7 research outputs found

    Cross-lingual sentiment classification using semi-supervised learning

    Get PDF
    Cross-lingual sentiment classification aims to utilize annotated sentiment resources in one language for text sentiment classification in another language. Automatic machine translation services are the most commonly used tools to directly project information from one language into another. However, different term distribution between translated and original documents, translation errors and different intrinsic structure of documents in various languages are the problems that lead to low performance in sentiment classification. Furthermore, due to the existence of different linguistic terms in different languages, translated documents cannot cover all vocabularies which exist in the original documents. The aim of this thesis is to propose an enhanced framework for cross-lingual sentiment classification to overcome all the aforementioned problems in order to improve the classification performance. Combination of active learning and semi-supervised learning in both single view and bi-view frameworks is proposed to incorporate unlabelled data from the target language in order to reduce term distribution divergence. Using bi-view documents can partially alleviate the negative effects of translation errors. Multi-view semisupervised learning is also used to overcome the problem of low term-coverage through employing multiple source languages. Features that are extracted from multiple source languages can cover more vocabularies from test data and consequently, more sentimental terms can be used in the classification process. Content similarities of labelled and unlabelled documents are used through graphbased semi-supervised learning approach to incorporate the structure of documents in the target language into the learning process. Performance evaluation performed on sentiment data sets in four different languages certifies the effectiveness of the proposed approaches in comparison to the well-known baseline classification methods. The experiments show that incorporation of unlabelled data from the target language can effectively improve the classification performance. Experimental results also show that using multiple source languages in the multi-view learning model outperforms other methods. The proposed framework is flexible enough to be applied on any new language, and therefore, it can be used to develop multilingual sentiment analysis systems

    Model Selection for Stochastic Block Models

    Get PDF
    As a flexible representation for complex systems, networks (graphs) model entities and their interactions as nodes and edges. In many real-world networks, nodes divide naturally into functional communities, where nodes in the same group connect to the rest of the network in similar ways. Discovering such communities is an important part of modeling networks, as community structure offers clues to the processes which generated the graph. The stochastic block model is a popular network model based on community structures. It splits nodes into blocks, within which all nodes are stochastically equivalent in terms of how they connect to the rest of the network. As a generative model, it has a well-defined likelihood function with consistent parameter estimates. It is also highly flexible, capable of modeling a wide variety of community structures, including degree specific and overlapping communities. Performance of different block models vary under different scenarios. Picking the right model is crucial for successful network modeling. A good model choice should balance the trade-off between complexity and fit. The task of model selection is to automatically choose such a model given the data and the inference task. As a problem of wide interest, numerous statistical model selection techniques have been developed for classic independent data. Unfortunately, it has been a common mistake to use these techniques in block models without rigorous examinations of their derivations, ignoring the fact that some of the fundamental assumptions has been violated by moving into the domain of relational data sets such as networks. In this dissertation, I thoroughly exam the literature of statistical model selection techniques, including both Frequentist and Bayesian approaches. My goal is to develop principled statistical model selection criteria for block models by adapting classic methods for network data. I do this by running bootstrapping simulations with an efficient algorithm, and correcting classic model selection theories for block models based on the simulation data. The new model selection methods are verified by both synthetic and real world data sets

    Semi-supervised learning for image classification

    Get PDF
    Object class recognition is an active topic in computer vision still presenting many challenges. In most approaches, this task is addressed by supervised learning algorithms that need a large quantity of labels to perform well. This leads either to small datasets (< 10,000 images) that capture only a subset of the real-world class distribution (but with a controlled and verified labeling procedure), or to large datasets that are more representative but also add more label noise. Therefore, semi-supervised learning is a promising direction. It requires only few labels while simultaneously making use of the vast amount of images available today. We address object class recognition with semi-supervised learning. These algorithms depend on the underlying structure given by the data, the image description, and the similarity measure, and the quality of the labels. This insight leads to the main research questions of this thesis: Is the structure given by labeled and unlabeled data more important than the algorithm itself? Can we improve this neighborhood structure by a better similarity metric or with more representative unlabeled data? Is there a connection between the quality of labels and the overall performance and how can we get more representative labels? We answer all these questions, i.e., we provide an extensive evaluation, we propose several graph improvements, and we introduce a novel active learning framework to get more representative labels.Objektklassifizierung ist ein aktives Forschungsgebiet in maschineller Bildverarbeitung was bisher nur unzureichend gelöst ist. Die meisten AnsĂ€tze versuchen die Aufgabe durch ĂŒberwachtes Lernen zu lösen. Aber diese Algorithmen benötigen eine hohe Anzahl von Trainingsdaten um gut zu funktionieren. Das fĂŒhrt hĂ€ufig entweder zu sehr kleinen DatensĂ€tzen (< 10,000 Bilder) die nicht die reale Datenverteilung einer Klasse wiedergeben oder zu sehr grossen DatensĂ€tzen bei denen man die Korrektheit der Labels nicht mehr garantieren kann. HalbĂŒberwachtes Lernen ist eine gute Alternative zu diesen Methoden, da sie nur sehr wenige Labels benötigen und man gleichzeitig Datenressourcen wie das Internet verwenden kann. In dieser Arbeit adressieren wir Objektklassifizierung mit halbĂŒberwachten Lernverfahren. Diese Algorithmen sind sowohl von der zugrundeliegenden Struktur, die sich aus den Daten, der Bildbeschreibung und der Distanzmasse ergibt, als auch von der QualitĂ€t der Labels abhĂ€ngig. Diese Erkenntnis hat folgende Forschungsfragen aufgeworfen: Ist die Struktur wichtiger als der Algorithmus selbst? Können wir diese Struktur gezielt verbessern z.B. durch eine bessere Metrik oder durch mehr Daten? Gibt es einen Zusammenhang zwischen der QualitĂ€t der Labels und der Gesamtperformanz der Algorithmen? In dieser Arbeit beantworten wir diese Fragen indem wir diese Methoden evaluieren. Ausserdem entwickeln wir neue Methoden um die Graphstruktur und die Labels zu verbessern

    Semi-supervised Learning by Mixed Label Propagation

    No full text
    Recent studies have shown that graph-based approaches are effective for semi-supervised learning. The key idea behind many graph-based approaches is to enforce the consistency between the class assignment of unlabeled examples and the pairwise similarity between examples. One major limitation with most graph-based approaches is that they are unable to explore dissimilarity or negative similarity. This is because the dissimilar relation is not transitive, and therefore is difficult to be propagated. Furthermore, negative similarity could result in unbounded energy functions, which makes most graphbased algorithms unapplicable. In this paper, we propose a new graph-based approach, termed as “mixed label propagation ” which is able to effectively explore both similarity and dissimilarity simultaneously. In particular, the new framework determines the assignment of class labels by (1) minimizing the energy function associated with positive similarity, and (2) maximizing the energy function associated with negative similarity. Our empirical study with collaborative filtering shows promising performance of the proposed approach
    corecore