translation matrices is, therefore, commutative). The rotation matrix R is

special orthogonal, which has the following properties: it is normalized (the squares

of the elements in any row or column sum to one), it is orthogonal (the dot product

of any pair of rows or any pairs of columns is zero), its determinant det(R) is unitary
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Figure 3.9 � Rotation on the zxz-axes. Initially a rotation φ is performed over the z
axis, followed by a rotation θ on the newly-formed x′-axis and �nally a rotation ψ
on the newly-formed z′-axis.

and its inverse R−1 is equal to its transpose RT . The combined transformation matrix

Tr = RT can then be written as:

Tr =


r11 r12 r13 r11ẋ+ r12ẏ + r13ż

r21 r22 r23 r21ẋ+ r22ẏ + r23ż

r31 r32 r33 r31ẋ+ r32ẏ + r33ż

0 0 0 1

 . (3.10)

The elements rij of R are obtained from the notion that any general rotation can be

described by a series of three individual rotations over orthogonal axes. Since rotation

on tridimensional space is not commutative, it is necessary to de�ne a consistent

rotation order. A common convention, shown in Fig. 3.9, is the zxz convention, where

a rotation φ is performed over the z-axis, followed by a rotation θ over the x′-axis

and �nally a rotation ψ over the z′-axis. The resulting rotation matrix Rzxz(φ, θ, ψ)

is calculated as follows:

Rzxz(α, β, γ) = Rz(ψ)Rx(θ)Rz(φ) =

=


cψ −sψ 0

sψ cψ 0

0 0 1




1 0 0

0 cθ −sθ
0 sθ cθ



cφ −sφ 0

sφ cφ 0

0 0 1
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=


cψcφ− sψcθsφ −cψsφ− sψcθcφ sψsθ

sψcφ+ cψcθsφ −sψsφ+ cψcθcφ −cψsθ
sθsφ sθcφ cθ

 , (3.11)

where s ≡ sin and c ≡ cos. The angles are usually chosen such that −π < φ ≤ π,

0 ≤ θ < π and −π < ψ ≤ π. Inversely, it is also possible to obtain the angle values

from Tr by solving:
r11 r12 r13

r21 r22 r23

r31 r32 r33

 =


cψcφ− sψcθsφ −cψsφ− sψcθcφ sψsθ

sψcφ+ cψcθsφ −sψsφ+ cψcθcφ −cψsθ
sθsφ sθcφ cθ

 , (3.12)

which results in:

θ = cos−1(r33) , ψ = tan−1(−r13

r23

) , φ = tan−1(
r31

r32

). (3.13)

It is also worth noting the problem of singularity, which happens when sin θ = 0.

In this particular case, the z and z′-axes coincide, and therefore φ and ψ can be

combined in one single rotation. Because of that, it is impossible to calculate their

values separately, and the resulting degenerate rotation matrix R assumes the form:

R =


r11 r12 0

r21 r22 0

0 0 ±1

 . (3.14)

3.3.2 Covariance Function Selection

As stated previously, the covariance function plays a key role in the �nal performance

of the GP inference process because it quanti�es the relationship between points

that will be used to model the underlying function between inputs and outputs.

Thus, its selection must be carefully considered, based on prior knowledge of the

phenomenon that the GP is attempting to learn from training data. Because optical

�ow information varies radically in di�erent portions of the image, and also because



3.3 Gaussian Process Learning 91

there are angular measurements involved, the neural network covariance function was

selected, due to its non-stationary property and the ability to model sharp transitions

between di�erent cell grids2. Section 2.2.4 provides an overview of di�erent covariance

functions and their properties, including the neural network, and its �nal equation is

presented here again for convenience:

kii(x,x
′) = σ2

f arcsin

 2x̃TΣx̃′√
(1 + 2x̃TΣx̃)(1 + 2x̃′TΣx̃′)

 , (3.15)

where x̃ = {1, x1, . . . , xD} is an augmented vector for the input point x and σf is the

signal variance hyperparameter. The remainder of this section addresses two further

issues that arise from the covariance selection process: 1) Cross-covariance func-

tion selection, which is the covariance function that models the relationship between

data points from di�erent outputs; and 2) Hyperparameter sharing, which provides a

method to decrease the dimensionality of the optimization problem during training

by enforcing the same length-scale values for di�erent components of the input vector.

Cross-Covariance Function Selection

Visual odometry is a multiple-output application, meaning that each frame encodes

motion from more than one degree of freedom. The previous section described two

di�erent vehicle models, a constrained 2D ground vehicle, with 2 degrees of freedom,

and an unconstrained 3D aerial vehicle, with 6 degrees of freedom. The neural net-

work covariance function (Eq. 3.15) only correlates input points that correspond to

the same output i = j. It is also necessary to de�ne a positive-de�nite covariance

function that correlates points from di�erent outputs i 6= j, thus allowing the GP

framework to use all information available to improve results on all outputs. The

constraints imposed by the vehicle model naturally correlate di�erent degrees of free-

dom to only certain speci�c combinations (i.e. a ground vehicle can only move forward

2Other covariance functions, such as the squared exponential and the Matérn, were also con-
sidered, but empirical tests con�rmed the assumption that the neural network covariance function
is indeed the most suitable for this particular visual odometry application, mostly because it deals
with angular quantities in the sparse optical �ow information.
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and backwards, and linear velocity tends to decrease as angular velocity increases).

This con�guration renders the cross-dependency modelling even more attractive in

the particular case of visual odometry.

We propose a cross-covariance neural network function, in which two smoothing ker-

nels are convolved [49] to obtain a positive-de�nite function capable of correlating

multiple outputs (Eq. 3.16). This methodology was described and developed in

Section 2.2.6 for the particular case of the squared exponential covariance function,

capable of addressing T outputs, and here it is extended to generate a non-stationary

cross-covariance function:

kij(x,x
′) = σ2

f,ij

arcsin

(
2x̃T Σx̃′√

(1+2x̃T Σx̃)(1+2x̃′T Σx̃′)

)
(|Σi||Σj|)4

√
|Σi + Σj|

, (3.16)

where x̃ = {1, x1, . . . , xD} is again an augmented vector for the input point x, the

signal variance hyperparameter σf,ij is now speci�c for each output pair and Σ =

σ2
f,ij(Σi(Σi + Σj)

−1Σj).

Hyperparameter Sharing

During the optical �ow parametrization stage (Section 3.2) it was determined that,

for a ground vehicle, the �nal vector that will serve as input for the GP framework

contains 128 dimensions: two optical �ow components for each of the sixty-four grids

in which the image was divided, which translates to also 128 length-scale hyperparam-

eters. A ground vehicle contains 2 degrees of freedom (Section 3.3.1), which increases

the number of length-scale hyperparameters to 256, since each output maintains its

own length-scale matrix Σi. The neural network covariance function also requires

an augmented vector x̃ for each input, a signal variance hyperparameter for each

output (and one for the cross-covariance function), and two noise parameters. The

total number of hyperparameters is therefore 128× 2 + 2 + 3 + 2 = 263, which poses

a challenge during the optimization process due to the excessively high-dimensional

space in which the input points are handled.
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Figure 3.10 � Diagram showing the hyperparameter sharing technique. Each square
represents one grid in the image, and the lines represent the row and columns that
are shared by the length-scale of the same colour.

A technique for decreasing the number of hyperparameters necessary to fully describe

the covariance function, and by extension for decreasing the optimization dimension-

ality, is presented here. It is based on the assumption that regions in the grid-divided

image that belong to the same row or column have a similar impact on the underlying

function modelling process, and therefore may share the same length-scale hyperpa-

rameter. Two independent neural network covariance functions are used (Fig. 3.10),

one to model a similar impact in rows and another to model a similar impact in

columns, and both are added in order to generate the �nal covariance function:

ksii(x,x
′) = k1

ii(x,x
′, θ1) + k2

ii(x,x
′, θ2) (3.17)

ksij(x,x
′) = k1

ij(x,x
′, θ1) + k2

ij(x,x
′, θ2). (3.18)

There is no sharing between length-scales of di�erent outputs, and each optical �ow

component (in this case, distance d and cosine c) is still modelled independently,

resulting in 16 length-scales for each neural network covariance function and 32 for

the �nal covariance function. The total number of hyperparameters is now 16 ×
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2 × 2 + 2 + 3 + 2 = 71, roughly 25% of the original number. This hyperparameter

sharing technique also reduces the curse of dimensionality problem, where data in

a high-dimensional space becomes sparse and insu�cient to correctly represent the

underlying function. By imposing constraints in di�erent dimensions, it becomes

easier to recover correlations between input points in this high-dimensional space

with a reasonable amount of training data.

3.3.3 Hyperparameter Optimization

Once the auto and cross-covariance functions have been de�ned, along with the cor-

responding hyperparameter set θ, an optimization stage is necessary to obtain the

non-parametric model that best represents the underlying function, given by a train-

ing dataset Λ obtained prior to the beginning of navigation. This training dataset is

composed of a set of N input vectors xn and their corresponding output vectors yn,

containing motion estimates for all degrees of freedom. Ideally, the training dataset

should be collected under similar conditions as the ones the vehicle will encounter dur-

ing navigation (i.e. same vehicle, camera con�guration and a similar environment), to

minimize the deviation in optical �ow distribution between available and new infor-

mation. Variations in each of these aspects are further explored in the next chapter,

providing an insight on how well the algorithm is able to generalize to unforeseen

conditions.

The cost function used during the optimization stage is the multiple-output log-

likelihood function L(y|Λ, θ), as described in Section 2.2.6 and repeated here for

convenience (Eq. 3.19). The optimization starts from a random hyperparameter set,

and Fig. 3.11 shows the in�uence of initial conditions on the maximization of the

negative log-likelihood function. Even though all initial random hyperparameters

generated similar log-likelihood values, they converged to di�erent values, and one

in speci�c (light blue line) converged to a value much smaller than all the others,

indicating that it represents a better �t to the training data. This sensitivity to initial

conditions is ampli�ed by the large number of variables involved in the optimization
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Figure 3.11 � Examples of marginal log-likelihood optimization with di�erent hyperpa-
rameter initialization. It is possible to see that, even though the initial log-likelihood
values were similar, di�erent initial hyperparameters converged to di�erent �nal val-
ues, and one in particular converged to a value much lower than the other ones,
indicating that it represents a better �t to the training data given the model.

process, that translates into a large number of local minima in which a gradient

descent algorithm may get trapped.

L(y|Λ, θ) = −1

2
ln |K| − 1

2
yTK−1y− N

2
ln(2π) (3.19)

To address this sensitivity to initial conditions, heuristic approaches for initial hy-

perparameter selection, such as the Monte Carlo-based simulated annealing [60], are

considered. The name annealing comes from a namesake technique in metallurgy,

that involves heating and controlled cooling of a material to increase the size of its

crystals and reduce their defects, both attributes that depend on thermodynamic free

energy. While the same amount of cooling brings the same amount of decrease in

temperature, it will bring a bigger or smaller decrease in the thermodynamic free en-

ergy depending on the rate in which it occurs, with a slower rate producing a bigger

decrease. The notion of slow cooling is implemented in the simulated annealing algo-

rithm as a slow decrease in the probability of accepting worse solutions as it explores

the solution space (Fig. 3.12). This is a fundamental property in meta-heuristics, be-
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Figure 3.12 � Example of simulated annealing. The solution is allowed to move into a
higher energy level in the search for the global minimum, and this allowed pertur-
bation decreases over time until convergence.

cause it allows for a more extensive search for the optimal solution. Once this search

is �nished, the resulting hyperparameter is further re�ned by a standard gradient

descent algorithm, converging to the nearest local minima which serves as the �nal

hyperparameter set.

Another useful technique in hyperparameter selection is the cross-validation (de-

scribed in Section 2.2.5), where part of the training dataset is withheld during the

optimization process and then used to provide a measurement of inference error. A

large error indicates that the current hyperparameter set, although providing a good

�t for the training information, lacks the generalization necessary to address new,

yet unobserved, information. These three techniques (simulated annealing, gradient

descent and cross-validation) comprise the core of the training stage used in the visual

odometry algorithm proposed in this thesis. A random set of hyperparameters goes

through simulated annealing, to �nd suitable initial conditions for gradient descent,

and the cross-validation error of the resulting hyperparameter set is calculated us-

ing part of the training data withheld during optimization. This process is repeated

a certain number of times, and the hyperparameter set with the lowest values for

negative log-likelihood and cross-validation error are selected and used during the

experimental tests.
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3.4 Experimental Results

The visual odometry methodology described in this chapter was evaluated using real

data, collected from modi�ed vehicles (Fig. 3.13) equipped with a single uncalibrated

camera and other sensors for ground-truth and comparison purposes. These tests are

divided into two categories: ground (using the constrained 2D vehicle model) and

aerial (using the unconstrained 3D vehicle model) experiments. Initial tests were

conducted using ground vehicles, because they are constrained to 2D navigation and

therefore contain fewer degrees of freedom. This translates into fewer outputs for the

GP framework, and also a smaller computational complexity during the training and

inference stages. Once the algorithm was working satisfactorily, the same framework

was extended to 3D environments in the aerial experiments, which provide a platform

for any visual odometry application. It is worth noting that this transition was

seamless, no change in the algorithm was necessary.

This section presents and discusses the results obtained in these experiments, starting

with ground vehicles and later moving on to aerial vehicles. These results are further

(a) Modi�ed car

(b) Unmanned Aerial Vehicle (c) Robotic platform for gener-
alization testing

Figure 3.13 � Vehicles used in experiments.
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improved in the next chapter, where extensions to the basic algorithm described in

this chapter are proposed as a way to address some of the limitations discussed here.

The next chapter also provides a quantitative study of the results (Tables 4.2 and

4.3), comparing estimates obtained using di�erent methods and how they relate to

the techniques proposed in this thesis.

3.4.1 2D Experiments

The 2D experiments were conducted using the vehicle in Fig. 3.13a, equipped with

a single camera, wheel odometry, two SICK laser sensors and a GPS (with a 5m

precision). The wheel odometry system was not used during the experiments, the

SICK lasers were used to provide ground-truth for the GP framework, and the GPS

was used for comparison purposes only. Images were obtained at a rate of 5 frames per

second and a resolution of 1152x758 pixels, which was then downsampled to 384x252

pixels (one third of the original size) and converted into monochromatic intensity

values. The reasons for this downsample and monochromatic conversion are two-fold:

1) To verify the robustness of the algorithm in low-resolution cameras (marginally

better results were obtained with higher resolutions); 2) To speed up the SIFT (or

equivalent) feature extraction and matching processes. During data acquisition the

vehicle navigated an urban environment at speeds of up to 40 km/h, and interacted

normally with pedestrians and other vehicles.

The training dataset is composed of 2500 images, collected as the vehicle was driven

for roughly 2.5 km in the trajectory shown in Fig. 3.14a. Ground-truth information

was obtained based on laser data, using the Iterative Closest Point (ICP) algorithm

[70], and the resulting localization estimates are also shown in the same �gure. Be-

cause they are incremental, these estimates are by themselves subject to drift due to

the accumulation of small errors over time. Even though this drift could in principle

be greatly reduced by fusing the estimates with an absolute sensor (such as GPS),

here it was decided to use the ICP estimates directly as ground-truth information,

with no further re�nement. This is done to verify the ability of the proposed visual
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odometry algorithm to average over small errors by using a large training dataset to

learn the underlying function directly from noisy information, and also to minimize

the need for high-precision sensors during the training stage. Empirical tests show

marginal improvements in localization when more accurate ground-truth is used, and

virtually no improvement when the extensions to the basic framework proposed in

the next chapter are incorporated.

The testing dataset is composed of 2000 images collected using the same vehicle and

camera, but from a di�erent trajectory of roughly 2 km, as shown in Fig. 3.14b. The

ICP localization results are also depicted, however they are now calculated solely for

comparison purposes, as no information is used during the inference process other than

visual data. Also for comparison3, the localization results obtained using Mono-SLAM

[24] and the Structure-From-Motion algorithm described in Section 2.3.5 are presented

in Fig. 3.15. The Mono-SLAM algorithm employs Exended Kalman Filters to track

the position of features in the environment, and uses this information to recover the

vehicle position. While this approach minimizes the impact of error accumulation

from relative estimates, it also has a high computational cost and struggles with

failures in the feature matching process. The calibration parameters were obtained

(a) (b)

Figure 3.14 � Training and testing datasets. Even though tests were conducted out-
doors, there are several areas in which the GPS signal (green dots) is not available,
due to tree coverage or the presence of tall buildings nearby.

3The 1-Point RANSAC algorithm [106] was also tested, however it was unable to outperform
SFM in the testing environments, mostly due to sharp turns and sudden changes in luminosity.
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Figure 3.15 � Localization results obtained using standard geometric models. The
purple line shows the Mono-SLAM [24] position estimates, while the blue line shows
the position estimates obtained using the Structure-From-Motion (SFM) algorithm,
with manual scale adjustment and constrained for 2D navigation.

manually [48], and scale was adjusted manually to minimize the overall translational

error of the entire trajectory. Even so, it is possible to see some scale inconsistencies,

especially in the initial portions of the algorithm (upper right corner of the map),

where the vehicle is still moving at low speeds and manual scale adjustment tends

to overestimate linear velocity. The SFM algorithm performed better at angular

motion estimation, mostly due to the presence of distant features that can be used

as �xed landmarks to measure rotation, however there is still some residual drift that

accumulates over time and impacts signi�cantly the localization results towards the

end of the trajectory.

Finally, the localization results obtained using the proposed method, with a multiple-

output Gaussian process (MOGP) to estimate all degrees of freedom, are depicted

in Fig. 3.16. The �rst interesting aspect of these results is that the GP framework

was capable of recovering scale to a high degree of precision (no scale adjustment was

performed), by exploiting similarities in the optical �ow distribution between training

and testing images. Essentially, the scale information provided by the sensor used to

generate the ground-truth estimates (a SICK laser, in this case) was encoded into the
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non-parametric model during the learning stage, and extrapolated to new data using

inference based on the GP framework regression methodology.

The GP framework, however, struggles with angular motion estimation, resulting in

a residual drift that also compromises long-term localization results. We attribute

this angular drift to the presence of smaller overlapping areas between frames, which

compromises the optical �ow distribution throughout the entire image, and also to

the presence of fewer vehicle turning samples in the training dataset. Since the vehi-

cle moves mostly in a straight forward motion during navigation, the various smooth

and sharp turns encountered during tests were under-represented and there was not

enough information for a robust recovery. Furthermore, the MOGP framework is not

capable of correctly modelling the cross-dependencies between outputs, generated by

vehicle constraints that limit linear and angular motion to only certain speci�c combi-

nations, and thus linear velocity information does not translate into a better angular

velocity estimation, and vice-versa. This information exchange between di�erent

outputs would be valuable as a way to decrease the amount of training information

Figure 3.16 � Localization results obtained using the proposed algorithm, with a
multiple-output Gaussian process (MOGP) to estimate all degrees of motion.
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Figure 3.17 � Motion estimates for each output in 2D navigation. The blue line
indicates ground-truth, the red line indicates the MOGP estimate, and the grey
areas indicate the variance intervals within 2 standard deviations.

necessary, and also to increase performance in under-represented portions of the input

space.

The mean and variance values for each output in all testing frames is shown in Fig.

3.17, where the blue line indicates ground-truth, the red line indicates the GP estimate

and the grey area represents the variance intervals within 2 standard deviations. As

we can see, virtually all ground-truth values fall within the variance intervals provided

by the GP framework, indicating that the proposed approach's con�dence in its own

estimations is correctly represented. As expected, the most noticeable discrepancies

between ground-truth and GP estimation values appear during sharp turns (the peaks

and valleys in angular velocity), that as stated before are under-represented in the

training dataset simply because there are not enough samples of this behaviour in a

real navigational scenario in comparison to forward motion and smooth turns.
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3.4.2 3D Experiments

The same visual odometry algorithm was also tested using data collected from an

unmanned aerial vehicle (UAV, Fig. 3.13b) �ight over a deserted area, at a rate of

3 frames per second and an average speed of 110 km/h. Due to the high altitudes

(during training and testing the UAV maintained an average altitude of 80-100 m),

the narrow �eld of view approach to optical �ow parametrization was used to obtain

the input vectors used by the GP framework. The UAV was also equipped with iner-

tial sensors and GPS, that were fused to provide ground-truth data for training and

comparison purposes. The �rst 4000 frames after stabilization were used for training,

and the following 2000 frames were used for algorithm evaluation. The feature extrac-

tion and matching techniques failed to �nd any correspondences in around 2% of the

image pairs, due to a lack of overlapping areas caused by severe angular motion, and

in overall there was a wide variation in the size and shape of these overlapping areas

(see Fig. 3.6), which constitutes a challenge for standard visual odometry algorithms.

Frame pairs with no corresponding matches were avoided during training, and during

evaluation the motion estimates from the previous timestep were repeated.

Fig. 3.18a shows the localization results obtained using the SFM algorithm, now un-

constrained to address all six degrees of freedom4. We attribute this poor performance

to three reasons: 1) Small and inconsistent overlapping areas between frames; 2) The

high altitudes create a lack of depth perception in the ground plane; 3) Poor camera

calibration, due to the narrow �eld of view that in�uenced the calibration process

negatively. Similarly, the localization results obtained using the proposed approach

are depicted in Fig. 3.18b, where it is possible to see a signi�cant improvement over

SFM in the sense that the overall shape of the trajectory was maintained throughout

the entire run. However, there is still a substantial drift that compromises localization

in both the vertical and horizontal planes, as it can be seen in Fig. 3.18c where the

same results are presented in a 3D plot. Again, we attribute this drift to the lack of

motion representation in the training dataset, which now becomes even more evident

4The Mono-SLAM algorithm was incapable of outperforming SFM under this new framework,
due to di�culties in tracking features over a reasonable period of time in order to produce an accurate
landmark map of the environment.



104 Learning Visual Odometry Estimators

because in the 3D space there is a larger space of possible motion combinations that

the GP framework has to correctly map to optical �ow information.

(a) (b)

(c)

Figure 3.18 � Localization results in 3D environments. (a) Results obtained using
a structure from motion algorithm. (b) 2D plot of the results obtained using the
proposed approach. (c) 3D plot of the results obtained using the proposed approach.
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Figure 3.19 � Motion estimates for each output in 3D navigation. The blue line
indicates ground-truth, the red line indicates the MOGP estimate, and the grey
areas indicate the variance intervals within 2 standard deviations.

The mean and variance values for each output in all testing frames is shown in Fig.

3.19, where the blue line indicates ground-truth, the red line indicates the GP estimate

and the grey area represents the variance intervals within 2 standard deviations. First

of all, we can see that most of the linear motion comes from the x-axis, which is to be

expected since this is the axis that represents forward motion in the UAV's relative

coordinate system, however there is also some motion in the y and z-axes5, oscillating

both positively and negatively. Again, virtually all ground-truth values fall within

5The UAV was initially modelled with only four degrees of freedom (forward motion ẋ and Euler
angles α, β and γ), however this approach proved to be insu�cient for this particular application
and was extended to address all six degrees of freedom.
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the variance intervals provided by the GP framework, indicating that these estimates,

even though less accurate than the ones obtained during the 2D experiments, are

still valid from a probabilistic standpoint. The proximity between ground-truth and

GP estimation values also attest to the degree of accuracy that a visual odometry

algorithm requires in order to provide useful information, as even minor imprecisions

quickly accumulate over time compromising localization results.

3.5 Summary

This chapter introduced and described the �rst steps in obtaining a solution to the

problem of visual odometry that uses Gaussian processes as the mapping function

between optical �ow information and vehicle motion estimates. The information en-

coded in two images is processed to extract a matching set that represents motion

between frames, and this matching set is parametrized in order to generate a vector

that is suitable as an input for the GP framework. Di�erent methodologies are de-

scribed, one to address the traditional scenario in which a camera is placed on top

of a moving vehicle and another to address the more involving scenario of a camera

placed on an aircraft pointing downwards. In the second case, the narrow �eld of view

and the high sensitivity to angular motion pose a challenge in the feature extraction

and matching processes.

Afterwards, the GP framework as a viable solution to the visual odometry problem

is presented, introducing the vehicle models from which the GP outputs are de�ned,

the choice of which covariance function to use and the process of hyperparameter

optimization during the training stage. The goal of the proposed GP framework

is to eliminate the need for a explicitly de�ned model, thus allowing the system

to automatically learn the best transformation between inputs (sparse optical �ow

information) and output (motion estimates) given the available data. It is natural

do assume that similar motions will generate similar optical �ow patterns, and the

GP framework is capable of exploiting these correlations to create a regression model

robust enough to infer the behaviour of new, unobserved data.
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Finally, experiments conducted in both 2D and 3D navigation scenarios are presented

and discussed, showing the initial results of the proposed method in comparison with

standard Structure-from-Motion algorithms. These results validate the assumption

that GPs can indeed serve as a modelling tool for visual odometry applications,

and achieve accuracies that are comparable to state-of-the-art traditional motion

estimation techniques. The next chapter will focus on further improving this basic

algorithm, addressing the various issues raised in this chapter and providing tools

that increase the overall robustness and precision of the proposed method.
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Chapter 4

Semi-Parametric Coupled Gaussian

Processes

The previous chapter introduced the proposed visual odometry algorithm, describing

its basic functionalities that allow image information to be mapped directly into

vehicle motion estimates. The traditional camera calibration process, which optimizes

a parametric model (the geometric camera model), is substituted by a much more

powerful non-parametric model, the GP framework, that is capable of capturing and

encoding nuances that a strictly geometric model struggles with. The GP framework

eschews the need for any assumption in regards to the visual system utilized (the same

algorithm can be transferred seamlessly to any camera con�guration) or environment

structure. The GP framework is also capable of encoding scale information into its

non-parametric model, thus allowing the recovery of absolute scale even on a single

camera con�guration, a task that is non-trivial in monocular visual odometry.

However, as it was also stated in the previous chapter, there are still several short-

comings in the proposed method that need to be addressed before it can be truly used

as a robust visual odometry solution1. One of these shortcomings is the algorithm's

inability to correctly model cross-dependencies between di�erent outputs, that would

1The techniques described in this chapter were presented at the International Conference on
Robotics and Automation (ICRA) 2011 and 2012, under the titles Visual Odometry Learning for

Unmanned Aerial Vehicles [42] and Semi-Parametric Models for Visual Odometry [43].
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allow the GP framework to exploit the constraints created by vehicle dynamics and

facilitate correlation on the high-dimensional input space. The MOGP framework,

as described in Section 2.2.6, is capable of estimating each output using information

from all inputs, but each output is still calculated individually, and thus there is no

cross-dependency modelling (the resulting covariance matrix is diagonal). The cal-

culation of these cross-dependencies would also improve the use of the estimates in

�ltering and SLAM scenarios, since now uncertainty is fully modelled and encoded

into the covariance matrix.

Another shortcoming mentioned in the previous chapter is the algorithm's inability

to generalize over di�erent optical �ow distributions. Once the GP hyperparameters

have been optimized in the training stage, they are �xed and will not change during

navigation, even though there is a constant �ow of new information that could be

used to improve the non-parametric model. As training data deviates from testing

data, so does the algorithm's overall performance, even though there is also a corre-

sponding increase in uncertainty, which maintains the validity of the solution from

a probabilistic standpoint. Regions in the input space that are under-represented

in the training dataset su�er the most, such as sharp turns and other uncommon

behaviours. By allowing the non-parametric model to be iteratively updated, with

new information being incorporated and redundant information being discarded, the

algorithm would be able to gradually learn new optical �ow distributions.

This chapter is devoted to address these shortcomings, and some others, in an attempt

to improve the proposed method to a point in which it can be robustly used as a visual

odometry solution, with results that are on par with traditional parametric solutions.

It starts by providing an overview of the proposed visual odometry algorithm, with

all the extensions proposed in this thesis, and it continues by exploring each of the

following subjects in more detail:

• Coupled Gaussian Processes. The CGP (Coupled Gaussian Processes) is

an extension to the MOGP (Multiple Output Gaussian Processes) framework

in which all outputs are calculated simultaneously, based on all available input
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information. This technique also allows the recovery of a full covariance ma-

trix, containing not only the uncertainty estimates for all outputs but also the

cross uncertainty estimates between each individual output pair. Hence, if one

particular output is well-represented in the input space, this information can be

used to improve results on outputs that are under-represented, creating a more

robust solution that does not require an exceedingly large training dataset to

provide accurate results.

• Temporal Dependency between Frames. This extension was conceived

as a way to increase the amount of information available as input for the GP

framework, especially in the particular case of a narrow �eld of view (Section

3.2.3), where the entire image is considered homogeneous and therefore repre-

sented by a single optical �ow vector. In this scenario, a similar optical �ow

distribution may be responsible for several distinct motion combinations in dif-

ferent degrees of freedom, creating ambiguities in the estimation process that

could compromise results. By assuming that vehicle velocity changes gradually

between frames, we propose using the outputs in a given timestep as part of the

input vector for the next one, thus constraining the space of possible solutions

to those that are similar to the ones obtained previously.

• Incremental Updates of the Covariance Matrix. A truly generic visual

odometry algorithm should be able to provide accurate motion estimates regard-

less of the environment the vehicle encounters during navigation, which is clearly

not the case if a �xed training dataset is used to generate the non-parametric

model and optimize the hyperparameters. This shortcoming is addressed here

by allowing the iterative incorporation of new data into the non-parametric

model, along with the removal of data considered redundant. Assuming that

the environment changes smoothly as the vehicle moves, the resulting algorithm

is now able to gradually adapt to new environments and learn new (and poten-

tially useful) optical �ow distributions. The hyperparameters, and consequently

the transformation function between inputs and outputs, are also iteratively up-

dated to re�ect this environment change.
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• Semi-Parametric Visual Odometry. The GP framework eliminates the

need for a geometric model by learning the transformation function from image

information to vehicle motion directly from training data in a non-parametric

fashion. However, geometric models have been extensively studied and are

known to provide accurate results in a wide variety of situations, so there is no

reason to avoid their use completely if this could lead to better estimates. We

propose the combination of a geometric parametric model with a non-parametric

GP model to create a semi-parametric solution to visual odometry (SPCGP, as

in Semi-Parametric Coupled Gaussian Processes), where the geometric model

provides an initial estimate that is then further re�ned by the CGP framework.

The camera calibration parameters are treated as hyperparameters and learned

during the training stage, thus maintaining the assumption that no traditional

camera calibration is necessary.

• Simultaneous Localization and Mapping. The ability of the CGP frame-

work to recover a full covariance matrix is exploited here in an extension to a

SLAM scenario. A loop-closure algorithm is implemented to determine when an

area is being revisited by the vehicle, and an Exact Sparse Information Filter

(ESIF) [136] is used to keep track of all pose estimates, along with their corre-

sponding covariance matrices. If an area is assumed revisited, these poses are

updated to decrease global uncertainty, eliminating residual drifts and imposing

an upper bound on uncertainty that allows for accurate localization estimates

even after long periods of navigation.

The chapter then describes the experiments, presenting and discussing results ob-

tained using the proposed method in both 2D and 3D scenarios, which testify to

the various bene�ts gained from incorporating di�erent extensions into the main al-

gorithm. Experiments that address the generalization capabilities of the proposed

method are also presented, testing its limits in handling deviations between training

and evaluation conditions and showing how much similarity is necessary before the

algorithm starts to fail and no longer provides useful estimates. Finally, the chapter

concludes by providing a summary of contributions and delineating the motivation
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behind the implementation of the dynamic object removal algorithm described in the

next chapter.

4.1 Algorithm Extensions

A simpli�ed version of the proposed visual odometry algorithm was presented in Sec-

tion 3.1, and here this simpli�ed version is extended to include all modules described

in this chapter. A complete diagram of the proposed method is shown in Fig. 4.1,

where it is possible to see that most of the changes take place in the Gaussian Pro-

cess Framework stage, which now follows the SPCGP framework principles. Prior

to the beginning of navigation, the optimized calibration parameters and optimized

SPCGP parameters are obtained based on training information, which now also in-

cludes the set FTR containing the fundamental matrices obtained from the training

images. These fundamental matrices encode the epipolar constraints that allow the

geometric model to estimate camera translation and rotation between frames, which

in turn acts as the SFM estimate, the parametric portion of this semi-parametric ap-

proach to visual odometry. A random set of hyperparameters and calibration param-

eters may be used as the starting point for the training process, and if an estimate is

already available it can be used instead, thus increasing algorithm convergence speed.

It is important to note that both camera calibration parameters and SPCGP hy-

perparameters are optimized simultaneously, as equal layers in the semi-parametric

framework, and therefore the resulting calibration parameters may not re�ect the

actual camera intrinsic parameters.

Once the training process is completed, the optimized calibration parameters are

used to generate the SFM estimate based on F12, which serves as an initial guess

that is then further re�ned by the SPCGP Inference process based on the current

non-parametric model (X, Y, F )NP , the input vector X12 and the optimized SPCGP

hyperparameters. The �nal output is comprised of the mean vector Y12, containing

the vehicle motion estimates for all degrees of freedom, and the covariance matrix

Σ12, containing the auto-covariance values for all degrees of freedom and the cross-
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Figure 4.1 � Diagram of the proposed algorithm (�nal version, with all extensions).
The Optical Flow Parametrization stage deals with the processing of a pair of
images, generating the vector X12 and the fundamental matrix F12 that will serve
as input for the Gaussian Process Framework, the second stage. The Gaussian
Process Framework can be further divided into three modules: Training, where
the optimized hyperparameters are obtained from the training dataset prior to the
beginning of navigation; Update, where the optimized hyperparameters are further
re�ned using new information, iteratively incorporating and removing data from the
non-parametric model; and Inference, where the current optimized hyperparameters
are used to calculate an initial SFM estimate that is then further re�ned by the non-
parametric model, generating the mean vector Y12 and covariance matrix Σ12 from
the input vector X12. If temporal dependency is being used, the motion estimates
Y01 are used to complete the input vector X12 and the resulting motion estimates
Y12 are maintained to be incorporated into the input vector X23 from the next
timestep.



4.1 Algorithm Extensions 115

covariance values between each degree of freedom. If the temporal dependency module

is active (dotted lines), both output components are stored and used in the next

iteration to complete the input vector X23, to increase the amount of information

available for the SPCGP Inference process.

Afterwards, the mean vector Y12, the input vector X12 and the fundamental ma-

trix F12 are used as input in the SPCGP Update process, where the non-parametric

model is updated as new information becomes available. If X12 resides in an under-

represented portion of the input space, it would be desirable to incorporate it into

the non-parametric model, thus increasing accuracy in a new family of optical �ow

distributions. The next step is to check the values in Σ12, because if the correspond-

ing uncertainty is high this indicates that the algorithm is not con�dent about Y12,

and therefore this estimate may not be reliable enough to be incorporated into the

non-parametric model. These two aspects (the bene�t of incorporating X12 versus

the inherent uncertainty in Y12) are weighted, and if the result is favourable the cur-

rent estimate is added as a new data point into the non-parametric point. If this

incorporation makes the covariance matrix surpass a certain size, a data point must

also be removed in order to keep the computational cost roughly constant. This point

is selected among those in a well-represented portion of the input space, to minimize

the amount of information discarded from the non-parametric model.

4.1.1 Coupled Gaussian Processes

The multiple-output Gaussian process (MOGP) derivation [10] improves on standard

Gaussian processes by allowing the simultaneous modelling of T outputs, using the

assumption that there is a latent correlation between them (Fig. 2.9). This correlation

is quanti�ed using a cross-covariance function, that quanti�es the relationship between

input points that are mapped to di�erent outputs. This approach allows the sharing

of information between di�erent outputs, and if they are indeed correlated this sharing

improves on results by constraining the solution space. However, each output is still

calculated independently, and therefore there is no modelling of cross-dependencies
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between outputs. These cross-dependencies (the o�-diagonal terms in the covariance

matrix Σ) represent the uncertainty values of each output pair, indicating how much

the knowledge of one output increases the information available for the estimation of

the other one.

An extension to the standard MOGP derivation is presented here, where all out-

puts are calculated simultaneously from the same input information. This approach

allows the recovery of a full covariance matrix V (̄f), containing both auto and cross-

dependencies between each output. The higher a particular cross-dependency value

is, the more correlated the corresponding output pair will be, and by exploiting these

dependencies the algorithm is capable of further constraining the solution space to

reduce uncertainty and improve results. This ability to quantify the correlation be-

tween di�erent outputs, and determine speci�c coupling pairs whose correlation could

be exploited, gives this extension the name of Coupled Gaussian Process (CGP). This

is the GP framework used in the proposed visual odometry algorithm, as a way to

correctly model the constraints generated by vehicle dynamics, that naturally limits

motion to only certain speci�c combinations.

As in the standard MOGP framework, the training dataset Λ is divided into T sepa-

rate Λt = {xn, yn,t}Nn=1 datasets, each containing N observations xn and their corre-

sponding ground-truth yn,t information for that particular output2. The covariance

matrix K is now de�ned as:

K = Kf ⊗Kx + Σn, (4.1)

where ⊗ denotes the Kronecker product, Kf is a T × T positive-de�nite matrix that

models the correlation amplitude between each output (a two-dimensional analogue

to the signal variance values σ2
f,ij in Eqs. 3.15 and 3.16) and Σn is a T × T matrix

containing noise values. The matrix Kx is a T × T block matrix that encodes the

2In principle, each particular training dataset may be composed of a di�erent set of observations,
and may also be of di�erent sizes. However, since in the visual odometry scenario this is generally
not the case (each image has a corresponding motion estimate for all degrees of freedom), for the sake
of simplicity we will assume from now on that all training datasets Λt contain the same observation
set X = {x1, . . . ,xN}.



4.1 Algorithm Extensions 117

auto and cross-covariance values between training inputs xn,ij, for each output pair,

and it is given by:

Kx =


K11 . . . K1T

...
. . .

...

KT1 . . . KTT

 , (4.2)

where

Kij =


kij(x1,x1) . . . kij(x1,xN)

...
. . .

...

kij(xN ,x1) . . . kij(x1,xN)

 (4.3)

and kij is the auto-covariance function kii(x,x
′) if i = j and the cross-covariance

function kij(x,x
′) if i 6= j. The covariance functions used here are slightly di�erent

from the ones proposed previously (Eqs. 3.15 and 3.16), due to the introduction of

the correlation matrix Kf , and are positive-de�nite (a proof can be found in [134])

and of the form:

kii(x,x
′) = arcsin

 2x̃TΣx̃′√
(1 + 2x̃TΣx̃)(1 + 2x̃′TΣx̃′)

 (4.4)

kij(x,x
′) =

arcsin

(
2x̃T Σx̃′√

(1+2x̃T Σx̃)(1+2x̃′T Σx̃′)

)
(|Σi||Σj|)4

√
|Σi + Σj|

. (4.5)

In the equations above, x̃ = {1, x1, . . . , xD} is an augmented vector for the input

point x and Σ = Σi(Σi + Σj)
−1Σj. The hyperparameter set θ is now composed of

the length-scales Σt for each particular output, the correlation parameters in Kf and

the noise values in Σn. The hyperparameter sharing technique introduced in Section

3.3.2 still applies, and the training stage is conducted by optimizing the marginal

likelihood function as described in Eq. 3.19. Once training is complete, the optimized
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hyperparameters are used for inference, which for a test point x∗ is de�ned as:

f̄∗ = KT
s K

−1y (4.6)

V (̄f∗) = K∗ −KT
s K

−1Ks, (4.7)

where y = [(y1,1 . . . y1,N1) . . . (yt,1 . . . yt,Nt) . . . (yT,1 . . . yT,NT
)]T is a vector containing

the ground-truth information for all outputs and

K∗ =


k11(x∗,x∗) . . . k1T (x∗,x∗)

...
. . .

...

kT1(x∗,x∗) . . . kTT (x∗,x∗)

 (4.8)

is a matrix containing the auto-covariance values for the test point x∗ for each output

y∗,t, and the corresponding cross-covariance values for each output pair. Lastly, Ks is

a T -column matrix that contains the covariance values between the test point x∗ and

the training points xn for all outputs (again, we assume that all training datasets Λt

are composed of the same set of observations), and it is de�ned as:

Ks =



kf1,1k1,1(x∗,x1) . . . kfT,1kT,1(x∗,x1)
...

. . .
...

kf1,1k1,1(x∗,xN) . . . kfT,1kT,1(x∗,xN)
...

. . .
...

kf1,Tk1,T (x∗,x1) . . . kfT,TkT,T (x∗,x1)
...

. . .
...

kf1,Tk1,T (x∗,xN) . . . kfT,TkT,T (x∗,xN)


. (4.9)

This new inference methodology is the main contribution of CGPs over the stan-

dard MOGP framework, allowing the simultaneous recovery of all vehicle motion

estimates f̄∗ and also a full covariance matrix V (̄f∗), as seen in Fig. 4.2. The CGP

inference methodology comprises the core of the proposed visual odometry algorithm,

and results presented later on in the experiments section (Section 4.3) testify to the
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improvement given by this approach over the MOGP results shown in the previous

chapter. The next sections are devoted to further improve the CGP framework by

introducing temporal dependencies between frames, the iterative incorporation and

removal of information from the covariance matrix, and the introduction of a geomet-

ric model as the mean function for the posterior distribution (thus eliminating the

standard zero mean assumption mentioned in Section 2.2.3).

Figure 4.2 � Motion estimates obtained using the CGP framework (compare with
Fig. 3.17). The bottom �gure shows the cross-covariance values between linear
and angular velocities, and it is possible to see that it consistently increases during
rotation. This is to be expected, as it is when the vehicle turns that its dynamic
constraints become more prominent, and the CGP framework is able to exploit
these constraints to further improve the accuracy of its estimates even in under-
represented regions of the input space.
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4.1.2 Temporal Dependency between Frames

The previous section explored the nature of cross-dependencies between outputs,

which is a natural assumption in visual odometry applications, where the dynamic

vehicle model naturally constrains motion and correlates di�erent degrees of freedom.

However, this is not the only one, and here another type of correlation between out-

puts is explored: temporal dependency. It is safe to assume that a real vehicle will

change its velocity in a smooth manner, without discontinuities, and therefore its

motion estimates will also vary smoothly over time. A �rst-order temporal depen-

dency between outputs implies that yk−1 will be correlated to yk, with k being the

timestep for each frame. This is modelled into the CGP framework by incorporating

the motion estimate f̄
∗
k−1 into the input vector xk. For a test point x∗k at timestep k

the new augmented input vector z∗k is de�ned as:

z∗k = {x∗k, f̄
∗
k−1}. (4.10)

The introduction of z as an augmented input vector does not interfere with the CGP

inference methodology, other than requiring the corresponding augmentation of the

length-scale matrix Σt to deal with the new input dimensions that were incorpo-

rated. However, this new framework disturbs the traditional training methodology

because the new complete set of observations Z = {zn}Nn=1 is not readily available

for evaluation, since it needs to be calculated incrementally based on information

obtained in the previous iteration. It is possible to use ground-truth information to

complete Z, but this would generate a best-case scenario that is not consistent with

real applications, where small estimation errors propagate over successive iterations.

A new training methodology is proposed here, which allows an incremental hyper-

parameter optimization while maintaining temporal dependency by using motion es-

timates obtained using the CGP inference process to generate the input vectors zn

in the training dataset. This new methodology is described in details in Algorithm

4.1, and it requires the division of the training dataset Λ into two subsets, Λ1 and

Λ2, each composed of half the training data. In the �rst subset, the ground-truth
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Algorithm 4.1: Temporal Dependency Training

Input :
Λ1 and Λ2 - Training datasets

θ - Initial hyperparameter set

Output: θ - Optimized hyperparameter set
likelihood_old←∞
likelihood_new ← 0
while likelihood_new − likelihood_old 6= 0 do

likelihood_old = likelihood_new
foreach xi in Λ1 do

Z1
i ← (xi,y

1
i−1)

end
% Expectation step
foreach xi in Λ2 do

yCGP = CGP_INFER(Z1,xi, θ)
Z2
i ← (xi,yCGP )

end
% Maximization step
(likelihood_new, θ) = CGP_TRAIN(Z2,y2, θ)
Λ1 ↔ Λ2

end
return θ

values of y1 are used to complete Z1 directly (lines 4-6), in such a manner that y1
k−1

completes z1
k. The observation set Z1 is then used to evaluate Z2 iteratively (lines

8-11), according to the CGP inference methodology described previously.

Once this evaluation process is complete, the observation set Z2 is used to optimize the

hyperparameters (line 13) according to the marginal log-likelihood function (Eq. 3.19)

and using a gradient-descent method. After this optimization is complete, the process

is repeated with inverted subsets (Λ1 is now used for inference and Λ2 for training)

until the cost function converges (lines 14-15). It was determined empirically that

the hyperparameters assigned as length-scales for the mk−1 components of zk should

be kept from taking too low values, since this would increase the sensitivity to small

errors in estimation. Also, the gradient-descent method should be limited to only a

few steps, in order to increase convergence speed and discourage over-�tting to any

particular iteration of the training process.
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This technique resembles the expectation-maximization (EM) algorithm [26], in the

sense that it alternates between computing motion estimates from current hyperpa-

rameters (the expectation step) and optimizing hyperparameter values using current

motion estimates (the maximization step). There is no guarantee of convergence to

the global minimum, so heuristic approaches for escaping local minima, such as ran-

dom restart or simulated annealing, should still be considered as discussed previously.

The intermediary results of this new training methodology are depicted in Fig. 4.3,
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Figure 4.3 � Intermediary results of the new training methodology introduced to ad-
dress temporal dependency between outputs. (a) Optimization of the marginal
log-likelihood function. (b) Accumulated errors for each output and for each itera-
tion (assuming all six degrees of freedom).
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where it is possible to see a steady decrease in the cost function value for each iter-

ation. The corresponding accumulated errors for each output are also depicted and

show a steady decrease as well, even though there are some occasional increases due

to the multiple-output nature of the optimization process (certain errors might in-

crease as others decrease). This particular training methodology is particularly useful

in 3D aerial visual odometry, where the narrow �eld of view imposed by the camera

limits the information available for the CGP framework. By incorporating temporal

dependencies it is possible to severely constrain the solution space and signi�cantly

improve results, as shown in Section 4.3.2.

4.1.3 Incremental Updates of the Covariance Matrix

As stated previously, the performance of the CGP framework is heavily dependent

on similarities between optical �ow distributions in the training and testing datasets,

since inference is performed by comparing available data (and their corresponding

ground-truth) with new unobserved information. As new information deviates from

available data, the input space becomes under-represented and the CGP framework

does not have enough samples to generate accurate estimates, even though the cor-

responding uncertainty increases to balance this phenomenon from a probabilistic

standpoint. Since it is infeasible to produce a training dataset with all possible opti-

cal �ow distributions in all possible environments, both due to sheer logistical reasons

and the computational complexity of the resulting model, another solution would be

to allow the incremental update of the covariance matrix, incorporating useful data

and removing redundant data as they become available.

Since ground-truth information is not available during navigation, this data incor-

poration framework must use CGP estimates as ground-truth, obtained iteratively

during the inference process. Any data incorporated should represent a previously

poorly described portion of the input space, to increase the overall knowledge of the

underlying function without excessive redundancy. As a new point is incorporated,

if the resulting covariance matrix K surpasses a pre-determined size, another point
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should be removed to maintain computational complexity roughly constant. This

point is selected among those that describe an already well-represented portion of

the input space (and are therefore considered redundant). These rules are observed

by determining the k nearest neighbours of the test point x∗ in the input space, and

performing the following three steps:

• Uncertainty check. To avoid the incorporation of inaccurate estimates, the

test point is discarded if its inherent uncertainty Σ∗ is the highest among its

neighbours, of if it is higher than a certain threshold κu. This step assumes that

the environment in which the vehicle is navigating changes smoothly, to allow

the gradual incorporation of new accurate data throughout this transition and

"prepare" the vehicle for the new environment.

• Data Incorporation. If the number of neighbours of the test point within a

certain radius is lower than a certain threshold κi, then the point is accepted for

incorporation (it represents a previously unknown portion of the input space).

This incorporation process is performed according to Eqs. 4.11 and 4.12.

• Data removal. If the size of the covariance matrix K exceeds a certain thresh-

old κr, a point must be selected for removal. This is done by selecting the point

in the current non-parametric model with the highest number of neighbours

(and therefore it is considered redundant). This removal process is done ac-

cording to Eqs. 4.13 and 4.14.

This neighbourhood information can be implemented e�ciently using structures such

as kd-trees [85], and new points are incorporated and removed iteratively from this

structure (which can also be done e�ciently since only one new input point is gen-

erated at each iteration). The parameter set κ = {κu, κi, κr} is selected according

to the speed in which the environment is expected to change over time (κu) and the

expected size of the covariance matrix (κi and κr). The incorporation and removal

of points in the covariance matrix is conduced using Cholesky decompositions, a com-

mon approach in GP literature [96, 111]. The Cholesky factor is an upper triangular
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matrix C such that K = CTC, and it allows for a faster and more numerically stable

computation of the inverse K−1. Assuming that the covariance matrix K and the

Cholesky matrix C are de�ned [118] as:

K =


K11 k12 K13

kT12 k22 k23

KT
13 kT23 K33

 C =


C11 c12 C13

0 c22 c23

0 0 C33

 , (4.11)

the resulting Cholesky matrix C ′ obtained by marginalizing (removing) the central

row and column is given by:

C ′ =

 C11 CT
13

0 γ(CT
33C33 + cT23c23)

 , (4.12)

where γ is the Cholesky update operator, readily available in packages such as [28, 80]

and which exploits the special structure of cT23c23 to attain a computational complexity

of O(n2). The marginalization of K is obtained simply by removing its middle row

and column. Similarly, if the covariance matrix K and the Cholesky matrix C are

de�ned as:

K =

 K11 K13

KT
13 K33

 C =

 C11 CT
13

0 C33

 , (4.13)

the resulting Cholesky matrix C ′ obtained by expanding (adding) a central row and

column is given by:

C ′ =


C11 CT

11\k12 C13

0
√
k22 − cT12c12

k23−cT12C13

c22

0 0 γ(CT
33C33 + cT23c23)

 , (4.14)

where the operator \ is used to indicate the solution of c12 in the equation CT
11c12 =

k12, obtained by the use of backwards or forward substitution for the upper triangular

matrix C11. Again, the expansion of K is done directly by incorporating the middle

row k∗ = [kT12, k22,k23] and column kT∗ , obtained by calculating the covariance between
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x∗ and all training points xn (points prior to the middle are part of k12, points after the

middle are part of k23, and k22 is the diagonal term of the new row and column). The

above equations address the particular case of one single output, and the extension to

multiple-outputs is done by updating each individual covariance matrixKij in the now

block-matrix K (Eq. 4.2). It is worth noting that each point incorporated into the

covariance matrix increases its overall size by T , the number of outputs, and therefore

the problem of scalability becomes even more pronounced. In principle this update

process may be conducted independently for each output, incorporating estimates for

particular degrees of freedom that are under-represented in that speci�c portion of

the input space and discarding estimates for others that are already well-represented,

however this was not explored in this thesis.

4.1.4 Semi-Parametric Visual Odometry

The standard GP derivation presented in Section 2.2.3 assumes that the joint dis-

tribution of any �nite set of samples removed from the Gaussian process will have a

mean value equal to zero. This zero mean assumption can be made without any loss

of generalization, by correctly normalizing the input information, and is indeed very

common throughout the literature. Another way of interpreting this assumption is

to imagine that there is no prior knowledge about the underlying function the GP

is trying to model, and therefore the initial guess is simply zero in the entire input

space. From this initial "unknown" state the non-parametric model then attempts to

learn the correlation between di�erent input points from training data and extrapolate

these correlations to address new unobserved data.

There are some applications, however, where the underlying function can be roughly

estimated using a parametric model, which is a much more compact and e�cient way

of performing regression. For example, if we know that the underlying function is

roughly linear, it is possible to incorporate this knowledge into the non-parametric

model by introducing a linear function f(x) = Ax + b as the mean vector for the

GP framework. The coe�cients in A and b are treated as hyperparameters and
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Figure 4.4 � E�ects of using a mean function to estimate a quadratic function f(x) =
ax2 + b with a noise value ∼ N (0, 10). The black line shows the estimates obtained
with a zero mean assumption and no training (random hyperparameters). The
red line shows the estimates obtained with a zero assumption and gradient-descent
training, where it is possible to see that the resulting model interprets the quadratic
behaviour as noise. The blue line shows the results obtained using a quadratic
function f(x) = ax2 +bx+c as the mean function, with parameters {a, b, c} trained
alongside the GP hyperparameters.

optimized as such, thus maintaining the same methodology described previously but

introducing a new component that constrains the solution space according to our prior

beliefs about the phenomenon at hand. The result is a semi-parametric model that

bene�ts from the best of both worlds: the compactness and e�ciency of a parametric

model and the �exibility of a non-parametric model. In this new framework, the

non-parametric model no longer has to completely estimate the underlying function

and all its intricacies, since now it only has to re�ne the initial estimate provided by

the parametric model.

The visual odometry scenario is one of such applications, where the various geomet-

ric models available for di�erent camera con�gurations could be used as the mean

function that is then further re�ned by the GP framework. We propose here the in-

corporation of the standard SFM algorithm3, as described in Section 2.3.5, to generate

3The Mono-SLAM algorithm was also considered as the mean function, however its high com-
putational cost would not allow the calculation of real-time estimates during navigation. Any other
algorithm could in principle be readily incorporated without any further modi�cations to the frame-
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the initial SFM estimates for each degree of freedom. The fundamental matrix Fn

necessary for this geometric model is already calculated during the RANSAC stage,

where outliers are removed from the initial matching set before the input vector xn is

generated. The calibration parameters {fx, fy, α, cx, cy}, as de�ned in Eq. 2.99, are

treated as hyperparameters and optimized alongside the GP hyperparameters, thus

maintaining the assumption that no traditional camera calibration is necessary. If a

di�erent geometric model is used, any other parameter involved in the calculations

may also be included as an extra hyperparameter, still eliminating the traditional cal-

ibration stage. Indeed, this proposed semi-parametric approach to visual odometry

(SPCGP) can be used in conjunction with any of the current available visual odom-

etry algorithms, introducing an extra non-parametric layer that re�nes their initial

estimates based on training data. Since the incremental aspect of visual odometry is

highly sensitive to errors, the �exibility of the GP framework allows the modelling of

nuances in the underlying function that a strictly parametric model struggles with.

The training methodology remains the same, except for the introduction of the SFM

calibration parameters as a new set of hyperparameters to be optimized alongside

the CGP hyperparameters. These hyperparameters are optimized iteratively as de-

scribed in Fig. 4.1, where an initial SFM estimate is calculated, re�ned by the CGP

framework, and then used to generate a new set of hyperparameters in an attempt to

minimize the cost function. The marginal log-likelihood still serves as the cost func-

tion, however it has to be slightly modi�ed to incorporate the presence of a non-zero

mean vector f̄. The new marginal log-likelihood cost function is now of the form:

L(y|Λ, θ) = −1

2
ln |K| − 1

2
εTK−1ε− N

2
ln(2π), (4.15)

where ε = (y − m(x)) is an error vector that quanti�es the distance between the

initial SFM estimates m(x) and the ground-truth values y. If ε is small, this means

that the initial SFM estimate is already accurate and there is no need for further

improvement. On the other hand, if ε is large, the non-parametric model takes over

and tries to compensate the di�erence using training data. The inference methodology

work.
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(Eqs. 4.6 and 4.7) is also slightly modi�ed to incorporate the presence of a non-zero

mean vector:

f̄∗ = m(x∗) +KT
s K

−1(y−m(x)) (4.16)

V (̄f∗) = κ−KT
s K

−1Ks. (4.17)

By incorporating the mean function into the inference methodology we assure that,

as testing data deviates from training data, the outputs will converge to the SFM

estimates, as the non-parametric model will have less information to further improve

results. Hence, this methodology also decreases the impact of dissimilarities between

training and testing data, as now the SPCGP framework will, in the worst case

scenario, be at least as accurate as the geometric model used. As these similarities

start to emerge, the non-parametric model becomes able to exploit them as a way to

re�ne the initial estimates and further improve results.

4.2 Simultaneous Localization and Mapping

Up to this point, the problem of visual odometry has been addressed from an incre-

mental perspective, meaning that motion estimates are obtained independently from

each other. Even the temporal dependency between frames established in Section

4.1.2 does not enforce any correlation among estimates from di�erent timesteps, but

rather generates an extra constraint in the input space that the CGP framework is

able to exploit as a way to resolve ambiguities and improve results. Because of that,

any imprecision in these motion estimates will propagate to the next iterations, gen-

erating an error component (drift) that quickly accumulates to compromise global

localization results. Any improvement in such estimates will serve only to delay, but

never prevent, this error accumulation, and therefore purely incremental localization

methods are inherent �awed in long-term navigation. A reliable long-term naviga-

tion algorithm should be able to provide absolute localization estimates, that are not

dependent on the vehicle's previous states.
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This section explores the extension of the proposed visual odometry algorithm into

a Simultaneous Localization and Mapping (SLAM) framework [25, 65, 82], where

absolute localization estimates are obtained by incrementally building a map of the

environment during navigation. The vehicle pose xt at each instant is given by a

Gaussian distribution N (µt,Σt), where µt is the current pose estimate and Σt is

its corresponding covariance matrix. Intuitively, Σt should increase over time due to

drift, causing the vehicle to be less and less certain of its true position and orientation

in regards to a global coordinate system. Similarly, each landmark mi observed is

stored as a Gaussian distribution N (µi,Σi), where µi is the landmark's position

estimate in the environment and Σi is its corresponding covariance matrix. This

covariance matrix Σi has two components: one generated by the sensor model used

by the vehicle to observe the environment (which is roughly constant and given by Σs)

and one generated by the vehicle's own pose uncertainty at the moment in which the

landmark was observed (which increases monotonically over time due to drift). An

example of this increase in uncertainty is shown in Fig. 4.5a, where the grey ellipses

(a) (b)

Figure 4.5 � Example of uncertainty reduction in SLAM. The vehicle starts moving
(top left portion of the image) and its pose uncertainty increases monotonically over
time (grey ellipses), alongside the uncertainty of observed landmarks (red ellipses).
The last timestep before loop-closure is shown in (a), and (b) shows the e�ects of
this loop-closure on the uncertainty ellipses after the �rst landmark is revisited. The
loop-closure information is used to remove all drift accumulated since the beginning
of navigation, and this information is then propagated backwards throughout the
entire trajectory, causing a global decrease in vehicle and landmark uncertainty.
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represent vehicle uncertainty and the red ellipses represent landmark uncertainty. The

vehicle starts at the top left corner of the image, and as it moves clock-wise its pose

uncertainty increases over time due to drift, which in turns increases the uncertainty

of the landmarks it observes during navigation.

However, when there is a loop-closure (i.e. a previously observed landmark is revis-

ited), the vehicle is able to generate a pose estimate that is not dependent on its

previous state xt−1, but rather on the landmark's position mi as it is stored on the

map. Since Σt increases monotonically over time due to drift, it is natural to assume

that Σi < Σt, because the landmarkmi was observed on a previous timestep ti < t. It

is possible then to combine these two estimates into a new more accurate estimate x′t,

eliminating the drift error accumulated between ti and t and estimating the vehicle's

position more accurately. Additionally, since the vehicle poses in di�erent timesteps

are correlated (they were obtained incrementally), it is also possible to propagate this

information backwards over the entire trajectory, causing a global decrease in vehicle

pose uncertainty. Lastly, since landmark uncertainty is correlated to the vehicle's

own uncertainty at the time they were observed, this information can be used to

globally decrease landmark position uncertainty. An example of this global decrease

in uncertainty is shown in Fig. 4.5b, where the vehicle is revisiting the �rst landmark

it observed at the beginning of navigation (top left corner). This landmark estimate

does not contain any drift error component, and the vehicle is capable of using this

information to re�ne its pose estimate and retroactively decrease the uncertainty of

the entire trajectory, alongside the uncertainty of all observed landmarks up to this

point.

This section describes a SLAM algorithm based on the works of [33] and [125], where a

Exact Sparse Information Filter (ESIF) is used to track all vehicle and landmark poses

over time, along with their corresponding uncertainties and the various correlations

between estimates. The use of information �lters, instead of the more traditional

covariance �lters [139], is bene�cial due to its natural sparsity, with most of its non-

diagonal elements being very close to zero. It is shown in [130] how to approximate

these elements to be exactly zero, thus creating a near-constant time solution to
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the SLAM problem, where new information can be incorporated and recovered very

e�ciently. This concept is further explored in [136], where weak robot-landmark

correlations are actively broken to enforce a desired level of sparsity. By relocalizing

the robot within the map it is possible to produce estimates that are both globally

and locally accurate relatively to a non-sparse solution.

4.2.1 Marginalization and Conditioning

We start by de�ning ζt as a random vector distributed according to a multivariate

Gaussian probability distribution, such that ζt ∼ N (µt,Σt), where µt is the mean

vector and Σt is the covariance matrix. Expanding the quadratic term within the

Gaussian exponential, we arrive at an equivalent representation for the multivariate

distribution N−1(ηt,Λt):

p(ζt) = N (µt,Σt)

=
1√
|2πΣt|

exp

(
−1

2
(ζt − µt)

TΣ−1
t (ζt − µt)

)

=
1√
|2πΣt|

exp

(
−1

2
(ζTt Σ−1

t ζt − 2µT
t Σ−1

t ζt + µT
t Σ−1

t µt)

)

=
e

1
2
µT

t Σ−1
t µt√

|2πΣt|
exp

(
−1

2
ζTt Σ−1

t ζt + µT
t Σ−1

t ζt

)

=
e

1
2
ηT
t Λ−1

t ηt√
|2πΛ−1

t |
exp

(
−1

2
ζTt Λtζt + ηTt ζt

)

= N (ηt,Λt).

(4.18)

The canonical form of the Gaussian distribution above is completely parametrized by

the information vector ηt and the information matrix Λt, which are related to the

mean vector and covariance matrix as follows:

Λt = Σ−1
t ηt = Σ−1

t µt. (4.19)
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Figure 4.6 � Sparsity of the information matrix Λ in comparison to the covariance
matrix Σ.

This canonical parametrization for the multivariate Gaussian distribution is the dual

form of the standard derivation in regards to the marginalization and conditioning

operations, as demonstrated in Table 4.1. Marginalizing over variables with the stan-

dard form is simple, since it involves the removal of the corresponding elements from

the mean vector and covariance matrix. However, the same operation for the canoni-

cal form involves calculating a Schur complement and is computationally costly. The

opposite is true when calculating the conditional from the joint distribution: it is

complex with the standard form and simple with the canonical parametrization.

An advantageous property of the canonical parametrization is that the information

matrix provides an explicit representation for the structure of the correspondingGaus-

sian Markov Random Field (GMRF) [99]. This property follows from the factorization

of a general Gaussian probability density:

p(ζ) ∝ exp

(
−1

2
ζTΛζ + ηTζ

)

=
∏
i

exp

(
1

2
(λiiζ

2
i − ηiζi)

) ∏
i,j(i 6=j)

exp

(
−1

2
ζiλijζj

)

=
∏
i

Ψi(ζi)
∏

i,j(i 6=j)

Ψ(ζi, ζj),

(4.20)
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where

Ψi(ζi) = exp

(
1

2
(λiiζ

2
i − ηiζi)

)
(4.21)

Ψij(ζi, ζj) = exp

(
1

2
ζiλijζj

)
(4.22)

are the node and edge potentials for the corresponding undirected graph. Random

variable pairs with zero o�-diagonal elements in the information matrix (i.e. λij = 0)

have an edge potential Ψij(ζi, ζj) = 1, signifying the absence of a link between the

nodes representing the variables. Conversely, non-zero shared information indicates

that there is a link joining the corresponding nodes with a strength of the edge pro-

portional to λij. As the link topology for an undirected graph explicitly captures

the conditional dependencies among variables, so does the structure of the informa-

tion matrix. The presence of o�-diagonal elements equal to zero implies that the

corresponding variables are conditionally independent, given the remaining states.

Interestingly, the same conclusion can be obtained from a simple analysis of the con-

ditioning operation for the information form. As stated in Table 4.1, conditioning a

pair of random variables α = [ζTi ζ
T
j ]T on the remaining states β involves extracting

the Λαα sub-block from the information matrix. When there is no shared information

between ζi and ζj, the sub-block Λαα is diagonal, as is its inverse (i.e. the covari-

ance matrix). Conditioned upon β, the two variables are uncorrelated and therefore

conditionally independent, or p(ζi, ζj|β) = p(ζi|β)p(ζj|β).

Marginalization Conditioning
p(α) =

∫
p(α,β)dβ p(α|β) = p(α,β)/p(β)

Covariance µ = µα µ′ = µα + ΣαβΣ−1
ββ (β − µβ)

Form Σ = Σαα Σ′ = Σαα − ΣαβΣ−1
ββΣβα

Information η = ηα − ΛαβΛ−1
ββηβ η′ = ηα − Λαββ

Form Λ = Λαα − ΛαβΛ−1
ββΛβα Λ′ = Λαα

p(α,β) = N
([

µα

µβ

]
,

[
Σαα Σαβ

Σβα Σββ

])
= N−1

([
ηα
ηβ

]
,

[
Λαα Λαβ

Λβα Λββ

])
Table 4.1 � Duality between Covariance and Information Filters. Covariance �lters are

more e�cient in marginalization, whereas Information �lters are more e�cient in
Conditioning.
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4.2.2 State Augmentation

We describe here the method for state augmentation, which is how the state vector

ζt is augmented to receive a new vehicle pose estimate xt. This operation occurs

whenever there is a new state that is deemed worth storing. In our framework, a new

state in principle could be added at each iteration, augmenting the state vector to

include the new vehicle pose estimate. However, since this would quickly generate an

excessively large and mostly redundant state vector, we choose to add a new state

only when the Euclidean distance between the previous stored vehicle pose estimate

and the current one is larger than a certain threshold d.

Adding a Delayed-State

Assume for the moment that the estimate at time t is described by the following

distribution expressed in both covariance and information form:

p(xt,M |zt,ut) = N

 µxt

µM

 ,
 Σxtxt ΣxtM

ΣMxt ΣMM



= N

 ηxt

ηM

 ,
 Λxtxt ΛxtM

ΛMxt ΛMM

 ,

(4.23)

where M is the environment map, zt is the entire measurement history and ut is the

entire control history. The environment map M is used here in a general sense, and

could include a set of sparse landmarks, or raw sensor data, or any information that

may be used to enforce a loop-closure. For now this is not important, and we will

focus on what happens when the state vector ζ is augmented to include the time-

propagated vehicle state xt+1, generating the distribution p(xt+1,xt,M|zt,ut+1) that

can be factored as:

p(xt+1,xt,M|zt,ut+1) =

= p(xt+1|xt,M, zt,ut+1)p(xt,M|zt,ut+1)
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= p(xt+1|xt,ut+1)p(xt,M|zt,ut). (4.24)

Eq. 4.24 is obtained by factoring the posterior into the product of a probabilistic state-

transition multiplied by the prior, using the common assumption that the robot state

evolves according to a �rst-order Markov process. The general non-linear discrete-

time Markov vehicle motion model is then given by Eq. 4.25, and the �rst-order

linearized form is given by Eq. 4.26, where F is the Jacobian evaluated at µxt and

wt ∝ N (0, Q) is a white noise process.

xt+1 = f(xt,ut+1) +wt (4.25)

≈ f(µxt ,ut+1) + F (xt + µxt) +wt (4.26)

Augmentating the Information Form

Before obtaining the information form of the augmented state vector, it is neces-

sary to obtain its covariance form. This is done according to the �rst-order Markov

factorization described in Eq. 4.24, and is of the form:

p(xt+1,xt,M|zt,ut+1) = N (µ′t+1,Σ
′
t+1) (4.27)

µ′t+1 =


f(µxt ,ut+1)

µxt

µM

 Σ′t+1 =


FΣxtxtF

T +Q FΣxtxt FΣxtM

ΣxtxtF
T Σxtxt ΣxtM

ΣMxtF
T ΣMxt ΣMM

 . (4.28)

The lower 2×2 sub-block of Σ′t+1 corresponds to the covariance between the delayed-

state element xt and the map m, and has remained unchanged from the prior. The

�rst row and column, on the other hand, contain the cross-covariances associated with

the time-propagated vehicle state xt+1, which includes the vehicle motion model. This

covariance form can now be transformed into the information form, which requires

the inversion of the 3× 3 block-covariance matrix Σ′t+1 and is given by:
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p(xt+1,xt,M|zt,ut+1) = N−1(η′t+1,Λ
′
t+1) (4.29)

η′t+1 =


Q−1

(
f(µxt ,ut+1)− Fµxt

)
ηxt − F TQ−1

(
f(µxt ,ut+1)− Fµxt

)
ηM



Λ′t+1 =


Q−1 −Q−1F 0

−F TQ−1 Λxtxt + F TQ−1F ΛxtM

0 ΛMxt ΛMM

 .
(4.30)

4.2.3 Measurement Updates

One of the most attractive properties of the information form is that measurement

updates are done in constant-time [130], in contrast to the covariance form which is

of quadratic complexity per update. Assume the following general non-linear mea-

surement model and its �rst-order linearized form:

zt = h(ζt) + vt

≈ h(µ̄t) +H(ζt − µ̄t) + vt, (4.31)

where ζt is the predicted state vector distributed according to ζt ∼ N (µ̄t, Σ̄t) ≡
N−1(η̄t, Λ̄t), vt is the white measurement noise vt ∼ N (0, R) and H is the Jacobian

evaluated at µ̄t. The covariance form update [139] requires the computation of the

Kalman gain and the updating of µ̄t and Σ̄t:

K = Σ̄tH
T
(
HΣ̄tH

T +R
)−1

(4.32)

µt = µ̄t +K (zt − h(µ̄t)) (4.33)

Σt = (I −KH) Σ̄t (I −KH)T +KRKT . (4.34)
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This calculation modi�es all elements in the covariance matrix, resulting in a quadratic

computational complexity per update. In contrast, the corresponding information

form is given by:

ηt = η̄t +HTR−1 (zt − h(µ̄t) +Hµ̄t)

Λt = Λ̄t +HTR−1H.

(4.35)

4.2.4 Motion Prediction

Motion prediction corresponds to a time propagation of the vehicle state from time

t to time t + 1. Expressions for the information form of the augmented distribution

p(xt+1,xt,M|zT ,ut+1), containing the time predicted vehicle state xt+1 and its pre-

vious state xt, are given in Eq. 4.30. To derive the time-propagated distribution

p(xt+1,M|zt,ut+1), it is necessary to marginalize out the previous state xt. Going

back to Table 4.1 for the marginalization of a Gaussian distribution in the information

form we arrive at:

p(xt+1,M|zt,ut+1) =

∫
p(xt+1,x,M|zt,ut+1)dxt = N−1(η̄t+1, Λ̄t+1) (4.36)

η̄t+1 =

 Q−1
(
f(µxt ,ut+1

)
− Fµxt

ηM

−
 −Q−1F

ΛMxt

Ω−1η?xt

=

 Q−1FΩ−1ηxt + Ψ
(
f(µxt ,ut+1)− Fµxt

)
ηM − ΛMxtΩ

−1η?xt



Λ̄t+1 =

 Q−1 0

0 ΛMM

−
 −Q−1F

ΛMxt

Ω−1
[
−F TQ−1 ΛxtM

]

=

 Ψ Q−1FΩ−1ΛxtM

ΛMxtΩ
−1F TQ−1 ΛMM − ΛMxtΩ

−1ΛxtM

 ,

(4.37)
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where

η?xt = ηxt − F TQ−1
(
f(µxt ,ut+1)− Fµxt

)
(4.38)

Ω = Λxtxt + F TQ−1F (4.39)

and

Ψ = Q−1 −Q−1FΩ−1F TQ−1

= Q−1 −Q−1F
(
F TQ−1F + Λxtxt

)−1
F TQ−1

=
(
Q+ FΛ−1

xtxtF
T
)−1

. (4.40)

4.2.5 State Recovery

The information form of the Gaussian distribution is parametrized by its information

vector ηt and matrix Λt. However, the expressions for motion prediction (Eq. 4.37)

and measurement update (Eq. 4.35) still require sub-elements from the mean vector

µt, so that the non-linear models in Eqs. 4.26 and 4.31 can be linearized. Therefore,

in order for the information form to be a computationally e�cient parametrization

for delayed-states, it is necessary to �nd a way to easily recover portions of the mean

vector. Fortunately, this can be done by exploiting the sparse structure of the infor-

mation matrix Λt. Two di�erent approaches are described here: the direct approach,

where the entire state estimate is recovered, and the more e�cient approach, where

only the relevant portion of the state estimate is recovered.

Full State Recovery

The naive recovery of the entire state estimate involves matrix inversion and is there-

fore of cubic complexity, eliminating any e�ciency gained by using the information

form over the covariance form. Fortunately, it turns out that the recovery of the
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state mean µt can be posed more e�ciently as the solution of a sparse, symmetric,

positive-de�nite linear system of equations:

Λtµt = ηt, (4.41)

which can be solved via the classic iterative method of conjugate gradients [116]. In

general, conjugate gradients can solve this system in n iterations with cost O(n) per

iteration, with a maximum cost ofO(n2) that could be a lot smaller if the initialization

is suitable. Additionally, since the state mean µt typically does not change signif-

icantly with each measurement update (excluding key events such as loop-closure),

this relaxation can take place over multiple timesteps using a �xed number of iter-

ations per update [29]. The problem with this approach is that convergence, and

therefore an optimal state recovery, is not guaranteed. Other techniques [36] pro-

pose computational complexity reduction by subsampling poses and performing the

relaxation over multiple spatial resolutions.

Partial State Recovery

A key observation about the expressions for motion prediction (Eq. 4.37) and mea-

surement update (Eq. 4.35) is that they only require the knowledge of subsets of the

state mean vector µt. Because of that, instead of always solving for the complete state

mean vector, it is possible to partition Eq. 4.41 into two sets of coupled equations: Λaa Λab

Λba Λbb

 µa

µb

 =

 ηa

ηb

 . (4.42)

This partitioning of µt into two subsets allows for the sub-optimal solution for local

portions of the state vector in constant-time. By holding the current estimate for µb

�xed, Eq. 4.42 can be solved for an estimate of µa as such:

µ̂a = Λ−1
aa (ηa − Λabµ̂b) . (4.43)
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The equation above provides a method for recovering an estimate µ̂a of µa, given

that the initial estimate µ̂b is a decent approximation of µb. In particular, it is used

to provide an accurate approximation for recovering the state mean during motion

prediction and measurement updates. Since the vehicle state is only serially connected

to the map, Λab has only one non-zero block-element, and therefore Eq. 4.43 can be

solved in constant time.

4.3 Experimental Results

In the previous chapter results were presented using a basic version of the visual

odometry algorithm proposed in this thesis, containing only the minimum stages nec-

essary to generate motion estimates from optical �ow information based on a training

dataset. This section evaluates the proposed visual odometry algorithm, now includ-

ing all extensions described in this chapter as a way to address the shortcomings men-

tioned previously. The CGP framework (Section 4.1.1) allows the correct modelling

of cross-dependencies between outputs, exploiting constraints in vehicle dynamics to

generate more accurate motion estimates. The temporal dependency (Section 4.1.2)

increases the amount of information available for inference, and is used in the 3D

aerial experiments due to the camera's narrow �eld of view, generating ambiguity in

optical �ow distributions. The online update of the covariance matrix (Section 4.1.3)

allows the visual odometry algorithm to gradually adapt to new environments, by

incorporating new information as it becomes available and discarding redundant in-

formation to maintain computational cost roughly constant. The SPCGP framework

(Section 4.1.4) improves on the CGP inference process by incorporating a geometric

model as the mean function, providing an initial estimate that is then further re�ned

by the non-parametric model. The SLAM framework (Section 4.2) takes advantage of

the full covariance matrix recovered by the CGP framework to generate absolute pose

estimates, allowing the removal of drift accumulated during navigation by recognizing

when a determined area is revisited.

Initially, the same experiments from the previous chapter are repeated, both in 2D
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and 3D environments, adding the proposed extensions. Comparisons, both qualita-

tive and quantitative, are provided as a way to evaluate the improvements generated

by the proposed extensions on the �nal motion estimates. These results testify to

their ability to address the shortcomings inherent to the basic algorithm described

in the previous chapter and provide a much more reliable and robust approach to

visual odometry. Experiments testing the proposed algorithm's ability to generalize

to di�erent conditions are presented and discussed, including changes in camera con-

�guration and environment while navigating. Extreme tests are conducted to test the

limit of such generalization ability, showing how much similarity between training and

testing datasets is necessary before the algorithm starts to fail (i.e. the uncertainty

becomes too high to generate any useful estimates). Finally, the section concludes

with a brief discussion on the impact of dynamic objects in visual odometry, which

is the motivation for the automatic segmentation of dynamics objects algorithm de-

scribed in the next chapter.

4.3.1 2D Experiments

The same training and testing datasets depicted in Fig. 3.14, collected by a ground

vehicle navigating in an urban environment with a single pin-hole camera, are used to

evaluate the improvements generated by the proposed extensions. For convenience,

Figs. 4.7a and 4.7b show the results presented in the previous chapter: the localiza-

tion estimates obtained using the structure from motion (SFM) algorithm described

in Section 2.3.5 and the localization estimates obtained using the basic algorithm

(MOGP) described in Section 3.3. The SFM estimates were adjusted manually to

account for the inability to recover scale using a purely geometric single camera ap-

proach, while the MOGP framework is capable of recovering scale to a high degree

of precision by exploring similarities between training and testing data (ground-truth

information was, as before, obtained from ICP based on laser data). In both cases,

it is clear that the algorithm struggles mostly with angular drift, which quickly accu-

mulates to compromise global localization results.
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Localization results obtained using the CGP framework without the incorporation of

the semi-parametric model (assuming f̄∗ = 0) are depicted in Fig. 4.7c, where the �rst

noticeable aspect is that scale is also recovered to a high degree of precision. Also,

angular drift is much less pronounced, allowing the vehicle to correctly return to its

initial pose even after a trajectory of roughly 2 km. We attribute this improvement

over the MOGP framework to the modelling of cross-dependencies between outputs,

that allows the algorithm to use linear information to improve angular estimates

and vice-versa. Vehicle turns are under-represented in the training dataset, simply

because in real situations a vehicle mostly drives forward in a straight road, and by

exploiting these cross-dependencies it is possible to constrain the solution space and

generate better estimates even in under-represented areas (see Fig. 4.2 for the motion

estimates used to generate these localization results).
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Figure 4.7 � Localization results using di�erent methods. (a) Structure From Mo-
tion algorithm. (b) Multiple-Output Gaussian Processes. (c) Coupled Gaussian
Processes. (d) Semi-Parametric Coupled Gaussian Processes.
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Method Trans. Error Rot. Error
(rmse) (10−2 m) (rmse) (10−2 rad)

It. Closest Point 2.92± 4.70 0.06± 0.14
Struct. Motion 9.75± 12.12 0.23± 0.16
Mono-SLAM 4.24± 2.25 0.11± 0.09

MOGP 5.82± 9.21 0.12± 0.19
CGP 5.74± 8.18 0.07± 0.08

SPCGP 5.12± 7.49 0.05± 0.07
SPCGP + SLAM 5.98± 6.54 0.03± 0.05

Table 4.2 � Linear and angular errors per frame for di�erent methods in ground ex-
periments (with ICP + ESIF as ground-truth).

Finally, localization results obtained using the SPCGP framework are depicted in

Fig. 4.7d, where we can see that the incorporation of the geometric model was able to

marginally improve results, both in scale (especially on the bottom street) and angular

motion (especially on the top street, that is revisited by the vehicle). This marginal

improvement is attributed to the use of the same vehicle and similar environments for

training and testing, that creates an ideal scenario for the CGP framework that leaves

little space for improvement. The impact of the SPCGP framework becomes more

apparent as training and testing data deviate from each other, because under these

conditions the mean function has more weight on the �nal estimates. This will be

explored further during the generalization experiments, where the algorithm's ability

to deal with such dissimilarities is evaluated in a variety of di�erent situations.

A quantitative comparison of such approaches is presented in Table 4.2, in terms of

root mean square error (rmse) per frame. The ground-truth for such comparisons

was obtained using laser-based ICP estimates integrated into the ESIF algorithm

described in Section 4.2. As expected, ICP has the lowest translational error, because

distances can be measured directly from a laser scanner. Even with manual scale

adjustment, the SFM estimates show the highest translational error, and all GP-

based estimates performed similarly in the scale recovery aspect. Rotational errors,

on the other hand, decreased signi�cantly with the introduction of the GP framework,

and continued to decrease consistently with the incorporation of cross-dependency

modelling and a geometric model as the mean function. Even though ICP has a
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Figure 4.8 � Localization results from the proposed visual odometry algorithm incor-
porated into a SLAM framework.

rotational error comparable to the SPCGP framework, its variance shows that this

error is not spread evenly throughout the entire trajectory, but rather concentrated

in only a few frames (Fig. 3.14b), whereas the CGP framework is able to smooth

out these errors and generate more consistent results, without any large localized

discrepancies.

The SPCGP estimates were also incorporated into a SLAM framework, where all vehi-

cle poses are tracked during navigation and a loop-closure algorithm was implemented

to recognize when an area is revisited. The loop-closure process is done by matching

features from the current frame with features from previous frames (downsampled by

a factor of 5 for speed purposes, without impacting results), and an area is assumed

revisited if the number of successful matches is higher than a given threshold. The

localization results obtained using this framework are shown in Fig. 4.8, where it

is possible to see how the loop-closure algorithm was able to correctly recognize the

second pass over the top street and use this information to correct residual misalign-

ments in this area. The loop-closure algorithm was also capable of recognizing when

the vehicle returned to its starting position, connecting these two points in the state

vector and minimizing the e�ects of drift in the entire trajectory.
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4.3.2 3D Experiments

For the 3D experiments, the same dataset introduced in the previous chapter, ob-

tained from a UAV �ying over a deserted area with a camera pointing downwards,

was also used to evaluate the improvement generated by the proposed extensions. It

can be seen from the results in Fig. 3.18 that this dataset is much more challenging

for a visual odometry algorithm, due to the small and inconsistent overlapping areas

between frames, the ambiguity in optical �ow distribution and the narrow �eld of

view in the camera. To address these shortcomings, the temporal dependency ex-

tension described in Section 4.1.2 was introduced into the SPCGP framework, and

the results are depicted in Fig. 4.9, alongside results obtained by using the structure

from motion algorithm as described in Section 2.3.5.

As expected, a combination of accumulated error and lack of matching features gen-

erated a drift over time that could not be avoided, however it is clear that the SPCGP

framework was able to improve signi�cantly over the results obtained using only the

geometric model. The absolute scale was recovered to a high degree of precision, and

the overall shape of the trajectory was also recovered, without any missing corners or

changes in the plane of navigation. In Fig. 4.9b it is possible to see the cyclical changes

in altitude during �ight, ranging from 80 to 100 meters, which poses a challenge for

the GP framework as a regression tool due to the di�culty in separating what is a

trend and should be modelled and what is noise and should be ignored. Interestingly,

the use of temporal dependencies between frames generated a "smooth and delay"

e�ect as a response to sudden variations, because of the proximity constraint imposed

to outputs in subsequent timesteps.

A quantitative comparison of these results is presented in Table 4.3, in terms of root

mean square error (rmse) per frame based on GPS and inertial information. From this

table we can see the same progression as shown in Table 4.2, which depicts the errors

in 2D experiments. The purely geometric approach is not capable of recovering scale

and therefore has the highest translational error, while all GP-based approaches have

similar translational errors regardless of further extensions to the basic algorithm.

Rotational error, on the other hand, decreased signi�cantly with the introduction
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(a) (b)

(c)

Figure 4.9 � Localization results in 3D environments, using the SPCGP framework
and temporal dependency between frames. (a) Geometric model with automatic
camera calibration. (b) Top view. (c) Isometric view.
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Task SFM MOGP CGP SPCGP

X 1384.10± 25.72 20.47± 0.1552 8.49± 0.0668 8.11± 0.0727
Y 453.56± 5.76 6.84± 0.0541 5.95± 0.0472 5.71± 0.0269
Z 325.50± 6.69 10.16± 0.0806 10.23± 0.0812 9.89± 0.0714

Roll 11.48± 0.56 0.69± 0.0056 0.66± 0.0053 0.47± 0.0051
Pitch 5.09± 0.01 0.35± 0.0027 0.26± 0.0021 0.18± 0.0025
Yaw 19.07± 0.55 0.41± 0.0032 0.33± 0.0027 0.25± 0.0021

Table 4.3 � Root Mean Square linear (10−2 m) and angular (10−2 rad) errors per frame
for di�erent methods in aerial experiments (with IMU + GPS as ground-truth).

of the GP framework and continued to decrease consistently with the incorporation

of cross-dependency modelling and a geometric model as the mean function. The

wide variation in overlapping areas precluded the detection of revisited areas by the

loop-closure algorithm, and therefore the SPCGP results were not incorporated into

a SLAM framework. The fusion of this SPCGP information with GPS could lead

to further improvements in the results, by introducing absolute pose estimates to

eliminate drift accumulated during the incremental visual odometry estimation.

4.3.3 Generalization Experiments

This section focuses on testing the generalization ability of the proposed visual odom-

etry algorithm in regards to changes between training and testing datasets. As a

non-parametric regression technique, the GP framework essentially depends on sim-

ilarities between available information and new, unobserved information to uncover

patterns that can be used to provide accurate estimates, assuming the same underly-

ing function. Thus, as the optical �ow distributions that the vehicle encounters during

navigation deviate from those available for the non-parametric inference, uncertainty

increases and the resulting estimates will be less accurate. This chapter described two

techniques that are capable of minimizing the in�uence of such dissimilarities: the

online update of the covariance matrix (Section 4.1.3) and the SPCGP framework

(Section 4.1.4). By incorporating new information into the non-parametric model,

it is possible to gradually learn new useful optical �ow distributions and adapt to
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new environments seamlessly. A geometric model is not a�ected by dissimilarities

between training and testing data, since its constraints depend solely on the camera

con�guration, and so the SPCGP framework will provide reasonable results even if

the non-parametric model is unable to further re�ne the initial estimates.

Even so, dissimilarities between training and testing conditions still a�ect negatively

the performance of the proposed visual odometry algorithm, and here this impact is

measured in several di�erent situations. Basically, this dissimilarity in optical �ow

distributions can be attributed to three distinct causes: changes in the environment,

changes in camera con�guration and changes in vehicle dynamics. These three sce-

narios are addressed here in the particular case of 2D navigation, and both qualitative

and quantitative results are presented. Initially, the impact of changes in the envi-

ronment is measured by training the non-parametric model in an urban environment

and testing it in an o�-road environment, composed mostly of trees and open ar-

eas. The impact of changes in camera con�guration is then measured by training the

non-parametric model with one camera and testing it with a di�erent camera in the

same environment. Lastly, the impact of changes in vehicle dynamics is measured by

training the non-parametric model with one vehicle in particular and testing it with

a di�erent robotic platform. The section concludes by providing a study on gradual

increases in dissimilarity, showing when the algorithm starts to fail and is no longer

capable of providing useful estimates.

Changing Environments

To test the proposed algorithm's ability to generalize over di�erent environments, a

new dataset was collected using the same vehicle (Fig. 3.13a) and camera con�gu-

ration, but now in a public park (the Victoria Park dataset, a common benchmark

used in the SLAM literature). This dataset is composed of 4000 images and cover a

trajectory of roughly 4 km, in which the vehicle navigated mostly over grass terrain.

The same urban training dataset from Fig. 3.14a was used for initial optimization,

and there was no further training conducted using information from the new environ-

ment. The localization results obtained using the SPCGP framework are shown in
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Figure 4.10 � SPCGP localization results in ground experiments with di�erent envi-
ronments.

Fig. 4.10, along with sample images used as input for the algorithm. The green dots

represent GPS information and the blue line represents the localization results ob-

tained using the structure-from-motion algorithm, with automatic camera calibration

and manual scale adjustment. As expected, the SFM algorithm provides reasonably

accurate estimates at the beginning of navigation, however drift quickly accumulates

and compromises global localization results towards the end of the trajectory.

The localization results obtained using the SPCGP framework are represented by

the red line, and even though this is also an incremental technique we can see that

the proposed approach was capable of reducing the e�ects of drift over time, main-

taining consistency in estimates throughout the entire trajectory. We attribute this

improvement to the semi-parametric aspect of the SPCGP framework, that allows

the non-parametric model to focus on the nuances of the training data, while the

parametric model provides an initial estimate that already contains the overall shape

of the underlying function. Although the structures the vehicle encounters during

navigation are quite di�erent (buildings and cars vs. trees and open �elds), the

optical �ow distributions are similar enough to provide useful information that the

non-parametric model can use to further re�ne results. A quantitative comparison
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Figure 4.11 � Localization results in ground experiments with di�erent environments,
in a SLAM framework.

of these results with other generalization experiments is given in Table 4.4, showing

that translational and rotational errors are indeed higher than when a similar envi-

ronment is used, however they are still smaller than the ICP and SFM estimates. This

decrease in overall performance should become more prominent as the optical �ow

patterns available for training di�er more and more from those encountered during

evaluation (i.e. lack of structures around the vehicle, greater proximity to objects,

radically di�erent shapes).

These localization results were also incorporated into a SLAM framework as described

in Section 4.2, with a loop-closure algorithm based on feature matching between

frames. The results are depicted in Fig. 4.11, where we can see that the loop-closures

(yellow dots) occurred as the vehicle returned to the beginning of its trajectory. This

information allowed the retroactive correction of localization estimates at the left
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portion of the image, reducing misalignments and increasing accuracy in a global

scale. These results testify to the algorithm's ability to generalize over di�erent

environments without further training, a valuable attribute that a visual odometry

algorithm should have in order to be truly useful in real applications. Experiments

with online updates of the covariance matrix are conducted later on, as a way to

stress test the proposed algorithm and determine how much similarity is necessary

before it starts to fail.

Changing Cameras

Here we explore the impact on the localization results of changing the camera from

which the images are acquired. This was done in order to verify the SPCGP frame-

work's ability to deal with variations in camera parameters, as well as variations in

optical �ow distributions that are not caused solely by di�erent structures in the en-

vironment. The same training dataset from Fig. 3.14a is used, and for testing the

same trajectory from Fig. 3.14b is adopted, however now the images are obtained

using a second camera placed on the same vehicle. The new camera has a lower reso-

lution of 640x480 (which was then downsampled to the same 384x252 as the training

Figure 4.12 � Examples of images taken at the same vehicle position with di�erent
cameras. The �rst row corresponds to the original camera and the second row
corresponds to the new camera (the new camera can be seen in the images captured
by the original camera). The displacement between cameras is approximately 1.4
m horizontally and 0.5 m vertically, with a pitch change of roughly 10º.
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Figure 4.13 � SPCGP localization results in ground experiments with di�erent cam-
eras.

images) and was positioned in such a way that it captures the same portion of the

environment as the other camera, but from a di�erent perspective (see Fig. 4.12).

Again, no further training was conducted once the optimized camera parameters and

GP hyperparameters were obtained from the training dataset.

The localization results obtained using the SPCGP framework are presented in Fig.

4.13, both using the same camera (blue line) and di�erent cameras (red line) for

training and testing. The �rst noticeable aspect in these results is the impact that

changing cameras has on scale recovery, which is noticeably less accurate. This is to

be expected, since a GP's ability to recover scale in visual odometry from a monocular

con�guration is dependent on optical �ow similarities between training and testing

data. The inference process assumes that the environment reacts in a predictable

manner to vehicle motion, and is able to extrapolate scale information based on

ground-truth data. If the camera changes this assumption is weakened, since the

environment now reacts di�erently to vehicle motion due to new geometric constraints

that were not modelled during training. The rotational error also increases, however

not as much as translational error, since angular motion is not subject to scaling and

can therefore still be modelled accordingly using training information.
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Scenario Trans. Error Rot. Error
(rmse) (10−2 m) (rmse) (10−2 rad)

It. Closest Point 2.92± 4.70 0.06± 0.14
Struct. Motion 9.75± 12.12 0.23± 0.16

Same Con�guration 5.12± 7.49 0.05± 0.07
Di�erent Environment 6.57± 8.07 0.09± 0.09

Di�erent Camera 8.42± 9.96 0.11± 0.19

Table 4.4 � Root Mean Square linear and angular errors per frame for each output in
ground generalization experiments.

These assumptions are con�rmed by the quantitative results in Table 4.4, which show

that changes in camera con�guration have a bigger impact on localization results

than changes in the environment. Also, it con�rms that translational errors are in-

deed more a�ected by such changes, whereas rotational errors also increase but not so

signi�cantly. Interestingly, we can see that these increases in error are accompanied by

an increase in uncertainty, showing that these results, even though less accurate, are

still valid from a probabilistic standpoint and can be used in conjunction with other

sensors to provide robust estimates. The translational and rotational errors obtained

from these two generalization experiments are still lower than those obtained using

the SFM algorithm, indicating that the SPCGP framework still outperforms tradi-

tional visual odometry techniques even with unforeseen changes in the environment

or camera con�guration.

Changing Vehicles

As a �nal generalization experiment, the SPCGP framework was tested using a com-

pletely di�erent robotic platform (Fig. 3.13c), also equipped with a single camera,

GPS and inertial sensors that provide ground-truth information. This new con�g-

uration, other than changing the environment and visual sensor, also introduces a

di�erent cinematic model that changes between the training and inference stages.

The new evaluation dataset is composed of 14500 images obtained in a highly dy-

namic urban environment (downtown Sydney during work hours), over a trajectory

of roughly 10 km. Throughout this trajectory the vehicle interacted normally with
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pedestrians and other moving vehicles, and experienced several changes in environ-

ment structures and lighting conditions (some examples of images collected for this

dataset are shown in Fig. 4.14).

Initially, we present the results obtained using half of this dataset for training and half

for testing (thus maintaining the same camera con�guration and vehicle dynamics in

a similar environment) in Fig. 4.15a. Even though the overall shape of the trajectory

is maintained, it is possible to see a signi�cant amount of drift occurring in speci�c

places, which quickly compromises global localization results. We attribute this lo-

calized drift to the presence of dynamic objects in the environment, that generate

optical �ow patterns that do not correspond to vehicle motion and therefore should

have been discarded during the outlier removal process. The in�uence of dynamic

objects in visual odometry is further explored in the next chapter, where a novel

technique for automatic dynamic object segmentation and removal is presented.

Afterwards, localization results obtained using the urban dataset in Fig. 3.14a for

training (thus changing all three components: camera con�guration, vehicle dynamics

and environment structures) are depicted in Fig. 4.15b. These results show that the

proposed visual odometry algorithm indeed su�ers from dissimilarities between train-

ing and testing datasets, and if they are radically di�erent performance could decrease

up to a point in which no further useful estimates can be obtained. To determine

the progression of this decrease in performance with the increase in dissimilarities,

a series of tests were conducted using di�erent percentages of information from each

Figure 4.14 � Examples of images collected for the generalization tests with di�erent
vehicles.
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(a) (b)

Figure 4.15 � Localization results in tests with di�erent vehicles. (a) Similar training
and testing datasets (the red circles indicate places in which the vehicle is not
moving). (b) Vastly dissimilar training and testing datasets.

dataset for training. A percentage of 100% indicates that the training and testing

datasets were obtained entirely under the same conditions, and a percentage of 0%

indicates that the training and testing datasets were obtained entirely under di�erent

conditions (di�erent vehicle, camera con�guration and environment structures).

The results of such tests are presented in Fig. 4.16, where it is possible to see that the

translational error increases roughly linearly with the percentage of dissimilarity be-

tween training and testing datasets. The rotational error also increases monotonically

with the percentage of dissimilarity, however the rate in which this error increases

has a signi�cant jump at around 50%, indicating the point in which the algorithm

starts to fail. When the training and datasets are completely dissimilar, translational

error is roughly 5 times higher than when they are obtained under similar conditions,

whereas rotational error is roughly 10 times higher. The error bars of such mea-

sures also increase monotonically with the dissimilarity percentage, indicating that

measurements become more irregular and sensitive to noise.
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Another series of tests was designed to evaluate the impact of dissimilarities between

training and testing datasets, but now this dissimilarity was generated by skipping

frames in the testing dataset, thus creating an arti�cial change in scale. This frame

skipping technique creates optical �ow distributions that were not learned during
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Figure 4.16 � Decrease in performance as the percentage of dissimilarities between
training and testing datasets increases.
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training, as now the vehicle traverses a longer distance between frames (essentially,

the constant frame rate assumption no longer holds true). The results of such tests

are presented in Fig. 4.17, where we can see a similar trend in how translational

and rotational errors increase with the number of frames skipped. Translational error
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Figure 4.17 � Decrease in performance as number of skipped frames in the training
dataset increases.
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increases roughly linearly with the number of frames skipped, whereas rotational

error initially increases slowly and has a signi�cant jump midway through the tests

(we attribute this jump to the increasingly smaller overlapping area between frames).

When 4 frames are being skipped (only one for every 5 are used), translational error

is roughly 40 times higher than in the initial con�guration, and rotational errors are

roughly 15 times higher, an indication that the algorithm has failed and no more

useful information can be obtained.

4.4 Summary

This chapter improved on the visual odometry algorithm proposed in Chapter 3,

addressing its various shortcomings. Five di�erent extensions to the GP framework

were proposed: 1) The modelling of cross-dependencies between di�erent outputs

(Coupled GPs, Section 4.1.1), that allows the full recovery of the covariance matrix

and improves estimates in under-represented portions of the input space; 2) The

introduction of temporal dependencies between outputs of subsequent frames (Section

4.1.2), that increases the amount of information available for inference and further

constrains the solution space to remove ambiguities; 3) The incremental update of the

covariance matrix (Section 4.1.3), that allows the non-parametric model to gradually

adapt to new environments and learn useful optical �ow distributions as they become

available; 4) The incorporation of a geometric model as the mean function for the GP

framework (Semi-Parametric CGPs, Section 4.1.4), that provides an initial estimate

that is then further re�ned by the non-parametric model; 5) and an extension to

SLAM (Section 4.2), in which all vehicle poses are tracked over time and a loop-

closure algorithm is used to detect revisited areas, with this information being used

to globally decrease uncertainty.

Experiments are conducted to evaluate the improvements provided by such extensions

over the basic visual odometry algorithm, both in 2D and 3D environments. Qual-

itative and quantitative comparisons between di�erent visual odometry techniques

are presented and discussed, and they testify to the proposed algorithm's ability to
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generate accurate estimates even in challenging situations to traditional approaches.

Generalization experiments are conducted to verify the algorithm's sensitivity to dis-

similarities between training an testing dataset, a common trait in machine-learning

based techniques, that require a well-represented input space in order to generate

accurate results. These generalization experiments include changes in environment

structure, camera con�guration and vehicle dynamics, and serve to delineate the point

in which the proposed algorithm is no longer capable of providing useful estimates.

However, during these generalization experiments another issue was detected: the

presence of dynamic objects in the environment. Visual odometry algorithms assume

a static environment, meaning that any optical �ow detected is due to the camera's

own translation and rotation between frames. Any dynamic object will, therefore,

introduce a component of error in the optical �ow distribution, essentially tricking

the algorithm into thinking that the camera has moved in a di�erent way (see Fig.

4.15a). Sporadic and localized dynamic objects are removed by the outlier detection

algorithm and averaged out by the optical �ow parametrization process, however

if the scene is highly dynamic these techniques are not enough and these objects

must be actively detected and removed before the image is deemed useful for visual

odometry purposes. The next chapter is devoted to a novel technique for automatic

segmentation and removal of dynamic objects, where each pixel in the image receives a

probability of being either static or dynamic, along with a corresponding uncertainty

measurement in regards to this classi�cation. Features that are classi�ed as dynamic

are removed before the optical �ow parametrization process, thus maintaining the

assumption of a static environment around the vehicle during navigation.



Chapter 5

Automatic Segmentation of Dynamic

Objects

The previous chapter described several techniques capable of addressing the various

shortcomings in using a non-parametric machine learning approach to visual odome-

try. Cross-dependencies between outputs were modelled using a new extension called

Coupled GPs, capable of recovering a full covariance matrix that quanti�es the cor-

relation between di�erent outputs. Temporal dependencies were introduced as a way

to increase the amount of information available for inference, especially on the par-

ticular case of narrow �eld of view. Incremental updates of the covariance matrix

provide means for the non-parametric model to gradually adapt to new environments

and learn new and useful optical �ow distributions. The introduction of a geometric

model as the mean function for the GP framework reduces the need for compre-

hensive training datasets, since an initial estimate is already available that is then

further re�ned by the non-parametric model. Finally, the SLAM extension allows the

algorithm to exploit the full covariance matrix recovered by the CGP framework to

provide absolute motion estimates, when there is a loop-closure.

However, during the experiments a general issue was raised, that is not related to

the GP framework used in this thesis but could compromise the results of any visual

odometry algorithm. This issue is the presence of dynamic objects in the environment,
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that generate optical �ow that is not consistent with the camera's own rotation and

translation. An example of the impact of such dynamic objects is depicted in Fig.

4.15a, where we can see that most of the overall shapes throughout the trajectory are

maintained, however there is a systematic drift component that skews the localization

results and also some localized sharp turns that do not exist in reality. The systematic

component of drift occurs due to the constant �ux of cars in the same portion of the

image (the right one, in Sydney), that generates an optical �ow contrary to vehicle

movement and tricks it into thinking that it is moving faster in that portion of the

image than in the other side, and therefore it is slowly turning left. The sharp turns

occur mostly when the vehicle is not moving (i.e. in a tra�c light), when there are

pedestrians and other vehicles crossing its path and generating optical �ow in di�erent

directions randomly. This random optical �ow tricks the algorithm into thinking it is

rotating on its axis, and when it starts moving again its orientation is compromised.

The visual odometry algorithm proposed in this thesis has some components that

allow the �ltering of dynamic objects, both by removing outliers using RANSAC

and averaging out dynamic features by dividing the image into equal-sized grids and

combining its optical �ow values into a single component. However, if a substantial

portion of the image is dynamic these two techniques are no longer valid, and erro-

(a) (b)

Figure 5.1 � Examples of dynamic objects in visual odometry. (a) Constant �ux of
cars in one portion of the image, generating a contrary optical �ow that creates
systematic drift. (b) Pedestrians crossing the vehicle's path while it is not moving,
generating random optical �ow that compromises orientation.
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neous information will be used both for training and testing. A solution would be to

actively segment and remove the dynamic objects from the image, and the remain-

ing (static) optical �ow information is then used normally for visual odometry. This

chapter presents and describes a novel technique for the automatic segmentation of

dynamic objects that is based on the same GP principles used throughout this the-

sis, thus creating an elegant solution that can be incorporated seamlessly into the

proposed visual odometry framework1.

The assumption that no prior knowledge of the environment and/or camera calibra-

tion is maintained, and no ground-truth (i.e. manual labelling of images or expensive

3D laser sensors for direct distance measurements) is necessary during the segmen-

tation process. Instead, the ground-truth is composed of the initial classi�cation

between inliers/outliers provided by the RANSAC algorithm, and the output is the

probability that each pixel in the image belongs to a dynamic object (in a range

from 0 to 1, zero meaning static and 1 meaning dynamic). The continuous function

generated by the GP framework allows the dense classi�cation of the entire image,

even though sparse optical �ow information is used as input, and a measure of uncer-

tainty for each pixel classi�cation is also obtained, due to the probabilistic nature of

Gaussian processes. New information is incorporated online during navigation, thus

allowing the algorithm to learn the characteristics of new dynamic objects and react

accordingly to gradual changes in the environment, while redundant information is

discarded to maintain computational cost roughly constant.

The remainder of this chapter is dedicated to introducing and describing the proposed

algorithm for the automatic segmentation of dynamic objects. It starts by providing

a brief overview of the currently available techniques for dynamic object segmenta-

tion, and how the proposed algorithm �ts within the related literature. Afterwards,

its various components are presented and discussed in detail, including the initial

RANSAC classi�cation, the novel method for parameterizing the optical �ow infor-

mation that serves as input for the GP framework, and the probabilistic least-squares

classi�cation method used to transform a regression technique such as GPs into a

1This technique was presented at the International Conference on Robotics and Automation
(ICRA) 2013, under the title Online Self-Supervised Segmentation of Dynamic Objects [44].
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binary classi�cation technique. The tools for incremental update of the covariance

matrix, that serve to decide which information is useful and should be incorporated

into the non-parametric model and which is redundant and/or erroneous and should

be discard, are also presented and discussed, along with a method for obtaining dense

pixel-by-pixel classi�cation of the entire image based on sparse optical �ow informa-

tion. Finally, experimental tests are conducted and the results are shown as a way

to validate the proposed algorithm both as a tool for dynamic object segmentation

and as a way of improving visual odometry results. Initial results on dynamic ob-

ject clustering are also presented, and the chapter concludes with a summary of its

contributions.

5.1 Related Work

Several applications of dynamic object detection assume a static camera, which im-

plies that any non-dynamic object will maintain its position over time. In this scenario

it is possible to statistically model the background, essentially "�ltering it out", and

treat any change in pixel intensity as a potential dynamic object. In [143] each pixel of

the image is modelled as a Gaussian distribution, whose parameters are learned from

observations in consecutive frames, and in [62] a Kalman Filter is used in a similar

fashion. When a uni-modal solution is ill-suited (i.e. when the background changes

in a predictable manner, such as trees swaying, fans rotating or water �owing), a mix-

ture of Gaussian models has been applied with satisfactory results [30, 37, 122], and

in [121, 124] a Hidden Markov Model (HMM) is used to model the background while

exploiting spatial dependencies between pixels. Other approaches forego pixel-wise

locality in favour of regional models of intensity, such as eigenvalue decomposition [95]

and autoregressive moving averages [84, 145]. A mixture of local and regional models

is employed in [132], and in [115] a foreground model is explicitly maintained in order

to improve the detection of dynamic objects without using tracking information.

In other applications, however, the visual sensor is mobile, usually mounted on top

of a robotic platform. In this scenario it is impossible to separate background and



5.2 Algorithm Overview 165

foreground solely by tracking pixel intensity changes, as static objects will also ex-

perience relative motion due to camera rotation and translation between frames. A

straightforward way of segmenting this sort of image is to model the ground plane

and treat everything else as an object [91, 119, 144], however this approach tends

to fail in crowded environments where the ground plane is not readily visible. A

weaker ground plane constraint is presented in [32], where a coupling between object

detection and scene geometry is maintained using a Bayesian network.

If a signi�cant portion of the environment is assumed static, the relative motion of

static objects can be �ltered out by calculating the optical �ow [50] of the image and

using a voting method, such as RANSAC [35], to elect the most probable motion

hypothesis. Any region that does not comply to this constraint is assumed to be

dynamic, and can be tracked using classical approaches such as Extended Kalman

Filters [139] or Particle Filters [133] (robust data association algorithms [19] and

occlusion-handling techniques [30, 32] are necessary to deal with very cluttered envi-

ronments). If more than one camera are available, a stereo triangulation can provide a

3D position estimate for matched features [47], incorporating extra information that

could be used to facilitate and improve object clustering and tracking [4, 127]. A

more accurate detection can also be achieved by applying category-speci�c models to

separate the static background from already established dynamic objects, either on a

3D point-cloud [5, 53], directly on the camera images [23, 64] or in a combination of

both [31, 120]. The static background information can also be readily used to improve

visual odometry applications [6, 43, 93], since its optical �ow values now re�ect solely

the camera's own rotation and translation.

5.2 Algorithm Overview

A diagram of the proposed algorithm for the segmentation of dynamic object is shown

in Fig. 5.2, where we can see several similarities with the simpli�ed version of the

proposed visual odometry algorithm as depicted in Fig. 3.1. First of all, the same

input data, IMG1 and IMG2, is used by both algorithms, which is important since
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it does not create any need for additional processing. The same stages of feature

extraction and matching are also conducted, and the resulting matching set MTC12

is �ltered according to RANSAC to generate the inlier set INL12 that serves as the

input information for the visual odometry GP framework. Here, the matching set

is used directly as input for the Initial RANSAC classi�cation, that provides the

ground-truth data R12 for training and covariance matrix update. This classi�cation

is performed based on the fundamental matrix F12, that encodes the geometrical

Feature  
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Feature  
Extraction  

FTR1  

FTR2  

Feature  
Matching   MTC12   RANSAC  

Optical  Flow  Parametrization  
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Figure 5.2 � Diagram of the proposed algorithm for the automatic segmentation of dy-
namic objects. Again, it is divided into two stages, the Optical Flow Parametriza-

tion and the Gaussian Process Framework. At the beginning of navigation, the non-
parametric model (X,R)NP is empty, and random hyperparameters are selected.
At each timestep, a matching set MTC12 containing optical �ow information is
extracted from the current frame IMG2 and the previous one, IMG1. An ini-
tial classi�cation R12 is performed using RANSAC, assuming outliers as dynamic
objects and inliers as static objects, and each matching pair is parametrized to
generate the input vector X12 for the GP framework. Both X12 and R12 are used
as input for the GP Update stage, where it is decided whether or not this infor-
mation is relevant, and should therefore be incorporated into the non-parametric
model (X,R)NP , or if it is redundant and should therefore be discarded. The GP
hyperparameters are updated according to this information and used by the GP

Classi�cation to provide a �nal classi�cation Y12 and variance Σ12 estimates for the
input vector X12.
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constraints of the camera between frames and serves as the geometric model used in

the proposed visual odometry algorithm.

Additionally, the matching set also undergoes a parametrization process, which gen-

erates the input vector X12 for the GP Classi�cation and GP Update stages. It is

important to note that, although the same information is used to generate this input

vector, it is not the same as the one used by the proposed visual odometry algorithm

since di�erent properties are relevant in each application. Visual odometry requires

optical �ow information between frames, whereas object segmentation utilizes image

coordinates and pixel intensity values. The resulting pair (X,R)12 is used as input for

the GP update stage, where it is decided whether or not this information is relevant

(and should be incorporated into the non-parametric model (X,R)NP ), or redundant

(and should be discarded). This non-parametric model is empty at the beginning of

navigation and the hyperparameters are selected randomly, indicating that no prior

knowledge of the environment is necessary. If these hyperparameters are available

(i.e. from a previous run) they can be incorporated seamlessly.

The GP hyperparameters are updated according to this new information, and the

resulting optimized GP hyperparameters are used by the GP framework to generate

the �nal classi�cation Y12 for each matching pair X12, along with the corresponding

uncertainty estimate Σ12. Since this �nal classi�cation does not require an initial

classi�cation R12, or even a successful match (the input vector is based solely on

image coordinates and colour intensities), it can be performed equally in any image

pixel, thus allowing a pixel-by-pixel dense classi�cation of the entire image. For speed

purposes, this dense classi�cation is performed at every 5th pixel of the image, both

horizontally and vertically, and the spaces between pixels are classi�ed using linear

interpolation for both the mean Y12 and variance Σ12 values. The result is a 2×h×w
structure (where (h,w) are respectively the image's height and width), containing a

value ranging from [0, 1] that indicates the probability that each pixel in the image

belongs to a dynamic object, along with the corresponding uncertainty in regards to

that measurement.
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5.2.1 Initial RANSAC Classi�cation

The initial RANSAC classi�cation provides the ground-truth used by the training and

covariance matrix update processes, thus eliminating the need for manual labelling or

extra sensors that are capable of providing such information directly. As explained in

Section 2.3.3, the RANSAC is an iterative algorithm used to estimate the parameters

of a mathematical model from a set of observed data which contains outliers. For

the application at hand, the mathematical model is the fundamental matrix F , that

encodes the geometric constraints correlating the visual system between frames, and

the outliers are the dynamic objects in the environment, that generate optical �ow

that cannot be explained away by the camera's own translation and rotation. The

RANSAC algorithm basically elects a random sample from the available data, builds a

model and then tests all remaining data points against this model, and the model with

the highest number of inliers is determined to be correct. If most of the environment

is assumed static, it is natural to expect that RANSAC should elect the model that

represents a static environment, and therefore any matching pair that does not comply

to these constraints should belong to a dynamic object.

The same techniques for feature extraction and matching used for the proposed visual

odometry algorithm are used here, thus eliminating the need for further processing of

visual information. Examples of such feature extraction and matching processes are

depicted in Fig. 5.3, in the particular cases where the camera is moving (left column)

and static (right column). The �rst row shows the initial sets of features extracted

from each image, and the second row shows the corresponding matching sets with

the immediately subsequent frames. An average of 7000 features are extracted per

frame, and it is immediately possible to see a substantial amount of obviously false

matches throughout the image, that do not belong to either dynamic or static objects

and should therefore be removed.

This outlier removal is done using RANSAC, however now a distinction has to be

made between outliers (false matches) and dynamic features, that were correctly

matched but have an optical �ow di�erent than that generated by static features. We

can see in Fig. 5.3 that, even though a large portion of the environment is dynamic
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Figure 5.3 � Examples of the feature extraction and matching processes for automatic
dynamic object segmentation. The �rst row shows the features obtained from
two di�erent images, and the bottom row shows the resulting matches with their
immediately subsequent frames. In the left column the vehicle is moving, whereas
in the right column the vehicle is not moving (all optical �ow comes from dynamic
objects).

(especially in the right column), there are still enough static features to ensure that

RANSAC will converge to a model that represents a static environment, mostly in

the street and in the upper portions of the image. Once this model is obtained, each

matching pair is tested against it and a measurement of error is calculated, based

on the Euclidean distance between the match and its corresponding epipolar line. If

the match falls in the epipolar line, the projection error is zero and its optical �ow

is consistent to that of a static object, and the higher the error is the further away

the match is from the epipolar line. This error measurement provides a metric for

the determination of which features are dynamic and which are static, and matching

pairs with a projection error above a certain threshold are discarded as outliers.
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(a) (b)

Figure 5.4 � Initial RANSAC classi�cation, based on the image information presented
in Fig. 5.3. Each line segment has a colour ranging from red (static object) to
green (dynamic object), and matching pairs considered outliers were discarded.

This threshold is also used to normalize the remaining projection errors to values

ranging from [0, 1], which indicate the probability that each matching pair belongs to

a dynamic object.

Examples of this initial RANSAC classi�cation are shown in Fig. 5.4, where the

projection error values ranging from [0, 1] were converted to colours ranging from red

(static objects) to green (dynamic objects). In Fig. 5.4a the vehicle is moving for-

ward, generating a relative optical �ow component that also in�uences static features.

Because of that, even though most dynamic objects were correctly classi�ed, there

are several portions of the image that are wrongly classi�ed as dynamic, especially

towards the border where the relative optical �ow component of camera motion is

stronger. The street also contains several features that were wrongly classi�ed, mostly

due to the lack of texture that increases ambiguity during the matching process and

increases the chances of false positives. In Fig. 5.4b the vehicle is not moving, and so

any optical �ow detected is solely due to the presence of dynamic objects. It is clear

that this scenario greatly facilitates classi�cation, as now any feature that experiences

motion between frames can be safely classi�ed as dynamic. However, we can also see

several dynamic objects that are not represented by any features, and thus are not

detected by the algorithm. We attribute this lack of representation to occlusion, the

presence of deformable objects and local luminosity changes.
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This is the visual information that is currently used as input for the visual odometry

algorithm described in the previous chapter. However, this information is not ideal

and contains a signi�cant amount of dynamic objects that were incorrectly classi�ed

as static, and will therefore introduce a component of error to the �nal optical �ow

distribution that describes the image. Because of that, a second layer of classi�cation

is proposed here, that uses this initial classi�cation as ground-truth and a novel

descriptor to generate the corresponding input vector. The goal is to provide a more

robust and reliable classi�cation between static and dynamic objects by removing

these errors, and also a dense classi�cation capable of addressing the gaps in the

image where there are no discernible features.

5.2.2 Optical Flow Parametrization

For a variety of reasons, the descriptor used to parametrize the optical �ow infor-

mation for dynamic object segmentation is di�erent than the one used for visual

odometry estimation, even though they are both generated from the same visual in-

formation. Dynamic object segmentation is binary, so there is no need to parametrize

the magnitude and/or orientation of the optical �ow, which now becomes the output

given by the initial RANSAC classi�cation. Also, the classi�cation is now individual,

rather than collective for the entire image, so each matching pair should have its own

descriptor based on the area of the image in which it was detected. For these reasons,

the new descriptor used to generate the input vector xn for the GP classi�cation is

given by:

xn = {u, v,m, r, g, b}. (5.1)

In the equation above, u and v are the pixel coordinates of the feature in the image

(as a convention, the image coordinates of the feature in the �rst frame are used).

This information is necessary in order to correctly model di�erent motion patterns

throughout the image (i.e. upper portions are mostly static, whereas right portions

usually present motion contrary to the vehicle), and compose the spatial component

of the descriptor. The four other components, {m, r, g, b}, are the colour components
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and are calculated by placing a w-by- w window centered on (u, v) and extracting the

average of pixel intensities in this area (a 7-by-7 window is used in the experiments).

The value of m is obtained by applying this method on a monochromatic version of

the image, while {r, b, g} are obtained by applying this method respectively on the

red, blue and green channels of the coloured version of the image. This information

is necessary in order to correctly model transitions between objects, delineating their

borders and allowing the algorithm to "�ll in the gaps" where no features were de-

tected. The assumption that objects will have features of a similar colour is made,

however the division of colour information into four components reduce the impact

of such assumption, and since the goal is the removal of dynamic objects the divi-

sion of any one single object into several sub-objects is not an issue. Other possible

parametrizations, such asHSV , could lead to better results by removing redundancies

in the colour spectrum, and future work will focus on exploring such variations.

It is important to note that, since this descriptor does not require matching informa-

tion between features in di�erent frames, it is possible to used it to parametrize any

pixel in the image. These pixels will not have a corresponding ground-truth (obtained

using RANSAC, that requires matching information), and therefore cannot be used

to update the non-parametric model, however they can still be used for the inference

process that provides the �nal classi�cation between static and dynamic objects. By

performing this inference on all image pixels, a dense classi�cation of the entire im-

age can be obtained, even though only sparse optical �ow information is available for

training.

5.2.3 Gaussian Process Classi�cation

While the predictive mean f̄ provided by the GP framework is useful in determining

the most likely hypothesis, it can also be misleading if considered in isolation, be-

cause it does not provide any insight in the accuracy of such estimate. One of the key

advantages in using Gaussian processes is the ability to calculate the variance V(f̄)

of each prediction, that acts not only as a way of identifying areas with a high uncer-
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Figure 5.5 � Examples of the sigmoid function used to bound the GP regression results
between [0, 1], for di�erent values of α.

tainty measurement but also can be combined with the predictive mean to generate a

probability distribution that acts as a classi�er for the entire input space. One of the

possible methods for performing such classi�cation is the Probabilistic Least-Squares

Classi�cation (PLSC) [101], which "squashes" the prediction using a bounded func-

tion in order to obtain a regression output ranging from [0, 1]. Other methods, such

as the Laplace Approximation [140] and Expectation Propagation [83], are equally

valid, however they require multiple iterations before convergence to a single query

unit, which generates an undesirable computational cost that PLSC manages to avoid

by directly modifying the regression model to perform classi�cation.

The bounded function used here is the sigmoid function (as introduced in [100]),

a special case of the logistic function that is real-valued, di�erentiable and has a

pair of asymptotes at 0 and 1 as x → ∞. Its two parameters, α and β, de�ne the

sharpness of the transition between classes (Fig. 5.5) and are determined using the

cross-validation technique, as described in Section 2.2.5. The implemented version

for parameter training is given by:

p(yi|X, y−i, θ) = Φ

(
yi(αµi + β)

1 + α2σ2
i

)
, (5.2)
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where Φ(.) is the cumulative unit Gaussian, y−i refers to the output values of all train-

ing data excluding the pair (xi, yi), µi and σi are the predictive mean f̄ and variance

V(f̄), and θ represents the optimized hyperparameters of the covariance function.

The training of α and β can be performed by partitioning the original matrix K−1 to

eliminate the in�uence of xi, thus eliminating the need of recalculating the entire co-

variance matrix for each training point [135]. The new expressions for the predictive

mean and variance are presented in Eq. 5.3, and they allow the classi�cation of each

pixel in the image as a static, dynamic or unsure object, according to user-de�ned

thresholds.

µi = yi −
[K−1y]i
[K−1]ii

σ2
i =

1

[K−1]ii
(5.3)

5.3 Incremental Updates

The proposed algorithm for the automatic segmentation of dynamic objects does not

make any assumptions about the environment and/or visual system utilized, which

means that it should be able to provide robust estimates in any scenario where visual

information is a valid way of obtaining information. There are two possible ways of

doing so in the GP framework: either by maintaining a comprehensive training dataset

that contains every possible sample of dynamic objects the vehicle might encounter

during navigation, or by allowing it to learn and adapt to new circumstances as they

are presented. Even so, the �rst solution fails due to the unpredictable nature of

dynamic objects (they might start/stop moving suddenly) and a myriad of random

phenomena that a single training dataset will never be able to truly address.

Hence, the only solution becomes to allow the algorithm to adapt to new circum-

stances as they are presented, gradually learning the behaviour of objects around the

vehicle and constantly changing its beliefs to re�ect the current environment state.

With this approach, a dynamic object that stops moving would eventually become

static and vice-versa, maximizing the information available for visual odometry with-

out generating errors, and new objects that enter the camera's �eld of view would
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be incorporated seamlessly into the non-parametric model. The recalculation of the

entire covariance matrix is of computational complexity O(n3) and therefore infea-

sible for an online approach, so the solution proposed here involves the use of the

covariance matrix update equations presented in Section 4.1.3, that allow the itera-

tive incorporation of new information into the covariance matrix and the removal of

redundant information.

The issue now becomes determining which information is relevant and which is re-

dundant, thus incorporating enough data to provide an accurate classi�cation while

maintaining computational complexity at a reasonable level. The next section is ded-

icated to introducing and describing a novel method for information �ltering that

is able to maintain the number of data points in the non-parametric model stable

even after long periods of navigation, thus keeping computational cost roughly con-

stant. Afterwards, a technique for obtaining a dense classi�cation of the entire image

without performing inference in every pixel (again, a naive and very computationally

costly approach) is discussed.

5.3.1 Information Filtering

The information �ltering technique described here is composed of four individual

steps, that are performed at every timestep when new information becomes available.

The �rst step is to enforce a density constraint on the new data points, as a way

to eliminate redundant information. Inference is then performed on the remaining

data points in an attempt to discard those that lie on an already well-represented

portion of the input space. The same inference process is then performed on the non-

parametric model itself, which serves as an outlier removal and maintains consistency

even after long periods of navigation. Lastly, the density constraint is now enforced

on the non-parametric model itself, again to eliminate redundant information. Each

of these four steps are described below in more detail:
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Density Constraint on Input Data

The combination of SIFT and corner detector algorithms used in this thesis to extract

image information produces an average of 7000 features per frame, which is a very

large number for this particular application and prohibits the direct incorporation

of all new data points into the non-parametric model. Fortunately, most of this

information is redundant, since features tend to be clustered into speci�c portions

of the image and may share a similar classi�cation. This allows them to be safely

discarded without compromising results by performing a nearest-neighbour search in

the input space for each feature and discarding those whose classi�cation is similar

to their closest neighbours, according to a certain distance threshold. This process

is repeated until only one feature of any given class remains in each portion of the

input space determined by the distance threshold, and if any portion is represented

by both classes then two features are maintained, one for each class.

Inference on Remaining Input Data

The next step consists of performing inference on the remaining input data points,

that were not discarded in the previous step. This inference process provides a �nal

GP classi�cation for these data points based on the current non-parametric model

(this step is skipped on the �rst iteration), which is then compared to the initial

RANSAC classi�cation. Data points that are correctly classi�ed (the GP classi�cation

is the same as the RANSAC classi�cation) are discarded, because their position in

the input space is already well-represented and does not require more information to

provide accurate estimates. Those that were incorrectly classi�ed are assumed to be

relevant and are incorporated into the non-parametric model, increasing the amount

of information available for inference.

Inference on Non-Parametric Model

The next step is to perform inference on the non-parametric model itself. This time,

data points that are incorrectly classi�ed are removed, thus decreasing the amount of
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information available for inference. This step is important in eliminating RANSAC

misclassi�cation (outliers), as they are assumed to be a minority and therefore less

representative of their position in the input space. The removal of such misclassi�ca-

tions allows the non-parametric model to maintain consistency even after long periods

of navigation, essentially forgetting old environment behaviours and adapting to new

ones.

Density Constraint on Non-Parametric Model

Lastly, the density constraint is enforced on the non-parametric model itself, by re-

moving data points with similar classi�cation that are close to each other according

to a certain distance threshold. As in the �rst step, this serves as a way to decrease

the amount of redundant information available for the non-parametric model while

still maintaining its spatial distribution in the input space.

Fig. 5.7 shows the progression of the size of the non-parametric model during navi-

gation. It starts empty, without any information, and at the �rst iterations a large

number of data points are incorporated, because the algorithm is still learning the

di�erent static and dynamic structures of the environment. When the number of

incorporated data points reaches roughly 4000 the size of the non-parametric model

stabilizes, with roughly the same number of data points being incorporated and re-

moved at each iteration. This is to be expected, since as a general rule the environment

changes gradually with each frame, and the algorithm is capable of learning new be-

haviours at the same rate in which it is forgetting old ones. When there is a sudden

change in the environment (i.e. the camera started/stopped moving, or a previously

dynamic object became static or vice-versa) there is a spike on the number of data

points incorporated, indicating that the environment suddenly became more complex

and the algorithm is trying to learn this new con�guration. Once it has managed to

do so, the size of the non-parametric model stabilizes and returns to the 4000 level,

which is maintained even after an undetermined long period of navigation. This level

can be adjusted by �ne-tuning the value for the distance threshold in the density

constraint, according to requirements in performance and computational e�ciency.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6 � Stages of information �ltering (red dots are features classi�ed as static,
and blue dots are features classi�ed as dynamic). (a) Initial input data points.
(b) Input data points after density constraint. (c) Data points after inference that
are incorporated into the non-parametric model. (d) Non-parametric model data
points after inference. (e) Non-parametric model after density constraint. (f) Final
GP classi�cation of all input points, ranging from red (static) to green (dynamic).
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5.3.2 Pixel by Pixel Classi�cation

In principle, the entire image can be classi�ed using the Probabilist Least-Squares

Classi�cation technique described in Section 5.2.3, by calculating the input vector

for each pixel according to the descriptor introduced in Section 5.2.2 and performing

GP inference based on the current non-parametric model. However, inference has a

computational complexity of O(n2), with n being the number of data points in the

non-parametric model, and for a 600× 400 image a total of 240000 inferences would

have to be performed. Needless to say, these numbers make a dense classi�cation of

the entire image infeasible for an online algorithm.

Since each inference is performed independently, sharing the same covariance matrix

K and ground-truth vector y, one straightforward solution would be to parallelize

the inference process, or to perform the matrix multiplications in a GPU (Graphic

Figure 5.7 � Number of data points maintained by the non-parametric model at each
iteration. Note that this number stabilizes at around 4000, with spikes indicating
moments in which there was a radical change in the environment (i.e. the camera
started/stopped moving, or a static object suddenly became dynamic or vice-versa).
As the algorithm learns these new behaviours, the number of data points in the non-
parametric model stabilizes and returns to the 4000 level.
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(a) (b)

Figure 5.8 � Example of pixel subsampling. In (a), only every 5th pixel in each row
and column is classi�ed, providing an outline for the �nal classi�cation that is then
completed in (b) using linear interpolation.

Process Unit). Another solution proposed here is pixel subsampling, in which only

certain pixels are selected for inference and the remaining are calculated based on

their neighbours' properties. For this particular application, a predetermined number

of rows and columns are skipped during inference (i.e. every other row and column

are skipped), and their classi�cation is calculated using linear interpolation based on

their nearest neighbours both horizontally and vertically. This approach decreases

the computational complexity by a factor of n2, where n is the number of rows and

columns skipped, and by �ne-tuning the value of n it is possible to achieve the desired

computational complexity. It also has the added bene�t of blurring the borders of

dynamic objects, thus providing a "safety zone" that minimizes the chances of using

false information for visual odometry and �lling in the gaps in small patches where

no texture is available.

An example of such interpolation is shown in Fig. 5.8, in which each pixel in the

image is depicted by its probability of belonging to a dynamic object. In Fig. 5.8a,

only every 5th pixel in each row and column is classi�ed, providing an outline of the

�nal classi�cation that is then completed via interpolation as shown in Fig. 5.8b.

The resulting probabilistic classi�cation can then be transformed into a discrete clas-

si�cation of static/dynamic/unsure objects, based on user-de�ned thresholds and the

uncertainty estimates for each pixel. Matching pairs classi�ed as dynamic or un-

sure are simply discarded and no longer used to generate the input vector xn for the
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SPCGP framework. It is important to note that the entire image does not need to

be classi�ed for visual odometry purposes, since only matched features provide the

optical �ow information necessary to estimate vehicle motion between frames.

5.4 Experimental Results

The proposed algorithm for the automatic segmentation of dynamic objects was tested

using the same dataset used for the generalization experiments with di�erent vehi-

cles, as described in Section 4.3.3. This dataset is highly dynamic, with the vehicle

interacting normally with cars, buses and pedestrians at speeds ranging from zero

(tra�c lights and tra�c jams) to roughly 50 km/h. Initially, dense segmentation

results are presented as a way to validate the algorithm, where the entire image is

classi�ed according to the pixel-by-pixel classi�cation technique described in Section

5.3.2, using subsampling and linear interpolation for speed purposes. The proposed

algorithm's performance is compared with traditional approaches for the segmenta-

tion of dynamic objects, and tests are conducted with a di�erent dataset to show its

ability to generalize to di�erent camera con�gurations and vehicle dynamics.

Afterwards, experimental results for the clustering of dynamic objects are presented

and discussed. The algorithm for the automatic segmentation of dynamic objects as

described in this chapter does not make any assumptions about the nature of the

dynamic object, and also does not make any distinctions about di�erent dynamic

objects. This is not necessary for visual odometry purposes, where all dynamic ob-

jects are treated similarly and discarded, however by exploiting similarities in optical

�ow patterns and colour information it is possible to group di�erent sets of dynamic

features into separate objects, each with speci�c characteristics. These characteristics

can then be used to perform a higher-level form of classi�cation, in which dynamic

objects are clustered into di�erent semantic categories, such as cars, pedestrians, etc.

This technique allows the creation of a library of dynamic objects during naviga-

tion, with no prior assumptions in regards to environment structures and/or camera

con�guration, that could serve a wide variety of purposes.
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Afterwards, experiments conducted previously with the proposed visual odometry al-

gorithm are repeated with the incorporation of the algorithm for the segmentation of

dynamic objects described in this chapter, as a way to show the improvements in vi-

sual odometry estimation provided by this technique. For this particular application,

no dense classi�cation is necessary, since only the features matched between frames

are capable of providing optical �ow information and therefore contribute to the in-

put vector used by the SPCGP framework. Results with di�erent extensions of the

proposed visual odometry algorithm are presented, including the extension to SLAM

which generates absolute localization estimates as a way to remove drift accumulated

during navigation. These results complete the experimental portion of this thesis,

and testify to the proposed visual odometry algorithm's ability to provide accurate

motion estimates using a GP framework based solely on visual information, with

no prior knowledge of the environment, camera con�guration/calibration or vehicle

dynamics.

5.4.1 Dynamic Object Segmentation

Examples of the initial RANSAC classi�cation used as ground-truth for the proposed

algorithm were introduced in Fig. 5.4, and here the results of the �nal GP classi-

�cation based on such information are presented (Fig. 5.9). A dense classi�cation

was performed, with inference being conducted using every 5th pixel in each row

and column to provide an outline of the entire image, and the remaining pixels were

classi�ed using linear interpolation for speed purposes. This process was done for

both the predictive mean (Fig. 5.9b) and variance (Fig. 5.9c) values, which indicate

respectively the best hypothesis for each probability distribution and the con�dence

in regards to such hypothesis.

Right from the start, it is possible to see in Fig. 5.9b that the algorithm was able to

correctly detect most of the dynamic objects in the environment, segmenting them

from the static background according to their probability of being truly dynamic.

Virtually all misclassi�cations given by the initial RANSAC classi�cation in Fig. 5.4a
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(a)

(b)

(c)

Figure 5.9 � Examples of the �nal GP classi�cation results, based on the initial
RANSAC information depicted in Fig. 5.4. (a) Original images. (b) Predictive
mean, de�ned by a number ranging from 0 (black, static object) to 1 (white, dy-
namic object). (c) Predictive variance, normalized to values ranging from 0 (lowest)
to 1 (highest).

were removed, especially on the top left and right corners of the image, and also in

the areas where the street was represented. We attribute this to the �ltering process,
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which is capable of removing outliers and detecting the correct tendency of each

portion of the image even in the presence of signi�cant noise. Also, virtually all the

featureless regions in Fig. 5.4b were correctly �lled by the dense classi�cation process

provided by the GP framework, allowing the complete delineation of all dynamic

objects and their boundaries in relation to the static background. Because they

are also moving, shadows were classi�ed as dynamic objects as well, which is not a

problem for visual odometry applications since their removal will not introduce any

error to the �nal optical �ow procedure.

Another key bene�t of using the GP framework for segmentation is its ability to

calculate the uncertainty inherent to each estimate, thus providing a measurement

of variance for each pixel alongside the predictive mean. In the context of object

detection, this variance can be used to determine which portions of the image are

most likely to be correctly classi�ed and which require more information before a �nal

classi�cation can be made, forming the basis for active learning [27, 114]. Examples of

such variance are shown in Fig. 5.9c, with darker areas representing lower uncertainty

values and lighter areas representing higher uncertainty values. It is clear that most

of the variance is concentrated in the borders of the image, which is to be expected

since this region is where the feature density is lowest (lots of features disappear

and appear between frames due to vehicle motion) and also where new objects are

detected for the �rst time. As we move to the central portions of the image new

objects and features are gradually incorporated into the non-parametric model and

the variance decreases.

More examples of the predictive mean obtained using the proposed algorithm are

shown in Fig. 5.10. These results were obtained in the same run, meaning that the

non-parametric model, starting empty and with random hyperparameters, had to

constantly adapt to changes in the environment in order to learn the characteristics

of each individual frame. The information �ltering process described in Section 5.3.1

was used to keep computational complexity manageable during navigation, and the

number of data points maintained at each iteration for the �rst 1000 frames is depicted

in Fig. 5.7. From these images note that even though the vehicle experienced radical
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Figure 5.10 � Automatic dynamic object segmentation results. Each pixel is de�ned
by a number ranging from 0 (black, static object) to 1 (white, dynamic object).
These results were obtained in the same run as the non-parametric model con-
stantly adapts to new environment characteristics, without any prior information
and without any human intervention.

changes in both local and global luminosity, environment structures and a wide range

of di�erent dynamic objects, it was still capable of providing accurate segmentation

results.

The proposed algorithm for the segmentation of dynamic objects was compared with

other approaches to dynamic object segmentation, and the results are presented in

Fig. 5.11. These results were obtained based on information from 200 hand-labelled

images randomly selected from the 14500 images available for testing. The dotted

line represents the initial RANSAC classi�cation results, the black line indicates the

proposed algorithm, and the red line indicates the proposed algorithm but with a

square-exponential covariance function, instead of the neural network covariance func-

tion. The blue line indicates results obtained using Support Vector Machine (SVM)

[21] as the self-supervised classi�cation method instead of GPs, and the green line

indicates the Optical Flow Classi�cation (OFC) results obtained based on [88]. The

OFC uses motion potentials based on geometry to build a graph-like structure from

dense optical �ow and feature tracking (the SLAM component was not implemented
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Figure 5.11 � Comparison of the proposed algorithm for the segmentation of dynamic
objects with other similar approaches. (a) ROC (Receiver Operating Characteris-
tics) curves for each approach. (b) Area under the ROC curves for each approach
in di�erent frames.

here, as it can be equally applied to any methodology). This graph is then clustered

together and nodes with similar potentials become motion segments that generate

a single structure. The ROC curves for each of these approaches are shown in Fig.

5.11a, where it is possible to see that the proposed algorithm outperforms the others

in all threshold levels, and in particular that it improves over the initial RANSAC

classi�cation by a signi�cant margin. It is also possible to see the importance of

covariance function selection, since the same algorithm performed signi�cantly worse

when the squared exponential covariance function was used.

Fig. 5.11b depicts the area under the ROC curve for each subsequent frame at the

beginning of navigation, indicating how accuracy changes as new data is incorporated

into the non-parametric model. As expected, the OFC approach does not improve

over time, since it is not based on learning techniques, using instead individual in-

formation from each frame. The accuracies of the three other approaches increase

steadily over time, with occasional drops that indicate moments in which there was

a signi�cant change in the environment (i.e. the camera started/stopped moving,

or a new object entered the camera's �eld of vision), and the proposed algorithm

consistently outperforms the other two. It is interesting to note that, at the begin-

ning of navigation, the OFC is the best solution, since there was no time for the
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non-parametric model to learn the environment characteristics. However, after a few

frames the proposed algorithm improves and becomes the best solution, while the

OFC oscillates heavily at each iteration.

The same algorithm was also tested, without any further modi�cations, using images

obtained from a portable camera device (Fig. 5.12a), as a way to qualitatively explore

its ability to generalize over di�erent camera con�gurations and environments. Again,

the non-parametric model was initialized empty from random hyperparameters, and

the shakiness of the camera posed a challenge to the framework, since now the baseline

between frames is much smaller and its motion is unconstrained by traditional two-

dimensional vehicle dynamics. The results obtained using this con�guration are shown

in Fig. 5.12b, where it is possible to see that again there is a wide variation in

luminosity and structures, and the proposed algorithm was still capable of correctly

segmenting most of the dynamic objects in each frame (results were similar to the ones

depicted in Fig. 5.11). It is also worth mentioning that these results were obtained

without any human intervention, based solely on raw visual information collected

from a single uncalibrated camera.

(a)

(b)

Figure 5.12 � Dynamic object segmentation results in di�erent frames using a portable
camera device.
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5.4.2 Dynamic Object Clustering

The dynamic objects obtained during the segmentation process were subjected to a

second processing stage, as a way to further segmenting them into di�erent categories

(i.e. pedestrians, cars). The segmentation algorithm, as described in this chapter,

does not make any distinctions in regards to di�erent dynamic objects, since its main

purpose is to remove them and allow the use of a static background during visual

odometry estimation. However, by exploiting discrepancies in optical �ow patterns

and colour information from di�erent features it is possible to determine the bound-

aries between objects. It is natural to assume that an object would have features that

share a similar optical �ow distribution, and that this distribution changes gradually

during navigation, which allows the tracking of di�erent objects over time, as a way

to increase robustness and decrease ambiguity in object segmentation. The dense

classi�cation of the entire image also allows the segmentation of dynamic objects

according to their spatial coordinates, since large gaps between pixels classi�ed as

dynamic indicate the beginning of a new object.

An example of such segmentation is presented in Fig. 5.13, where a rectangle was

placed over the original images delineating the boundaries of each individual dynamic

object. This segmentation is conducted according to the following iterative process:

1. A random feature is selected on the image, forming the core of a new dynamic

object cluster.

2. All its neighbours within a certain radius are checked. Features with an optical

�ow pattern whose magnitude/orientation are similar within a certain threshold

are added as part of the same dynamic object cluster.

3. Step (2) is repeated for all newly added features, increasing the size of the

current dynamic object cluster.

4. When there are no newly added features, the process stops and the current

dynamic object cluster is determined. Step (1) is repeated for a new random

feature that still does not belong to any cluster.
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Figure 5.13 � Di�erent objects obtained during the segmentation process.

5. When all features already belong to a cluster, a merging process is conducted to

join clusters whose magnitude/orientation average are similar within a certain

threshold, and their features share an overlapping area in the image. This step

is important to reduce the number of sub-clusters of a single object, due to

small variations in the optical �ow distribution.

6. Once the merging process is done, �ltering is conducted to remove clusters with

a number of features that falls below a certain threshold. This step is important

as it removes small clusters generated by noise in the segmentation algorithm.

7. Each dynamic object cluster is expanded to include pixels that do not contain

features with optical �ow distributions, according to the dense classi�cation

created by the GP framework. Each feature in each cluster is expanded to
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include its neighbouring dynamic pixels, in a process that is repeated until there

are no more pixels to expand to. If the same pixel is neighbour to two di�erent

dynamic object clusters, a linear combination between colour information and

distance to the nearest matched feature is used to determine which cluster it

should be incorporated to.

Once all dynamic objects are obtained, the next step is to further divide them into

di�erent categories, according to the object each one represents (in an urban envi-

ronment, mostly cars and pedestrians). This is done using data collected from 1000

consecutive images, all segmented according to the algorithm described previously,

for a total of 2077 objects. Each object is described using a histogram for each one of

its colour components (red, green and blue), divided into 6 bins. These histograms

are normalized to have an unitary sum, to account for objects of di�erent size. These

descriptors are then categorized using k-means [54], a clustering method which aims

to partition n observations into k clusters, where each observation belongs to the

cluster with the nearest mean. For the experiments presented here, we selected 8 as

the number of clusters to be formed, as a way to minimize the impact of random

objects that do not fall within any other category.

Fig. 5.14 shows the results for the three clusters with the most samples, obtained

using the method described above, along with some examples belonging to the other

�ve clusters. It is important to note that these categories do not imply any knowledge

of the environment, and were generated based solely on the dynamic objects collected

during navigation. Nevertheless, we can see a clear pattern present in each one of

them, indicating that k-means was able to correctly cluster these dynamic objects

into semantically meaningful categories. Fig. 5.14a contains mostly pedestrians, Fig.

5.14b contains mostly cars and other vehicles, and Fig. 5.14c contains mostly shad-

ows from pedestrians. Other clusters include mostly partial objects, that were not

merged into a single group for some reason, shadows from static objects, that were

classi�ed as dynamic due to the learning nature of the self-supervised algorithm, and

other sporadic misclassi�cations. A ground-truth dataset was generated by manually

labelling 200 dynamic objects between these three main categories, and the proposed
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algorithm shows an accuracy of around 70% in object classi�cation (a confusion ma-

trix for these results is presented in Table 5.1). Tests were conducted using di�erent

(a)

(b)

(c)

(d)

Figure 5.14 � Clustering results for di�erent dynamic objects. (a) Pedestrians. (b)
Vehicles. (c) Pedestrian shadows. (d) Example of Objects that do not belong to
any of the three main categories.
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numbers of clusters, and while a higher number did not show any signi�cant im-

provement, smaller numbers show a merging between di�erent clusters that a�ected

results.

Cars Pedestrians Shadows Others
Cars 58 3 2 8

Pedestrians 4 43 11 6
Shadows 4 7 21 8
Others 2 3 5 15

Table 5.1 � Confusion matrix for the clustering results.

5.4.3 Visual Odometry

We show here the improvement generated by the proposed dynamic object segmenta-

tion algorithm in a visual odometry application. As shown in Sec. 4.3.3, the presence

of dynamic objects in the environment creates optical �ow information that is not gen-

erated by camera motion, and therefore will incorporate a component of error into the

visual odometry estimation. The purpose of the dynamic object segmentation then

becomes the removal of such dynamic objects, to allow the use of only optical �ow

information belonging to static objects during visual odometry estimation. The same

localization results obtained in Sec. 4.3.3, using 14500 images obtained in a highly

dynamic urban environment, are shown in Fig. 5.15a, where it is possible to see sev-

eral sharp turns and systematic drift caused by the presence of dynamic objects. No

training and/or model re�nement would be able to deal with such shortcomings, so

the automatic dynamic object segmentation algorithm described in this chapter was

proposed as a way to solve such ambiguities.

Localization results obtained after incorporating the proposed dynamic object seg-

mentation algorithm are shown in Fig. 5.15b, using the SPCGP approach. Dynamic

objects were removed during both the training and testing stages, and there was

no hand-labelling or human intervention at any point. As expected, there is still

some residual drift caused by the incremental nature of visual odometry estimates,

however virtually all sharp turns are removed, allowing the system to recover the
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(a) (b)

(c) (d)

Figure 5.15 � Localization results in a highly dynamic environment using the SPCGP
approach. (a) Without dynamic object removal. (b) With dynamic object removal.
(c) With dynamic object removal and online information incorporation. (d) SLAM
extension of the localization results obtained using dynamic object removal and
online information incorporation.
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overall trajectory shape in great detail. Moreover, when the online information incor-

poration extension is included (Fig. 5.15c), this residual drift decreases even more.

We attribute this to the large variation in environment structures and behaviours

throughout navigation, since the trajectory is long and comprises several di�erent

portions of the city. By gradually incorporating new information as it becomes avail-

able, the algorithm is capable of learning these new structures and react accordingly

to produce accurate estimates. Finally, Fig. 5.15d shows the localization results ob-

tained using these estimates in a SLAM framework, as described in Sec. 4.2. The

loop-closures were mostly done in the lower right portion of the map (beginning and

end of the trajectory), and thus most of the drift accumulated during navigation could

be removed by globally decreasing uncertainty throughout the entire run.

A quantitative comparison between these methods is given in Table 5.2. It is interest-

ing to note that, due to the sporadic and concentrated nature of errors generated by

the presence of dynamic objects, there was not a signi�cant improvement in rmse per-

formance. This is to be expected, as these errors were diluted by the frames in which

the environment was more conducive with visual odometry estimation. As before,

translational error remained roughly the same regardless of which GP approach was

used, and rotational error decreased steadily as more extensions were added to the

SPCGP framework (which also accounts for the removal of systematic drift caused

by dynamic objects), along with the uncertainty in regards to such errors. Also,

a di�erent performance metric was introduced, in which the distance between the

ground-truth and estimated locations of the vehicle at each frame (in the xy plane)

is calculated. This allows a quantitative comparison of these di�erent approaches,

Method Trans. Error Rot. Error xy Eucl. Dist.

(rmse) (10−2 m) (rmse) (10−2 m) (rmse)

SPCGP 6.05± 7.91 0.08± 0.13 27.82± 14.58
SPCGP + DOR 5.94± 7.44 0.06± 0.09 10.34± 6.48
OSPCGP + DOR 5.57± 6.97 0.05± 0.08 8.57± 5.12

ESIF + OSPCGP + DOR 5.71± 6.58 0.04± 0.05 5.83± 3.14

Table 5.2 � Linear and angular errors per frame in experiments with dynamic object
removal (DOR).
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Figure 5.16 � Localization results obtained using the SPCGP approach and dynamic
object removal.

since now the few sporadic drifts (especially in angular velocities) will generate a sig-

ni�cant cumulative error over time. As expected, the error greatly decreases as new

extensions are incorporated, which can be clearly seen in Fig. 5.15.

Finally, localization results obtained using the proposed SPCGP approach with all

extensions (except the SLAM framework, since it could in principle be used in con-

junction with any visual odometry application) are shown in Fig. 5.16. A map of the

environment was superimposed (courtesy of Google Maps) to facilitate the compari-

son with ground-truth information, and sample frames encountered during navigation

are depicted to show some of the challenges faced by the visual odometry algorithm.

5.5 Summary

This chapter provided a novel technique for the automatic segmentation of dynamic

objects, conceived as a way to improve visual odometry results in highly dynamic en-
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vironments. This is done in a non-supervised fashion, without any manual labelling

or human intervention whatsoever. The RANSAC algorithm provides an initial clas-

si�cation that is then further re�ned by the GP framework, to remove outliers and �ll

in the gaps where there is not enough texture to generate robust features. The result

is a dense probabilistic classi�cation of every pixel in the image between static and

dynamic, alongside a measurement of con�dence in regards to such classi�cation. A

novel descriptor was introduced, that both preserves the spatial structure of features

in the image and also their colour intensity, thus allowing the precise segmentation

of object borders. The non-parametric training is conducted online, starting from an

empty covariance matrix and empty hyperparameters. As new information becomes

available, it is �ltered to remove redundancies and information deemed useful is in-

corporated into the non-parametric model, which is then able to gradually learn new

environment behaviours as it forgets old ones.

Experiments were conducted initially to validate the proposed algorithm's ability to

correctly segment dynamic objects from a static background, both when the cam-

era is static and when it is moving alongside the vehicle. Qualitative results were

presented, and a quantitative comparison with other techniques was provided using

manual labelling of random frames that served as ground-truth. The proposed al-

gorithm outperformed every other technique tested, and also showed a signi�cant

improvement over the initial RANSAC classi�cation. Experiments in dynamic object

clustering were conducted, providing a further classi�cation where each dynamic ob-

ject is divided into possibly several categories, such as cars, pedestrians and so forth.

Although this clustering in principle has no e�ect in visual odometry applications, it

could lead to a library of dynamic objects that is generated online during navigation,

again in an unsupervised manner. Finally, the proposed algorithm was incorporated

into a visual odometry application, in which the images used for training and testing

were �ltered to remove features that are deemed dynamic. Results show a signi�cant

improvement over the standard approach of using the entire image to generate optical

�ow estimates, virtually removing all instances of sharp turns and systematic drifts.



Chapter 6

Conclusion and Future Work

This thesis addresses the problem of visual odometry from a machine learning stand-

point, where the transformation between image information and vehicle motion es-

timates is treated as a regression problem with unknown parameters. By using a

Gaussian process we eliminate the need of a known model, using instead a training

dataset composed of pairs of images and their corresponding ground-truth informa-

tion, obtained using a di�erent and independent sensor. This framework eliminates

the need for any prior knowledge in regards to the visual system used (including cam-

era calibration parameters), and is capable of recovering scale even in a monocular

con�guration.

Initially, a basic version of the algorithm is introduced and described, and this basic

algorithm is then extended to include several modules that comprise the core of this

thesis' contributions. These extensions include: 1) The ability to simultaneously

calculate all degrees of freedom in motion from a single pair of images, thus capturing

the cross-dependencies between outputs; 2) The introduction of temporal dependency

between frames, that increases the amount of information available for inference; 3)

Incremental updates of the covariance matrix, which allows the system to iteratively

learn new and useful behaviours; 4) A semi-parametric extension to visual odometry

that bene�ts from both the non-parametric GP model and the traditional camera

geometric model. An extension to the SLAM framework using information �lters was
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also discussed, where loop-closure is used to globally decrease uncertainty and remove

accumulated drift. Finally, a self-supervised technique for the automatic segmentation

of dynamic objects is proposed, as a way to remove optical �ow information generated

by dynamic objects in the environment, which would introduce a component of error

that could compromise results.

6.1 Summary of Contributions

1. Monocular Non-Parametric Visual Odometry Algorithm

The problem of visual odometry is addressed from a machine learning perspec-

tive, using a Gaussian process framework to learn the transformation function

from image information directly into vehicle motion. This approach eliminates

the need for a geometric model or even traditional camera calibration, using in-

stead a non-parametric model whose hyperparameters are optimized according

to training data and a carefully chosen covariance function. The bene�ts of this

approach are three-fold:

• Full Covariance Matrix Recovery

Since visual odometry is essentially a multiple-output problem (each im-

age is mapped to more than one degree of freedom in motion), a Multiple-

Output Gaussian Process (MOGP) derivation is used for inference. The

traditional MOGP derivation is extended to allow the simultaneous estima-

tion of all outputs (linear and angular velocities). This new methodology

exploits dependencies between outputs, generated by constraints in vehicle

dynamics, to improve accuracy on each individual estimate. These depen-

dencies are quanti�ed as the cross-terms in the resulting full covariance

matrix.

• Scale Recovery in Monocular Con�guration

The proposed framework uses training data obtained from a di�erent and

independent sensor as ground-truth. If this sensor is capable of scale esti-

mation (i.e. range sensors), this information is encoded into the resulting
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non-parametric model and can be recovered by exploiting structure simi-

larities between training and testing images. As the dissimilarity between

training and testing data increases, so does the uncertainty inherent to

each measurement, indicating that the results, although less accurate, are

still valid from a probabilistic standpoint.

• Natural Treatment of Uncertainties
Because Gaussian processes are a Bayesian probabilistic technique, all in-

ferences conducted using the proposed framework will naturally provide a

measurement of uncertainty. This measurement of uncertainty is useful in

determining the level of con�dence that should be put into each estimate,

and is of key importance in further treatments of the results, such as data

fusion or incorporation into a SLAM scenario.

2. Temporal Dependencies Between Frames

The standard spatial correlation between features in the image used by the

Gaussian process framework is extended to include temporal dependencies be-

tween features in subsequent frames. Within this new framework, the outputs

from each iteration are used as inputs in the next one, thus increasing the

amount of information available for inference. This approach works under the

assumption that vehicle velocity will change smoothly during navigation, and is

especially useful in situations where optical �ow information is ambiguous due

to the various degrees of freedom available for camera rotation and translation

(such as 3D unconstrained navigation).

3. Semi-Parametric Gaussian Processes

The traditional zero-mean assumption in Gaussian processes is modi�ed and a

standard Structure from Motion (SFM) geometric model is incorporated into

the proposed framework, as the new mean function. The camera calibration pa-

rameters are learned simultaneously with the GP hyperparameters, and if they

are already available they can be incorporated seamlessly. The geometric model

provides an initial estimate that is then further re�ned by the non-parametric
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model, and as training data deviates from testing data the geometric model

results become more prominent. The result is a semi-parametric approach to

visual odometry (and by extension to any other problem in which a previously

de�ned model and training data is available) that bene�ts from both the infor-

mation encoded into a parametric model and the �exibility of a non-parametric

model.

4. Online Updates of the Covariance Matrix

The semi-parametric model obtained during training is constantly updated dur-

ing navigation, incorporating new information as it becomes available and dis-

carding redundant or old information, in order to maintain roughly constant

computational time. The online update of the semi-parametric model allows

the algorithm to gradually adapt to new environments, decreasing the sensitiv-

ity to similar training and testing conditions. All new information incorporated

is obtained directly from the GP inference process, so there is still no need for a

di�erent sensor during navigation, and if another sensor is available (such as in-

ertial data or wheel odometry) this information can be incorporated seamlessly

as ground-truth during the update stage.

5. Vectorized Representation of Optical Flow Information

A novel method for representing optical �ow information is proposed, as a single

vector of �xed dimension. This representation retains the spatial structure of

the image, a valuable characteristic since optical �ow patterns vary radically

and consistently throughout each frame. The clustering of features in di�erent

portions of the image, by averaging their optical �ow components, also mini-

mizes the impact of false matches and dynamic objects.

6. Automatic Segmentation of Dynamic Objects

A novel technique for the self-supervised segmentation of dynamic objects from

a static background is proposed, in which the camera is moving alongside the

vehicle. The RANSAC algorithm is used to provide an initial classi�cation, and

these results serve as ground-truth to iteratively train a Gaussian process during
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navigation. No hyperparameter optimization and/or environment knowledge is

necessary prior to the beginning of navigation, and new information is incor-

porated and removed in an online fashion to allow the system to adapt to new

circumstances while maintaining a roughly constant computational time. Fea-

tures deemed dynamic are then removed before the optical �ow vectorization

stage, to ensure that only a static background is used for visual odometry esti-

mation.

6.2 Future Research

This section brie�y describes possible research directions that can be taken based on

the work developed throughout this thesis. These research directions aim both to

further develop the proposed solution to visual odometry and to take the framework

introduced here to di�erent areas of robotics, thus increasing its range of applications.

Covariance Matrix Sparsity

It is natural to assume that the covariance matrix produced during both visual odom-

etry estimation and dynamic object segmentation will be sparse, since features from

distant portions of the image will have a near-zero impact on predictions. By utiliz-

ing a covariance function with local support (Section 2.2.4) it is possible to exactly

round these values to zero, and therefore generate a truly sparse matrix that can be

exploited to generate a substantial increase in computational time. Preliminary tests

show that, for the automatic dynamic object segmentation algorithm, up to 95% of

the covariance matrix can be zeroed out using a sparse covariance function without

signi�cantly impacting classi�cation, and similar results should be expected for the

visual odometry algorithm as well.
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GPU Processing

The use of graphics processing units (GPUs) is becoming increasingly popular as a

way to rapidly solve basic computational calculations, such as matrix multiplications

[58], that compose the core of more complex tasks. Most of the feature extrac-

tion and matching algorithms described in this thesis have already been ported to

GPU, achieving real-time performance even in scenarios with thousands of features

per frame. The GP framework, due to its marginalization properties, is also highly

favourable to parallelization, and therefore could bene�t immensely from the use of

multiple GPU cores during training and inference.

Data Fusion with Other Sensors

All results obtained in this thesis rely solely on visual information, except during

training when a di�erent and independent sensor is used to obtain ground-truth data.

During testing, this extra sensor can be removed without impacting the algorithm's

performance whatsoever. However, if another sensor is still available during navi-

gation (i.e. wheel encoders, inertial measurements or GPS data), it can be used to

further re�ne the results by incorporating its information into the estimates. The

probabilistic nature of Gaussian processes provides the perfect environment for such

data fusion, especially within the SLAM framework described in Section 4.2.

Application to Other Areas

Even though the SPCGP framework developed in this thesis was used to address the

visual odometry problem, it can in principle be extended to any scenario in which

there is a parametric model and available training data. This parametric model can be

seamlessly incorporated as the new mean function for the SPCGP framework, provid-

ing initial estimates that are then further re�ned by the non-parametric model, based

on the chosen covariance function and training data. Since these semi-parametric

estimates converge to the purely parametric estimates as training data deviates from
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testing data, results will in the worst case scenario be as accurate as the ones ob-

tained without the non-parametric component, and therefore this approach can only

improve results.
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