125 research outputs found

    Hilbert's Metamathematical Problems and Their Solutions

    Get PDF
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided primarily by model theoretical concerns. Accordingly, the ultimate aim of his consistency program was to prove the model-theoretical consistency of mathematical theories. It turns out that for the purpose of carrying out such consistency proofs, a suitable modification of the ordinary first-order logic is needed. To effect this modification, independence-friendly logic is needed as the appropriate conceptual framework. It is then shown how the model theoretical consistency of arithmetic can be proved by using IF logic as its basic logic. Hilbert’s other problems, manifesting themselves as aspects (ii), (iii), and (iv)—most notably the problem of the status of the axiom of choice, the problem of the role of the law of excluded middle, and the problem of giving an elementary account of quantification—can likewise be approached by using the resources of IF logic. It is shown that by means of IF logic one can carry out Hilbertian solutions to all these problems. The two major results concerning aspects (ii), (iii) and (iv) are the following: (a) The axiom of choice is a logical principle; (b) The law of excluded middle divides metamathematical methods into elementary and non-elementary ones. It is argued that these results show that IF logic helps to vindicate Hilbert’s nominalist philosophy of mathematics. On the basis of an elementary approach to logic, which enriches the expressive resources of ordinary first-order logic, this dissertation shows how the different problems that Hilbert discovered in the foundations of mathematics can be solved

    Is game semantics necessary?

    Full text link
    We discuss the extent to which game semantics is implicit in the formalism of linear logic and in the intuitions underlying linear logic

    Dependence Logic with Generalized Quantifiers: Axiomatizations

    Full text link
    We prove two completeness results, one for the extension of dependence logic by a monotone generalized quantifier Q with weak interpretation, weak in the meaning that the interpretation of Q varies with the structures. The second result considers the extension of dependence logic where Q is interpreted as "there exists uncountable many." Both of the axiomatizations are shown to be sound and complete for FO(Q) consequences.Comment: 17 page

    Structural completeness in propositional logics of dependence

    Full text link
    In this paper we prove that three of the main propositional logics of dependence (including propositional dependence logic and inquisitive logic), none of which is structural, are structurally complete with respect to a class of substitutions under which the logics are closed. We obtain an analogues result with respect to stable substitutions, for the negative variants of some well-known intermediate logics, which are intermediate theories that are closely related to inquisitive logic

    On Quasi-Interpretations, Blind Abstractions and Implicit Complexity

    Full text link
    Quasi-interpretations are a technique to guarantee complexity bounds on first-order functional programs: with termination orderings they give in particular a sufficient condition for a program to be executable in polynomial time, called here the P-criterion. We study properties of the programs satisfying the P-criterion, in order to better understand its intensional expressive power. Given a program on binary lists, its blind abstraction is the nondeterministic program obtained by replacing lists by their lengths (natural numbers). A program is blindly polynomial if its blind abstraction terminates in polynomial time. We show that all programs satisfying a variant of the P-criterion are in fact blindly polynomial. Then we give two extensions of the P-criterion: one by relaxing the termination ordering condition, and the other one (the bounded value property) giving a necessary and sufficient condition for a program to be polynomial time executable, with memoisation.Comment: 18 page

    Infinity

    Get PDF
    This essay surveys the different types of infinity that occur in pure and applied mathematics, with emphasis on: 1. the contrast between potential infinity and actual infinity; 2. Cantor's distinction between transfinite sets and absolute infinity; 3. the constructivist view of infinite quantifiers and the meaning of constructive proof; 4. the concept of feasibility and the philosophical problems surrounding feasible arithmetic; 5. Zeno's paradoxes and modern paradoxes of physical infinity involving supertasks
    corecore