233,069 research outputs found

    Full-sky maps for gravitational lensing of the CMB

    Get PDF
    We use the large cosmological Millennium Simulation (MS) to construct the first all-sky maps of the lensing potential and the deflection angle, aiming at gravitational lensing of the CMB, with the goal of properly including small-scale non-linearities and non-Gaussianity. Exploiting the Born approximation, we implement a map-making procedure based on direct ray-tracing through the gravitational potential of the MS. We stack the simulation box in redshift shells up to z11z\sim 11, producing continuous all-sky maps with arcminute angular resolution. A randomization scheme avoids repetition of structures along the line of sight and structures larger than the MS box size are added to supply the missing contribution of large-scale (LS) structures to the lensing signal. The angular power spectra of the projected lensing potential and the deflection-angle modulus agree quite well with semi-analytic estimates on scales down to a few arcminutes, while we find a slight excess of power on small scales, which we interpret as being due to non-linear clustering in the MS. Our map-making procedure, combined with the LS adding technique, is ideally suited for studying lensing of CMB anisotropies, for analyzing cross-correlations with foreground structures, or other secondary CMB anisotropies such as the Rees-Sciama effect.Comment: LaTeX file, 10 pages, MNRAS in press, scales larger than the Millennium Simulation box size semi-analytically added, maps changed, references added, typos correcte

    Single-shot layered reflectance separation using a polarized light field camera

    Get PDF
    We present a novel computational photography technique for single shot separation of diffuse/specular reflectance as well as novel angular domain separation of layered reflectance. Our solution consists of a two-way polarized light field (TPLF) camera which simultaneously captures two orthogonal states of polarization. A single photograph of a subject acquired with the TPLF camera under polarized illumination then enables standard separation of diffuse (depolarizing) and polarization preserving specular reflectance using light field sampling. We further demonstrate that the acquired data also enables novel angular separation of layered reflectance including separation of specular reflectance and single scattering in the polarization preserving component, and separation of shallow scattering from deep scattering in the depolarizing component. We apply our approach for efficient acquisition of facial reflectance including diffuse and specular normal maps, and novel separation of photometric normals into layered reflectance normals for layered facial renderings. We demonstrate our proposed single shot layered reflectance separation to be comparable to an existing multi-shot technique that relies on structured lighting while achieving separation results under a variety of illumination conditions

    Small-scale chromospheric jets above a sunspot light bridge

    Full text link
    High-resolution broadband filtergrams of active region NOAA 11271 in Ca ii H and G band were obtained with the Solar Optical Telescope on board Hinode to identify the physical driver responsible for the dynamic and small-scale chromospheric jets above a sunspot light bridge. We identified the jets in the Ca images using a semi-automatic routine. The chromospheric jets consist of a bright, triangular-shaped blob that lies on the light bridge, while the apex of this blob extends into a spike-like structure that is bright against the dark umbral background. Most of the jets have apparent lengths of less than 1000 km and about 30% of them have lengths between 1000-1600 km. They are oriented within +/-35 deg. to the normal of the light bridge axis. Many of them are clustered near the central part within a 2 arcsec area. The jets are seen to move rapidly along the light bridge and most of them cannot be identified in successive images taken with a 2 min cadence. The jets are primarily located on one side of the light bridge and are directed into the umbral core. The Stokes profiles at or close to the location of the blobs on the LB exhibit both a significant net circular polarization and multiple components, including opposite-polarity lobes. The magnetic field diverges from the light bridge towards the umbral cores that it separates. In the photosphere there is a predominantly uni-directional flow with speeds of 100-150 m/s along the light bridge which is interrupted by a patch of weak motions that also moves along the light bridge. The dynamic short-lived jets above the LB seem to be guided by the magnetic field lines. Reconnection events are a likely trigger for such phenomenon since they occur at locations where the magnetic field changes orientation sharply. We find no clear relation between the jets and the photospheric flow pattern.Comment: Accepted for publication in A&A, 9 pages, 7 figure

    A qualitative enquiry into OpenStreetMap making

    Get PDF
    Based on a case study on the OpenStreetMap community, this paper provides a contextual and embodied understanding of the user-led, user-participatory and user-generated produsage phenomenon. It employs Grounded Theory, Social Worlds Theory, and qualitative methods to illuminate and explores the produsage processes of OpenStreetMap making, and how knowledge artefacts such as maps can be collectively and collaboratively produced by a community of people, who are situated in different places around the world but engaged with the same repertoire of mapping practices. The empirical data illustrate that OpenStreetMap itself acts as a boundary object that enables actors from different social worlds to co-produce the Map through interacting with each other and negotiating the meanings of mapping, the mapping data and the Map itself. The discourses also show that unlike traditional maps that black-box cartographic knowledge and offer a single dominant perspective of cities or places, OpenStreetMap is an embodied epistemic object that embraces different world views. The paper also explores how contributors build their identities as an OpenStreetMaper alongside some other identities they have. Understanding the identity-building process helps to understand mapping as an embodied activity with emotional, cognitive and social repertoires

    Wavelets: a powerful tool for studying rotation, activity, and pulsation in Kepler and CoRoT stellar light curves

    Full text link
    Aims. The wavelet transform has been used as a powerful tool for treating several problems in astrophysics. In this work, we show that the time-frequency analysis of stellar light curves using the wavelet transform is a practical tool for identifying rotation, magnetic activity, and pulsation signatures. We present the wavelet spectral composition and multiscale variations of the time series for four classes of stars: targets dominated by magnetic activity, stars with transiting planets, those with binary transits, and pulsating stars. Methods. We applied the Morlet wavelet (6th order), which offers high time and frequency resolution. By applying the wavelet transform to the signal, we obtain the wavelet local and global power spectra. The first is interpreted as energy distribution of the signal in time-frequency space, and the second is obtained by time integration of the local map. Results. Since the wavelet transform is a useful mathematical tool for nonstationary signals, this technique applied to Kepler and CoRoT light curves allows us to clearly identify particular signatures for different phenomena. In particular, patterns were identified for the temporal evolution of the rotation period and other periodicity due to active regions affecting these light curves. In addition, a beat-pattern signature in the local wavelet map of pulsating stars over the entire time span was also detected.Comment: Accepted for publication on A&

    Real-time on-board obstacle avoidance for UAVs based on embedded stereo vision

    Get PDF
    In order to improve usability and safety, modern unmanned aerial vehicles (UAVs) are equipped with sensors to monitor the environment, such as laser-scanners and cameras. One important aspect in this monitoring process is to detect obstacles in the flight path in order to avoid collisions. Since a large number of consumer UAVs suffer from tight weight and power constraints, our work focuses on obstacle avoidance based on a lightweight stereo camera setup. We use disparity maps, which are computed from the camera images, to locate obstacles and to automatically steer the UAV around them. For disparity map computation we optimize the well-known semi-global matching (SGM) approach for the deployment on an embedded FPGA. The disparity maps are then converted into simpler representations, the so called U-/V-Maps, which are used for obstacle detection. Obstacle avoidance is based on a reactive approach which finds the shortest path around the obstacles as soon as they have a critical distance to the UAV. One of the fundamental goals of our work was the reduction of development costs by closing the gap between application development and hardware optimization. Hence, we aimed at using high-level synthesis (HLS) for porting our algorithms, which are written in C/C++, to the embedded FPGA. We evaluated our implementation of the disparity estimation on the KITTI Stereo 2015 benchmark. The integrity of the overall realtime reactive obstacle avoidance algorithm has been evaluated by using Hardware-in-the-Loop testing in conjunction with two flight simulators.Comment: Accepted in the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Scienc

    Chromospheric heating by acoustic waves compared to radiative cooling

    Full text link
    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of solar atmosphere. A weak chromospheric plage near a large solar pore NOAA 11005 was observed on October 15, 2008 in the lines Fe I 617.3 nm and Ca II 853.2 nm with the Interferometric Bidimemsional Spectrometer (IBIS) attached to the Dunn Solar Telescope. Analyzing the Ca II observations with spatial and temporal resolutions of 0.4" and 52 s, the energy deposited by acoustic waves is compared with that released by radiative losses. The deposited acoustic flux is estimated from power spectra of Doppler oscillations measured in the Ca II line core. The radiative losses are calculated using a grid of seven 1D hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of maps of radiative losses and acoustic flux is 72 %. In quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only of about 15 %. In active areas with photospheric magnetic field strength between 300 G and 1300 G and inclination of 20-60 degrees, the contribution increases from 23 % (chromospheric network) to 54 % (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.Comment: 9 pages, 10 figures. Accepted for publication in The Astrophysical Journa
    corecore