211 research outputs found

    End-to-end security for video distribution

    Get PDF

    Content Fragile Watermarking for H.264/AVC Video Authentication

    Get PDF
    Discrete Cosine transform (DCT) to generate the authentication data that are treated as a fragile watermark. This watermark is embedded in the motion vectors (MVs) The advances in multimedia technologies and digital processing tools have brought with them new challenges for the source and content authentication. To ensure the integrity of the H.264/AVC video stream, we introduce an approach based on a content fragile video watermarking method using an independent authentication of each Group of Pictures (GOPs) within the video. This technique uses robust visual features extracted from the video pertaining to the set of selected macroblocs (MBs) which hold the best partition mode in a tree-structured motion compensation process. An additional security degree is offered by the proposed method through using a more secured keyed function HMAC-SHA-256 and randomly choosing candidates from already selected MBs. In here, the watermark detection and verification processes are blind, whereas the tampered frames detection is not since it needs the original frames within the tampered GOPs. The proposed scheme achieves an accurate authentication technique with a high fragility and fidelity whilst maintaining the original bitrate and the perceptual quality. Furthermore, its ability to detect the tampered frames in case of spatial, temporal and colour manipulations, is confirmed

    Digital Video Inpainting Detection Using Correlation Of Hessian Matrix

    Full text link
    The use of digital video during forensic investigation helps in providing evidence related to crime scene. However, due to freely available user friendly video editing tools, the forgery of acquired digital videos that are used as evidence in a law suit is now simpler and faster. As a result, it has become easier for manipulators to alter the contents of digital evidence. For instance, inpainting technique is used to remove an object from a video without leaving any artefact of illegal tampering. Therefore, this paper presents a technique for detecting and locating inpainting forgery in a video sequence with static camera motion. Our technique exploits statistical correlation of Hessian matrix (SCHM) to detect and locate tampered regions within a video sequence. The results of our experiments prove that the technique effectively detect and locate areas which are tampered using both texture and structure based inpainting with an average precision rate of 99.79% and an average false positive rate of 0.29%

    A Survey on Recent Reversible Watermarking Techniques

    Get PDF
    Watermarking is a technique to protect the copyright of digital media such as image, text, music and movie. Reversible watermarking is a technique in which watermark can be removed to completely restore the original image. Reversible watermarking of digital content allows full extraction of the watermark along with the complete restoration of the original image. For the last few years, reversible watermarking techniques are gaining popularity due to its applications in important and sensitive areas like military communication, healthcare, and law-enforcement. Due to the rapid evolution of reversible watermarking techniques, a latest review of recent research in this field is highly desirable. In this survey, the performances of different latest reversible watermarking techniques are discussed on the basis of various characteristics of watermarking

    Data Security using Reversible Data Hiding with Optimal Value Transfer

    Get PDF
    In this paper a novel reversible data hiding algorithm is used which can recover image without any distortion. This algorithm uses zero or minimum points of an image and modifies the pixel. It is proved experimentally that the peak signal to noise ratio of the marked image generated by this method and the original image is guaranteed to be above 48 dB this lower bound of peak signal to noise ratio is much higher than all reversible data hiding technique present in the literature. Execution time of proposed system is short. The algorithm has been successfully applied to all types of images

    Copyright Protection for Digital Images on Portable Devices

    Get PDF
    The astonishing rapid diffusion of portable devices (i.e. smartphones, tablets, etc.) has had a big, and often positive, impact on our every-day life. These devices have new advanced features developed specifically because of user demand. For example, it is now possible to publish directly the pictures obtained by means of the internal camera of a smartphone on our social network accounts, or on an image hosting service. It is therefore important to have tools, on the portable devices, that can prove the ownership of the pictures and to use them before publishing images. Digital watermarking techniques are commonly used for the copyright protection of images and videos. We have developed a tool for portable devices based on the Android OS that allows the embedding of a digital visible or invisible watermark into a digital image

    Robust Video Watermarking Scheme Based on Intra-Coding Process in MPEG-2 Style

    Get PDF
    The proposed scheme implemented a semi blind digital watermarking method for video exploiting MPEG-2 standard. The watermark is inserted into selected high frequency coefficients of plain types of discrete cosine transform blocks instead of edge and texture blocks during intra coding process. The selection is essential because the error in such type of blocks is less sensitive to human eyes as compared to other categories of blocks. Therefore, the perceptibility of watermarked video does not degraded sharply. Visual quality is also maintained as motion vectors used for generating the motion compensated images are untouched during the entire watermarking process. Experimental results revealed that the scheme is not only robust to re-compression attack, spatial synchronization attacks like cropping, rotation but also strong to temporal synchronization attacks like frame inserting, deleting, swapping and averaging. The superiority of the anticipated method is obtaining the best sturdiness results contrast to the recently delivered schemes
    • …
    corecore