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Abstract. Multi-view clustering, which explores complementary infor-
mation between multiple distinct feature sets, has received considerable
attention. For accurate clustering, all data with the same label should
be clustered together regardless of their multiple views. However, this
is not guaranteed in existing approaches. To address this issue, we pro-
pose Adaptive Multi-View Semi-Supervised Nonnegative Matrix Factor-
ization (AMVNMF), which uses label information as hard constraints to
ensure data with same label are clustered together, so that the discrim-
inating power of new representations are enhanced. Besides, AMVNMF
provides a viable solution to learn the weight of each view adaptively
with only a single parameter. Using L2,1-norm, AMVNMF is also robust
to noises and outliers. We further develop an efficient iterative algorithm
for solving the optimization problem. Experiments carried out on five
well-known datasets have demonstrated the effectiveness of AMVNMF
in comparison to other existing state-of-the-art approaches in terms of
accuracy and normalized mutual information.

Keywords: Nonnegative Matrix Factorization, Multi-view learning, Semi-
supervised learning

1 Introduction

Real data are often comprised of multiple views (features) [3]. For example, color
and texture information can be utilized as different views of images and videos;
a document may be translated into multiple languages, and a web page may be
represented by multiple contents and hyperlinks. In these examples, each view
describes a specific perspective of the data. Therefore, it becomes natural to
integrate multiple views and discover the underlying data structures.
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Multi-view clustering has attracted increasing interests and been explored in
several studies. For example, Kumar et al. [7] proposed two objectives to regular-
ize the Laplacian embeddings between different views to be similar and spectral
analysis is employed for parameter learning. Tzortzis et al. [14] learned a unified
kernel through a weighted combination of kernels of all the views. MultiNMF
[12] was proposed to obtain a common consensus matrix, which was designed
to reflect the latent clustering structure shared by different views. Subsequently,
Wang et al. [15] proposed a regression-like objective, which conducts multi-view
clustering and feature selection at the same time. Zhang et al [16] also develope-
d MMNMF which attempted to preserve intrinsic geometrical structure of data
across multiple views. Cao et al. [5] utilized a diversity constraints on subspaces
to enhance the complementarity among multiple views.

Various existing methods indeed improve the clustering performance for
multi-view data, nevertheless, some challenges remain. Firstly, in reality, su-
pervised information, e.g., the labels of data or the pairwise information (must-
link and cannot-link constraints) between data, are often available. They have
been integrated into the single-view learning and demonstrated the effectiveness.
While for multi-view learning, we notice that the supervised information usually
has consistency across multiple views. If we can guarantee data with same label
but come from various views are still grouped into the same cluster, this will
improve the clustering accuracy [1], [17]. Therefore, how to utilize this discrim-
inative information for guiding the multi-view learning is of great value. Sec-
ondly, when we cluster data across multiple views, each view may have different
contributions. We can consider each view has the same weight in a straightfor-
ward way, but this oversimplified assumption may be not always satisfied in the
real-world application. Taking the face clustering as an example, a frontal or a
three-quarter view is a better representation for faces than a profile view [2],
[9]. So, the weight of each view should be determined automatically rather than
being treated equally. Finally, outliers or noisy data are ubiquitous, and thus, a
robust multi-view learning approach is required for practical applications.

To address these challenges altogether, we propose a new multi-view cluster-
ing approach based on non-negative matrix factorization (NMF) [8], called Adap-
tive Multi-View Semi-Supervised Nonnegative Matrix Factorization (AMVNM-
F). The overall advantages of this approach are as follows:

1. By taking the label information as hard constraints, AMVNMF guarantees
that data sharing the same label will have the same new representation and be
mapped into the same class in the low-dimensional space regardless whether they
come from the same view.

2. To our best knowledge, this is the first attempt to introduce a single
parameter to control the distribution of weighting factors for NMF-based multi-
view clustering. Consequently, the weight factor of each view can be assigned
automatically depending on the dissimilarity between each new representation
matrix and the consensus matrix.

3. Using the structured sparsity-inducing, L2,1-norm, AMVNMF is robust
against noises and hence can achieve more stable clustering results.
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2 A Brief Review of NMF and CNMF

Given N data X = [x1, x2, ..., xN ] ∈ RP×N , each data xi is represented by
P -dimensional feature vector. NMF [8] aims to find two nonnegative matrix
factors W ∈ RP×K and H ∈ RN×K where the product of the two factors can
well approximate the original matrix, represented as X ≈WHT . In particular,
H can be considered as the new representations of data in terms of the basis
W. NMF measures the dissimilarity between X and WHT by F -norm, which
is defined as

∥X−WHT ∥2F , (1)

To extend the traditional unsupervised NMF to a semi-supervised learning
approach, CNMF [10] builds a label constraint matrix which incorporates the
label information as hard constraints so that the data sharing the same label
have the same new representation. In particular, assuming the first l data points
are labeled with c classes, then an indicator matrix C can be constructed, where
ci,j = 1 if vi is labeled with jth class; or ci,j = 0 otherwise. Then, the label
constraint matrix A can be defined as follows,

A =

(
Cl×c 0
0 IN−l

)
, (2)

where IN−l is a (N − l)× (N − l) identity matrix. Recall that NMF maps each
data point xi to its new representation hi from P -dimensional space to K-
dimensional space, where hi represents the ith row of H. To incorporate label
information, we introduce an auxiliary matrix Z with H = AZ. As we can see
from A, if xi and xj have the same label, then the ith row and jth row of A
must be the same, and so hi=hj , which guarantees that data sharing the same
label have the same new representation. Therefore, the objective function can
be written as follows,

min
W≥0,Z≥0

∥X−WZTAT ∥2F . (3)

3 Adaptive Multi-View Semi-Supervised Nonnegative
Matrix Factorization(AMVNMF)

3.1 AMVNMF model

Let X(v) ∈ RPv×N denote the features in vth view, W(v) ∈ RPv×K and Z(v) ∈
RK×N be the basis and auxiliary matrix in vth view, respectively. Since the
matrixA above is constructed only based on the label information and consistent
for different features, which means different features share the same constraint
matrix A. Thus, given M types of heterogeneous features, v = 1, 2, ...M , we
naturally integrate all these view together and propose the objective function as
follows,

min
W≥0,Z≥0

M∑
v=1

∥X(v) −W(v)(Z(v))TAT ∥2F . (4)
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Assuming that, new representation matrices ofM views are regularized towards a
common consensus matrixH∗, we aim to obtainH∗, which uncovers the common
latent structure shared by multiple views. With the constraint matrix A and a
consensus auxiliary matrix Z∗, we have H∗ =AZ∗. Since A is known, we turn
the problem of finding H∗ into the problem of finding Z∗. The objective function
can be rewritten as follows,

min
W(v),Z(v),Z∗≥0

M∑
v=1

∥X(v) −W(v)(Z(v))TAT ∥2F +
M∑
v=1

λv∥Z(v) − Z∗∥2F , (5)

where λv is the weight factor for vth view.
Note that different views may not be comparable at the same scale, hence,

without loss of generality, we assume ∥X(v)∥1 = 1. Also, in order to make dif-
ferent Z(v) comparable and meaningful, we need to constrain ∥W∥1 = 1. To do
so, we introduce

Q(v) = Diag(
M∑
i=1

W
(v)
i,1 ,

M∑
i=2

W
(v)
i,2 , ...,

M∑
i=1

W
(v)
i,K) (6)

to normalize W by using W = WQ−1. In this way, we can approximately
constrain ∥(Z(v))TAT ∥1 = 1 so that Z(v) is within the same range [12]. Due to
W(v)Z(v)TAT = W(v)Q−1(Z(v)Q)TAT , (5) could then be written as

min
W(v),Z(v),Z∗≥0

M∑
v=1

∥X(v) −W(v)(Z(v))TAT ∥2F +
M∑
v=1

λv∥Z(v)Q(v) − Z∗∥2F . (7)

Normally, for all M views, each parameter λv need to be specified manually
which reflects each view’s importance. Apparently, it is hard to decide which view
contributes more or less with no prior knowledge. To address this limitation, we
use a single parameter γ to control the distribution of weight factors α(v) in all
M views, such that the important views are assigned bigger weights. Then we
have

J = min
W(v),Z(v),Z∗,α(v)≥0

M∑
v=1

∥X(v) −W(v)(Z(v))TAT ∥2F

+

M∑
v=1

(α(v))γ∥Z(v)Q(v) − Z∗∥2F

s.t.

M∑
v=1

α(v) = 1.

(8)

Note that the first term in (8) is the least square loss function, which is very
sensitive to outliers in real word data, as the error for each data is squared and
can easily dominate the objective function.. Instead, we propose a more robust
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formulation as the following:

J = min
W(v),Z(v),Z∗,α(v)≥0

M∑
v=1

∥X(v) −W(v)(Z(v))TAT ∥2,1

+
M∑
v=1

(α(v))γ∥Z(v)Q(v)−Z∗∥2F

s.t.
M∑
v=1

α(v) = 1.

(9)

In this objective function, the error for each data is not squared squared and
thus the impact of large errors is weaken greatly. Correspondingly, the effects of
data outliers are reduced and the robustness of NMF is improved.

3.2 Algorithm of AMVNMF model

To solve the optimization problem (9), we propose an iterative update procedure.
When Z∗ is fixed, for each given v, the computation of W(v) or Z(v) does not
depend on W(v′) or Z(v′), where v ̸= v′. Therefore, we use X, W, Z, and Q to
represent X(v), W(v), Z(v) and Q(v) for brevity. The objective function can be
simplified as

J = min
W,Z,Z∗,α(v)≥0

∥X−WZTAT ∥2,1 + (α(v))
γ
∥ZQ− Z∗∥2F . (10)

The following multiplicative updating rules for W, Z and D are applied to
update their values sequentially and iteratively.

(1) Fixing Z∗, Z, D and α(v), update W
Let Φi,k be the Lagrange multiplier matrix for the constraint Wi,k ≥ 0, and

Φ = [Φi,k]. The Lagrange function is L1 = J +Tr(ΦW), we only care the terms
that are relevant to W(v).

L1 = Tr(−2XDAZWT +WZTATDAZWT )

+(α(v))
γ
Tr(ZQQTZT − 2ZQ(Z∗)

T
) + Tr(ΦW).

(11)

Taking the derivatives of L1 with respect to W and using the Karush-Kuhn-
Tucker condition Φi,kWi,k = 0, we get the update rule as follows,

Wi,k=Wi,k·
(XDAZ)i,k+(α(v))

γ∑N−l+c
j=1 Zj,kZ

∗
j,k

(WZTATDAZ)i,k+(α(v))
γ∑dv

f=1Wf,k

∑N−l+c
j=1 Z2

j,k

. (12)

(2) Fixing Z∗, W, D and α(v), update Z
For each view, we first normalize the column vectors of W using Q as in (6),

then

W←WQ−1,Z← ZQ. (13)
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Thus, the object function equals

min
W,Z,Z∗,α(v)≥0

∥X−WZTAT ∥2,1 + (α(v))
γ
∥Z− Z∗∥2F . (14)

Let Ψ be the Lagrange multiplier matrix for the constraint Z ≥ 0, andΨ = [Ψj,k].
Similarly,

L2 = Tr(−2XDAZWT + 2WZTATDAZWT )

+(α(v))
γ
Tr(2ZZT − 2Z(Z∗)

T
) + Tr(ΨZ).

(15)

Taking derivative of L2 with respect to Z and using the Kuhn-Tucker condition
Ψj,kZj,k = 0, we have

Zj,k = Zj,k ·
(ATDXTW)j,k + (α(v))

γ
Z∗

j,k

(ATDAZWTW)j,k + (α(v))
γ
Zj,k

. (16)

(3) Fixing Z∗, W, Z and α(v), update D
D ∈ RN×N is the diagonal matrix with the diagonal elements given by

Dii =
1

∥Xi −W(ZTAT )i∥
. (17)

(4) Fixing W, Z, D and α(v), update Z∗

Taking the derivative of the objective function J in (8), we get

Z∗ =

∑M
v=1 (α

(v))
γ
Z(v)Q(v)∑M

v=1 (α
(v))

γ . (18)

(5) Fixing Z∗, W, Z and D update α(v)

We only consider the term that relevant to α, thus, it is equal to minimize

J =

M∑
v=1

(α(v))
γ
∥Z(v)Q(v) − Z∗∥2F . (19)

By setting G(v) = ∥Z(v)Q(v) − Z∗∥2F , and due to
∑M

v=1 α
(v) = 1, Then,the

Lagrange function of (19) is

J =
M∑
v=1

(α(v))
γ
G(v) − λ

M∑
v=1

(α(v) − 1). (20)

The solution can be obtained as

α(v) =
(γG(v))

1
1−γ∑M

v=1(γG
(v))

1
1−γ

. (21)
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4 Experiments

We use five benchmark datasets, SensIT1, ORL[6], Reuters2, CiteSeer3 and Co-
ra4 to assess the performance of AMVNMF. SensIT uses two sensors to classify
three types of vehicle. We randomly sample 100 data for each class, and then
conduct experiments on 2 views and 3 classes. ORL contains 10 different images
of each of 40 people. The images are represented by two views, raw pixel values
and GIST [13]. Reuters contains 1200 documents over the 6 labels. Each sam-
ple is translated into five languages. We experiment on the English, French and
German views same as [12]. Citeseer and Cora are are composed of publication-
s. These publications are linked via citations. Both of them take contents and
citations as two views.

We compare our AMVNMF with several representative multi-view clustering
methods and their modifications.

1. Best Single View (BSV): Using the most informative view which achieves
the best performance with our AMVNMF.

2. ConCNMF: The method firstly concatenates the features of all views and
applies CNMF [10] to extract the low dimensional subspace representation.

3. MultiNMF: The NMF-based multi-view clustering method proposed in
[12].

4. RMKMC : The multi-view k-means proposed in [4].
5. CoRegSPC : The co-regularized pairwise multi-view spectral clustering

method proposed in [7].
Since clustering performances depend on the initializations, we repeat each

method 10 times with random initializations and report the average performance.
The performances are measured with two widely used evaluation metrics, accu-

Table 1: Clustering results on five real-world datasets (%)

Metrics Datasets BSV ConCNMF MultiNMF RMKMC CoRegSPC AMVNMF

SensIT 69.66 52.30 55.04 60.07 61.67 71.33
ORL 74.3 49.59 54.6 45.5 78.20 80.5

AC Reuters 57.50 49.59 51.87 39.80 54.40 59.88
Citeseer 50.08 40.70 34.36 43.21 47.42 53.14
Cora 33.42 32.42 44.83 43.90 37.20 48.71

SensIT 30.14 15.67 19.87 14.84 17.75 31.73
ORL 89.29 51.32 75.23 65.34 90.84 91.73

NMI Reuters 41.95 30.37 36.14 21.82 36.57 42.75
Citeseer 21.38 13.34 20.97 20.61 21.10 26.13
Cora 26.73 9.87 27.95 21.27 15.44 34.59

racy (AC) and normalized mutual information (NMI) [10]. For all the metrics,
the higher value indicates better clustering quality. To compare the performance

1 https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multiclass.html
2 http://multilingreuters.iit.nrc.ca
3 http://linqs.umiacs.umd.edu/projects//projects/lbc/index.html
4 http://linqs.umiacs.umd.edu/projects//projects/lbc/index.html
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of semi-supervised approaches, same as [11], 30% of labeled data are randomly
picked up as priors.

Table 1 summarizes the clustering performances of different algorithms on
the five datasets. It is clear to see that AMVNMF outperforms the second best
algorithm in all cases. Furthermore, BSV always gets the second best perfor-
mance. It outperforms other multi-view methods greatly, i.e., 7.99%/10.27% on
SensIT and 3.10%/5.38% on Reuters in terms of AC and NMI, respectively. This
is mainly due to AMVNMF guarantees that all the data sharing the same labels
are grouped together, regardless they are come from the same or different views.
Therefore, both AMVNMF and BSV ( running AMVNMF with single view)
produce superior results.
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Fig. 1: Performance of AMVNMF w.r.t. parameter γ.

We show the parameter tuning and algorithm convergence on SensIT, ORL
and Reuters as examples in Figure 1 and Figure 2, respectively. The parame-
ter γ controls the distribution of weight factors α(v) for different views. More
preciously, when γ → ∞, the weight for all views is equal. When γ → 1, the
weight factor of 1 is assigned to the most important view whose G(v) value is the
smallest and 0 is assigned to the weights of the other views. Hence, this strategy
allows well adjusting the ratio of each view and saves the cost of tuning multi-
ple parameters. As shown in Figure 1, AMVNMF performs stably with varying
γ (from 2 to 902). Please note that even the worst results of AMVNMF are
always better than other approaches in most cases. The corresponding conver-
gence curves together with performances are shown in Figure 2. The blue solid
line shows the value of the objective function and the red dashed line indicates
the accuracy. It can be seen that the value of the objective function decreases
steadily with more iterations and converges after around 20 times.

Since AMVNMF is a semi-supervised method, we also randomly pick up
10% and 20% labeled data to further demonstrate the benefits of priors. Notice
that ORL has only 10 images for each category, thus 10% gives one image only.
However, one label is meaningless for AMVNMF since this algorithm maps the
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Fig. 2: Convergence and corresponding performance curve.
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Fig. 3: Performance of AMVNMF w.r.t. labeled data.

images with the same label onto the same coordinate in the new representation
space. Thus, we omit the result with 10% labeled data. From Figure 3, it can
be seen that both AC and NMI are improved with more labeled data. Also, it is
worth pointing out that even with only 10% labeled data, AMVNMF performs
better than other approaches when 30% labeled data are applied. For example,
for the SensIT dataset, AMVNMF achieves 62% AC and 20% NMI with 10%
labeled data, which is better than the best performance of other approaches, i.e.,
61.67% AC and 19.87% NMI (as shown in Table 1).

5 Conclusion

A novel NMF-based multi-view method, AMVNMF, is proposed in this paper. It
efficiently learn the underlying clustering structure embedded in multiple views,
by regularizing the new representation matrices learnt from different views to-
wards a common consensus. The advantages of AMVNMF are shown in three
aspects. First, it guarantees that labeled data come with multiple views can be
clustered into the same low-dimension space. Second, it learns each view’s cor-
responding weight adaptively with a single parameter γ. Third, it handles the
noises more effectively. For future work, a sparse regulation may be introduced
into AMVNMF to obtain more accurate new representation matrix, with which
the clustering performance is expected to be further improved.



10 Jing Wang et al.

References

1. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. The Journal of Machine
Learning Research 7, 2399–2434 (2006)

2. Blanz, V., Tarr, M.J., Bülthoff, H.H., Vetter, T.: What object attributes determine
canonical views? Perception-London 28(5), 575–600 (1999)

3. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In:
Proceedings of the eleventh annual conference on Computational learning theory.
pp. 92–100. ACM (1998)

4. Cai, X., Nie, F., Huang, H.: Multi-view k-means clustering on big data. In: Proceed-
ings of the Twenty-Third international joint conference on Artificial Intelligence.
pp. 2598–2604. AAAI Press (2013)

5. Cao, X., Zhang, C., Fu, H., Liu, S., Zhang, H.: Diversity-induced multi-view sub-
space clustering. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 586–594 (2015)

6. Hidru, D., Goldenberg, A.: Equinmf: Graph regularized multiview nonnegative
matrix factorization. arXiv preprint arXiv:1409.4018 (2014)

7. Kumar, A., Rai, P., Daume, H.: Co-regularized multi-view spectral clustering. In:
Advances in Neural Information Processing Systems. pp. 1413–1421 (2011)

8. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401(6755), 788–791 (1999)

9. Liu, C.H., Chaudhuri, A.: Reassessing the 3/4 view effect in face recognition. Cog-
nition 83(1), 31–48 (2002)

10. Liu, H., Wu, Z., Li, X., Cai, D., Huang, T.S.: Constrained nonnegative matrix
factorization for image representation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 34(7), 1299–1311 (2012)

11. Liu, H., Yang, G., Wu, Z., Cai, D.: Constrained concept factorization for image
representation. Cybernetics, IEEE Transactions on 44(7), 1214–1224 (2014)

12. Liu, J., Wang, C., Gao, J., Han, J.: Multi-view clustering via joint nonnegative
matrix factorization. In: Proc. of SDM. vol. 13, pp. 252–260. SIAM (2013)

13. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation
of the spatial envelope. International journal of computer vision 42(3), 145–175
(2001)

14. Tzortzis, G., Likas, A.: Kernel-based weighted multi-view clustering. In: Data Min-
ing (ICDM), 2012 IEEE 12th International Conference on. pp. 675–684. IEEE
(2012)

15. Wang, H., Nie, F., Huang, H.: Multi-view clustering and feature learning via struc-
tured sparsity. In: Proceedings of the 30th International Conference on Machine
Learning (ICML-13). pp. 352–360 (2013)

16. Zhang, X., Zhao, L., Zong, L., Liu, X., Yu, H.: Multi-view clustering via multi-
manifold regularized nonnegative matrix factorization. In: Data Mining (ICDM),
2014 IEEE International Conference on. pp. 1103–1108. IEEE (2014)

17. Zhu, X., Ghahramani, Z., Lafferty, J., et al.: Semi-supervised learning using gaus-
sian fields and harmonic functions. In: ICML. vol. 3, pp. 912–919 (2003)


