2,776 research outputs found

    Continuous Semi-Supervised Nonnegative Matrix Factorization

    Get PDF
    Nonnegative matrix factorization can be used to automatically detect topics within a corpus in an unsupervised fashion. The technique amounts to an approximation of a nonnegative matrix as the product of two nonnegative matrices of lower rank. In this paper, we show this factorization can be combined with regression on a continuous response variable. In practice, the method performs better than regression done after topics are identified and retrains interpretability

    Robust semi-supervised nonnegative matrix factorization

    Get PDF
    Nonnegative matrix factorization (NMF), which aims at finding parts-based representations of nonnegative data, has been widely applied to a range of applications such as data clustering, pattern recognition and computer vision. Real-world data are often sparse and noisy which may reduce the accuracy of representations. And a small portion of data may have prior label information, which, if utilized, can improve the discriminability of representations. In this paper, we propose a robust semi-supervised nonnegative matrix factorization (RSSN-MF) approach which takes all factors above into consideration. RSSNMF incorporates the label information as an additional constraint to guarantee that the data with the same label have the same representation. It addresses the sparsity of data and accommodates noises and outliers consistently via L 2,1 -norm. An iterative updating optimization scheme is derived to solve RSSNMF's objective function. We have proven the convergence of this optimization scheme by utilizing auxiliary function method and the correctness based on the Karush-Kohn-Tucker condition of optimization theory. Experiments carried on well-known data sets demonstrate the effectiveness of RSSNMF in comparison to other existing state-of-the-art approaches in terms of accuracy and normalized mutual information

    Is Simple Better? Revisiting Non-linear Matrix Factorization for Learning Incomplete Ratings

    Full text link
    Matrix factorization techniques have been widely used as a method for collaborative filtering for recommender systems. In recent times, different variants of deep learning algorithms have been explored in this setting to improve the task of making a personalized recommendation with user-item interaction data. The idea that the mapping between the latent user or item factors and the original features is highly nonlinear suggest that classical matrix factorization techniques are no longer sufficient. In this paper, we propose a multilayer nonlinear semi-nonnegative matrix factorization method, with the motivation that user-item interactions can be modeled more accurately using a linear combination of non-linear item features. Firstly, we learn latent factors for representations of users and items from the designed multilayer nonlinear Semi-NMF approach using explicit ratings. Secondly, the architecture built is compared with deep-learning algorithms like Restricted Boltzmann Machine and state-of-the-art Deep Matrix factorization techniques. By using both supervised rate prediction task and unsupervised clustering in latent item space, we demonstrate that our proposed approach achieves better generalization ability in prediction as well as comparable representation ability as deep matrix factorization in the clustering task.Comment: version

    Adaptive multi-view semi-supervised nonnegative matrix factorization

    Get PDF
    Multi-view clustering, which explores complementary information between multiple distinct feature sets, has received considerable attention. For accurate clustering, all data with the same label should be clustered together regardless of their multiple views. However, this is not guaranteed in existing approaches. To address this issue, we propose Adaptive Multi-View Semi-Supervised Nonnegative Matrix Factorization (AMVNMF), which uses label information as hard constraints to ensure data with same label are clustered together, so that the discriminating power of new representations are enhanced. Besides, AMVNMF provides a viable solution to learn the weight of each view adaptively with only a single parameter. Using L2,1 -norm, AMVNMF is also robust to noises and outliers. We further develop an efficient iterative algorithm for solving the optimization problem. Experiments carried out on five well-known datasets have demonstrated the effectiveness of AMVNMF in comparison to other existing state-of-the-art approaches in terms of accuracy and normalized mutual information

    A deep matrix factorization method for learning attribute representations

    Get PDF
    Semi-Non-negative Matrix Factorization is a technique that learns a low-dimensional representation of a dataset that lends itself to a clustering interpretation. It is possible that the mapping between this new representation and our original data matrix contains rather complex hierarchical information with implicit lower-level hidden attributes, that classical one level clustering methodologies can not interpret. In this work we propose a novel model, Deep Semi-NMF, that is able to learn such hidden representations that allow themselves to an interpretation of clustering according to different, unknown attributes of a given dataset. We also present a semi-supervised version of the algorithm, named Deep WSF, that allows the use of (partial) prior information for each of the known attributes of a dataset, that allows the model to be used on datasets with mixed attribute knowledge. Finally, we show that our models are able to learn low-dimensional representations that are better suited for clustering, but also classification, outperforming Semi-Non-negative Matrix Factorization, but also other state-of-the-art methodologies variants.Comment: Submitted to TPAMI (16-Mar-2015

    Spectral Unmixing with Multiple Dictionaries

    Full text link
    Spectral unmixing aims at recovering the spectral signatures of materials, called endmembers, mixed in a hyperspectral or multispectral image, along with their abundances. A typical assumption is that the image contains one pure pixel per endmember, in which case spectral unmixing reduces to identifying these pixels. Many fully automated methods have been proposed in recent years, but little work has been done to allow users to select areas where pure pixels are present manually or using a segmentation algorithm. Additionally, in a non-blind approach, several spectral libraries may be available rather than a single one, with a fixed number (or an upper or lower bound) of endmembers to chose from each. In this paper, we propose a multiple-dictionary constrained low-rank matrix approximation model that address these two problems. We propose an algorithm to compute this model, dubbed M2PALS, and its performance is discussed on both synthetic and real hyperspectral images
    • …
    corecore