10 research outputs found

    MHSA-Net: Multi-Head Self-Attention Network for Occluded Person Re-Identification

    Full text link
    This paper presents a novel person re-identification model, named Multi-Head Self-Attention Network (MHSA-Net), to prune unimportant information and capture key local information from person images. MHSA-Net contains two main novel components: Multi-Head Self-Attention Branch (MHSAB) and Attention Competition Mechanism (ACM). The MHSAM adaptively captures key local person information, and then produces effective diversity embeddings of an image for the person matching. The ACM further helps filter out attention noise and non-key information. Through extensive ablation studies, we verified that the Structured Self-Attention Branch and Attention Competition Mechanism both contribute to the performance improvement of the MHSA-Net. Our MHSA-Net achieves state-of-the-art performance especially on images with occlusions. We have released our models (and will release the source codes after the paper is accepted) on https://github.com/hongchenphd/MHSA-Net.Comment: Submitted to IEEE Transactions on Image Processing (TIP

    New ideas and trends in deep multimodal content understanding: a review

    Get PDF
    The focus of this survey is on the analysis of two modalities of multimodal deep learning: image and text. Unlike classic reviews of deep learning where monomodal image classifiers such as VGG, ResNet and Inception module are central topics, this paper will examine recent multimodal deep models and structures, including auto-encoders, generative adversarial nets and their variants. These models go beyond the simple image classifiers in which they can do uni-directional (e.g. image captioning, image generation) and bi-directional (e.g. cross-modal retrieval, visual question answering) multimodal tasks. Besides, we analyze two aspects of the challenge in terms of better content understanding in deep multimodal applications. We then introduce current ideas and trends in deep multimodal feature learning, such as feature embedding approaches and objective function design, which are crucial in overcoming the aforementioned challenges. Finally, we include several promising directions for future research.Computer Systems, Imagery and Medi

    A survey on knowledge-enhanced multimodal learning

    Full text link
    Multimodal learning has been a field of increasing interest, aiming to combine various modalities in a single joint representation. Especially in the area of visiolinguistic (VL) learning multiple models and techniques have been developed, targeting a variety of tasks that involve images and text. VL models have reached unprecedented performances by extending the idea of Transformers, so that both modalities can learn from each other. Massive pre-training procedures enable VL models to acquire a certain level of real-world understanding, although many gaps can be identified: the limited comprehension of commonsense, factual, temporal and other everyday knowledge aspects questions the extendability of VL tasks. Knowledge graphs and other knowledge sources can fill those gaps by explicitly providing missing information, unlocking novel capabilities of VL models. In the same time, knowledge graphs enhance explainability, fairness and validity of decision making, issues of outermost importance for such complex implementations. The current survey aims to unify the fields of VL representation learning and knowledge graphs, and provides a taxonomy and analysis of knowledge-enhanced VL models

    Semantics-enhanced adversarial nets for text-to-image synthesis

    No full text
    This paper presents a new model, Semantics-enhanced Generative Adversarial Network (SEGAN), for fine-grained text-to-image generation. We introduce two modules, a Semantic Consistency Module (SCM) and an Attention Competition Module (ACM), to our SEGAN. The SCM incorporates image-level semantic consistency into the training of the Generative Adversarial Network (GAN), and can diversify the generated images and improve their structural coherence. A Siamese network and two types of semantic similarities are designed to map the synthesized image and the groundtruth image to nearby points in the latent semantic feature space. The ACM constructs adaptive attention weights to differentiate keywords from unimportant words, and improves the stability and accuracy of SEGAN. Extensive experiments demonstrate that our SEGAN significantly outperforms existing state-of-the-art methods in generating photo-realistic images. All source codes and models will be released for comparative study
    corecore