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ABSTRACT 

This dissertation examines several of the problems that Hilbert discovered in the 

foundations of mathematics, from a metalogical perspective. The problems manifest 

themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach 

to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His 

response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to 

the specification of the role of logical inference in mathematical reasoning. This 

dissertation argues that Hilbert’s axiomatic approach was guided primarily by model-

theoretical concerns. Accordingly, the ultimate aim of his consistency program was to 

prove the model-theoretical consistency of mathematical theories. It turns out that for the 

purpose of carrying out such consistency proofs, a suitable modification of the ordinary 

first-order logic is needed. To effect this modification, independence-friendly logic is 

needed as the appropriate conceptual framework. It is then shown how the model-

theoretical consistency of arithmetic can be proved by using IF logic as its basic logic.  

Hilbert’s other problems, manifesting themselves as aspects (ii), (iii), and (iv)—

most notably the problem of the status of the axiom of choice, the problem of the role of 



 iv

the law of excluded middle, and the problem of giving an elementary account of 

quantification—can likewise be approached by using the resources of IF logic. It is 

shown that by means of IF logic one can carry out Hilbertian solutions to all these 

problems. The two major results concerning aspects (ii), (iii) and (iv) are the following: 

(a) The axiom of choice is a logical principle; (b) The law of excluded middle divides 

metamathematical methods into elementary and non-elementary ones. It is argued that 

these results show that IF logic helps to vindicate Hilbert’s nominalist philosophy of 

mathematics. On the basis of an elementary approach to logic, which enriches the 

expressive resources of ordinary first-order logic, this dissertation shows how the 

different problems that Hilbert discovered in the foundations of mathematics can be 

solved.   
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1. INTRODUCTION 

This work aims at developing a new approach to Hilbert’s philosophy of mathematics. 

According to this new approach, the true basis and functioning of Hilbert’s 

metamathematical program in the foundations of mathematics is derived from model-

theoretical conceptualizations. Hilbert’s model-theoretical viewpoint roots from his 

abstract algebraic motivation in connection with the metatheoretical studies of the 

nineteenth century mathematics. These metatheoretical studies set the main motivation 

for Hilbert’s further inquiry into the foundational organization of mathematical theories, 

by means of the axiomatic method.  

 One of the most important aspects of Hilbert’s contributions to the foundations of 

mathematics (as well as to the foundations of different physical theories and logic) is his 

application of the axiomatic method. Hilbert’s axiomatic approach, in line with the 

nineteenth century mathematical developments, is metatheoretically and model-

theoretically oriented.1 Such an approach excludes what might be called epistemological 

foundations of mathematics from foundational considerations. According to Hilbert, 

genuine foundational investigations should concern logical and mathematical methods 

only.  

In chapters 2-10 different aspects of Hilbert’s model-theoretical and 

metatheoretical approach to the foundations of mathematics are discussed. His non-

epistemological motivation is indicated. The role of logical axiomatization in 

metatheoretical considerations is explained, and its importance is emphasized.  

                                                 
1 Cf. Hintikka 1988 and 1997. 
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 Hilbert had different aims for the foundations of mathematics. In accordance with 

his metatheoretical concerns, Hilbert needed a theory of logic to use in his foundational 

investigations. It is known today that ordinary first-order logic as was (to a considerable 

extent) developed by Hilbert and Ackermann 1928 cannot serve as a suitable language to 

achieve Hilbert’s aims. For example, the consistency of arithmetic cannot be proved on 

the basis of this logic. Also this logic does not throw much light on the foundational 

problems concerning the status of the axiom of choice, which Hilbert believed to be a 

logical principle, and the status of the law of excluded middle, which Hilbert believed to 

be an indispensable maintenance for the mathematician.  

In chapter 11 the so-called independence-friendly (IF) logic is suggested as an 

improvement on ordinary first-order logic. Then it is shown in chapter 12 how a 

consistency proof for the model-theoretical foundations of arithmetic can be carried out 

on the basis of IF logic. In chapter 13 Hilbert’s other problems in the foundations of 

mathematics are outlined. In chapters 13-20 it is discussed how these problems as well 

can be carried out, by using IF logic as the basic logic for the metatheoretical and model-

theoretical foundations of mathematics. As a result, the axiom of choice becomes a 

logical principle (cf. chapter 20). And the restricted and unrestricted applications of the 

law of excluded middle, divides metamathematical methods into two, as elementary and 

non-elementary methods (cf. chapter 21). Thereby Hilbert’s consistency program can be 

carried out by elementary means, that is to say, without assuming the law of excluded 

middle. So that Hilbert’s approach is saved from being open to intuitionist criticisms.  
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Finally, in chapter 22 it is emphasized that proof-theoretical extensions of 

Hilbert’s program—using Gentzen-type transfinite recursion—cannot be taken as 

solutions to Hilbert’s different problems, as long as they do not provide an elementary 

account of our quantification theory. As is argued in this dissertation, IF logic provides an 

elementary account of quantification theory and provides solutions to Hilbert’s different 

problems in the foundations of mathematics.  
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2. ABSTRACT MATHEMATICS 

The foremost general novelty of the nineteenth century mathematics is its abstractions 

from the traditional conception of mathematics as the study of space and number.2 The 

new level of abstractions signifies not only further development and systematization of 

the mother subjects of mathematics in algebra, analysis and geometry. It is also the birth 

and development of new theories in abstract algebra and topology. The new (and then 

forthcoming) developments in the study of surfaces, symmetries, manifolds, 

measurement, motion, combinatorics etc. in the nineteenth century signify a progressive 

departure from the traditional ways of doing mathematics. For example, the discovery of 

non-Euclidean geometries, group theory and set theory provided new tools and new 

structures for the working mathematician. They provided plenty of new structures, which 

seem to be unsustainable by the traditional one-space geometry and number system. 

Consequently, the task of mathematical theorizing was extended to include what we call 

meta-theories of different mathematical theories. 

 In so many ways all the newly discovered mathematical structures were (and are) 

of course connected to each other. So, surely, a mathematician could (and can) still argue 

that, on the basis of the interconnections of all the new theories, everything in 

mathematics ultimately reduces to the study of number and space. Nevertheless, if such 

an argument overlooked what was really the issue in the study of new mathematical 

structures, then it would fall short in providing a satisfactory account of its own day 

actual mathematics. The real issue in question is the investigation of different algebraic 

                                                 
2 Cf. Mac Lane 1986, p. 119. 
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and geometric structures, their common properties, classifications and differences, which 

in practice included the metalogical study of the axiom systems for them.  

 The general significance of non-Euclidean geometries for example lies in the 

characterization of different spaces, and hence in forming new systems of objects, and the 

study of the different models of different systems of geometry. This does not in any sense 

have a claim to weaken the existence of the previous Euclidean models. In similar 

manner, the theory of groups has brought into mathematics the determination of common 

models for different types of physical and mathematical structures and operations, such 

as change of place, transformations, (and primarily) symmetries. In that sense what had 

been forthcoming then in the nineteenth century abstract algebra and different geometries 

was a model-theoretical view of mathematics, which requires a metatheoretical structural 

approach to the multiplicity of different mathematical models.3 

 Hilbert with his mathematical work was one of the high peaks of the new 

mathematics. His 1890 basis theorem which reduces every ideal in a given field of a ring 

of polynomials to a finite basis is considered as one of the first contributions to modern 

algebra. It is considered also as a direct path to provide the foundations of algebraic 

geometry.4 The novelty in Hilbert’s contribution was its structural metatheoretical 

approach to certain algebraic structures (e.g. number rings) and their invariant properties. 

In that sense, Hilbert’s viewpoint is metatheoretical and model-theoretical in the same 

sense as that abstract algebra or category theory is metatheoretical and model-theoretical 

                                                 
3 Cf. Corry 1996. 
4 Cf. Dreben and Kanamori 1997; also see Kline 1972, § 39. 
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today.5 Also, Hilbert’s work on the foundations of geometry has got a common feature 

with his basis theorem and his contribution to the theory of algebraic invariants. Broadly 

put, this common feature is again the establishment of metatheoretical connections 

between certain algebraic structures (e.g. ordered number fields) and geometric structures 

(e.g. the Euclidean space), as well as their substructures.  

For Hilbert, the establishment of meta-theoretical interconnections between 

different parts of mathematics was a leading motivation concerning his general view of 

mathematics. As he points out in the closing paragraphs of his “Mathematical Problems” 

(Hilbert 1900a), for him 

 
Mathematical science … is an indivisible whole, an organism whose vitality is 
conditioned upon the connection of its parts. …the farther a mathematical theory is 
developed, the more harmoniously and uniformly does its construction proceed, and 
unsuspected relations are disclosed between hitherto separate branches of the science.6 
 

Therefore, the importance of metatheoretical connections and hence the need for a 

metatheoretical structural approach to the multiplicity of different mathematical models 

for Hilbert is foremost and obvious; not only from his actual mathematical work, but also 

from his overall view of the development of mathematics. 

The establishment of metatheoretical connections between algebraic and 

geometrical structures requires on the abstract level a language to express those 

connections and structures. Such language is sometimes considered to be the language of 

set theory. Whether this might be the right approach in mathematics is an open question. 

                                                 
5 Cf. Bernays 1967, p. 496. 
6 Hilbert 1900a, p. 436. 
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And affirmative answers to the question should account for the acceptability of the 

infinitistic methods that are allowed therein, by the application of the set theoretical 

language to different mathematical theories, as if it is foundationally the proper way to 

study mathematical structures and their meta-level interconnections.  

Hilbert was a defender of set theory. A typical example of Hilbert’s defense of set 

theory is Hilbert 1926. He considers there set theory as providing a suitable abstract 

language to study the mathematical infinite. This does not mean however that he 

considers set theoretical language as foundationally unproblematic.7 What Hilbert 

defends is the fruitfulness of abstract set theory as the study of mathematical structures 

consisting of finite and infinite collections. Hilbert's approval is on the one hand enough 

to admit set theory as a suitable candidate for metatheoretical and model-theoretical 

considerations, since most basic mathematical concepts can be represented by finite or 

infinite sets. Functions can (apparently) be represented by sets of ordered pairs, natural 

numbers by sets of sets, integers by using pairs of naturals, rationals by a set of pairs, 

reals by sets of rationals, and so on. What this picture suggests is that one can build a 

model of most basic mathematical structures by using sets. Hilbert must have thought that 

by using the language of set theory one can study the (metatheoretical) properties of 

different mathematical models. All one has to do seems to be to define mathematical 

structures by using finite and infinite sets and then to make logical inferences from them, 

as well as to compare their model-theoretical properties. Nevertheless, Hilbert’s approval 

of the abstract language of sets, on the other hand, is very cautious as to the limitations of 

                                                 
7 See for example Hilbert 1926, pp. 375-376 and 392. 
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this language and to the foundational problems concerning the existence assumptions 

about infinite collections. The limitations, from Hilbert’s viewpoint, are in need of logical 

(and combinatorial) undertaking. Therefore, abstract mathematical theories and their 

metatheoretical interconnections that are intended to be studied model-theoretically via 

set theory, however wealthy of useful tools for the working mathematician, should be 

given logical foundations, according to Hilbert.  
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3. THE AXIOMATIC APPROACH 

The aim of abstract mathematics is to get hold of the totality of different models, by using 

the same type of logical and conceptual tools in different theories. In Hilbert’s way of 

putting this: 

 
…with all the variety of mathematical knowledge, we are still clearly conscious of the 
similarity of the logical devices, the relationship of the ideas in mathematics as a whole 
and the numerous analogies in its different departments.8 
 

That is why one suitable way to study the logical foundations and metatheoretical 

interconnections between algebraic and geometric structures (as well as to study the 

structures themselves) is to use the axiomatic method. What is peculiar to the axiomatic 

method after Hilbert is its service in determining different classes of models for different 

specific fields of mathematics. In the applications of the axiomatic method a unified view 

of different models for different mathematical theories is (or at least, is intended to be) 

captured. By way of locating the basic structural properties of a mathematical system 

interrelated—so as to explicitly define its intended models—an axiom system provides an 

overview of the system in question.  

In order for such an overview to serve as a useful tool for mathematical purposes 

it has to have an uninformative inferential net. That is, an uninformative system of logical 

rules is needed. This enables the axiom system to admit any structure that satisfies the 

axioms as its subject matter. For that matter, once an axiom system is set up, all that one 

needs are purely logical consequence relations to derive new results from the axioms. It 

                                                 
8 Hilbert 1900a, p. 436. 
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follows that all the new results that are reached in this way have a structural (model-

theoretical) meaning. What is needed for a mathematical foundation then is to prove the 

model-theoretical consistency of the axiom system. 

It is crucial here to note that (due to the uninformative character of logical 

inference) there is a difference between the axiomatization of logic and axiomatization of 

non-logical (mathematical and scientific) theories. The main difference stems from the 

role of non-logical constants occurring in the axioms of non-logical theories. With the 

help of the non-logical constants a non-logical axiom system specifies the class of its 

intended models. Then the notion of truth (in the axiom system) captures truth in the 

intended (and only in the intended) models. In the axiomatization of (parts of) logic, 

however, the aim is not to seek truth in specified intended models. It is rather to capture 

the notion of true in all possible models. Therefore, in a way axiomatization of logic and 

axiomatization of non-logical theories designate two different levels of codified 

information, i.e. information about all possible models and information about some 

specified models.9     

 Arguably, Hilbert’s application of the axiomatic method, in the first place to 

geometry and then to other branches of mathematics, was the most perceptive application 

in history, with its sharp penetration of the logical and model-theoretical foundations of 

theories. Even if it may sound too strong here to say that Hilbert's application of the 

axiomatic method to the foundations of geometry (as well as to the other branches of 

mathematics) is the most perceptive one in history, it is quite true that Hilbert is the first 

                                                 
9 Cf. Hintikka 2007. 
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mathematician "who moved to the 'metageometric' level" as Weyl once put it.10 With its 

metatheoretical perspective Hilbert's axiomatic approach is unique.11  

Hilbert’s 1899 axiomatization of geometry is an application of the axiomatic 

method with a successful claim to provide the foundations of the entire field. What 

Hilbert accomplished in this work was to set up a list of axioms for Euclidean geometry 

and to work out their dependency relations as well as proving their model-theoretical 

consistency, by using countable arithmetical models.12 Hilbert’s main ideas for the 

development of the axiomatic method can be found in the 1899 work. Some of these 

ideas were improved and refined later. What is peculiar to the case of geometry is that 

Hilbert takes its axiomatization to be of central importance for the different applications 

and development of the axiomatic method.  

Hilbert's axiomatization of geometry goes back to his early lectures in the 

1890s.13 Later, in his 1900 paper, Hilbert calls attention to the distinction between the 

genetic method in number theory and the axiomatic method in geometry. In the genetic 

approach to number theory as Hilbert states “the most general concept of real number is 

engendered by the successive extension of the simple concept of number”. The case is 

different however in axiomatic geometry. There all the objects of the theory (points, 

lines, planes) are taken as being given. The purpose of the axioms is to define some basic 

relations between these objects. What one has to do is to prove the adequacy 

                                                 
10 Cf. Reid 1970, p. 264. 
11 For more on this point, see Weyl 1944. 
12 Well before then with Beltrami and Klein, the consistency of non-Euclidean geometries had already been 
proved, relative to the consistency of Euclidean geometry. 
13 For these lectures see Hallett and Majer 2004. 
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(consistency, independence and completeness, in the first place) of the axioms. This 

investigation Hilbert maintains, namely the axiomatic method,  

 
...despite the high pedagogic and heuristic value of the genetic method, for the final 
presentation and the complete logical grounding of our knowledge…deserves the first 
rank.14  
 

Accordingly, Hilbert suggests using the axiomatic method in different branches of 

mathematics. In Hilbert and Bernays 1934-39 it is still the foundations of geometry that is 

taken as the paradigm case for different mathematical applications of the method. Hilbert 

and Bernays consider axioms of connection, axioms of order and the parallel axiom, with 

points as the individuals of the system. Accordingly, they formulate propositions of 

geometry. For example, Gr(x, y, z) means in their system that x, y and z lie on one line. 

Zw(x, y, z) means that x lies between y and z. Here, Gr and Zw can be treated like any 

two three-place predicates. And when they are treated as such, let us say as relations R 

and S respectively, whether they satisfy a given condition A, i.e. whether 

 

(1) A(R, S) 

 

or whether for any given R and S,  

 

(2) ¬A(R, S)   

 

                                                 
14 Hilbert 1900, p. 1093.            
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is true becomes the central question, which Hilbert and Bernays introduce as a decision 

problem.15 Given this decision problem, consistency and independence problems for sets 

of axioms—this is not to say that they are subordinate to the decision problem—can also 

be formulated. For example, by asking whether a set of axioms Γ and a given axiom A 

are satisfiable by a domain, or whether A is independent in the sense that Γ and ¬A are 

consistent. These tasks can be accomplished as Hilbert and Bernays state, by formulating 

logical inferences and showing that a given axiom system AX is satisfied by a model M 

of things and relations. What Hilbert showed, in proving the consistency of his axioms in 

his 1899 book is essentially this kind of satisfiability.16 

In addition to the consistency of the axioms also their completeness and 

independence have to be proved. Indeed Hilbert’s main aim as he stated in Hilbert 1899 

was to set up a simple and complete axiom system in which axioms are mutually 

independent from each other. What he meant by completeness was not explicit at the 

time. Hilbert adopted different views of completeness (i.e. different completeness 

axioms) in different (later) editions of his 1899 work. He developed his initial ideas 

further also in adopting completeness to the foundations of other mathematical fields, 

most notably to mathematical logic.17 Yet it was clear that Hilbert's central aim in his 

1899 book was to capture the intended characterization of the Euclidean space, by means 

of a finite list of axioms (together with their logical consequences).  

                                                 
15 The decision problem is often taken to be the problem of the mechanical derivability of (1) or (2). One 
has to note here that Hilbert and Bernays by no means restrict their view of the decision problem to 
mechanical derivability. See Hilbert and Bernays 1934, § 1 
16 Of course, Hilbert’s proof was a relative consistency proof, assuming the consistency of the system of 
real numbers. 
17 See Moore 1997 on the connection between completeness in different foundational issues. 
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For that purpose Hilbert’s axiomatic approach requires, in an axiomatized 

mathematical theory, the underlying logic to enable the axiom system capture the 

information codified by the axioms. So that it enables the axiom system to capture the 

intended class of models. This can be taken as twofold: First, the derivation of the 

theorems from the axioms must be formal. The derivations must be formal in the sense 

that no new information other than what was already codified by the system of axioms is 

used in them. Hilbert states this requirement in his 1917/18 lectures as follows: 

 
The system of axioms provide us with a procedure to carry out logical proofs strictly 
formally, i.e. in such a way that we need not be concerned at all with the meaning of the 
judgments that are represented by formulas, rather we just have to attend to the 
prescriptions contained in the rules.18 
 
 
In other words, all we have as valid inference depend only on the logical form of the 

premises and the conclusion. This does not mean that the derivation of theorems has to be 

completely mechanical. The idea is, rather, that derivations must not introduce any new 

information into the reasoning. That is, inference rules are applied without changing the 

information content, but in order to obtain the model-theoretically correct results. So in 

order to judge the correctness of the results, 

 
We have to interpret the signs of our calculus when representing symbolically the 
premises from which we start and when understanding the results obtained by formal 
operations.19   
 

Accordingly, Hilbert formulates the validity of a logical inference as non-refutability by 

                                                 
18 Quoted in Sieg 1999, p. 18. 
19 Ibid. 
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an arithmetical model.20 Based on such conception of logical validity (and of logical 

consequence) the question of completeness of the system of logic that is used as an 

auxiliary tool in axiomatic investigation arises as an adequacy requirement. After all,  

 
The goal of symbolic logic is to develop ordinary logic from the formalized assumptions. 
Thus it is essential to show that our axiom system suffices for the development of 
ordinary logic.21 
 

For that purpose, second, the logic used in the derivations of theorems must be complete. 

Otherwise the axiom system does not capture the intended class of models. 

It is relevant to note here a distinction between different notions of completeness. 

There are at least three relevant conceptions of completeness: descriptive, deductive and 

semantical completeness. 22 We say a non-logical axiom system is descriptively complete 

if and only if the models of the system include all and only intended models. We say a 

non-logical axiom system is deductively complete if and only if, for every sentence S of 

the system it can be logically proved either S or ¬S as a theorem of the system.23 We say 

an axiomatization of logic is semantically complete if and only if it admits a recursive 

enumeration of the valid formulas. 

Without giving a clear distinction between different notions of completeness, 

Hilbert recognized the first requirement about the need for the uninformative character of 

logical inference. He held that all logical inferences in an axiom system must be carried 

                                                 
20 Sieg 1999 quotes (p. 20) Hilbert from his talk to the International Congress of Mathematicians in 
Bologna (Hilbert 1929). 
21 Quoted in Sieg 1999, p. 20,. 
22 Cf. Hintikka 1996 chapter 5. 
23 As a result of Gödel 1930 this can be in two ways: in the sense based on proof-theoretical derivability 
and in the sense of model-theoretical consequence. 
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out in a formal way. And in this respect, his axiomatic approach is based on the idea that 

mathematical reasoning can be interpreted as being logical reasoning in a sense that 

implies uninformativeness. Once the axioms are set up in a logical manner, then all that 

one has to do is to apply the uninformative logical inferences and build the rest of the 

results purely formally (i.e. based on the logical form only, which includes the semantic 

notion of logical consequence). Therefore, the formality requirement is by no means to 

say that mathematics is a formal game with arbitrary rules. Hilbert’s foundational aims 

were never arbitrary. They were guided by suitable criteria that underlie what might be 

called a natural philosophy.24 Still the word "formal" might still appear tricky here. It has 

to be freed from a solely mechanistic understanding. One has to remind oneself that 

Hilbert's primary aim was to capture the intended models of axiom systems, without 

necessarily having commitment to any claim to show that his aim coincides with what 

can be achieved by axiomatization in a purely mechanical way. Even if what is captured 

as the intended models somehow coincided with the outcomes of mechanical procedures, 

this would by no means show that Hilbert was seeking for purely mechanical procedures 

in his axiomatism. The completeness issues were in an inadequate stage of development 

in logical theory, when Hilbert started to shape his foundational program. Therefore, it 

would be wrong to attribute any strict mechanist (or formalist) view to Hilbert about his 

aim to capture the intended models of axiom systems, until the impact of Gödel's 

incompleteness results on Hilbert's approach is rightly understood. (See further chapter 

10)      

                                                 
24 Cf. Corry 1997. 
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Nevertheless, Hilbert might have presupposed (at some point) the completeness of 

the underlying logic of mathematical systems: 

 
If it can be proved that the attributes assigned to the concept can never lead to a 
contradiction by the application of a finite number of logical inferences, I [Hilbert] say 
that the mathematical existence of the concept (for example, of a number of a function 
which satisfies certain conditions) is thereby proved.25 
 

Here it might have been the case that Hilbert has taken for granted that deduction entails 

semantic consequence. In this he might have presupposed the semantical completeness of 

the underlying logic of axiomatization; since only if the underlying logic is semantically 

complete, then the deductive consistency of a system implies its model-theoretical 

consistency. Indeed, it might even count as historical evidence for Hilbert’s inclination to 

such a presupposition, that the completeness of propositional logic was first proved by 

Bernays and Hilbert in 1918.26 Then in 1930 Gödel proved the completeness of the usual 

first-order logic that had been formulated (to a considerable extent) in Hilbert and 

Ackerman 1928.  Gödel’s motivation for his completeness proof for the standard first-

order logic thus seems to have been done partly due to Hilbert’s influence.27  

What Gödel proved is the semantical completeness of first-order (Hilbert-

Ackermann) logic. And what he later proved in 1931 is the deductive incompleteness of 

arithmetic, which implies the descriptive incompleteness of arithmetic only if the 

                                                 
25 Hilbert 1900, par. 42. 
26 See chapter 2 of Zach 2001 for a historical discussion of completeness proofs in Hilbert’s school. 
27 Cf. Dreben and Kanamori 1997. 
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underlying logic is semantically complete.28 Therefore, if Hilbert really presupposed the 

semantical completeness of the underlying logic, then such presupposition would make 

his aim to specify the intended models of axiom systems unattainable. That is why, in the 

light of Gödel's completeness and incompleteness results, the first-order logic that was 

formulated by Hilbert and Ackermann has to be replaced by a suitable semantically 

incomplete alternative. Otherwise Hilbert's goals and requirements for axiomatic 

foundations are beyond the reach. And yet, if the underlying logic of axiomatization is 

semantically incomplete, then there may be descriptively complete characterizations of 

arithmetic by using that incomplete logic.29     

                                                 
28 Gödel proved the deductive incompleteness of elementary arithmetic in two ways: (i) in the sense based 
on logical consequence, (ii) in the sense based on mechanical derivability. Now, (ii) generalizes to other 
systems of arithmetic whereas (i) does not.  Cf. Hintikka 1996, chapter 5. 
29 Cf. Hintikka 1996, chapter 5. 
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4. METAMATHEMATICS 

The two requirements mentioned in the previous chapter (i.e. about uninformativeness 

and the completeness), if fulfilled, give all the mathematical results that are obtained 

from the axioms a structural meaning. According to this structural meaning, in the 

derivation of theorems from the axioms the interpretation of the axioms does not matter. 

Any given domain that satisfies the axioms, can instantiate the structure. The plausibility 

of such structural approach was emphasized by Hilbert himself. As he once put it, in 

deriving theorems from geometrical axioms, one might as well speak of tables, chairs and 

beer mugs instead of points, lines and circles.30 This has to be taken as a straightforward 

reminder that logical reasoning is valid modulo isomorphism. Hilbert in one of his letters 

to Frege summarizes the main idea of his approach as follows: 

 
…it is self-evident that every theory is merely a framework or schema of concepts 
together with their necessary relations to one another, and that the basic elements can be 
construed as one pleases. If I think of my points as some system or other of things, e.g. 
the system of love, of law, or of chimney sweeps…and then conceive of all my axioms as 
relations between these things, then my theorems, e.g. the Pythagorean one, will hold of 
these things as well. In other words, each and every theory can always be applied to 
infinitely many systems of basic elements. For one merely has to apply a univocal and 
reversible one-to-one transformation and stipulate that the axioms for the transformed 
things be correspondingly similar. Indeed, this is frequently applied, for example, in the 
principle of duality, etc; I also apply it in my independence-proofs.31 

 

Since any domain that satisfies the axioms can be taken as to instantiate the considered 

mathematical structures, symbols and their combinations themselves can as well be taken 

as the objects of the models. So, in number theory Hilbert’s view amounts to suggesting 

                                                 
30 Cf. Reid 1970, p. 57. 
31 Kluge 1971, pp. 13-14. 
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the following model-theoretical strategy: Since the particular selection of the domain of a 

model of number theory is arbitrary, we might think of this domain as consisting of 

symbols (or signs). We might think of them for instance as consisting of the number-

theoretical symbols. The same statement holds for the individual objects that there are in 

the models of our theories we might think of. According to Hilbert, the objects one thinks 

of can be chosen (as one pleases) freely as the individuals that one’s theory deals with. 

Therefore, in the case of number theory, what Hilbert is proposing is the study of the 

intended models of axiomatized number theory. Their domain can be taken as to consist 

of signs (or, symbols).  

In fact a closer look at abstract algebra discloses the fact that there—for example 

in Galois’ groups—is seen already the key ideas of Hilbert’s structural approach. 

Algebraic manipulations can be thought of as having the same properties as other types of 

symmetries and transformations. This would essentially amount to the same technique as 

Hilbert’s use of symbols as their own representations: 

 
In algebra…we consider the expressions formed with letters to be independent objects in 
themselves, and the contentual propositions of number theory are formalized by means of 
them. Where we had propositions concerning numerals, we now have formulas, which 
themselves are concrete objects….32 
 

A forceful statement of a similar point is found in the introductory paragraphs of 

Hilbert’s address to the International Congress of Mathematicians in Paris (Hilbert 

1900a). There Hilbert says: “The arithmetical symbols are written diagrams and the 

geometrical figures are graphic formulas.”  

                                                 
32 Hilbert 1926, p. 379. 
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Practically, Hilbert’s recommendation of using symbols for metatheoretical 

purposes amounted to proposing to use a kind of metalogical tool in proof theory. 

However, as a tactic for handling algebraic manipulations, it is not merely proof-

theoretical. The underlying rationale of Hilbert’s method is still model-theoretical. It is 

similar to the one used, for example, by Henkin in his completeness proof for first-order 

logic.33 Henkin used as models for certain kinds of sets of formulas (symbol 

combinations) those very same sets of symbols themselves.34 On similar lines, Hilbert’s 

statements about signs as objects of mathematics are a recommendation of the application 

of logical inferences: 

 
...as a precondition for the application of logical inferences and for the activation of 
logical operations, something must already be given in representation [in der 
Vorstellung]: certain extralogical discrete objects, which exist intuitively [anschaulich] as 
immediate experience before all thought.35 
 

The condition in question is the domain of individuals, i.e. extra-logical discrete objects. 

What they are is not really important. Hilbert says that they could be chairs, tables and 

beer mugs. By the same token, they could be symbols and structures of symbols. 

Thereby, the reasons Hilbert gives for his alleged formalism, do not serve more than as 

practical reasons. 

 At this point Hilbert's practical reasons can be given further theoretical 

background. Wittgenstein's picture theory of meaning serves as an illustration of Hilbert's 

model-theoretical presuppositions. The picture in the sense of Wittgenstein serves as a 
                                                 
33 See Henkin 1949. 
34 Later Hintikka 1955 and Smullyan 1968 generalized Henkin’s method. Henkin’s idea was very close to 
the idea of Gödel numbering and indeed Hilbert’s formalization of metamathematics. 
35 Hilbert 1922, par. 25. 
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model of reality.36 There we admit a "form of representation" of the picture which fixes 

the things in reality in such a way to produce the same structure as that the elements of 

the picture provide. In that sense a picture is "like a scale applied to reality".37 Symbols 

(or signs) which are meaningless themselves in Hilbert's terminology can likewise be 

thought of as elements of pictures that are made possible by their form of representation. 

The form of representation is what Hilbert seems to have assumed when he occasionally 

appeals to a harmony between thought and reality.38 The gist of the harmony of thought 

and reality in question is the assumption that human thought can produce symbol 

structures as models of reality. These structures can at the same time be considered as 

isomorphic replications of what they represent. The same view can be traced at least back 

to Leibniz. In his dialogue on the connection between things and words, Leibniz says: 

 
…if characters can be used for ratiocination, there is in them a kind of complex natural 
relation [situs] or order which fits the things; if not in single words at least in their 
combination and inflection, although it is better if found in the single words themselves.39 
  

One has to note here that it is a semantical phenomenon rather than an epistemological or 

an ontological one that it is possible to produce structures that are isomorphic with what 

they represent. It is an assumption concerning how language is seen to be related with 

reality. Although such assumption is philosophically in need of further investigation, the 

investigation is unnecessary for Hilbert's practical purposes to perform logical operations 

on given mathematical structures. On this point, the philosophical import of Hilbert's 

                                                 
36 Wittgenstein 1921, 2.12. 
37 Ibid, 2.1512. 
38 See Hilbert 1930, par. 13. 
39 Loemker 1970, p. 184. 
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views seems to be a part of his optimism concerning problem-solving. 

 Hilbert’s optimism (under the assumption that the correct symbolism gives 

isomorphic replications of what it represents) consists of an attempt to reconstruct all 

mathematics in the shape of “inventory of formulas”.40 The inventory in question has two 

parts: 

 
…first, formulas to which contentual communication of finitary propositions [hence, in 
the main, numerical equations and inequalities] correspond and, second, further formulas 
that mean nothing in themselves and are the ideal objects of our theory.41 
 

What is needed in order to give a logical foundation for the two parts of the inventory of 

formulas (i.e. the contentual (real) part and the ideal part) is a proof of consistency, which 

will show in turn that the application of ideal elements in mathematical symbolism is 

model-theoretically unproblematic.42 So that the assumption that mathematical 

symbolism provides a characterization (up to isomorphism) of its subject matter—with 

arbitrary instantiations of mathematical structures—has safely been applied.  

                                                 
40 Cf. Hilbert 1922. 
41 Hilbert 1926, p. 380. 
42 Cf. Hilbert 1926, p. 383. 
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5. IDEAL ELEMENTS 

The arbitrary instantiations of mathematical models (structures) by using number 

theoretic symbols as instantiations (being a practical move) involves no epistemological 

or ontological aims. Hilbert’s axiomatic approach is intended to have been freed from 

epistemological concerns. For sure the investigation of symbol structures is for the sake 

of providing a combinatorial justification of what Hilbert calls the use of ideal elements 

in mathematics. And it might be objected that the justification of ideal elements involves 

an epistemological (or an ontological) reduction of the ideal to the real. Such objection is 

based on a misconception about the use of ideal elements in mathematics. 

 Ideal elements are introduced into a mathematical system in order to extend the 

models of the initial system consisting of real elements. The purpose of extending the 

models and introducing ideal elements is to obtain (in a simple and fruitful way) new 

results which are not available when the system is restricted to the study of models with 

only the so-called real elements. All that is required for that purpose is the following: the 

addition of new (ideal) elements must be carried out without violating the consistency of 

the initial system. For the consistency, what is required is a model-theoretically consistent 

characterization of both the initial mathematical system of real elements and the extended 

system with the ideal elements.43 

On this explanation of the role of ideal elements in mathematics, giving the 

question of ideal elements an ontological (or an epistemological) significance would be a 

misleading way to interpret Hilbert’s views. Questions of what the mode of existence or 

                                                 
43 Cf. Hilbert 1926, pp. 372-373. 
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the type of epistemic accessibility of those ideal elements is or may be would be off the 

mark. There are however epistemological interpretations of the distinction. Detlefsen 

1986 for example argues that Hilbert’s real-ideal distinction can be taken as to distinguish 

between the kind of epistemic value that the ideal and real statements in mathematics 

depend on (or derived from).44 Perhaps this can be done. However, it has nothing to do 

with Hilbert's model-theoretical aims. In the way Hilbert introduces the notion of an ideal 

element there is no dependency on epistemic conditions.  

It is thought by questioning epistemic and ontological aspects of the issue that 

ideal objects are somehow added in some fixed given domain of objects, even though 

they do not really exist (or, are not really known). From a model-theoretical point of view 

however, there is neither an ontological nor an epistemological shift from the use of real 

elements to the use of ideal elements. When we are studying a model or class of models 

modulo isomorphism, it is sometimes helpful to compare those possible structures to 

other structures. These are obtained by adding to the original structures some new 

elements. To repeat, the reason for adding new elements is simply that it might be easier 

then to prove certain theorems. This is what happens in the typical uses of ideal elements. 

Hilbert gives the familiar example from projective geometry. In projective geometry one 

can postulate a new geometrical entity, say an infinitely distant point, added to each 

model of the axioms of projective geometry. Then one can for instance show that in an 

extended model any two lines intersect in a point when produced indefinitely.45 Similar 

                                                 
44 See Detlefsen 1986, chapter 1. The same kind of interpretation can be found (as Detlefsen also points out 
in a footnote) in von Neumann 1931 and Kitcher 1976.   
45 Cf. Hilbert 1926, p. 372. 
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examples can be given for arithmetic. Hilbert for example wrote in his 1926 paper: 

 
Just as in geometry infinitely many straight lines, namely those that are parallel to one 
another, are used to define an ideal point, so in higher arithmetic certain systems of 
infinitely many numbers are combined into a number ideal….46  

 

The real problem here is to find out what the properties of the extended models tell us 

about the models of the original axioms. This problem is practical. If philosophical, it 

should be discussed separately from Hilbert’s foundational line of thought. It depends on 

the particular way in which the ideal elements are introduced. For Hilbert’s purposes 

there are no philosophical problems about this procedure. The procedure is purely 

structural. And Hilbert’s distinction between ideal and real elements has to be separated 

from possible external justifications to the use of this structural approach: 

 
The terminology of ideal elements thus properly speaking only has its justification from 
the point of view of the system one starts out from.47 
 

 The problems concerning ideal elements are model-theoretical, not epistemological. 

Questions (with philosophical emphasis) about whether ideal elements “really” exist, 

whether they have meaning, whether we can know them, or whether we can trust results 

obtained by their means are therefore misleading. 

 Misleading questions lead to misleading reading of Hilbert's foundational works. 

One misleading way of reading Hilbert's views has persisted in association with the 

formalist approach to mathematical theories. For example, Hilbert has been routinely 

                                                 
46 Hilbert 1926, p. 373 
47 Quoted by Hallett 1995 from Hilbert’s 1919 lectures; Hallett 1995, p. 149. 
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called a formalist. Historically, this goes partly back to Brouwer’s criticisms and partly to 

Weyl’s. In his 1912 paper Brouwer made the distinction between intuitionism and 

formalism.48 In his Cambridge Lectures he characterized Hilbert as the founder of the 

new formalist school in the foundations of mathematics.49 The way Brouwer makes his 

characterization is perhaps not completely unfair to Hilbert’s description of his own 

metamathematics. Brouwer seems to be aware of the fact that Hilbert does not reject 

elements extraneous to language. However the attribution he made easily leads to 

misleading readings of Hilbert. It is misleading in that Hilbert never claims that 

mathematical activity is restricted to the manipulation of formal symbols.50 This might be 

attributed perhaps to what Brouwer calls the old formalist school that rejected all 

elements extraneous to language.51  

Formalism is not the only philosophical view that has been wrongly attributed to 

Hilbert. There are other philosophical interpretations of Hilbert’s foundational ideas (by 

way of finitist and instrumentalist epistemologies in particular) which lead to a seriously 

misleading reading of Hilbert.52 For one main reason such interpretations turn one’s set of 

foundational problems into an epistemological problem concerning the certainty of 

mathematics. This line of interpretation therefore, is rooted in the same 

misunderstandings as those which misled logicians to have taken Gödel’s second 

incompleteness result as to imply the failure of Hilbert’s metamathematical consistency 

                                                 
48 See Brouwer 1912 titled “Intuitionism and formalism”.  
49 van Dalen 1981, pp. 3-4  
50 Cf. Kreisel 1983, pp. 207-208 
51 Brouwer acknowledges that Hilbertian metamathematics is an improvement on the old formalist view. 
See van Dalen 1981, p. 2. 
52 Here one should distinguish the mathematical contributions of finitist and instrumentalist approaches 
from the philosophically misleading part.  
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program; since one of the main reasons why Gödel’s second incompleteness theorem has 

been taken to imply the failure of Hilbert’s consistency program is that possible 

modifications of the so-called finitist standpoint has been considered to be a deviation 

from Hilbert’s alleged epistemological drive in proposing his views.53  

All the mentioned epistemological interpretations of Hilbert’s views shift the 

emphasis from the model-theoretical foundations of mathematics to an irrelevant 

conceptual framework. On the instrumentalist interpretation, for example, Hilbert's views 

are taken to admit an anti-realistic conception of mathematical truth for some (i.e. ideal) 

part of mathematics. On this interpretation, mathematical statements involving ideal 

elements are admitted to have only instrumental value as opposed to statements 

concerning the real elements, which are thought to have "real" truth value. In similar 

manner, on the same type of interpretation the knowledge of real statements is counted to 

be the rock bottom foundation of mathematical knowledge, whereas statements about 

ideal elements are taken to have justification only by means of the epistemological 

ground framed by the real part. All this appear to have been connected with the so-called 

finitism of Hilbert. Real statements are considered to have finitary content whereas the 

ideal parts of mathematical models, for example the infinite parts, are thought to be 

lacking such content. The way we make the distinction between real and ideal as above is 

not a useful way for Hilbert’s axiomatic purposes. From the axiomatist point of view 

what is misleadingly called Hilbert's instrumentalism and Hilbert's finitism consist only 

of practical metalogical strategies. The best way to characterize these strategies is by way 

                                                 
53 The point here is not that finitist and instrumentalist results in the logical foundations of mathematics are 
useless or fruitless. Their epistemological interpretation that they attribute to Hilbert is misguided. 
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of studying the semantic features of humanly practicable operations of logic and 

mathematics. Therefore, there is no good reason to assume that the practicality in 

question will be incompatible with a realistic conception of mathematical truth.54 Hence 

there is no good reason to put an anti-realistic emphasis on the interpretation of Hilbert’s 

views either. The question of Hilbert’s practical metalogical strategies states only a 

matter of deciding which applications of the logical operations to the so-called ideal 

elements are elementary: 

 
…since the ideal propositions…do not express finitary assertions…the logical operations 
cannot be applied to them in a contentual way, as they are to the finitary propositions.55 
 

The logical operations in question here are what Hilbert refers as the laws and operations 

of the Aristotelian logic, most notably the law of excluded middle and negation.56 The 

epistemological force that is tried to be attached to the metalogical standpoint such 

operations require is a distortion on Hilbert's viewpoint; since Hilbert had the idea of 

using the combinatorial model-theoretical properties of a formal language, as the basis of 

all the different applications of logical and mathematical operations. Such an idea 

supports a realistic conception of mathematical truth rather than an anti-realistic 

conception.       

Missing Hilbert’s implicit search for models might lead to further misleading 

characterizations of his axiomatic approach. For example, it might seem that for him the 

axioms are neither true nor false. Such an explanation would not capture Hilbert’s idea. 

                                                 
54 Cf. Hintikka 1996 chapter 9, especially pp. 199-202. 
55 Hilbert 1926, p. 381. 
56 Cf. Hilbert 1926, p. 379. 



 

 

30

 

For Hilbert one of the most important applications of the axiomatic method was its 

application to theories of physics.57 In such applications, it is hard to say that the axioms 

are neither true nor false. One has to take into consideration whether the axioms are true 

or false. The crucial point here is the kind of purpose that axioms and the axiomatic 

approach were calculated to serve. Sometimes axioms are taken to be intuitive truths and 

logical deductions from them to serve as a means of establishing the truth of their 

consequences. As should be clear by now, such inference from intuitive truths is not the 

whole story in Hilbert’s conception of inference from the axioms. For Hilbert an axiom 

system also provides an overview of our knowledge of certain types of structures. What 

is contained in such overview can be explained (in Hilbert’s terms) by means of a 

“mapping from a domain of knowledge onto a framework of concepts” in an axiomatic 

theory; 

 
Through [such] mapping, the investigation becomes completely detached from concrete 
reality. The theory has nothing more to do with real objects or with the intuitive content 
of knowledge. It is a pure thought construction of which one can no longer say that it is 
true or false [in the actual world].58 
  

Nevertheless, the detachment from concrete reality mentioned in the quotation obviously 

does not mean that the theory loses all contact with reality. It has a meaning concerning 

what we know about reality. That is, in Hilbert’s words, “it presents a possible form of 

actual connections”.59 Therefore, true statements in such a framework are truths in a 

model. The purpose of the axiomatic method is to find out those truths, by means of 

                                                 
57 For a historical study of Hilbert’s work on the axiomatization of physical theories, see Corry 1997. 
58 Quoted from Hilbert’s 1921-22 lectures, in Hallett 1994, p. 168 
59 Ibid. 
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logical inferences from the axioms. 

Physical systems as being idealizations of actual physical phenomena can also be 

considered as examples here: 

 
[In physics] we have to do ...predominantly with theories which do not reproduce the 
actual state of affairs completely, but represent a simplifying idealization of the state of 
affairs and have their meaning therein.60 

 
 

Such idealizations are the models of the axiom systems. And the derivation of theorems 

from axioms amounts to a study of those models: 

 
What the physicist demands precisely of a theory is that particular propositions be 
derived from laws of nature or hypotheses solely by inferences, hence on the basis of a 
pure formula game, without extraneous considerations being adduced. Only certain 
combinations and consequences of the physical laws can be checked by experiment—just 
as in my proof theory only the real propositions are directly capable of verification.61 
 

Here, it is obvious from the analogy between physics and proof theory that what Hilbert 

means by “pure formula game” includes model-theoretical thinking, which depends 

solely on the logical formation of—and hence not extreneus to—the axiomatic 

framework. In this regard it is not expected from Hilbert-style axiomatization to serve 

only a deductive (mechanical) purpose. However, this does not mean that it is expected 

from Hilbert-style axiomatizations to serve an epistemological purpose. Epistemological 

purposes, especially in the sense of leading to new truths or to new evidence for old 

ones—as well as other external purposes for justification of the choice of the axioms—

must be sharply separated from the inherent working of the axiomatic method. Likewise, 

                                                 
60 Cf. Hilbert and Bernays 1934, pp. 2-3. (Translation by Kleene 1952) 
61 Hilbert 1928, p. 475. 
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epistemological purposes in the sense of describing or explaining the nature of any 

relation between (axiomatic) thought and reality must be sharply separated from Hilbert’s 

foundational line of thought. As he points out in his 1922-23 lectures, the service of the 

axiomatic foundations is  

 
[to] have stressed a separation into the things of thought of the [axiomatic] framework 
and the real things of the actual world, and then to have carried this through.62 
 

In addition, that Hilbert’s aim is not to seek new truths by way of axiomatic method is 

obvious from the following:  

 
I [Hilbert] understand from the axiomatical exploration of a mathematical truth [or 
theorem] an investigation which does not aim at finding new or more general theorems 
being connected with this truth, but to determine the position of this theorem within the 
system of known truths in such a way that it can be clearly said which conditions are 
necessary and sufficient for giving a foundation of this truth.63  
 
 
One might be tempted here to seek the epistemological ground of the necessary and 

sufficient conditions in question. However, that is exactly what Hilbert seems to have cut 

off, by not aiming at a search for new truths by means of axiomatization. In that sense 

Hilbert’s method might be taken as epistemological perhaps only from a wider 

perspective in which it serves the purpose of exploring a class of models, and as such it 

prepares maps for an overview of those models. 

                                                 
62 Quoted in Hallett 1994, p. 167. 
63 Quoted in Peckhaus 2003, from Hilbert’s 1902/03 lectures. 
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6. NO EPISTEMOLOGY 

Partly because Hilbert had to take a stand against Brouwer's intuitionism in the nineteen-

twenties, the whole issue of Hilbert’s foundational views is often taken to have been a 

response on epistemological grounds. Brouwer’s foundational worries were 

epistemological. Mathematics proper, for him, presupposed an indispensable epistemic 

element.64 It was taken as to rest on and generated from a fundamental mathematical act 

of the mind. According to Brouwer, the derivation of mathematical truths by repeated 

mental acts take place as a generation of new knowledge from a previous source. The true 

foundation of mathematics we should seek, therefore, where the original source of the 

generation of repeated mental acts was activated. In that sense the true intuitionistic 

foundation is what Brouwer calls the first act of the mind towards mathematical 

knowledge. In Brouwer 1948 we read: “consciousness in its deepest home seems to 

oscillate slowly, will-lessly, and reversibly between stillness and sensation”.65 The 

creative subject departs from this will-less stage by a move of time. From that stage it 

passes to the combination of past and present moments of the ur-intuition of two-ity.66 

Iteration of this ur-intuition gives the creative subject, according to Brouwer, sequences. 

Brouwer calls them causal sequences. Mathematical activity with such sequences is 

called mathematical attention.  

As if Hilbert’s foundational terminology had to have conceptual commitment to 

Brouwer-like epistemological worries, many works in the philosophy of mathematics 

                                                 
64 Cf. Hintikka 2001a. 
65 Cf. van Dalen 2000, p. 120 
66 Cf. Brouwer 1948, p. 1235 
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literature focus on the epistemological force of Hilbert’s foundational views67. It is 

nevertheless misleading to do so in that Hilbert’s model-theoretical concerns were prior 

to any search for an epistemological foundation. What is commonly misleading in the 

epistemological interpretations is the meaning assigned to questions like “What are 

signs?”, “What is the epistemological status of finitary objects?”, “What kind of intuition 

is the finitary intuition?” These questions, when they are asked as questions of 

epistemology, have no significant value for a better understanding of Hilbert’s 

philosophy of mathematics; even though it is true that Hilbert himself sometimes speaks 

of the a priori intuition, and characterizes it as the “frame of the finitary mode of 

thought”.68 When Hilbert discusses the a priori, he does not do it for the sake of 

explaining his epistemological standpoint.  Rather, he wants to emphasize the 

foundational import of certain mathematical or logical propositions. For example, when 

he says, in his 1931 paper: 

 
…there are…those propositions that are generally held to be a priori, but which cannot 
be achieved within the frame of the finite mode of thought—for example, the principle of 
tertim non datur, as well as the so-called transfinite statements generally.69 
 

Here Hilbert is not (primarily) taking his epistemological stance and indicating where it 

differs from Kant’s. Hilbert’s main point is rather that the applications of the law of 

excluded middle, for instance, are in some cases not elementary (i.e. metamathematically 

problematic) applications. Such point concerns only the foundational (and metalogical) 

                                                 
67 Kitcher 1976, Giaquinto 1983, Detlefsen 1986, Parsons 1998, Tait 1981, and Zach 2001 are some 
examples. 
68 Cf. Hilbert 1931 
69 Hilbert 1931, p. 1150. 
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import of a certain logical principle.  

Hilbert tried to clear his way from epistemological and metaphysical assumptions 

about the nature of mathematics. A sharp statement of Hilbert’s nonepistemological view 

can be found, for example, in his 1917 lectures on the principles of mathematics. He says 

there that his axiomatic approach is not to overcome philosophical difficulties, but to “cut 

them off”70 Therefore, the questions mentioned (in the beginning of the chapter) above 

should not be asked as epistemological questions, but rather be asked in association with 

a metalogical sense of the terms occurring in them. They must be treated like questions of 

metalogic and metamathematics, i.e. as a part of what Hilbert calls the simultaneous 

development of logical and mathematical methods.71 Most importantly perhaps, Hilbert’s 

so-called finitism (and hence his view of the a priori) should be taken as an object of 

metalogical investigation, i.e. by seeking an elementary account of the theory of logic. 

Hilbert was interested in what was there in axiomatic mathematics as 

determination of models for the theories (as much as in their proof-theoretical structure). 

This is an immediate consequence of his conception of an axiomatic foundation for 

mathematics. Epistemological problems concerning the cognitive content of symbol 

structures are a completely different issue. This is not to say that there are no 

philosophical problems (epistemological or otherwise) concerning the existence and 

knowledge of the models. Nor it is to say that Hilbert ignores such problems. The point is 

that epistemological problems are of a different sort. They are of secondary importance 

for Hilbert’s metatheoretical purposes. It was Brouwer, not Hilbert, who injected 

                                                 
70 Cf. Sieg 1999, p. 11 
71 Cf. Hilbert 1905. 
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epistemology into the discussion of the foundations of mathematics. 

The following statement of Hilbert sharply distinguishes his own approach from 

others’ who favored epistemological (or metaphysical) primitives in their foundational 

views: 

 
…I should like to assert what the final outcome will be: mathematics is a 
presuppositionless science. To found it I do not need God, as does Kronecker, or the 
assumption of a special faculty of our understanding attuned to the principle of 
mathematical induction, as does Poincaré, or the primal intuition of Brouwer, or finally, 
as do Russell and Whitehead, axioms of infinity, reducibility, or completeness, which in 
fact are actual, contentual assumptions that cannot be compensated for by consistency 
proofs.72 

 

Here the passage implies that Hilbert considered certain restricted forms of mathematical 

induction as non-informative. The roots of Hilbert’s view of the problems concerning 

mathematical induction go back to Hilbert 1905. In his 1905 paper Hilbert considers 

object combinations (or, as he calls them, combinations of thought-objects) on the 

concrete level as a basis for showing how to set up an axiom system for number theory. 

He takes the objects of his system to be denoted by signs (1’s) and their combinations. 

An inference in the system is of the form A1 & A2 … & An | B1 ∨ B2 … ∨ Bn. 

Existentially and universally quantified sentences are of the form A(x(∨)) and A(x(&)) 

respectively. The axioms73 are: 

 

1. x = x 

2. x = y & A(x) | A(y) 

                                                 
72 Hilbert 1928, p. 479. 
73 Cf. Hilbert 1905, p. 133. 
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3. f(ux) = u(f′x) 

4. f(ux) = f(uy) | ux = uy 

5. f(ux) ≠ u1 

 

Here the intended meaning of Axiom 3 is that each element ux is followed by a definite 

object f(ux) which is equal to an element of the set u, namely the element u(f′x). Axiom 4 

means, if the same element follows two elements of the set u, these two elements 

themselves are equal. Axiom 5 means, there is no element in u that is followed by the 

element u1. Hilbert gives these axioms in order to point out that the formula f(x(∨)) = u1, 

which contradicts Axiom 5, cannot follow from Axioms 1-4. For that purpose Hilbert 

defines homogeneous equations of the form α = α. He indicates that from the Axioms 1-4 

only homogeneous equations can follow as consequences, whereas the equation f(x(∨)) = 

u1 is not a homogeneous equation. On the basis of this observation Hilbert argues that 

there is no way that the given axioms can lead to contradictions, i.e. equations which are 

not homogeneous. That is, no counter-model construction for the logical inferences from 

the axioms can succeed.  

 In order to prove such consistency for the general case Hilbert needed to use the 

principle of mathematical induction, which had to be considered also as one of the 

axioms of number theory of which consistency was in question. Poincaré in his 1906 

paper criticized Hilbert’s argument on this point. He pointed out that Hilbert’s appeal to 

mathematical induction in his proof was circular reasoning: 
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…the point at issue is reasoning by recurrence and the question of knowing whether a 
system of postulates is not contradictory 

… 
A demonstration is necessary. 
The only demonstration possible is the proof by recurrence. 
This is legitimate only if we regard it not as a definition but as a synthetic 

judgment.74 
  
 
Poincaré also took Hilbert’s line of thought to have assumed the principle of 

mathematical induction as a synthetic a priori principle: 

 
…Hilbert’s reasoning not only assumes the principle of induction, but it supposes that 
this principle is given us not as a simple definition, but as a synthetic judgment a priori.75 
 
 
However, Hilbert’s argument did not involve any epistemological concerns. In fact it was 

Hilbert’s aim to eliminate epistemological presuppositions from the foundations of 

mathematics. Hilbert’s later response to Poincaré makes this point sufficiently clear. The 

reason why Hilbert’s argument appeared to have involved epistemic elements is 

presumably the then missing (then forthcoming) developments in logical theory. Hilbert’s 

own later remark on Poincaré’s challenge is that it was a mistake on Poincaré’s part that 

he rejected Hilbert’s theory in its “inadequate early stages”.76 The source of Poincaré’s 

mistaken view, according to Hilbert, was that Poincaré did not distinguish between two 

different methods of induction: 

 
Poincaré…denied from the outset the possibility of a consistency proof for the arithmetic 
axioms, maintaining that the consistency of the method of mathematical induction could 
never be proved except through the inductive method itself. But as my proof theory 

                                                 
74 Poincaré 1906, p. 1058-1059. 
75 Ibid. p. 1059. 
76 Hilbert 1928, p. 473. 
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shows, two distinct methods that proceed recursively come into play when the 
foundations of arithmetic are established, namely, on the one hand, the intuitive 
construction of the integers as numeral (to which there also corresponds, in reverse the 
decomposition of any numeral, or the decomposition of any concretely given array 
constructed just as an array is), that is, contentual induction, and on the other hand, 
formal induction proper, which is based on the induction axiom and through which alone 
the mathematical variable can begin to play its role in the formal system.77 
 

It can still be questioned whether or to what extent Poincaré was right in his general 

criticism based on the synthetic a priori character of mathematical induction. However, 

the epistemological force of Poincaré’s criticism makes it uninteresting to run the 

discussion for Hilbertian purposes as they have been presented here.  

 On similar lines there is no need for an appeal to any basic intuition in our 

foundational theorizing, according to Hilbert. Foundations can be studied mathematically 

by improving the logical methods. What this means is that the exclusion of certain 

principles like the axiom of infinity, the axiom of reducibility78 and the axiom of 

completeness is for the sake of showing that a logical axiomatic foundation without 

making contentual (existential) assumptions about mathematical infinity is possible. This 

immediately implies that Hilbert's preference is first-order level theorizing in logical 

theory, which can be applied to different mathematical domains without making actual 

assumptions about infinite totalities etc. On this point, epistemological interpretations of 

                                                 
77 Hilbert 1928, pp. 472-473. 
78 Hilbert and Ackermann 1928 used (following Hilbert’s lectures) Russell’s ramified theory of types as 
what they considered to be the extended predicate calculus. This treatment included the definition of real 
numbers and an upper bound as a class of real numbers, which in turn required infinitely many types, since 
the upper bound (as a class of real numbers) of a set of real numbers has to be a real number of a higher 
type. Russell’s solution for this problem was to introduce an axiom (viz. axiom of reducibility) which 
reduces the higher types to the lowest compatible type. Hilbert followed Russell’s solution in his lectures 
and also in the Hilbert and Ackermann 1928 (first edition). Nevertheless, his ultimate aim was to eliminate 
the axiom of reducibility as a presupposition, which he considered to be an infinitistic assumption. In that 
sense, Hilbert’s aim was still in line with his earlier claims and criticisms against Dedekind and Frege’s 
presuppositions about the application of the universal quantifier (for these criticisms see chapters 13 and 14. 
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Hilbert’s views are based on patent misconceptions about Hilbert’s philosophy of 

mathematics. All that is needed for Hilbert’s foundational purposes is first the 

determination of models by axiomatic analysis and then second model-theoretical 

consistency proofs for the axiomatizations.  
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7. APPLICATIONS OF THE AXIOMATIC METHOD 

Hilbert’s own mathematical practice is enough to show the importance of the different 

applications of the axiomatic method for him. In addition to his axiomatization of 

geometry, he worked on the axiomatization of different mathematical and physical 

theories.79 Hilbert’s sixth Paris problem was about axiomatization of physical theories.80 

He claims there that the investigations on the foundations of geometry suggest that 

physical sciences must be axiomatized. Especially those in which mathematics has a 

crucial role (probability and mechanics in the first place) were to be axiomatized.81 As a 

later continuation of these programmatic aims, Hilbert’s 1917 address “Axiomatic 

Thought” (Hilbert’s 1918) is devoted to emphasizing the importance of different 

examples of the application of the axiomatic method to different mathematical and 

physical theories.82  

 Why was axiomatization so important for Hilbert? The main part of the answer 

has already been given in the previous chapters: As soon as an axiom system is set up, 

assuming that it has models, it offers the mathematician an overview on the class of its 

models. Thereby it is an overview on the information codified by the axiom system. By 

solving problems, the mathematician puts the information to use by exploring what there 

is to be found out about those models. Surely a mathematician can study the different 

particular aspects of a mathematical theory without the axiomatic method as well. There 

                                                 
79 Main examples include mechanics, thermodynamics, probability calculus, kinetic theory of gases and 
electromagnetics. Cf. Corry 1997, pp. 131-178. 
80 See Hilbert 1900. 
81 Notice here that Hilbert considered probability as a part of mathematical physics. This is interesting. It 
can be taken as a clear evidence for that the attribution of formalism to Hilbert would be seriously 
misleading. See further chapter 8 below. 
82 See Hilbert 1918. 
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is no unbreakable law that no mathematician can obtain a systematic overview of a 

mathematical theory without using the axiomatic method. Yet it must have seemed to 

Hilbert that axiomatic method prepares the best conditions for both the actual 

(foundational) mathematical work and its presentation for communicative purposes.  

It would be an oversimplification to say that the axiomatic research was for 

Hilbert an end in itself without external philosophical justification. Yet one has to 

separate external justifications from the internal working of the axiomatic method.83 

Axiomatic method was a means to achieve a clearer understanding of mathematical 

theories. In fact, we see that Hilbert emphasizes that the method forced itself upon his 

research, rather than it flourished as a branch of Hilbert’s personal foundational 

preferences.84 

 In the historical development of Hilbert’s work as an axiomatist, it is plain to the 

eye that his different applications (as well as his approvals of others’ axiomatizations) 

match with different periods of heated dispute on the foundations of different fields. 

Hilbert’s axiomatization of geometry corresponds to that period of epistemological 

disputes on Euclidean and non-Euclidean geometries. His encouragement and approval of 

the axiomatization of set theory corresponds to the period of ontological disputes as a 

result of the set theoretical paradoxes. His call for the axiomatization of physical theories 

corresponds to those dates when theories of special and general relativity were about to 

shake the grounds. These examples are enough to show Hilbert’s quickness to respond 

                                                 
83 Cf. Gauthier 2002. 
84 This is plainly stated in Hilbert’s Dec 29 1899 letter to Frege. See Frege 1980; also see Corry 1997, pp. 
116-117. 
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different crisis periods. 

 What was common to different crisis periods in geometry, set theory and physics 

is  that in each case there appeared epistemological and ontological issues which were 

taken to be reasons as to admit some of the theories as correct (true) and some of them 

incorrect (not true). This whole issue, it seems, according to Hilbert’s viewpoint, was ill-

formed. The main source of the ill-conceived issues (especially in mathematics, but also 

in physics) is due to the lack of appreciation of the model-theoretical viewpoint and of 

the absence of epistemological and ontological concerns in such a viewpoint.85 Expanded 

briefly, the absence of epistemological and ontological (or otherwise empirical) concerns 

is due to a distinction we have to make—and Hilbert assumed implicitly—between 

uninterpreted axiom systems and interpreted axiom systems. The distinction can best be 

explained by means of Einstein’s observation in his 1921 paper: “As far as the laws of 

mathematics refer to reality, they are not certain, and as far as they are certain, they do 

not refer to reality.”86 What Einstein means is simply that we separate “the logical-

formal” from its “objective or intuitive content”. Thereby we separate the uninterpreted 

axiomatizations from interpreted axiomatizations. Hence, by doing so, the applications of 

the axiomatic method (in its uninterpreted sense) provides the possibility of various 

foundational investigations which are freed from epistemological or ontological 

concerns; and hence from crises in the sciences. 

                                                 
85 The remarks here about Hilbert’s model-theoretical viewpoint concern pure (uninterpreted) axiom 
systems for foundational purposes. Hilbert’s views on experience and its relation to scientific theories must 
be excluded from these purposes. 
86 Einstein 1921, p. 147. 
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9. TRUTH, EXISTENCE AND CONSISTENCY 

Hilbert’s conception of truth and existence in mathematics indicates where the model-

theoretical viewpoint cuts off the epistemological and ontological concerns. The 

information codified by an axiom system specifies the class of its models. So that it 

becomes a meaningful task to try to understand the contents of mathematical theories by 

means of axiomatic analysis. Hilbert’s conception of truth and existence in mathematics 

are also along this line. They are envisioned from a model-theoretical viewpoint. In 

Hilbert 1900a we find a strong statement of this viewpoint: 

 
…the demonstration of the consistency of the axioms [of the real number system] is at 
the same time the proof of the mathematical existence of the totality of all real numbers 
or of the continuum. In fact, when the demonstration has been fully achieved, then all 
objections which hitherto have been raised against the existence of this totality will lose 
all justification.87 
 

Also in Hilbert’s 1899 letter to Frege we read: 

 
If the arbitrary chosen axioms do not contradict each other with all their consequences, 
then they are true and the things defined by the axioms exist. That for me is the criterion 
of truth and existence.88 

 

Such point of view is almost a refutation of the formalist philosophy of mathematics, 

which is sometimes misleadingly attributed to Hilbert. To avoid misunderstandings on 

this point, Hilbert’s approach must be put into a proper context. It has to be taken into 

consideration against the tacit assumption Hilbert seems to have made when he says that 

consistency implies existence. The consistency in question is model-theoretical 

                                                 
87 Hilbert 1900a, p. 1105. 
88 Kluge 1971, p.12. 



 

 

45

 

consistency. In line with his general model-theoretical outlook the tacit assumption that 

comes with Hilbert’s criterion of truth (i.e. as the consistency of the axioms) seems to 

admit the determination of models of potential models for theories, viz. ultimately a 

model of all models. Indeed Hilbert’s paradoxical sounding claim about truth and 

existence as implied by consistency is true in the model of all models. The (model-

theoretical) consistency of a theory implies the existence of models for it in this model of 

models.89  

It would be an oversimplification to assume that axiom systems are generated 

arbitrarily out of nowhere. New systems are in some way built up on and connected to the 

previous theories. For such building and connectedness the notion of a model of all 

potential models is very useful. In it quantification provides the same conception of 

mathematical existence (as well as truth) on the pre-theoretic level for different axiom 

systems. This kind of view is, for instance, implicit in Hilbert’s following statement:  

 
The conception of the continuum, or equally the concept of the system of all functions, 
exists then in precisely the same sense as does the system of rational numbers or that of 
the higher Cantorian number-classes and powers.90 
 

Purportedly the same sense of mathematical existence is obtained if the model-theoretical 

consistency of each axiom system is proved. In that sense what Hilbert envisions and 

hints at in the quoted passage is a uniting model of all models for different axiom 

systems.  

                                                 
89 The importance of the idea of  “model of all models” in the foundations of set theory was emphasized by 
Hintikka 2004. 
90 Hilbert 1900a. p. 1105. 
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The tacit assumption Hilbert seems to have made here shares the same 

presuppositions as Husserl’s notion of definite (complete) manifolds in which “the 

concepts of true and formal implication of the axioms are [considered to be] 

equivalent.”91 The ontology (of manifolds) in question involves a super-universe of 

potential models for the theory, a “model of all models”. A similar ontology can be 

imagined in connection with Riemann’s work on manifolds, for instance, as a chapter in 

what might be called a general study of forms of space; since a manifold by definition is 

a geometrical entity which is a structured totality of all possible solutions of a given 

(polynomial) equation.92 Even though this sense of manifold is not necessarily the same 

as Husserl’s, they are obviously familiar. Likewise, Cantorian universe of sets can be 

seen as an abstraction from Riemann’s geometric notion of manifold.93 

  The so-called model of all models can be considered a natural presupposition of 

mathematical activity. After all what the mathematician does is to build (and connect to 

each other) different structures. The beginning stage of such activity requires the grasp of 

what might be called a particular relational structure. When the net of relations of such a 

structure is considered as basis, the task of understanding its models (as well as the task 

of extending its models) is a matter of application of structure-preserving rules. Such 

application presupposes consistency as a ground for its own justification. At that point the 

model-theoretical consistency of a particular axiom system suffices to justify 

mathematician’s actual intentions to study what there is to be known in the models of the 

                                                 
91 Husserl 1913, section 72 
92 Cf. Mac Lane 1986, chapter VIII. 
93 Cf. Hintikka 2004. 
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system.  

Husserl presented a similar argument (to the one just has been sketched) in his 

Göttingen lecture at Hilbert's seminar in 1901.94 Roughly, Husserl's argument goes as 

follows: Take two axiomatic systems AX1 and AX2. Let AX1 be a subsystem of AX2, in 

the sense that AX2 is the extended system by additional axioms when AX1 is considered 

as the original system.  Two conditions must hold then, according to Husserl. One is that 

AX1 must be a definite manifold. Two is that AX2 must be consistent. Definite manifold 

means the intended model of the theory is determined completely. This is suggestive of 

descriptive completeness. If these two conditions are satisfied then we say AX2 is a 

conservative extension of AX1, in the sense that its models can as well be determined on 

the basis of the models of AX1. Here, Husserl's major aim seems to have been to show 

how an axiom system determines its intended models in a definite way and to justify (if 

possible) different extensions of the theories by proving their consistency and 

completeness.95 

Assuming that the (conservative) domain extension of the models of systems (say, 

from AX1 to AXn) reaches up to a uniquely determined universe of definite manifolds, 

the maximal extension that is obtained in the end of such domain-extension procedure 

can be considered as an analogue to what has been called above “the model of all 

models”. That maximal model is what Husserl and Hilbert seems to have presupposed as 

a ground for their pretheoretical conception of mathematical truth, existence and 

                                                 
94 See Husserl 1970, supplementary texts B, essay III. 
95 Husserl explicitly says that his aims are in line with Hilbert's foundational views. See Appendix III of 
supplementary texts B, essay III. 
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consistency. For sure, such conception has to be backed up by a proof of the (model-

theoretical) consistency of the systems involved, most notably the continuum (or 

equivalently the system of all functions).               
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9. CONTINUITY AND COMPLETENESS 

The mathematical investigation of the structure of real numbers falls under a major aspect 

of the idea of “all models”. It requires an explication of the continuity (and completeness) 

assumptions for its logical axiomatic characterization. Historically, the continuity and 

completeness assumptions in defining the structure of real numbers find their proper 

treatment in the works of Cantor and Dedekind. Dedekind’s characterization of the real 

line as a densely ordered system which is closed under algebraic operations (as well as 

under limit operations) is sometimes called complete in the sense that it determines a 

model (in a definite way) for the continuous number line.96 The considered completeness 

of the real line is obtained by using what are known as Dedekind cuts. The intuitive idea 

behind Dedekind’s cut-procedure is that the so-called cuts fill in all the gaps in the 

system of rational numbers. So that each bounded set of reals enjoys having a least upper 

bound. What is remarkable about completeness in the sense just mentioned is that it 

entails that the structure of real numbers (as imagined) is uncountable. This is what 

Cantor’s diagonal argument showed. 

 The results that were reached by Cantor and Dedekind’s works were very 

important discoveries of the nineteenth-century mathematics, according to Hilbert. 

Nevertheless, one of the main purposes of Hilbert’s axiomatic foundations was still to 

explain how the so-called uncountable infinity can come about without making any 

assumptions concerning the actual existence of infinite totalities. For that purpose, the 

completeness and continuity assumptions that are intuitively appealed to in Dedekind’s 

                                                 
96 Cf. Mac Lane 1986, p. 15. This kind of completeness is in a different sense from the completeness of 
axiom systems. It is rather a metatheoretical property of the models.  
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characterization of the real line have to be made explicit with their logical dependence on 

the axiomatic system. The same task is needed to be accomplished also for understanding 

mathematical interconnections between different axiom systems and the structures they 

characterize. Most notably, between algebraic and geometrical structures, 

interconnections must be studied in the light of the continuity properties. This arises from 

the geometrical sense of the models in characterizing the real line either as an infinite set 

of points or as of line segments. On similar lines, to find out metatheoretical 

interconnections between the system of real numbers and the Euclidean space, and hence 

to establish the possibility of the determination of models of geometry, an investigation 

of their continuity properties is inescapable. By way of disclosing the continuity 

assumptions of an axiom system one can characterize the space and hence the same sense 

of existence and truth is obtained in all its models. 

Partly to point out the role of continuity assumptions (in the above sense) in 

axiomatized geometry, in addition to the original treatment of the axiomatic foundations 

of geometry in his 1899 book, Hilbert (in Appendix IV) gives a different determination of 

the plane geometry. (It can also be generalized to the case of space.) Hilbert’s 

determination of the plane is by way of analyzing (in an axiomatic way) the properties of 

manifold congruent motions based on the notion of transformation group.97 Mainly by 

appealing to the notion of continuous transformation and some axioms of motion (e.g. 

axiom of the composition of two motions as to form a group) Hilbert presents a 

determination of a model for the plane.  

                                                 
97 Cf. Appendix IV of Hilbert 1899 (Second and later editions) A brief survey of Hilbert’s work on 
geometry can be found in Bernays 1967 and Toretti 1978.  
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The continuity assumptions for the characterization (in the general case) of the 

space are made at the very beginning. The aim in such analysis is, as Hilbert points out: 

 
…to determine the least number of conditions from which to obtain by the most extensive 
use of continuity the elementary figures of geometry (circle and line) and their properties 
necessary for the construction of geometry.98 
 

The difference between the main approach in Hilbert 1899 and the group-theoretical 

approach in the appendix has to do mainly with the role of axioms of continuity in the 

complete determination of models. In the main axiomatization Hilbert’s first four groups 

of axioms are arranged in such a way that “continuity is required last”. This provides a 

way to clarify which logical consequences of the axioms are independent of the 

continuity assumptions.99 

 First one of Hilbert’s continuity axioms is what is called the Archimedean axiom. 

This axiom says that given two line segments AB and CD, either one of them, let us say, 

AB can be extended by multiplied measure of the other segment CD such that it exceeds 

the length of CD. The algebraic structure that might be superimposed on space with the 

help of the Archimedean axiom here is obtained by reference to the system of coordinates 

that satisfies Hilbert’s axioms of incidence, order and congruence, and the axiom of 

parallels. An instance of this algebraic structure is the system of algebraic numbers and 

rational operations on them with the exclusion of square roots.100 Hence with the help of 

the Archimedean axiom, continuity is obtained only up to a point. An additional second 

                                                 
98 Hilbert 1899, p. 189 (second English edition) 
99 Cf. Hilbert 1899, p. 189 (second English edition) 
100 See Hilbert’s Theorem 65 in Hilbert 1899 (second English edition). 
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axiom, which connects the geometric continuity to the real continuum, is necessary. That 

second continuity axiom is Hilbert’s axiom of (line) completeness, which says: 

 
An extension of a set of points on a line with its order and congruence relations that 
would preserve the relations existing among the original elements as well as the 
fundamental properties of line order and congruence that follows from [the axioms of 
incidence, order and congruence] and from [the Archimedean axiom] is impossible.101 
 
 
From this axiom Hilbert derives the theorem of completeness which states that the 

extension of the elements (points, lines, planes) of geometry is not possible without 

violating the axioms of incidence, order, congruence and Archimedes.102 

 The theorem of completeness provides the appropriate perspective to consider the 

foundations of analysis in relation to the foundations of geometry. In particular, Hilbert’s 

consistency proof for the axioms of geometry, which is relative to the consistency of 

analysis, can be positioned in the proper foundational basis. Most notably, as Hilbert also 

points out, the existence of infinitely many geometries which satisfy the first four groups 

of Hilbert’s axioms plus the Archimedean axiom is shown. And when the axiom of line 

completeness is added to the axioms, a uniquely determination of the Cartesian geometry 

is obtained.103 This signifies almost a simultaneous development in the foundations of 

geometry and of analysis, which is due to the additional of the continuity axioms. They 

are added to the axioms of number theory in Hilbert 1900, as follows: 

 

                                                 
101 Hilbert 1899, p. 26. 
102 Ibid. p. 27; the axiom of line completeness is added to Hilbert’s book in the later editions. In the first 
edition there is no axiom of completeness. In the second edition there is the axiom of completeness for the 
general case. Later the axiom of line completeness is added so as to suffice to prove what is referred above 
as the theorem of completeness. For different completeness axioms see Peckhaus 1990, pp. 29-35. 
103 Cf. Hilbert 1899, p. 32. 
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(Archimedean axiom) If a > 0 and b > 0 are two arbitrary numbers, then it is always 
possible to add a to itself so often that the resulting sum has the property that  
 

a + a + … + a > b 

 
(Axiom of completeness) It is not possible to add to the system of numbers another system 
of things so that the axioms [of linking, calculation and ordering with the Archimedean 
axiom] are all satisfied in the combined system; in short, the numbers form a system of 
things which is incapable of being extended while continuing to satisfy all the axioms.104  
 
 
Hilbert in his 1900 paper defines the system of real numbers as a complete ordered 

Archimedean field. And the models that he constructed in Hilbert 1899 to prove the 

consistency of geometry can be considered as the relevant subfields of the system of real 

numbers for different sets of geometry axioms.105 In general terms, it seems fair to say 

that Hilbert’s completeness axiom (or theorem) provides a way of translating Euclidean 

geometry to the Cartesian geometry.106 By doing that it specifies an ordered Archimedean 

field, for which if there were a combinatorial way to show its consistency that would also 

lay the foundations of analysis. What is further needed for the consistency proof is to 

eliminate the appeal to arbitrary sets, for instance in the application of Dedekind cuts and 

correspondingly in making a combinatorial sense of arbitrary sets of points in the 

continuity axioms.107    

For the same reasons as in geometry, continuity assumptions (and hence 

completeness) play a crucial role also in physics. To give an example, in his mechanics 

lectures Hilbert considers the addition of vectors as a continuous operation, in the sense 

                                                 
104 Hilbert 1900a, par. 6 (p. 1094) 
105 Hilbert 1899, Chapter II. 
106 Cf. Bernays 1967. 
107 Cf. Kreisel 1976, p. 101. 
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of the Archimedean axiom.108 For example, given a domain D around the vector sum A + 

B, one can always find other domains D1, D2… around the endpoints of A and B such 

that any considered sum of two vectors in these domains has endpoints falling inside the 

domain D. The intuitive idea here seems to be closer to the notion of connectedness. 

What Hilbert had in mind though about continuity is fairly easy to understand. The 

punchline of the assumed principle is that we can move from any point of the domain to 

any other point of it through a continuous line, which remains in the same domain. It is 

plain to the eye here that Hilbert’s major aim is to specify a particular class of models for 

physical forces, i.e. which obeys the continuity axiom.  

This does not mean that Hilbert’s view excludes systems with certain 

discontinuities or systems without the Archimedean property; since an axiom system in 

Hilbert’s sense does not express a fixed set of states of affairs. It only defines a “possible 

form of a system of connections, a system which is to be investigated according to its 

internal properties.”109 Hilbert’s view simply suggests the study of different physical 

systems. In his 1900 Paris address, he states it straightforwardly:  

 
As he has in geometry, the mathematician will not merely have to take account of those 
theories coming near to reality, but also of all logically possible theories.110 
 

All that matters here is the determination of models up to isomorphism. And hence what 

matters in a logical axiomatization is the model-theoretical consistency of the axiom 

system. And for that purpose as was indicated above the underlying logic must be 

                                                 
108 In the 1905/06 lectures; see Corry 1997 
109 Cf. Hallett 1995, p. 137 
110 Gray 2000, p. 258 
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capable of allowing the intended models in question to be captured completely. This is 

suggestive, in the first place, of a descriptive completeness. Nevertheless, if a deductive 

consistency proof could be achieved, that also could serve as a way to capture the 

intended models of the theory. Of course, provided that the underlying logical theory is 

semantically complete. Otherwise the deductive consistency of the theory does not imply 

its model-theoretical consistency. 

As can be seen from the considerations up to this point, the interconnections 

between completeness, continuity and consistency properties of mathematical systems are 

closely related with their model-theoretical characterizations. If one uses a logical 

axiomatization these characterizations can be handled by means of the two requirements 

of the axiomatic method that were mentioned before: First, the purely logical character of 

inferences from axioms to the truths of the theories is needed. Second, a complete logic 

which provides means to obtain deductively or descriptively complete representations of 

the theories must be formulated.   

 At some point Hilbert might have assumed the semantic completeness of the 

underlying logic of axiomatization. Nevertheless, even if this is true, it does not mean 

that he was arguing for a mechanical procedure to prove the consistency of mathematical 

theories. The model-theoretical character of his viewpoint excludes such an approach as 

an ultimate foundational aim for Hilbert. Whatever “comes near to reality”, whatever is 

logically possible are at bottom all depending on their determination up to isomorphism 

and hence on the meta-theoretical level, on the model-theoretical consistency of the 

axiom systems.  
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As is presented in his sixth Paris problem, probability as part of physics provides 

a strong case for Hilbert’s views. Hilbert considered probability as a part of the physical 

sciences and his main interest in the probability was the problem of how to avoid and 

eliminate observational errors in measuring physical magnitudes.111 Hilbert’s application 

of probabilistic reasoning to the physical measurement proves that the continuity 

assumptions for Hilbert—however appears to involve infinitistic operations—always had 

a combinatorial and model-theoretical basis: 

 
The validity of the Archimedean axiom in nature stands in just as much need of 
confirmation by experiment as does the familiar proposition about the sum of angles of a 
triangle.112 
 

In this regard any view stating that the infinite (as well as the continuity assumptions 

about infinite systems) in mathematics is part of mere formal manipulations for Hilbert, 

misses the essential connection of Hilbert’s mathematical ideas with his general model-

theoretical view of physics and physical continuum: 

 
In general, I [Hilbert] shall like to formulate the axiom of continuity in physics as 
follows: ‘If for the validity of a proposition of physics we prescribe any degree of 
accuracy whatsoever, then it is possible to indicate small regions within which the 
presuppositions that have been made for the proposition may vary freely, without the 
deviation of the proposition exceeding the prescribed degree of accuracy.’ This axiom 
basically does nothing more than express something that already lies in the essence of 
experiment; it is constantly presupposed by the physicists, although it has not previously 
been formulated.113 
   

                                                 
111 Corry 1997, p. 160-161. 
112 Hilbert 1918, p. 1110. 
113 Ibid. 
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To considerable extent Hilbert’s work on physics is devoted to the purpose of searching 

suitable ways of axiomatizing different theories. As also is seen in the statement of his 

sixth problem Hilbert’s central emphasis is on the logical axiomatization of theories. As 

has been sketched here, the determination of models by means of logical axiomatization 

is obtained by investigating the continuity properties of the systems in consideration. 

Thereby, above all, the streamline of Hilbert’s foundational investigations is to be found 

where the continuity assumptions for different mathematical and physical fields meet, 

viz. in the metatheoretical study of the system of real numbers and in its model-

theoretical consistency. For that purpose development of the metatheory for logical 

axiomatization is also required; presumably, on the basis of suitable model-theoretical 

consideration of continuity and completeness properties of algebraic and geometrical 

structures on the metatheoretical level.  
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10. LOGICAL AXIOMATIZATION 

The problem of model-theoretical consistency of analysis (and arithmetic) has to be 

approached by means of logical axiomatization. For the primary purposes of a logical 

axiomatization, it suffices that the theorems of arithmetic, for example, are all logical 

(semantic) consequences of the axioms. As has been pointed out, this does not require 

that these consequence relations can be implemented by mechanical rules of inference. 

Thus for example a second-order axiomatization can serve these primary purposes as well 

as a first-order one, even though second-order logical truths are not recursively 

enumerable. For this reason it cannot be conclusively said that Hilbert’s consistency 

program was made impossible by Gödel’s results.  

As is well known, a crucial first step to achieve Hilbert’s principal aims for the 

foundations of mathematics is to prove that the usual set of axioms of arithmetic is 

consistent. Gödel’s second incompleteness result showed that if any such set of formal 

axioms AX (that can codify elementary arithmetic) is consistent, then the consistency of 

AX cannot be proved in AX. That is to say, the sentence coded in the language of AX, 

which says that AX is consistent, cannot be derived in the formal system AX. Gödel’s 

argument implicitly assumes that ordinary first-order logic is used in the axiomatization. 

It also seems to assume that we are dealing solely with proof-theoretical consistency in 

metamathematics. This result led some logicians to immediately give up hope about 

Hilbert’s program. However, Hilbert himself never admitted that it contradicted his 

conception of the problem of foundation. Hilbert was right in not giving up his 

foundational aims. One can base AX on a richer logic than the ordinary first-order logic, 
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and then a proof of the consistency of arithmetic which is acceptable by Hilbert’s 

standards can be given. What one has to do is to find out whether there are elementary 

logical operations that can be formulated in a second-order axiomatization, to carry out a 

proof of the consistency of arithmetic. Presumably, Hilbert would not consider the 

underlying logic of an axiomatization elementary, if the logic allows quantification over 

all predicates without restriction. Yet this does not mean that parts of second-order logic 

which permit quantification over definable predicates (as well as their possible reductions 

to first-order level of reasoning) are excluded: 

 
We have to ask ourselves the question, what does it mean when we say “There is a 
predicate P”? In axiomatic set theory, the “there is” always refers to the domain B we 
take to be there at the foundation. In logic, we could think of the predicates as collected 
together in a domain. But this domain of predicates cannot be considered as something 
given from the beginning; rather it must be formed through logical operations. Only 
through the rules of logical construction is the predicate-domain subsequently 
determined. 
 And now it becomes obvious that, in the rules of the logical construction of 
predicates, reference to the domain of predicates can be permitted.114 
 

Therefore, it would be a mistake to think that Hilbert’s model-theoretical aims are not 

realizable by means of semantically incomplete logics that are strong enough to codify 

mathematical reasoning. The idea of purely logical axiomatization does not necessarily 

presuppose that the underlying logic is semantically complete. What is necessarily 

presupposed is a demarcation between the logical and extra-logical structures. That does 

not require all valid formulas to be recursively enumerated, by deriving them from a 

recursive set of axioms. An axiomatization can be purely logical even when the 

                                                 
114 Quoted from Hilbert’s 1920 lectures, in Hallett 1995, p. 165. 
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derivation of theorems from axioms is carried out by semantically valid inferences 

instead of formal derivations. It can even be called “formal” in that semantically valid 

inferences depend only on the logical form of the premises and the conclusions. 

To explicate this point further we can distinguish between the formalist view of 

mathematics, and the formal character of logical inference. Formalist view of 

mathematics is the view that mathematical reasoning consists primarily of the 

manipulation of formal symbols. It is a separate view from the doctrine of the formal 

character of logical inference.  Formal character of a logical inference means that the 

inference from a sentence to another is independent of the non-logical constants 

occurring in them. That is, an inference from S1 to S2 depends only on the logical 

structure of S1 and S2. One way of seeing the difference between these two meanings of 

the term “formalist” is to imagine a framework in which philosophical formalism fails 

but formal character of logic is retained. Second-order logic provides such a framework. 

In second-order axiomatizations mathematical inferences cannot be reduced to the 

manipulation of formulas, such as mechanical deductions. Yet the validity of second-

order inferences depends only on the logical structure of the inferences. 

It can be safely said that most of actual mathematical reasoning can be thought of 

as being carried out in second-order logic.115 And such an enterprise cannot be restricted 

to mechanical deduction. The reason is that there is no (semantically) complete 

axiomatization of second-order logic. Hence from the point of view of logical theory, 

philosophical formalism cannot yield an adequate account of mathematical reasoning. 

                                                 
115 For an account of the second-order logical foundations of mathematics, see Shapiro 1985 and Väänänen 
2001.  
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Deduction must be complemented by an additional of new principles of proof, 

presumably on the basis of suitable model-theoretical considerations, which fits into 

Hilbert’s mould. The crucial point here is that deductive incompleteness does not make 

any difference to the formal character of relations of logical consequence. A sentence S1 

logically implies another one, say S2, if and only if the same relation holds between any 

two sentences of the same logical form but with different non-logical constants. In this 

sense the formal character of logical reasoning is an obvious truth.  

What Hilbertian formalization amounts to then is a reduction of all derivation of 

theorems from axioms to purely logical inferences. Such inference is formal only in the 

sense of being independent of the interpretation of the basic concepts of the axiom 

system. In this sense, all the proofs are intended to be independent of the domain of 

objects that is being considered. Here the fact that deduction is independent of 

interpretation is compatible with Hilbert’s insistence that the choice of axioms is guided 

by the intuitive content of the concepts involved.  That is why for example Hilbert and 

Bernays 1934 discuss two kinds of axiomatization: formal and contentual.116 This point 

makes it conclusively clear that the attribution of formalism to Hilbert’s foundational 

ideas is missing an essential distinction between form and content in Hilbert’s axiomatic 

approach.  

  The distinction between form and content in mathematics, and the fact that 

inferences are independent of interpretation means that all mathematical results 

considered in an axiomatic framework are intended to have a structural meaning. This is 

                                                 
116 See Hilbert and Bernays 1934, § 1. 
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an obvious truth from the model-theoretical viewpoint. As a problem of mathematical 

logic the topic arises in Hilbert’s 1920 lectures: 

 
…we have to interpret our signs of our calculus when representing separately 
symbolically the premises from which we start and when understanding the results 
obtained by formal operations. 
 The logical signs are interpreted as before according to the prescribed linguistic 
reading; and the occurrence of indeterminate statement-signs and function-signs in a 
formula is to be understood as follows: for arbitrary replacements by determinate 
statements and functions…the claim that results from the formula is correct.117 
 

Here the leading idea is that a correct symbolism constitutes an isomorphic replication of 

what it represents. This is seen from the fact that Hilbert intends to obtain (in the quoted 

passage) arbitrary instantiations of the structures that are described by the logical 

axiomatization (with the prescribed linguistic reading of the logical signs) give (model-

theoretically) correct results. In that sense the proof-theoretical analysis of mathematical 

inference is not enough for Hilbert’s model-theoretical purposes. Correct interpretation of 

symbolic framework is essential: 

 
We have analyzed the language (of the logical calculus proper) in its function as a 
universal instrument of human reasoning and revealed the mechanism of argumentation. 
However the kind of viewpoint we have taken is incomplete in so far as the application of 
the logical calculus to a particular domain of knowledge requires an axiom system as its 
basis. I.e. a system (or several systems) of objects must be given and between them 
certain relations with particular assumed basic properties are considered.118  
 

When Hilbert’s starting point, i.e. that number symbols themselves as objects of number 

theory, is combined with the idea that correct symbolism is an isomorphic replication of 

                                                 
117 Cf. Sieg 1999, p. 18. 
118 Quoted from Hilbert’s 1920 lectures, in Sieg 1999, p. 24 



 

 

63

 

what it represents, models in Hilbert-style axiomatization can safely consist of any 

objects, including number symbols. What it brings about, as was indicated earlier, is that 

mathematical symbols themselves (for example number-theoretical symbols) can be used 

as the contentual (extra-logical) elements of the mathematical proofs. In that sense 

Hilbert’s signs (or symbols), as in the case of algebraic manipulations and symmetries in 

abstract algebra, can share the same common models (up to isomorphism) with their 

objects, whatever those objects might be. Metamathematics in that sense can be seen as 

the combinatorial study of certain symbol structures. The so-called nineteenth century 

arithmetization of analysis can be included in that. Of course, this combinatorial study 

presupposes its own determination of models, and its own model-theoretical consistency.  

 Such a determination of models up to isomorphism requires that the underlying 

logic of axiomatization is semantically complete. As was shown by Gödel 1931—since it 

shows the impossibility of a categorical characterization of arithmetic by using first-order 

axiomatization—there is no hope for determining a unique model, and also no hope for 

proving the consistency of arithmetic, by using the ordinary-first-order logic as the 

underlying logic. That is the case, although the proof-theoretical consistency of an axiom 

system implies its model-theoretical consistency in virtue of the completeness of first-

order logic. Hilbert’s aim to prove the proof-theoretical consistency of arithmetic cannot 

be achieved due to the deductive incompleteness of first-order arithmetic (based on the 

ordinary first-order logic). This impossibility calls for an investigation of the possible 

continuity principles underlying Hilbert’s assumption that structures of symbol 

combinations can be used as instantiations of mathematical structures. However, without 
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a proof of model-theoretical consistency such investigation would be a petitio principii. 

Therefore, in order to carry out the desired consistency proofs, by means of suitable 

alternative logical and algebraic techniques, it is more appropriate (as much as it is 

inevitable) that alternative continuity and completeness assumptions for these techniques 

must be introduced in tandem with those techniques.       
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11. IF LOGIC 

It is a characteristic feature of some of the developments in the nineteen-twenties that 

quantifiers were considered to be closely related to choice functions.119 In Skolem’s 

work, for example, this was the case. According to Skolem quantifiers serve no better 

than choice functions.120 Like Skolem, Hilbert recognized the close interrelation between 

quantifiers and choice functions. In fact he realized that the basic idea underlying the 

axiom of choice and quantification was one and the same: 

 
We have not yet addressed the question of the applicability of these concepts [“all” and 
“there is”] to infinite totalities. …The objections…are directed against the choice 
principle. But they should likewise be directed against “all” and “there is” which are 
based on the same basic idea.121 
 

Later this basic idea is outlined in Hilbert and Bernays 1934 as that a finitistic 

interpretation of a universal statement is an assertion about any given object (from a 

domain), whereas an existential statement amounts to a series of operations that have a 

definite bound. So, for example,  

 

(0) (∀x) (A(x) ⊃ (∃y) B(x, y)) 

 

means a series of operations, which for any given x that is A makes it possible to find a y 

(on the basis of x) that is related to x by B.122 Later developments in logic makes it 

                                                 
119 Goldfarb 1979, p. 357. 
120 Goldfarb 1979, p. 357-358. 
121 Zach 2001 quotes Hilbert; Zach 2001, pp. 70-71. 
122 Hilbert and Bernays 1934, pp. 32-33. 
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sufficiently clear that the operations Hilbert and Bernays considered are based on the idea 

of operating with choice functions. 

 In his 1961 paper, Henkin introduced the first-order (partially-ordered) branching 

quantifiers, e.g.: 

 
 

(1) (∀x) (∃y)  
        A(x, y, z, u) 

(∀z) (∃u) 

 

If we use Skolem functions, (1) is equivalent with: 

 

(2) (∃f)(∃g)(∀x)(∀y) A(x, f(x), z, g(y)) 

 

If quantifiers are interpreted as choice functions (like Hilbert also seems to have done), 

Henkin’s quantifiers amount to expressing different dependency relations between 

quantified objects (compare (2) and (4)) from the linearly-ordered quantified versions—

such as of (1): 

 

(3) (∀x)(∃y)(∀z)(∃u) A(x, y, z, u) 

 

If we use Skolem functions (3) is equivalent with: 

 

(4) (∃f)(∃g)(∀x)(∀y) A(x, f(x), z, g(x,z)) 
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Here in (4) the choice of a value for u depends both on (∀x) and (∀z), whereas in (1) u 

depends only on (∀z). What is relevant here to Hilbert’s views on quantification theory is 

that Henkin quantifiers unseals the connections between quantifiers (quantifier-

dependence) and choice functions, when one comes to interpret their meaning.  

 Henkin suggested in his 1961 paper to treat the alternation between quantifiers as 

choices (dependently or independently) made from a domain.123 Accordingly a given 

formula, say (1), can be evaluated by means of a procedure of choices made by two 

players. (In order for keeping with Hilbert’s approach, one has to find the appropriate 

operations for the evaluation in the sense that infinitistic assumptions about quantifying 

“all” must be eliminated.) In the general case, say for all sequence of choices c1, c2, c3,…, 

cn, the existence of a function s (viz. a winning strategy) which is correlated to c1, c2, 

c3,…, cn in the given formula determines the winning (and hence truth). 

 Hintikka, in his game-theoretical semantics, generalized Henkin’s idea.124 The 

leading idea in Hilbert, Henkin, and Hintikka’s approaches is the same. It is that the 

meaning of quantifiers is based on the same idea as that of choice functions. What is new 

in Henkin and especially in Hintikka’s approach is that quantifier-dependence is taken 

into consideration more closely than it is taken in Hilbert. Hilbert seems to have missed 

the importance of quantifier dependence. In his 1921/22 lectures—as Sieg 1999 notes—

he indicates that existential claims in logic and mathematics 

 

                                                 
123 Henkin 1961, p. 179. 
124 See Hintikka and Sandu 1997. 
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…have sense only as a pointer to a search procedure which one possesses, but that 
ordinarily need not be elaborated because it suffices generally to know that one has it.125 
  

Hilbert was probably right in that ordinarily a mathematician does not need to elaborate 

the search procedure in question. Probably, he was also right in that one does not need to 

elaborate it in order to provide epistemological ground for mathematical reasoning. 

However, for semantical purposes, one has to elaborate what Hilbert calls a search 

procedure and in fact when that is carried out—as in Henkin’s case and in Hintikka’s 

cse—the whole picture of the logic of quantifiers change. The tools that Henkin and 

Hintikka introduced are intended to capture the logic of quantifier-dependence and 

independence, and they were not (formally) available to Hilbert, since the basic logic 

Hilbert used was the ordinary first-order logic as was developed in Hilbert and 

Ackermann 1928. 

IF logic can be considered as a correction to (as well as an improvement on) the 

ordinary first-order logic in the following way: The notation in ordinary first-order logic 

does not enable us to express all possible patterns of dependence and independence 

between variables. The notation used to express formal dependence is the use of scopes. 

A quantifier depends on another one if and only if it lies within its scope. Since scopes 

are in the usual notation nested, one can in this way express only asymmetric and 

transitive dependence, leaving others inexpressible. Such restrictions concerning 

quantifier dependence and independence are removed in IF logic by extending the 

notation. The new notation exempts a quantifier, say (Q2y), from its semantical 

                                                 
125 Quoted in Sieg 1999, p. 28. 
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dependence on another one, say (Q1x), within whose syntactical scope it occurs. This can 

be expressed by writing (Q2y/Q1x).  

With the help of the independence constant ‘/’ in IF logic, Henkin’s branching 

quantifiers have a new shape. For example, (1) is interdefinable with the IF formula 

 

(5) (∀x)(∀z)(∃y/∀z)(∃u/∀x) A(x, y, z, u) 

 

With the game-theoretical interpretation of quantifiers, truth of (5) can be evaluated by 

means of a series of choices made by two players, the initial falsifier and the initial 

verifier. In this series of choices verifier‘s choices do not depend on the prior choices 

made by the falsifier. 

 The falsifier chooses values for x and z from a given domain of a model M. And 

the verifier chooses values for y and u. If the verifier has a winning strategy, then (5) is 

true in M. A winning strategy for the verifier is defined as a sequence of functions, whose 

arguments are the objects that were previously chosen from the domain by the falsifier. In 

order to win, and hence to show that the sentence S in the game G(S) is true, the verifier 

has to make the right moves by keeping track of the falsifier’s choices as long as they are 

available to his or her information. Thereof the truth of a sentence S is defined as: S is 

true if and only if there is a winning strategy for the verifier in G(S). 

 This does not mean that if the verifier has no winning strategy, S is false in M. 

There are IF-sentences for which neither the verifier nor the falsifier has a winning 

strategy. A simple example is: 
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(6) (∀x)(∃y/∀x) A(x, y) 

 

Here in (6) since the verifier’s choices are independent from the falsifier’s there is no 

winning strategy for the verifier. It is essentially not so much different from playing 

scissors, paper, and rock. Obviously there is no winning strategy for the falsifier either. 

What this means is that the law of excluded middle does not hold in IF logic. It is 

relevant to note here that the failure of the law of excluded middle is a meta-

mathematically (in the Hilbert sense) appropriate feature for the underlying logic of 

axiomatized mathematical theories.  

It has been noted that the existence of a winning strategy for the verifier amounts 

to the existence of a sequence of functions which have as arguments the objects of the 

previous choices of the falsifier. What this means is that in the simplest case the truth 

condition of a statement in the form 

 

(7) (∀x)(∃y) A(x, y) 

 

is the existence of the function which can pick a witness individual y depending on x 

such that A(x, y). That is, in order for (7) to be true 

 

(8) (∃f)(∀x) A(x, f(x)) 
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must be true. The step from (7) to (8) can be generalized so as to generate all formulas in 

the same form as (8), from given IF formulas, by translating all the existential quantifiers 

and disjunctions in them into Skolem functions. The aim of such generalization would be 

to see the extent of the applications of Skolem functions as truth-makers and to determine 

the bounds of their expressive power. In fact, when the generalization procedure is 

carried out, every resulting formula with Skolem functions is a Σ 1

1  second-order sentence. 

Also every Σ 1

1  sentence in turn can be translated into an IF-sentence.126 This means that 

for any given IF first-order sentence, its (equivalent) game-theoretical truth condition can 

be formulated, without stepping beyond the expressive resources of IF means. What this 

shows is also that IF logic has the same expressive power as Σ 1

1  part of second-order 

logic. This is a significant result for Hilbertian purposes. Without quantifying over 

higher-order entities, a number of mathematical concepts, which cannot be expressed on 

the ordinary first-order level, can be expressed on the IF logic first-order level.  

 This expressive power involves the definition of a truth predicate in the same 

language (assuming that the IF language can express its own syntax).127 For a Σ 1

1  truth 

predicate can be formed on the basis of game-theoretical truth conditions.128 And this 

predicate can be translated to an IF sentence which is equivalent to it. By using this 

result, truth predicate T(x) can be defined for an IF-based arithmetic in the same 

                                                 
126 Cf. Enderton 1970 and Walkoe 1970. 
127 Cf. Hintikka 1998 and Sandu 1998. 
128 See Hintikka 1998 and 2001. See also the papers on truth in Auxier and Hahn 2005 and Hintikka’s 
replies to them. 
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arithmetic.129 And a Gödel sentence ∼T(n) (with Gödel number n), which says that the 

sentence with the Gödel number n is false, can be formed. If this sentence was true then it 

would be false. If it were false then it would be true. Therefore, it has to be neither true 

nor false. Neither the verifier nor the falsifier would have a winning strategy for such 

statements. This solves the liar paradox. 

 It might be pursued whether a stronger form of the liar paradox can be obtained 

here.130 For example, by bringing in the question what if we have a sentence S which says 

that it is either false or neither true nor false? What such sentence would attempt to say is 

tantamount, in the first place, to that there is no winning strategy for the verifier in the 

G(S). The non-existence of a winning strategy for the verifier cannot be expressed in the 

IF language itself. This is what the game-theoretical conception of quantifiers (as choice 

functions) imply. If one tries to impose such an expression to the language of IF logic one 

has to bring in the law of excluded middle as well. (See below) 

 However, IF logic can be extended. The extension can be considered by means of 

adding a sentence-initial contradictory negation ¬ into the language, so as to capture the 

meaning of the non-existence of a winning strategy for the verifier. It can be done 

without allowing liar-type paradoxes. In the extended IF logic the contradictory negation 

¬ is used only sentence initially (i.e. initial to closed sentences); since there are no game 

rules for it. Hence the liar-type sentences such as “I am either false or either true or false” 

or “I am not true” (“not” here is in the contradictory sense) are ill formed in IF logic.131 

                                                 
129 See Sandu 1998. 
130 Cf. Cook and Shapiro 1998 
131 Cf. Hintikka 2002. 
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 What is brought in by means of the contradictorily negated IF sentences is the 

dual form of those IF-sentences (i.e. they can be translated into Π 1

1  sentences). That is, 

when IF logic is extended with the contradictory negation ¬ as described we get IF + 

Dual(IF), or equivalently Σ 1

1  + Π1

1  part of second-order logic. (In a sense, trivially, Σ 1

1  

and Π 1

1  parts of second-order logic are mirror images of each other.) With the help of 

contradictory negation ¬, therefore, both the expressive and deductive resources of IF 

logic are enriched further. The expressive richness has already been mentioned. The 

deductive resources are two-folded, due to the existence of a complete proof procedure 

for Π 1

1  part and due to the existence of a complete disproof procedure for Σ 1

1  part of 

second-order logic. Thereof the extended IF logic has a complete proof procedure for one 

half and complete disproof procedure for the other half of its resources. 

 The different uses of the two negations (∼, ¬) in the extended IF logic can be 

extended even further, by allowing the law of excluded middle unrestrictedly in the 

language. This is done by allowing the contradictory negation ¬ to appear inside the 

scopes of quantified IF sentences. By doing this, the game-theoretical semantics of 

quantifiers has to be modified so as to be capable of handling contradictory negations 

inside the formulas. There are no defined rules for such procedures in IF logic, as it is 

usually defined.  

 A suitable modification is by considering a nesting of infinite semantical games. 

Given a sentence S0 in which ¬ occurs within the scope of quantifiers, G(S0) is played 

until a closed sentence in the form ¬S1 is reached. The truth value of ¬S1 is assumed to 
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obey the law of excluded middle. This means that in order to account for the existence of 

a winning strategy for the verifier one has to assume that all the substitution instances of 

S1 are available to verifier’s information. In that sense verifier’s winning strategies, if 

any, are infinitistic. They consist of verifier’s back-tracking of the falsifier’s moves 

infinitely often, in the rest of the game. That is to say, whether ¬S1 is true or false 

depends on the next game G(S1) which is again infinite and played until a ¬S2 is reached 

by way of  infinite back-tracking of the falsifier’s moves. Furthermore, the truth of ¬S1 

means the same as the non-existence of a winning strategy for the verifier. So in order to 

make sure that ¬S1 is true or not, the existence of a winning strategy for the verifier must 

be definitely determined by trying all the substitution values in the relevant instantiations. 

This procedure is carried out until a sentence within the quantifiers of which ¬ does not 

occur at all. And if in the last game the verifier has a winning strategy, then S0 is false. 

Otherwise it is true. 

 Nested infinite games bring in a non-elementary assumption to the quantification 

theory. What is needed for the nested semantical games—jointed with contradictory 

negations—to come to an end (after infinite number of moves) is to assume for each 

game G(Si) that the law of excluded middle holds for Si. Such an assumption obviously 

amounts to going beyond what is humanly playable. It is an assumption concerning all 

possible values that the players can choose in Si, including infinite domains. Hence from 
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the very beginning nesting of games partly presuppose infinitely many operations, viz. by 

means of requiring in a sense a substitutional semantics.132 

 On the basis of the distinction between infinite operations and finite ones a clear-

cut distinction is available between the elementary and non-elementary applications of 

quantification. The former involves the usual IF logic and its game-theoretical 

interpretation of quantifiers, as well as the extended IF logic. The latter involves the 

further extensions and in the limit fully extended IF logic, which appeal to unrestricted 

uses of the law of excluded middle.  

 The nested hierarchy of semantical games is structured in such a way that at each 

level of complexity there are sentences with different complex structure of nested 

contradictory negations. Starting from the least complex case and moving down to the 

more complex cases, the structure that is obtained in order is the same structure as the Σ 1

n  

– Π 1

n

 hierarchy of second-order sentences.133 This result is obtained by means of a 

generalization of the reduction of Σ 1

1  sentences to IF logical sentences. As was mentioned 

Σ 1

1  sentences can be translated to IF logical sentences. And the mirror-image sentence of 

each IF logical sentence S is obtained by taking its contradictory negation, viz. ¬S. 

Sentences of the form ¬S (where S is an IF logical sentence with no contradictory 

negations) has Π 1

1 equivalents. Thus showing that Σ 1

n
 sentences can be translated to fully 

extended IF logical sentences with (n – 1) layers of contradictory negations, is enough to 

                                                 
132 For further discussion on this point, see Hintikka 2006. 
133 Cf. Väänänen 2001 and Hintikka 2006. 
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provide that each Π 1

n sentence has an equivalent of the form ¬S. The translation of Σ 1

n  

sentences can be given by replacing the existential second-order quantifiers in them by 

independent quantifiers. The translation procedure can be sketched as follows134: 

Suppose the given Σ 1

n
 sentence is 

 

(9) (∃f) F(f) 

 

It is equivalent to: 

 

(10)  (∀x)(∀y)(∃z/∀y)(∃u/∀x)((x = y ⊃ z = u) & F*[x,y,z,u]) 

 

Here in (10), F* will be obtained by means of a nest of replacements. Subformulas of the 

form f(w) = v and A(f(w)) will be replaced by (x = w ⊃ z = v) and (x = w ⊃ A(z)), 

respectively. By applying such replacement procedure, the entire second-order logic can 

be reconstructed in IF logic and its extensions.135 

                                                 
134 Cf. Hintikka 2006, pp. 211-213. 
135 Here nested functions will be translated as in the translation of Σ 1

1  sentences. And predicates will be 

translated by using their characteristic functions. See Väänänen 2001 and 2006 for further technical 
information on the reduction of second-order logic to the fully extenden IF logic. 



 

 

77

 

12. CONSISTENCY OF ARITHMETIC 

A consistency proof that is needed for the foundations of arithmetic has to be a direct 

proof, i.e. it has to be an absolute and not a relative consistency proof. This means that it 

must not appeal to further (infinite) mathematical domains in order to show that 

arithmetic axioms are satisfiable. Otherwise, the proof attempt can provide at most the 

relative consistency of arithmetic. Of course this does not mean that the consistency that 

is tried to be proved has to be restricted to proof-theoretical consistency; since what is 

needed for Hilbert’s purposes is to decide “whether a system of the requisite sort is 

thinkable”.136 Roughly, a direct proof, in the way Hilbert needed, should be obtainable by 

using symbols and their combinations to instantiate the structures that are defined by the 

axioms of arithmetic. One can then show that no contradictory symbol combination can 

be derived from the axioms of arithmetic: 

 
…this is a task that fundamentally lies within the province of intuition just as much as 

does in contentual number theory the task, say, of proving the irrationality of √2, that is, 
of proving that it is impossible to find two numerals a and b satisfying the relation a2 = 
2b2, a problem in which it must be shown that it is impossible to exhibit two numerals 
having a certain property. Correspondingly, the point for us is to show that it is 
impossible to exhibit a proof of a certain kind. But a formalized proof, like a numeral, is a 
concrete surveyable object. It can be communicated from beginning to end. That the end 
formula has the required structure, namely 0 ≠ 0, is also a property of the proof that can 
be concretely ascertained. The demonstration [that “0 ≠ 0” is not a provable formula] can 
in fact be given, and this provides us with a justification for the introduction of our ideal 
propositions.137 
 
 
That would be enough to prove the model-theoretical consistency of arithmetic, as 

Hilbert wanted. However, for such a proof to be carried out—beside other 

                                                 
136 Hilbert 1922, Par. 8. 
137 Hilbert 1928, p. 471. 
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requirements—the underlying logic has to be semantically complete. Otherwise the 

axiom system might be deductively consistent in the sense that no contradictory formula 

can be derived from the axioms, but still it might not have any models. That is why the 

underlying logic must be complete. First-order logic as was developed in Hilbert and 

Ackermann 1928 is semantically complete. But if the underlying logic of axiomatization 

of arithmetic is semantically complete, the consistency of that arithmetic cannot be 

proved in the same arithmetic. This is what Gödel’s second incompleteness result 

showed. Therefore, the consistency of arithmetic cannot be proved by means of the 

ordinary Hilbert-Ackermann first-order logic. A suitable extension of the resources of 

ordinary first-order logic is necessary. 

IF logic provides the needed resources for a model-theoretical consistency proof 

for the IF-based number theory in the same number theory. 138  However, IF logic is 

semantically incomplete.139 So at first it seems to destroy one’s hope of carrying out a 

proof of the model-theoretical consistency of an axiom system, by proving that no 

inconsistent formula can be deductively proved from the axioms. Such a proof seems to 

presuppose the completeness of the logic being used in the axiomatization. If this logic is 

incomplete, then the axiom system might be deductively consistent, without being model-

theoretically consistent. That is to say, the inconsistency that makes it impossible to have 

models might be hidden so deeply that it is not accessible by the incomplete deductive 

proof methods.  

                                                 
138 Cf. Hintikka and Karakadılar 2006. 
139 Standard first-order logic with the addition of branching quantifiers is incomplete in the same sense. See 
Krynicki and Lachlan 1979. It follows from this that IF logic is also incomplete; for it makes use of a 
generalization of branching quantifiers. Also see Hintikka 1996, pp. 66-68.  
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Then the question to be answered is: can inconsistencies be hidden so deeply, 

beyond the reaches of IF means? Assuming the law of excluded middle we can say that 

the inconsistency of a formula C is derivable if and only if its negation ¬C in the usual 

contradictory sense is provable. As was indicated such contradictory negation is not 

defined in IF logic. It can be used only in front of a closed sentence (cf. chapter 11). 

Hence there has to be other ways to decide the inconsistency of a formula. Under this 

limitation what is needed for the inconsistencies to be reachable is rather a recursive 

enumeration of contradictory formulas—i.e. a complete disproof procedure, instead of a 

complete proof procedure; since if the list of contradictory formulas can be recursively 

enumerated, all one has to do then in order to decide whether a given formula is 

inconsistent is to check whether it belongs to the list or not. 

IF logic does have a complete disproof procedure. In order to seek a consistency 

proof by appealing to this procedure we must first show that the disproof procedure in a 

suitable elementary arithmetic based on IF logic cannot disprove every proposition.140 To 

see whether this can be done let us first extend IF logic by allowing sentence-initial 

contradictory negation ¬ into the language. The resulting logic is called extended IF 

logic. It is equivalent with the Π 1

1  part of second-order logic, which consists of the duals 

(in the sense of contradictory negation) of Σ 1

1  sentences (cf. chapter 11). That is, within 

this extension there obtains a duality between IF sentences and their contradictory 

negations. For the former, there exists a complete disproof procedure but not a complete 

                                                 
140 If a given axiomatic system is inconsistent, this means that any proposition can be proved and any 
proposition can be disproved in that system. If there are propositions which are not disprovable by 
arithmetic axioms based on IF logic the existence of such proposition will establish the deductive 
consistency of the axioms in question. 
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proof procedure. For the latter, there exists a complete proof procedure but not a 

complete disproof procedure.  

Here what can be done in an elementary arithmetic based on extended IF logic can 

be seen by a comparison with Gödel’s 1931 incompleteness argument. Gödel constructs a 

predicate Prov[x] in a self-applied number theory. The predicate expresses the provability 

of the sentence S with the Gödel number g(S) = x. Then Gödel applies a diagonal 

argument to the predicate ¬Prov[x] to find a sentence   

 

(1) ¬Prov[n] 

 

with the Gödel number n (here n is the numeral expressing n). Now if (1) is false the 

sentence with the Gödel number n is provable. But if the system of number theory is 

consistent in the (strong) sense that whatever is provable is true, then (1) is true. This 

contradicts the assumption of its falsity, wherefore it must be true. Consequently, it is not 

provable, because that is what it says. 

Similar to the Gödelian argument, the IF predicate Disp[x] can be formed in the 

number theory based on IF logic. It says that the sentence with the Gödel number x is 

disprovable. A diagonal argument then produces a sentence of the form  

 

(2) Disp[n] 

 

where n is the numeral representing n and where the Gödel number of (2) is n. If (2) is 
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true, it is disprovable. Assuming that all disprovable sentences are false (i.e. that the 

disproof procedure is sound), (2) is then false. This contradicts the hypothesis that it is 

true and shows that (2) is not true. What it means is that the sentence with the Gödel 

number n is not disprovable. Hence there is at least one sentence that is not disprovable. 

This shows the deductive consistency of the IF elementary number theory, which can be 

demonstrated in the IF-logic-based number theory itself.  

In the original case, Gödel had to assume that the system of number theory he was 

using (including the proof procedure it uses) is consistent in the sense that each provable 

sentence is true.  For in his argument he had to argue that if the critical sentence 

¬Prov[n] is false and Prov[n] is therefore true, then the sentence with the Gödel number 

n is in fact true.  This presupposes both consistency and the law of excluded middle. 

Otherwise we cannot eliminate the possibility that the critical sentence is false.  In the IF 

logic based argument, we have to assume only the soundness of the disproof procedure in 

the sense that each disprovable sentence is false. This does not depend on the law of 

excluded middle and is hence possible to prove elementarily.141 

What can be proved in the way just described is the deductive consistency of the 

number theory in question. It means that the disproof procedure does not refute all 

formulas.  As has been indicated, for Hilbert’s purposes deductive consistency is only a 

mid-step in Hilbert’s attempted proof of model-theoretical consistency.  Therefore, we 

would have to prove not only the soundness but also the model-theoretical completeness 

of the disproof procedure.  That is, we would have to prove that if a sentence of our 

                                                 
141 At least if we can assume that it is the use of the law of the excluded middle that makes an argument 
non-elementary. See chapters 11 and 21. 
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number theory is not disprovable, it has a model.  And such a proof must be carried out in 

the IF number theory itself.  

 Such proof cannot possibly be carried out in an elementary number theory based 

on ordinary first-order logic. For completeness proofs cannot be carried out there.  The 

reason is that such a proof (for example using the tree method) relies on König’s lemma, 

which says: if a tree branches finitely, then it is either finite or has an infinite branch.  

Since the notion of infinity cannot be expressed in the ordinary first-order logic, König’s 

lemma cannot be expressed either, in an elementary number theory based on such 

logic.142  Nevertheless, infinity can be expressed in IF logic.143  Thereof the existence of 

an upper bound on the lengths of branches is expressible in IF logic. Hence the entire 

König’s lemma as well can be so expressed.144   

If so, the completeness of the disproof procedure that IF logic yields can be 

proved in our elementary number theory.  In order to show in what sense this shows the 

existence of models for sentences that cannot be disproved; the following observations 

can be made: What König’s lemma implies when applied to the attempted model set 

construction that for example the tree method provides, is that if the procedure does not 

yield a disproof, there exists an infinite branch which is a model set containing the 

sentence under scrutiny.  We can interpret model sets (as sets of symbol combinations) as 

                                                 
142 Indeed appeals to König’s lemma are often thought of as being the source of the infinitary character of 
completeness proofs for first-order logic. Cf. Beth 1962, section 38. 
143 For example, an infinite number of individuals satisfy a non-empty predicate A(x) if and only if the 

following IF proposition is true: (∀x)(∀y)((A(x) & A(y))  ⊃ (∃z/∀y)(∃u/∀x)(x ≠ z & y ≠ u & A(z) & A(u) 

& ((x=y) ↔ (z = u)))). Here z is a function of x alone and u of y.  And, if x = y, then z = u.  Hence z is the 

same function f of x as u is of y, where f satisfies (∀x)(∀y)(x ≠ f(x) & (A(x) ⊃ A(f(x)) & ((x=y) ↔ (f(x) = 
f(y)))) So that for any a satisfying A(a), a, f(a), f(f(a)),… are all different individuals.  
144 In fact it is an IF logical truth. It can be one of the deductive axioms of our elementary number theory. 
See further Chapter 20. 
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being their own models like Hilbert’s signs, modulo isomorphism. Thus proof-theoretical 

IF-consistency of a sentence S implies the existence of a model in which S is not false. 

An argument to this effect can be carried out in the IF elementary number theory, which 

can therefore be proved model-theoretically consistent. Of course, what the consistency 

proof accomplishes here is showing how a model in which a certain sentence is not false, 

not one in which it is true. Essentially it provides a Hilbertian justification of Kreisel’s 

no-counterexample interpretation, which was originally introduced as a variant of 

Hilbert’s view.145 This should complete a significant part of the task that Hilbert took on 

in his consistency program.146 

How further can we get along with this consistency result? Some important 

arithmetical and logical concepts that cannot be expressed by means of the ordinary first-

order logic can be expressed in terms of IF logic.147 Hence a significant part of analysis 

falls within the purview of the consistency result reached by means of IF logic. Thereby 

what the above proof sketch for the consistency of arithmetic and its implications for the 

foundations of analysis suggest is that we have to reconsider the extent that Hilbert’s 

different aims for the foundations of mathematics can be reached. 

                                                 
145 See Kreisel 1953-54. 
146 The consistency of the entire analysis however cannot be proved by means of IF logic. One way of 
seeing this is to realize that IF logic is not as strong as the full second-order logic. It is equivalent only to 

the Σ 1

1  fragment of second-order logic. And there is clearly no hope of extending the kind of consistency 

proof that was outlined above to the entire second-order logic. Since this logic is presumably needed in 
analysis, a consistency proof for the entire analysis along Hilbert’s lines seems impossible. 
147 For the IF characterizable structures, see Väänänen 2006. 
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13. HILBERT’S AIMS 

Hilbert’s different aims for the foundations of mathematics can be considered in the 

following four different aspects of his views: His axiomatic approach to the foundations 

of mathematics, his response to criticisms of set theory, his response to intuitionist 

criticisms of mathematics, and his metalogical work for the specification of the role of 

logical inference in mathematical reasoning. These four aspects overlap and are closely 

interrelated in their historical development. However, they specify different sets of 

problems for the foundations of mathematics. Some of the main problems are:  

 

(i) Proving the model-theoretical consistency of arithmetic 

(ii) Clarifying the status of the axiom of choice  

(iii) Clarifying the status of the law of excluded middle  

(iv) Giving an elementary (humanly practicable) account of quantification 

 

As was sketched in Chapter 12, (i) can be carried out by using IF logic as the basic logic 

of axiomatization. It will be argued that (ii), (iii), and (iv) can also be carried out by using 

IF logic as basic, going beyond ordinary first-order logic.  

 All the mentioned problems and the different aspects of Hilbert’s aims are 

strongly connected to Hilbert’s mathematical style and his overall view of mathematics. 

Hilbert describes mathematics as “an organism whose vitality is conditioned upon the 

connection of its parts”.148 Investigations concerning this organism, according to Hilbert, 

                                                 
148 Hilbert 1900a, p. 436. 
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should be carried out by means of new problems (and new theories for the solution of the 

problems): 

 
Just as every human undertaking pursues certain objects, so also mathematical research 
requires its problems. It is by the solution of problems that the investigator tests the 
temper of his steel;   he finds new methods and new outlooks, and gains a wider and freer 
horizon.149 

 

Such a view requires (to a certain degree) optimism in problem-solving. Hilbert was an 

optimist in a characteristic way. That is why he disliked restrictive approaches to 

mathematics. That is why he did not believe in the ignoramus et ignorabimus in 

mathematics.  

 On this broad description of Hilbert’s overall view, it is easy to see how the above 

mentioned foundational problems are connected with Hilbert’s actual mathematical work. 

Hilbert’s application of the axiomatic method to the foundations of geometry can provide 

enough case-study for that. According to Hilbert, the axiomatic method “guarantees 

maximum flexibility in research”.150 Therefore, it is indispensable for an optimist 

problem-solver. In this regard, it is not surprising that Hilbert attacks the problem of 

consistency of mathematical theories in the light of the axiomatic (and hence model-

theoretical) conceptualizations. The IF logical approach to the consistency problem 

follows Hilbert’s optimistic style, in finding a suitable way out from the limitations 

drawn by Gödel’s completeness and incompleteness theorems, which is necessary in 

order to pursue Hilbert’s foundational aims.  

                                                 
149 Ibid, p. 407 
150 Hilbert 1922, Par. 14. 
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 Similarly, in Hilbert’s work in proof theory (including the epsilon technique), the 

problems concerning the status of the axiom of choice and the status of the law of 

excluded middle were aimed to be carried out as parts of an optimist mathematical self-

defense against restrictive approaches. Same is true, of course, for the pure existence 

proofs. In defense of pure existence proofs, Hilbert argued that “brevity and economy of 

thought” are their raison d’etre.151 This line of thought is followed up to the best extent, 

as will be shown in the following chapters, in the IF logical approach.  

 According to Hilbert, restrictive criticisms against classical methods in 

mathematics “were not put into effect at the right place in a unified front”.152 Therefore, 

in order to give complete justification of his attitude against restrictive approaches, 

Hilbert had to pursue the solutions of his different problems against “a vast domain of 

difficult epistemological questions”.153 The foremost such domain concerns the 

development of mathematical logic in association with the problem of specifying the role 

of logical inference in mathematical reasoning. A closer look at the problems of 

mathematical logic makes it sufficiently clear that the needed advances in the foundations 

of mathematics (then and now) has to be in complete agreement with Hilbert’s overall 

view of mathematics. 

 In Hilbert 1918, the following problems are listed as necessary to be investigated: 

(1) solvability in principle of every mathematical question, (2) checkability of the results 

of a mathematical investigation, (3) criterion of simplicity for mathematical proofs, (4) 

                                                 
151 Hilbert 1928, p. 475. 
152 Hilbert 1926, p. 375. 
153 Hilbert 1918, Par. 43. 
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relationship between content and form, (5) decidability of a mathematical question in a 

finite number of operations. Then it is pointed out, 

 
We cannot rest content with the axiomatization of logic until all questions of this sort and 
their interconnections have been understood and cleared up.154  
  

Here, it is clear enough that, in searching for the solutions of these problems (1-5) Hilbert 

was projecting into the logical deepening of the foundations of his optimism. However, it 

is also clear that one has to have a similar optimistic (rather than restrictive) attitude in 

approaching these very problems themselves. From Hilbert’s point of view, what is 

needed is “new methods and new outlooks” and “wider freer horizon”.155 We are not 

satisfied with seeing only a short distance ahead, even if we can see plenty there that 

needs to be done.156     

                                                 
154 Ibid. 
155 Hilbert 1900a, p. 407. 
156 Cf. Turing 1950. 
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14. AXIOMATIZATION OF SET THEORY 

The reconstruction of second-order logic by means of IF logical resources suggests that 

questions of set-theoretical validity can be put into a purely logical context by means of 

IF logic. The expressive power of second-order logic is known to be as strong as the 

expressive power of set theory.157 What this means is that both the second-order 

axiomatizations and set-theoretical foundations are dispensable in favor of first-order 

level IF formalizations in mathematics. The higher-order modes of reasoning in second-

order logic and set theory can be reduced to the IF first-order level. This is suggestive of 

a reconsideration of Hilbert’s aims for the foundations of set theory and its logical 

axiomatization.158 It also suggests reconsidering Hilbert’s views on higher-order and 

first-order levels of reasoning and quantification. 

 Historically, after the discovery of logical paradoxes about infinite sets it was 

clear that some refinement to certain techniques and modes of reasoning were necessary, 

if contradictions were to be avoided in mathematics. The question “What kind of 

restrictions to which techniques was necessary?” surfaced different philosophical 

approaches about the existence of mathematical entities. It led mathematicians to 

reconsider different aspects of mathematics critically. Some of the disputed matters 

appeared to have created a crisis in mathematics. Among the leading figures of the 

historical disputation, Hilbert was arguably the most optimistic one. He argued that in 

                                                 
157 See Väänänen 2001. 
158 Hintikka 2006, p. 213. 
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general terms there were no unsolvable problems and hence no possible crisis in 

mathematics.159 

Hilbert’s axiomatic approach, which—as was argued— is intended to avoid 

epistemological and ontological issues in mathematics and its foundations, supports this 

optimism. It strongly suggests that philosophical worries about the existence of infinite 

sets (or given infinite totalities) can be removed from mathematics by means of a logical 

axiomatization of set theory. This is clear from Hilbert’s blaming the traditional ways of 

thinking in logic rather than the development of set theoretical analysis, which might 

appear to involve contradictions or to create paradoxes: 

 
[Paradoxes] led me to the conviction that traditional logic is inadequate and the theory of 
concept-formation needs to be sharpened and refined. … What is decisive is the 
recognition that the axioms that define [their own subject matter] are free from 
contradictions.160 
 

Paradoxes hence were not problems to be worried about for Hilbert, as long as they were 

remedied by logical axiomatization and the model-theoretical consistency of the axiom 

system. What was required for that purpose was the development of logical methods.  

In his 1905 paper, Hilbert after a brief criticism of different approaches to the 

foundations of arithmetic and analysis, suggests that a “simultaneous development of 

logic and of arithmetic is required”. Hilbert criticizes first Kronecker’s approach, calls 

him a dogmatist for accepting integers as the real foundation of arithmetic and for not 

                                                 
159 Kronecker’s and Poincaré’s approaches are two of the most pessimistic examples from the nineteenth 
century. In the early twentieth century Weyl’s constructivist argument in his 1918 book and his later 
intuitionistic views, as well as Brouwer’s 1907 dissertation and his further development of the intuitionist 
philosophy of mathematics are other approaches in similar spirit to Kronecker and Poincaré. They also 
required considerable amount of restrictions to the classical techniques in analysis.  
160 Frege 1980, p. 51 
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considering further possible foundations. Hilbert then criticizes Helmholtz’s empiricist 

view. He claims that the empiricist position cannot give an adequate account of arbitrarily 

large numbers. He mentions Christoffel and other opponents of Kronecker. According to 

Hilbert these mathematicians could not provide a refutation of Kronecker, even though 

they were right in pointing out that Kronecker’s approach leads to serious limitations in 

the methods of analysis. Beside these, Hilbert lists Frege, Dedekind and Cantor among 

who he thinks had a better understanding of foundational problems concerning integers. 

However, their views were also limited and insufficient in providing a foundation for 

arithmetic, according to Hilbert.  

Clearly Hilbert favored logical foundations. However, he found Frege’s and 

Dedekind’s logical approaches inadequate and even transcendental in applying 

(universal) quantification without giving an elementary (humanly practicable) account of 

it. For this reason alone, according to Hilbert, Frege’s and Dedekind’s approaches were 

prone to contradictions and paradoxes. Hilbert excludes from his criticisms Cantor in that 

Cantor realized the difficulties in dealing with “all sets”, and distinguished between 

consistent and inconsistent sets. But still, Cantor did not give an objective ground for his 

distinction, and this is the weakness of his views. According to Hilbert there were further 

problems concerning the infinite which are lurking in the foundations. In order to resolve 

these problems and to defend the fruitful methods against restrictive criticisms such as 

Kronecker’s, Hilbert demands a logical clarification of the notion of the infinite. Hilbert 

points out that in Weierstrass’s analysis infinity comes into play by way of logical 

quantifiers in the form of “all real numbers” or “there exist real numbers” etc. So the 
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logical clarification of the notion of the infinite in association with the applications of 

quantifiers became Hilbert’s main topic of interest.161 By following an axiomatic 

approach, Hilbert proposed, the difficulties with the notion of “all” or “every” can be 

taken care of and also Cantor’s distinction between consistent and inconsistent sets can 

be given a firm footing. 

 Hilbert encouraged Zermelo to axiomatize set theory. Zermelo gave the first 

axiomatization of set theory in his 1908a paper.162 What he accomplished was to give a 

characterization of the structure of the so-called cumulative hierarchy of sets in a suitable 

axiomatic framework. Such characterization was the first essential step to avoid 

paradoxes and uncertainties, according to Hilbert. Hilbert approved it as an appropriate 

way to avoid paradoxes and uncertainties: 

 
By setting up appropriate axioms which in a precise way restricted both the arbitrariness 
of the definitions of sets and admissibility of statements about their elements, Zermelo 
succeeded in developing set theory in such a way that the contradictions disappear, but 
the scope and applicability of set theory remain the same.163 
   

Zermelo’s 1908 axiomatization was Hilbertian in spirit. However, it involved 

impredicative and higher-order elements.164 Hence it was open to predicativist criticisms. 

From Hilbert’s point of view thus further investigation was needed for its foundations 

(see further chapters 14, 15). Yet from a purely practical (mathematical) point of view the 

                                                 
161 Cf. Hilbert 1926, pp. 369-370 
162 Here “axiomatization of set theory” might seem ambiguous. The axiomatization that go back to Zermelo 
are in our days taken to be first-order. Zermelo did not interpret his axiomatization in this way. For more 
discussion see Kanamori 2004. 
163 Hilbert 1918, par. 
164 Impredicative elements in Zermelo’s system were the impredicative subset-formation, the power-set 
operation and the union-set operation. Of course, today’s Zermelo-Fraenkel first-order system does not 
involve such elements. See Hallett 1984, p. 251. 
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apparent problems such as paradoxes and contradictions (within certain limits) had been 

avoided.  

Even though Hilbert encouraged Zermelo to axiomatize set theory, he himself 

followed rather a Russellian line of thought in the foundational investigations for a 

solution of the paradoxes. In his 1917 address (Hilbert 1918) Hilbert refers to Russels’s 

axiomatization of logic as the “crowning achievement” in the field.165 This was partly on 

the practical level where presumably Hilbert saw the “promise of success”. On the 

theoretical level further work was required.  

 In his 1917/18 lectures follows Russell and Whitehead’s axiomatization of logic 

(and hence according to their view, of mathematics). In Hilbert and Ackermann 1928 

(first edition) the extended calculus that Hilbert and Ackermann consider is the ramified 

theory of types. This theory was a way to avoid paradoxes such as the Zermelo-Russell 

paradox, the Richard paradox etc. What were not suitable for Hilbert’s purposes in this 

theory were the axiom of infinity and the axiom of reducibility.166  

 Yet, for the development of mathematical logic and for considerations of 

foundational problems which are related to set theory Russell and Whitehead’s theory 

seems to have provided a suitable framework for some of Hilbert’s problems such as how 

to avoid the paradoxes on the logical level, to supply models for all mathematical 
                                                 
165 Hilbert 1918, par. 40  
166 Ramsey showed in his 1926 paper that the axiom of reducibility was not a necessary assumption in the 
theory, if the aim was to avoid the paradoxes. He distinguished between logico-mathematical paradoxes 
and semantical paradoxes. Ramsey showed that the latter kind was inessential to mathematics. In order to 
avoid logico mathematical-paradoxes, it was enough to have kept the theory of types unramified, simply as 
defining a hierarchy of types of entities. The critical idea in Ramsey’s paper was the standard interpretation 
of higher-order quantifiers. Arguably, it was also shared by Hilbert (as a requirement of his aim to provide 
models for all axiomatic theories; cf. chapter 8), although Hilbert worked and lectured on the ramified 
theory of types. 
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theories, as well as how to pursue the solution of his first Paris problem, i.e. proving or 

disproving Cantor’s continuum hypothesis. Nevertheless, avoiding the paradoxes by 

using type theory could not be the leading motivation for Hilbert. It is clear enough, both 

from his lectures and his explicit statement in Hilbert 1918, that the paradoxes, according 

to Hilbert, were avoided by Zermelo’s axiomatization of set theory. What was needed 

was further meta-theoretical investigation in mathematical logic, and distinguishing it 

from (extra-logical) mathematical content. The axiom of infinity, in that regard was a 

significant part of such mathematical content. It had to be eliminated from logical theory. 

For this reason alone, it was clear by then that Russell and Whitehead’s approach, 

although it provided useful tools for Hilbert, could not obtain any foundation of 

mathematics. 

 Avoidance of the paradoxes was important. But in order to give conclusive 

answers to the foundational questions about set-theoretical modes of reasoning, further 

developments in logical theory were needed. Zermelo’s axiomatization did not have an 

explicit underlying logic in its formulation. There was no first-order logic as 

distinguished from second-order logic in 1908. As a matter of fact, it is not clear which of 

the logics that different mathematicians would choose, if there was a multiplicity of 

mathematical logics.167 Therefore, the historical situation was such that the further 

development of logical methods was necessary, as Hilbert seems to have foreseen since 

early 1900s.  

                                                 
167 See Kanamori 2004. 
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15. FIRST-ORDER AXIOMATIZATION 

First-order quantification theory was separated from higher-order in Hilbert and 

Ackermann 1928. In the book, although higher-order logic is introduced with an 

indication that it is “the appropriate means of expressing the modes of inference of 

mathematical analysis”168, higher-order reasoning does not fit into Hilbert’s mould for 

axiomatic purposes. For example in defining the notion of an upper bound for sets of real 

numbers one has to quantify (like Weierstrass did, for example) over real numbers. But 

for that purpose one has to have an elementary (humanly practicable) account of such 

quantification: 

 
…the infinite still appears in the infinite number sequences that define the real numbers, 
and, further, in the notion of the real number system, which we conceive to be an actually 
given totality, complete and closed. 
 The forms of logical inference in which this conception finds its expression—
namely, those that we employ when, for example, we deal with all real numbers having a 
certain property or assert that there exist real numbers having a certain property—are 
called upon quite without restriction….169 

 

Hilbert's general objection to the unrestricted quantification over real numbers by using 

higher-order reasoning calls for a criticism of second-order quantification, which is 

closely related to Hilbert's point in the quotation above. The basic objection to second-

order quantification is that the use of second-order entities as objects leads to 

impredicative definitions. This comes about because in a second-order language the 

meaning of expressions is determined by a totality of propositions, properties or relations. 

In this sense they must be considered as being given. And this is tantamount to 

                                                 
168 Hilbert and Ackerman 1928, p. 163 
169 Hilbert 1926, p. 369-370. 
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considering what is called as “given closed infinite totalities”. 170 This very objection is 

emphasized for example in Hilbert’s 1917/18 lectures. There Hilbert says: 

 
In the original function calculus, we took a system or several systems (species) as given 
from the beginning, and by referring to these totalities of objects, the operation with the 
variables...was given a significance. The extension of the calculus now consisted in 
regarding statements, predicates and relations as types of object, and according to this, 
allowing symbolic expressions whose logical significance demands reference to the 
totality of statements respectively functions.171 

 

The extension of the “original function calculus” Hilbert here refers to is second-order 

logical calculus. He explains the grounds for his objection about impredicative definitions 

in the following paragraph of the same paper: 

 
This procedure is in fact dubious in the following way. Those expressions which obtain 
their content through reference to the totality of statements respectively functions, while 
on the other hand, before we can refer to the totality of statements or functions the 
statements resp. functions must be considered as determined from the beginning. Here 
there is a kind of logical circle, and we have grounds for the assumption that this circle is 
the cause of paradoxes.172 
 

As a solution to the problem here, it might be suggested that first-order modes of 

reasoning are suitable means to avoid infinitistic operations and operations with higher-

order entities in quantification theory. A similar suggestion was made by Hilbert. It 

occurs in Hilbert’s 1922 paper: 

 

                                                 
170 Nevertheless, as was seen in the case of fully extended IF logic, the closed infinite totalities are not 
necessarily introduced by quantification over higher-order entities. They can be introduced instead on the 
IF first-order level by unrestricted use of the law of excluded middle. Conversely, the usual meta-theory of 
first-order logic can already involve appeals to unrestricted use of the law of excluded middle. For 
example, as it is the case in Tarski-type truth definitions.  
171 Quoted by Hallett from the original; see Hallett pp. 218-220. Cf. also Sieg 1999, pp. 9-10 and 16. 
172 Ibid. 
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As we saw, abstract operation with general concept-scopes and contents has proved to be 
inadequate and uncertain. Instead, as a precondition for the application of logical 
inferences and for the activation of logical operations, something must already be given 
in representation [in der Vorstellung]: certain extralogical discrete objects, which exist 
intuitively as immediate experience before all thought.173  

 

What Hilbert criticizes in the quoted passage is the operations with higher-order entities, 

i.e. concepts or their extensions. In their place Hilbert wants to place discrete individual 

objects that can be given to us intuitively and in immediate experience. This is a way to 

reconstruct the apparently higher-order modes of reasoning on the combinatorial level for 

concrete objects. Hence in general terms it is fair to say that Hilbert’s aim was to be able 

to understand all mathematical reasoning taking-place on the first-order level. As has 

been seen such a reconstruction of second-order logic can be obtained by means of the 

fully extended IF logic. Hence Hilbert’s first-order view is vindicated by IF logic. 

 Vindication of Hilbert’s first-order view is one thing. Axiomatization of set theory 

on the first-order level is a different matter. Hilbert’s first-order view suggests that he 

would prefer a first-order level axiomatization of set theory. This does not necessarily 

mean that the basic logic for such axiomatization has to be ordinary first-order logic. It 

only means that Hilbert preferred a first-order level combinatorial account for the 

foundations of set theory. However, at the time he considered first-order logic as suitable 

for axiomatization purposes: 

 
The calculus [first-order logic] is well suited for the purpose [purpose of presenting 
theories] mainly for two reasons: one because its application prevents that—without 
being unnoticed—assumptions are used that have not been introduced as axioms, and 

                                                 
173 Hilbert 1922, p. 202. 
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furthermore because the logical dependencies so crucial in axiomatic investigations are 
represented by the symbolism of the calculus in a particularly perspicuous way.174 
 

This last point suggests that Hilbert’s approval of Zermelo’s axiomatization must have 

been mainly on the practical level; since Zermelo’s axiomatization involved higher-order 

modes of reasoning. However, in order to answer the question whether those apparently 

higher-modes of reasoning can be reconstructed on the combinatorial (first-order) level, 

the logical methods had to be improved. And this is what Hilbert suggested from the very 

beginning: “a partly simultaneous development of the laws of logic and of arithmetic is 

required….”175  

  The purpose of such development is to see the extent that mathematical reasoning 

can be reconstructed on the first-order level: 

 
… we also want to investigate the foundations of mathematical theories and examine 
what their relation to logic is and how far they can be built up from purely logical 
operations and concepts; and for this purpose the logical calculus [first-order logic] is to 
serve as an auxillary tool.176 
 
 
The reconstruction of the entire second-order logic and also the set-theoretical modes of 

inferences by means of the IF resources can already be noted here as a realization of 

Hilbert’s original aims then, for the foundations of set theory. 

                                                 
174 Cf. Sieg 1999, p. 15.  
175 Hilbert 1905, p. 131. 
176 Quoted in Sieg 1999, p. 15 
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16. NOMINALISM 

From the very beginning of his foundational studies, it was clear to Hilbert that even the 

first-order applications of quantifiers with the assumption of infinite operations is a 

problematic issue.177 If one wants to clarify the nature of the infinite in mathematics and 

give a humanly practicable account of universal and existential quantification (i.e. 

without assuming infinite operations) one has to face the problem of quantification over 

infinite domains in mathematical reasoning. So not only higher-order reasoning must be 

reconstructed on the first-order level, but also first-order quantification must be given a 

practicable (elementary) account. 

 One of the nominalistic assumptions in the philosophy of mathematics is that only 

individuals are admissible as objects of quantification. In logical terminology this 

assumption amounts to permitting only to first-order quantification. Hilbert’s line of 

thought is in keeping with such a view: 

 
If logical inference is to be certain , then these objects must be capable of being 
completely surveyed in all their parts, and their presentation, their difference, their 
succession (like the objects themselves) must exist for us immediately, intuitively, as 
something that cannot be reduced to something else.  

 

In this sense Hilbert is defending here first-order logic, which accepts quantification only 

over individuals, in contrast to a higher-order one. Hilbert continues: 

 
Because I take this standpoint, the objects [Gegenstände] of number theory are for me—
in direct contrast to Dedekind and Frege—the signs themselves, whose shape [Gestalt] 
can be generally and certainly recognized by us—independently of space and time, of 
their special conditions of the production of the sign, and of insignificant differences in 

                                                 
177 See for example Hilbert 1905. 
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the finished product.  
 

Hilbert criticizes thereof Frege and Dedekind on their quantification over concepts or 

their extensions in their logical language. This is in line with Hilbert’s overall view on 

logic and logical reasoning. As was noted it was in Hilbert’s school that first-order logic 

was separated from the higher-order quantification theories of Frege and Russell-

Whitehead.178 

 Hence in a wider philosophical perspective Hilbert’s opposition to Frege and 

Dedekind, and operations with general concept scopes is not an opposition of a formalist 

to a non-formalist. It is rather an opposition of a nominalist to conceptual realism. Under 

wrong interpretations of Hilbert’s philosophical terminology—especially under the 

attribution of “finitism” and “formalism” to it—the real gist of Hilbert’s “philosophical 

attitude” is poorly obtained. The rest of the passage in Hilbert’s paper—what follows 

below—leads to serious misunderstanding when it is read out of its proper context: 

 
The solid philosophical attitude that I think is required for the grounding of pure 
mathematics—as well as for all scientific thought, understanding, and communication—
is this: In the beginning was the sign. 
 

The correct interpretation of this passage should be that Hilbert favored nominalism, and 

hence first-order quantification in contrast to a higher-order one. In this light, from 

                                                 
178 In the later editions of their book, Hilbert and Ackermann consider second-order logic. Its 
incompleteness is pointed out. Its relation to set theory is briefly discussed. Higher-order logic is introduced 
with an indication by examples that it is “the appropriate means of expressing the modes of inference of 
mathematical analysis”. However, just like types and the axiom of reducibility, higher-order quantification 
does not exactly fit into Hilbert’s mould. It involves quantification over a domain of so-called “all” 
predicates. That is why he preferred first-order logic and tried to surpass the difficulties with universal 
quantification by means of his epsilon technique. It can be treated as a nominalistic account of 
quantification theory. (See further Chapter 20)  



 

 

100

 

Hilbert’s nominalistic point of view, Frege’s conceptual realism was totally ill-advised: 

 
[Frege] fell to some extent into an extreme realism of concepts. …he believed he was 
entitled to take [concept scopes] unrestrictedly as things.179  
 

All this is in accordance with Hilbert’s concern for concrete content in 

metamathematics.180 Salvageable domains of concrete objects (i.e. signs with their 

representative role) which are immediately given in mathematical practice should be the 

ground to rely on in foundational considerations.   

From a wider historical perspective, Hilbert is against a commonly accepted view 

in the philosophy of logic and mathematics. According to this view, logic and 

mathematics deal with general concepts. And in the last analysis it is sense-perception 

that grasps particulars. Therefore, the justification of all instantiation and the introduction 

of particular (concrete) representatives of general concepts must be perceptual.181 In their 

foundational works Frege, for example, follows such a view but Hilbert does not. When 

Frege is trying on the one hand to dispense with intuition, he is on the other trying to 

reduce number theory to what he takes to be the most general concepts and principles of 

reasoning. Hilbert notwithstanding treats logic preferably on the first-order level. He 

criticizes the reliance (especially by Dedekind and Frege) on general concept-scopes. He 

wants to formulate axiomatic foundations of mathematics in the study of the structures of 

concrete objects. Accordingly, Hilbert tries to practice his metamathematics in 

nominalistic terms. He believes that logic can cope fully with reasoning about (and with) 

                                                 
179 Hilbert 1922, Par. 21. 
180 Cf. Hilbert  1926, p. 377. 
181 Cf. Webb 2005. 



 

 

101

 

particular objects, and on the first-order logical level. In this regard his epsilon-technique 

for example amounts to a method of instantiation (see Chapter 20). It aims to make 

systematic use of the particular instances of general concepts in nominalistic terms.  

IF logic vindicates Hilbert’s nominalistic approach. As was sketched in chapter 

11, it provides a way to reconstruct apparently higher-order modes of reasoning by 

allowing only first-order quantification and cashing higher-order operations into 

complexes of choices of individuals as instantiation values. 
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17. FINITISM 

Hilbert’s finitism is sometimes seen as the view that the (apparently) actual infinitistic 

assumptions of mathematical reasoning can be given an epistemological foundation, by 

reference only to finitary content of mathematical statements (not by going beyond that). 

As has been pointed out in chapters 5 and 6, such conception of finitism makes 

misleading ways to understanding Hilbert. Hilbert’s aim was to provide logical axiomatic 

foundations, rather than epistemological foundations. He hoped to have reached this aim 

by detaching the axiomatic investigation from epistemological concerns. In that sense 

Hilbert’s aim amounts to finding out the appropriate logical treatment of the apparently 

infinitistic assumptions of mathematical reasoning, without permitting any infinitistic 

technique in the foundational practice. Here the problem is not with the epistemological 

admissibility of the techniques used. It is more appropriate to say that, in its axiomatic 

form, Hilbert’s finitism amounts to a metalogical (as well as metamathematical) strategy. 

The right source to decide the admissibility of the techniques involved in this strategy is 

logical semantics, not epistemology. On this explanation, possible definitions of 

“Hilbert’s finitism” in terms of epistemological or ontological primitives lead to wrong 

interpretations of Hilbert’s ideas. The wrong interpretations are usually implied by the 

restriction of the so-called big problem about the infinite to that the infinite does not 

obviously correspond to anything in reality.182 If the definition of the concept of finitism 

is restricted to a way out from the lack of correspondence between infinity and reality, 

then such restriction would lead to misunderstandings. Because, even though it is a part 

                                                 
182 Cf. Simpson 1988, p. 358. 
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of the problem of foundations to explain how the infinite can come about in actual (real) 

mathematics, this is not an epistemological concern, according to Hilbert. Its treatment 

should be accordingly. Otherwise the same mistakes that were made by mathematicians 

like Poincaré, Weyl and Brouwer would be made.183   

Hilbert’s nominalism was for the sake of eliminating “dubious or problematic 

modes of inference” from foundational studies.184 “Finitism” is the name he gave his 

strategy to cope with infinitistic operations in mathematical reasoning. The question here 

of what the so-called finitistic operations consist of is therefore a tricky one. Yet it should 

be clear that nothing relevant to Hilbert’s views can come out of it, if it is asked as an 

epistemological question concerning the admissibility of certain recursion techniques. 

Two well known attempts to explain finitism are due to Tait 1981 and Parsons 1998. Tait 

considers finitism to cover a minimal kind of reasoning presupposed by all reasoning 

about number.185 Parsons, on the other hand, argues that finitism determines the domain 

of intuitive evidence. Thereby, Parsons admits a basic intuition of finite objects.186 Both 

approaches try to give an account of epistemic primacy and certainty of finitist 

mathematical reasoning. From Hilbert’s point of view, such an enterprise is pointless. 

The problem is not how to come up with criteria for an epistemically safe beginning to 

mathematical reasoning. The criteria are needed rather for metalogical purposes. For the 

same reason, asking for example whether Hilbert’s “finitistic intuition” is the Kantian 

space-time intuition or it is something else, is a seriously misguided way of approaching 

                                                 
183 Cf. Hilbert 1928, p. 479. 
184 Hilbert 1924, p. 1139. 
185 Cf. Zach 2001, chapter 4. 
186 For a discussion of Tait’s and Parsons’ views, see Zach 2001, chapter 4. 
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the foundational problems. It is being neglected in such mode of questioning that the set 

of problems concerning finitism and quantification has to be detached from 

epistemological concerns. From Hilbert’s point of view, the solution of foundational 

problems cannot be dependent on any epistemological preferences.  

In logical theory and metamathematics no reference to finitude is necessary. We 

do not need to commit to the finitude of the domain of objects we are dealing with. The 

characterization of finitistic methods can be maintained entirely in terms of salvageable 

objects of mathematics187: 

 
If logical inference is to be certain, then … objects [of mathematics] must be capable of 
being completely surveyed in all their parts, and their presentation, their difference, their 
succession (like the objects themselves) must exist for us immediately intuitively as 
something that cannot be reduced to something else.188 

 

Now basic operations of elementary arithmetic are in principle finite and salvageable 

(surveyable). The infinitistic element, as Hilbert seems to have assumed, comes in when 

we use quantifiers. The central question here is: what kind of operations do we need to 

clear the quantifiers from committing to infinitistic assumptions (and salvage the entities 

that are quantified over)? Hilbert considered these operations to be what might be called 

finitistic operations. In his 1926 paper he states: 

 
…the modes of inference employing the infinite must be replaced generally by finite 
processes that have precisely the same results, that is, that permit us to carry out proofs 
along the same lines and to use the same methods of obtaining formulas and theorems.189 
 
                                                 
187 Here we find the word “salvageable” more in agreement with the game-theoretical meaning of 
quantifiers as choice functions than the word “surveyable”. 
188 Hilbert 1922, p. 202. 
189 Hilbert 1926, p. 370. 
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Hilbert’s aim here is to find out suitable operations that give the same results as those 

modes of reasoning which appear to have employed the actual infinite in mathematical 

reasoning. In this sense Hilbert’s aim does not involve any epistemologically restrictive 

(i.e. finitist) condition at all. In Kreisel’s way of saying: the eliminability of the 

infinitistic assumptions “is thought of as a fact (to be discovered), not a doctrinaire 

restriction”.190 The epistemologically problematic modes of reasoning concerning the 

infinite can be taken care of by applying logically unproblematic techniques, without 

making existence claims about any extra-logical (mathematical) entities, other than the 

ones that are immediately given to our intuitions. For that purpose, all one has to do is to 

search for logically admissible modes of reasoning that can replace the figure of speech 

of the apparent infinitism in mathematics. On this point Hilbert remarks sharply in his 

1926 paper; he, refers to a certain jargon in mathematics and says playfully:  

 
…if mathematics is to be rigorous, only a finite number of inferences is admissible in a 
proof—as if anyone had ever succeeded in carrying out an infinite number of them.191 
 

What is crucial to Hilbert’s purposes is contentual logical inference as he emphasizes in 

the same paper: 

 
Contentual logical inference is indispensable. It has deceived us only when we accepted 
arbitrary abstract notions, in particular those which infinitely many objects are subsumed. 
What we did, then, was merely to use contentual logical inference in an illegitimate 
way….  
 

The task is then to find out the legitimate operations of logical inference, to be used in 

                                                 
190 Kreisel 1976, p. 98. 
191 Hilbert 1926, p. 370. 
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handling mathematical notions which subsume infinitely many objects. These operations 

are provided, as has been seen, in IF logic by the game-theoretical interpretation of 

quantifiers (as choice functions). The way quantifiers operate in IF logical foundations of 

mathematics is elementary. They are practicable even if the domain of discourse is 

infinite. Semantic games are played without invoking any given infinite totalities, and 

hence are suitable for “finitistic” purposes in Hilbert’s sense. (See Chapter 18 for further 

considerations) In a sense, the quantified entities in mathematical reasoning are salvaged 

by means of the game-theoretical uses of quantifiers. 
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18. ELEMENTARY OPERATIONS 

It is usually tacitly assumed that the infinity of one’s universe of discourse makes the use 

of quantification non-elementary. As has been mentioned, partly Hilbert assumed it too. 

Nevertheless, he tried to overcome it by interpreting quantifiers as choice functions. It 

was clear to him that the so-called infinitary character of the semantics of quantifiers 

leaves unexplained how it is the case that quantifiers are used so easily in mathematical 

practice. The assumption in question concerning quantification into infinite domains 

relies on the view that in mathematics quantifiers are used as if they are ranging over a 

class of values.192 This might be a class of objects or a class of substitution instances. The 

difficulty with such view is the following: If the idea of “ranging over” is taken to 

exhaust the logic of quantifiers, any application of quantifiers to an infinite domain is 

received as to capture the range of infinite totalities. Thereby it encounters the 

impossibility of replacing infinitistic modes of inference by finite processes. In order to 

surpass this difficulty one has to detach the question of the infinity of the domain from 

the question whether the underlying reasoning is elementary.  

IF logic provides a viewpoint in which infinity of the domain of discourse does 

not affect the elementary character of the semantics of quantifiers.  In IF logic quantifiers 

are taken to operate as choice functions. Their application to infinite domains does not 

involve infinite operations.193 The game-theoretical truth condition for example does not 

presuppose infinite closed totalities. It says that a quantificational sentence S is true if and 

only if there exists a winning strategy for the initial verifier in the correlated semantical 

                                                 
192 Hintikka 2006, section 14.7. 
193 See further Hintikka 1996, and Hintikka and Sandu 1996    
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game G(S). This truth definition does not involve quantification over the domain. It 

involves rather quantification over the initial verifier’s strategies. Their totality is for sure 

dependent on the domain. But this totality is never invoked in the course of actually 

playing a semantical game.194 Here we might be tempted to think that quantifying over a 

set of strategies (strategy functions) presupposes this set as a closed totality. However, 

the apparent quantification over infinite sets of strategies (Skolem functions) is cashed in 

by reference to complexes of choices of particular objects, in IF logic.  

It might be objected that game-theoretical truth definition relies on quantification 

over higher-order entities too. That is to say, the truth of a sentence S means the existence 

of a winning strategy in the correlated game G(S) for the verifier. However, in asserting S 

one does not make an infinite choice. One merely asserts the existence of choice. Thereby 

no commitment to infinite operation is necessary. Infinite operations come about only in 

the non-elementary extensions of IF logic. 

Infinite operations come about only in the non-elementary extensions of IF logic. 

IF logic is distinguished from its non-elementary extension by virtue of its game-

theoretical semantics, as follows: Due to semantic independence of quantifiers in IF-

sentences their game-theoretical truth condition brings about indeterminacy of the 

existence of winning strategies in some semantical games. As was pointed out, this 

indeterminacy means a failure of the law of excluded middle, i.e. S being neither true nor 

false in the associated game G(S). As a result, the law of excluded middle holds only for 

sentences in the fragment of IF logic consisting of the ordinary first-order logic. For the 

                                                 
194 Cf. Hintikka 2006, section 14.7. 
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rest the law does not hold.195 Accordingly there are two negations with different uses in 

IF-logic: (i) the strong (dual) negation ~, (ii) the contradictory negation ¬. Recall that the 

contradictory negation expresses the non-existence of a winning strategy for the verifier 

in a semantical game. And it is not allowed inside the IF-sentences.  

 When the contradictory negation is allowed inside the IF-sentences, the 

elementary character of the logic is lost. Allowing more and more complex nested 

contradictory negations, as has been indicated in chapter 11, results in at the limit what 

might be called fully-extended IF logic.196 The properties of fully-extended IF logic can 

be studied by means of a generalized Skolem form. As also was indicated, a generalized 

IF sentence S, can be translated into its Skolem form. The resulting translation is an 

ordinary second-order sentence.197 In it arbitrary occurrences of the contradictory 

negation ¬ can be interpreted by means of nesting of infinite games, or equivalently, by 

repeated uses of a substitutional truth-condition.198 The resulting substitutional semantics, 

which allows application of the law of excluded middle, gives the non-elementary 

character of the resulting logic. As was indicated, this logic has the same expressive 

                                                 
195 Cf. Hintikka 1996. 
196 For more discussion on the fully extended IF logic, see Hintikka 2006. 
197 In such translation it is assumed that the strong negations ~ are pushed as deep into S as they can go. If 
an expression occurs within the scope of an occurrence of the contradictory negation ¬, but not within the 
scope of any ¬ in whose scope ¬1 does not also occur, we will say that the expression is in the immediate 

scope of ¬1. The translation rule says that any expression (∃x) F[x] in S is replaced by F[f(y1, y2,…)] where 

(Q1y1), (Q2y2), … are all the quantifiers in S on which (∃x) depends and f is a new function variable. At the 

same time the second-order quantifier (∃f) is inserted to follow immediately the contradictory negation sign 

¬ in whose immediate scope (∃x) F[x] occurs. If there is no such sign, (∃f) precedes the entire sentence S. 
Since ~ has been pushed into formulas as far as it goes, we have in the translation strong negations only in 
the combinations ~A and ¬~A, where A is atomic. In mathematics, we can assume that the law of excluded 
middle holds for atomic sentences. Hence ~A and ¬~A reduce to ¬A and A, respectively, and all strong 
negations are eliminated. 
198 This amounts to the same as treating them by using infinite games. See Hintikka 2006, sections 14.6–
14.8 
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power as the entire second-order logic (with standard interpretation).199 What this shows 

is, all classical second-order reasoning, and therefore, virtually all mathematical 

reasoning can be codified by means of quantifiers whose values are individuals. This is in 

keeping with Hilbert’s nominalistic attitude, in that it shows that all of mathematics can 

in principle be done on the first-order level. Higher-order entities are not quantified over. 

On this level mathematics can be described as the study of all possible configurations—

one might qualify these as combinatorial facts200—of particular objects.  

 Moreover, based on the substitutional interpretation of the unlimited use of ¬ in 

IF sentences the expressive power of second-order logic comes not from the use of 

quantification over predicates, but from the use of unrestricted law of excluded middle. 

Therefore, what makes the crucial difference between first-order and higher-order is not 

the ontological (i.e. type-theoretical) status of the entities quantified over. The difference 

comes from how freely the law of excluded middle is being applied.201 The elementary 

character of IF logic is thus shown by the way it avoids the deceits of the law of excluded 

middle, infinite semantical games, (and substitutional interpretation of quantifiers) and 

higher-order quantifiers.  

                                                 
199 Cf. Väänänen 2001 and Hintikka 2006. Note that unrestricted second-order logic is more than 
sufficiently strong for coding the entire classical mathematics. See further Shapiro 1985. 
200 Cf. Kreisel 1983. 
201 Cf. Hintikka 2006, pp. 212-213. 
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19. FIRST-ORDER SET THEORY 

To a considerable extent IF logic removes the problem of infinitistic assumptions from 

quantification theory. And in its fully extended form it can replace first-order axiomatic 

set theory.202 So first-order axiomatic set theory is dispensable in the logical foundations 

of mathematics. On the other hand, ordinary first-order logic should not serve as the basic 

logic for the axiomatization of set theory. The reason is that admittedly there are 

(ordinary) first-order set-theoretically true sentences which do not have Skolem 

functions.203 When Skolem functions are considered to be truth-makers this is a serious 

problem.  

 In order to see the problem, following Hintikka’s analysis of truth in set theory204, 

the following observations can be made: Let AX be some first-order axiomatic set theory. 

Suppose elementary arithmetic and the syntax of AX itself can be formulated in AX. 

Also suppose ςκ(x) (structurally) describes the sentence SK that asserts the existence of a 

full array of Skolem functions for sentence S, as a function of the Gödel number x of S. 

(In the same sense, we can call Ssk(x) as a function of Gödel number x of S.) Here ς(x) is 

S and ςκ(x) is SK, but expressed with their syntactic dependence on Gödel numbers. 

Then we can form a truth-definition for AX-sentences in AX itself: 

 

(1) (∀x) (T(x) ↔ ςκ(x)) 

 

                                                 
202 Cf. Hintikka 2004 and 2006. 
203 Cf. Hintikka forthcoming. 
204 For a detailed treatment of how truth and quantifiers should be studied from the IF logic perespective, 
see Hintikka forthcoming. 
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Here ςκ(x) is a translation of ςsk(x) from second-order language into first-order set-

theoretical language. Since it expresses the existence of Skolem functions this can be 

done. Now, (1) says that a set-theoretical sentence is true if and only if its Skolem 

functions exist. But this cannot serve as a truth definition here, due to Tarski’s 

undefinability theorem. The following question arises: Is ςκ(x) a genuine truth predicate?  

 Now, if T(x) in (1) is really a set-theoretical truth predicate then (1) will be false. 

Since Ssk  ⊃ S can be proved in set theory, (1) must be false. This is enough to show the 

existence of set-theoretical truths which do not have Skolem functions. When Skolem 

functions are considered as to give the truth conditions of mathematical statements in a 

logical axiomatization, the conclusion of the above argument is that first-order axiomatic 

set theory cannot serve as a foundation of mathematics. IF logic is based on the idea that 

quantifiers are choice functions and those functions provide the truth conditions of the 

logical sentences. Hence from the IF perspective there has to be a way out from set-

theoretical foundations.205 

 The above considerations about first-order axiomatizations of set theory are 

closely related to the so-called Skolem paradox implied by the Löwenheim-Skolem 

theorem: If the axioms of a (first-order) set theory have a model, then they have a 

countable model.206 From this the following question arises: How can, for example, the 

power set of an infinite set (uncountable by definition) belong to a countable model? 

Expectedly, from Hilbert’s optimistic point of view the so-called paradox here cannot be 

                                                 
205 This observation was made and the point was emphasized by Hintikka 1996, where Hintikka calls first-
order axiomatic set theory Fraenkelstein’s monster. 
206 Cf. Skolem 1962, § 11. 
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a serious problem for the working mathematician. One suitable resolution is by way of 

the introduction of ideal elements: Let M be a countable model for an ordinary first-order 

set theory. In this theory one can prove that there is no bijection from the set of real 

numbers into the set of natural numbers. On the other hand, let M(R) and M(N) be 

countable models for the real and natural numbers respectively. Then there must be a 

bijection from M(R) into M(N). Now, we can say that there is no bijection from M(R) 

into M(N) defined in the domain of M. That is, there is no Skolem function for certain 

truths in M. On this point we can also say that the existence of a function which links 

M(R) and M(N) one-to-one can be given in an extended model ExtM. In M no such 

bijection is found. But in ExtM such a function can in principle be defined.207 However, 

such domain extension cannot provide a firm foundation in Hilbert’s combinatorial and 

model-theoretical sense. First of all it does not reach up to the standard interpretation of 

the set-theoretical universe. Skolem interprets this fact as to imply what might be called a 

set-theoreical relativism.208 It provides at most a model-theoretically (descriptively) 

incomplete characterization. In other words, the domain extension by using an ExtM 

cannot provide a conclusive justification of the use of ideal elements and higher-order 

modes of reasoning that are allowed therein by way of extending the initial domain. From 

Hilbert’s point of view a logical reconstruction of the higher-order modes of reasoning in 

such domain extension and hence a justification of the use of ideal elements by reference 

to the initial model M is needed. Such reconstruction, as has been seen, is possible by 

                                                 
207 In fact this argument was part of Zermelo’s response to Skolem’s criticisms in the 1920s. See further 
Kanamori 2004. 
208 See Skolem 1962, § 11. 
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means of the resources of IF logic. IF logic can cope with higher-order reasoning on the 

first-order level. So from a Hilbertian point of view, the right approach in the logical 

axiomatization of mathematical theories can dispense with the use of ordinary first-order 

set theory and replace it by the fully extended IF logic.  

 As was pointed out fully extended IF logic is strong enough to replace second-

order logic and hence axiomatic set theory. Hence set theory is dispensable as a 

foundation. This has no claim to weaken abstract set theory as a mathematical study of 

infinite structures. It only shows that the alternative idea of using choice functions as 

truth-makers can replace set-theoretical modes of reasoning in axiomatizations. 

Therefore, Hilbert’s first-order view and nominalism is vindicated by IF logic in the 

sense that set-theoretical foundations of mathematics can be dispensed with, by means of 

a first-order level reconstruction of the apparently higher-order modes of reasoning.209 

Hilbert’s aroused aim was not in any sense to dispense with set theory perhaps. But his 

aim was to investigate the extent that set-theoretical reasoning (just like other modes of 

mathematical reasoning) can be reconstructed on the first-order logical level. And as has 

been seen above IF logic provides such a reconstruction on Hilbertian line of thought, 

without appealing to problematic techniques of set theoretical reasoning. 

                                                 
209 Cf. Hintikka 1997. 
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20. THE AXIOM OF CHOICE 

The justification of the axiom of choice, which has been one of the primary debated 

issues in the foundations of mathematics, is a part of Hilbert’s proposal to reconstruct the 

apparently higher-order modes of reasoning on the combinatorial (first-order) level. 

Indeed, Hilbert states his belief that the mode of inference underlying the axiom of choice 

was a logical principle: 

 
…the essential thought underlying the principle of choice is a general logical principle 
which is necessary and indispensable even for the most elementary rudiments of 
mathematical inference.210 

 

Also in his 1922 paper Hilbert says that it must be possible to formulate the axiom of 

choice in such a way that it becomes as obvious as 2 + 2 = 4.211 

As was indicated in Chapter 11, Hilbert recognized the close interrelation between 

quantifiers and choice functions. In fact he realized that the basic idea underlying the 

axiom of choice and quantification was one and the same. For example, Hilbert 

introduced his epsilon technique in order to capture the usual instatiation rules and the so-

called axiom of choice. In the epsilon technique, an epsilon term εxA(x) stands for an 

individual x of which A(x) holds (if there are such individuals). And the logical axiom 

A(x) ⊃ A(ε(A)) contains according to Hilbert “the core of…the axiom of choice”.212      

 Hilbert’s aim to treat the axiom of choice and quantification in tandem has its 

roots in Hilbert’s 1923 lectures. There he points out the close connection and his 

                                                 
210 Hilbert 1923, par. 4 
211 Hilbert 1922, par. 1 
212 Hilbert 1925, p. 382. One must note here that it is missing in Hilbert’s axiom what the choice in 
question depends on. So it does not actually cover the core of the axiom of choice. 
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proposed solution (i.e. the epsilon technique) to the problems arising from quantification 

and choice: 

 
We have not yet addressed the question of the applicability of these concepts [“all” and 
“there is”] to infinite totalities. …The objections…are directed against the choice 
principle. But they should likewise be directed against “all” and “there is” which are 
based on the same basic idea.213 
  

In line with his aim concerning the axiom of choice, Hilbert’s main concern seems to 

have been to point out the need for a logic which is based on the same basic idea as the 

axiom of choice. In that sense the status of the axiom of choice is the paradigm case for 

Hilbertian foundations of mathematics.  

 As was mentioned Hilbert’s approval of Zermelo’s work was on the practical 

level and for the proper (mathematical) development of set theory. On the other hand 

there were problems concerning the logical foundations of the apparently set theoretical 

modes of reasoning and principles, which occupied Hilbert for his further foundational 

work through the following years. The status of the axiom of choice for the foundations 

of mathematics was one of those problems. It has to be reconstructed on the 

combinatorial (first-order) level. 

 When Zermelo introduced his axiom of choice in his 1904 and 1908 papers he 

argued that it was a self-evident and practically very fruitful principle. Zermelo’s 

approach opened a debate on whether his axiom was mathematically acceptable. In the 

original formulation of the axiom of choice, Zermelo assumed that given a set of non-

empty sets there is a function that takes each of the non-empty sets to one of its 

                                                 
213 Quoted in Zach 2001, pp. 70-71. 
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elements.214 The problem with this assumption according to the critics of Zermelo was 

that it was not determinate whether the outcome of the choice operation could be made 

out to accord with a finite definition (or a rule).215 Thereof Zermelo’s assumption was too 

strong, according to his critics. For example, Lebesgue raised the question: 

 
How can Zermelo be certain that in the different parts of his argument he is always 
speaking of the same choice of distinguished elements, since he characterizes them in no 
way?216 
 
 
On similar lines, Borel’s main argument against Zermelo’s assumption was based on 

considerations of reasoning about arbitrary choices: 

 
[Zermelo’s assumption] seems to me no better grounded than the following: ‘To well-
order a set M, it suffices to choose arbitrarily an element to which one assigns the rank 1, 
then another to which one assigns rank 2, and so on transfinitely, that is, until one has 
exhausted all the elements of M by the sequence of transfinite numbers.’ Now, no 
mathematician could regard this latter reasoning as valid. It seems to me that the 
objection that one can raise against it apply equally well against any reasoning where one 
supposes an arbitrary choice to be made a non-denumerable infinity of times….217 
 

Accordingly, Borel claimed that Zermelo’s axiom might be acceptable only if its 

application is restricted to countable domains. Similarly, Peano, who pointed out that the 

                                                 
214 Zermelo 1904, p. 184. 
215 In the original formulation of the axiom of choice, Zermelo assumed that given a set of non-empty sets 
there is a function that takes each of the non-empty sets to one of its elements. (Zermelo 1904, p. 184) It 
can be noted at this point that Lebesgue’s question is answered by the use of Skolem functions in logical 
notation. 
216 Borel 1905b, 1086. (Here notice that Lebesgue’s question is answered by the use of Skolem functions in 
logical notation.) 
217 Borel 1905a, pp. 1076-1077. 
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axiom of choice did not follow from logical principles, claimed that it had no place in 

mathematics.218 

 Zermelo’s ultimate response to criticisms was a practical resolution: 

 
Such an extensive use of a principle can be explained only by its self-evidence, which, of 
course, must not be confused with its provability. No matter if this self-evidence is to a 
certain degree subjective, even if it is not a tool of mathematical proofs, and Peano’s 
assertion that it has nothing to do with mathematics fails to do justice to manifest facts.219 
  

Zermelo further pointed out that the equivalents of his axiom were indispensably used by 

different mathematicians.220 

 Hilbert’s approach to the subject was logically speaking more perceptive than 

Zermelo’s. It was also a response to the objections. Hilbert believed that from a suitable 

point of view the reasoning behind Zermelo’s axiom of choice could be justified. In fact 

he thought that it was closely related to the problems with applications of quantifiers to 

infinite domains: 

 
The objections … are directed against the choice principle. But they should likewise be 
directed against “all” and “there is”, which are based on the same basic idea.221 
 

Hilbert tried to give the axiom of choice (as well as to the application of quantifiers) a 

firm footing by the “logical ε-axiom”222: 

 

(1) A(x) ⊃ A(ε(A)) 

                                                 
218 Cf. Kennedy 1973, chapter XVIII 
219 Zermelo 1908, p. 187. 
220 See Zermelo 1908 and Moore 1982 for examples and further discussion. 
221 Hilbert’s and Bernays’ 1923 lectures. Zach’s translation; cf. Zach 2001, pp. 70-71. 
222 See Hilbert 1926, Hilbert 1928, and Hilbert and Bernays 1934-39. 
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Hilbert put the ε-function (or strictly, ε-functional) to use for different purposes. His main 

goal was to use it in consistency proofs. By its means he defined universal and existential 

quantifiers: 

 

(2) (∀x) A(x) ↔ A(ε(¬A)) 

(3) (∃x) A(x) ↔ A(ε(A)) 

 

On this basis Hilbert formulated universal instantiation, and the law of excluded middle 

(as a quantifier rule):  

 

(4) (∀x) A(x) ⊃ A(x) 

(5) ¬ (∀x) A(x) ⊃   (∃x) ¬ A(x) 

 

The ε-function could also serve to pick witness individuals for those propositions which 

hold for one and only one individual. If A(x) is one such proposition, then there obtains 

 

(6) x = ε(A) 
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Most notably the ε-function could take the role of a choice function.223 In case A(x) holds 

for more than one object, ε(A) is one of those objects x of which A(x) holds. This is 

where Hilbert’s logical ε-axiom was intended to cover the main idea behind the axiom of 

choice. At the same time it was also a tool for instantiation in the sense that the value of a 

ε-function for a predicate A is an individual for which A holds (if it holds for any).224 

 Here, based on Hilbert’s epsilon definition of the existential quantifier (viz. (3) 

above) the following can be stated: 

 

(7) (∀x)(∃y) A(x, y) ⊃ (∀x) A(x, ε(A(x, y))) 

 

Here (7) can be read as to capture a nominalistic formulation of the axiom of choice, 

since it asserts a choice from any given domain {y: A(x, y)}, where ε(A(x, y)) designates 

the (arbitrarily) chosen individual. 

 The problem with Hilbert’s epsilon calculus is that it assumes (in its day) that 

ordinary first-order logic is the basic logic. (The definition of quantifiers and instantiation 

rules are given by Hilbert for the ordinary (Hilbert-Ackermann) first-order logic.)225 

More specifically, it assumes that an epsilon term depends on all the outside universal 

quantifiers; since an epsilon term does not indicate what it formally depends on. Because 

of this assumption epsilon functions, although they seem to capture the intended force of 

the axiom of choice in meaning, they cannot serve its intended purpose as the paradigm 

                                                 
223 This is not completely true though; for it is not indicated in the epsilon term what the choice is based on. 
224 Cf. Hilbert and Bernays 1939, p. 12. 
225 See Hilbert 1926 and 1928. 
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case for developing a combinatorial interpretation of quantification theory that Hilbert 

seems to have aimed at. 

 Practically, Hilbert put his epsilon technique in use for several aims, including: 

formulating the axiom of choice as a logical principle, explaining applications of the 

quantifiers, and proving the consistency of mathematical theories. The fundamental idea 

of the epsilon technique for consistency proofs is to make use of epsilon functions in 

producing quantifier-free true formulas. Any consistency proof has to include a proof that 

each such quantifier-free formula is correct: 

 
In proving consistency for the ε-function the point is to show that from a given proof of 0 
≠ 0 the ε-function can be eliminated, in the sense that the arrays formed by means of it 
can be replaced by numerals in such a way that the formulas resulting from the logical 
axiom of choice by substitution, “the critical formulas”, go over into “true” formulas in 
virtue of these replacements.226 
 

Given a mathematical proof formulated in the epsilon calculus, each epsilon term 

occurring in the proof is assigned a numerical value. The aim of this procedure is to 

transform all the uses of epsilon axioms (as well as the axioms of AX of the theory in 

question) into quantifier-free formulas in finitely many steps. Since epsilon-terms are 

used in a proof finitely many times, this must have seemed to Hilbert to be possible. 

 However, values that are assigned to different epsilon terms depend on each other 

due to the nested structure of epsilon terms in some formulas. Since in the usual notation 

of first-order logic scopes are nested, quantifier dependence is eventually packed into 

epsilon dependence and it creates difficulties in assigning numerical terms for nested 

                                                 
226 Hilbert 1928, p. 477. 
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terms. For example, the values that we assign to the inner epsilon terms might necessitate 

changes in the previous assignments. Later assignments might turn the correct formulas 

into incorrect formulas. Thereby the nested structure of the assignment process might 

divide into branches (and loops on the branches) so that the substitution procedure might 

never come to an end. 

In any case, due to Gödel’s second incompleteness result we cannot reach true 

(numerically correct) formulas by means of the epsilon technique. For if we could, then 

this would give us a consistency proof for the axioms of number theory; since the 

theorems of number theory would then also be numerically correct.  Such a consistency 

proof (assuming that the underlying logic is the ordinary first-order logic) is impossible 

to carry out. Therefore, Hilbert’s epsilon calculus cannot serve its intended purpose. 

 One can follow a similar line of thought to Hilbert’s epsilon technique, in second-

order logic too. Since the job of the epsilon functions can be done by Skolem functions as 

well. One can start with the general observation that for each choice value x a natural 

number y can be found such that y is correlated in some way to x: 

 

(8) (∀x) (∃y) A(x,y) 

 

This can be taken here as to imply the existence of a function f such that for every x, f 

produces a term out of x. Thereby one can obtain a second-order form of the axiom of 

choice:  
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(9) (∀x) (∃y) A(x,y) ⊃ (∃f) (∀x) A(x,f(x)) 

 

which is a second-order logically valid formula. In fact, it is also the same general 

formulation of the axiom of choice as in Hilbert and Bernays 1934.227  

 The same line of thought can be even traced back to operating (only) with first-

order quantifiers. If we allow functional instantiation in (8) and write: 

 

(10) (∀x) A(x, f(x)) 

 

The step from (8) to (10) is enough in principle to capture Hilbert’s main idea in putting 

epsilon functions in use. Just like Hilbert’s epsilon function, any arbitrary function-name 

can be considered as to pick (ideally) an individual from a given domain. 

 In IF logic (and hence on the first-order level) it can be shown that such principle 

is in fact logically true. In the second-order formulation of a general choice principle such 

as (9) the existentially quantified function f can be cashed in by independent choices of 

individuals. That is, the second-order sentence (∃f) (∀x) A(x,f(x)) is translated to 

 

(11) (∀x1)(∀x2)(∃y1/∀x2)(∃y2/∀x1)(((x1=x2) ⊃ (y1=y2)) & A[x1,y1] & A[x2,y2]) 

 

Here if we use Skolem functions (11) is equivalent with: 

 

                                                 
227 Hilbert and Bernays 1934, p. 41 
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(12) (∃f1)(∃f2)(∀x1)(∀x2) (((x1=x2) ⊃ f1(x1) = f2(x2)) ⊃ A(x1, f1(x1)) & A(x2, f2(x2))) 

 

Thereby the choices which are expressed by Skolem functions in (12) are reduced to 

suitable operations by means of quantifiers and their dependency relations. Then we have 

the following IF formulation of the axiom of choice: 

 

(13) (∀x) (∃y) A(x,y) ⊃ (∀x1)(∀x2)(∃y1/∀x2)(∃y2/∀x1)(((x1=x2) ⊃ (y1=y2)) &  

A[x1,y1] & A[x2,y2]) 

 

What has been achieved in (13) is the conclusion that the way quantifiers operate on the 

first-order level provides a suitable framework, as Hilbert seems to have thought, to place 

the reasoning behind the axiom of choice in its appropriate logical context. Thereof the 

apparently second-order reasoning behind the axiom of choice is translated to 

(combinatorial) first-order reasoning. To that extent Hilbert’s aim to show that Zermelo’s 

axiom of choice is as a logical truth can be thus achieved, although by a technique 

different from his. 

 In fact this result is the paradigm case for IF logic as much as it seems to have 

been for Hilbert’s theory of quantification. The reason is that the existence of Skolem 

functions is dependent on the status of the axiom of choice. The argument that has been 

carried out shows that quantification and the axiom of choice are really based on the 

same basic idea, as Hilbert expressed.  
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21. THE LAW OF EXCLUDED MIDDLE 

Hilbert’s nominalism and his reasons for putting the epsilon calculus to use were for the 

sake of giving a combinatorial account of mathematical proofs. He wanted to construe all 

mathematical reasoning as concrete (algebraic) manipulation on the first-order level. 

However, such manipulations are not possible in ordinary first-order logic, which 

assumes the law of excluded middle. This can be explained by means of the applications 

of the tableau method to ordinary first-order reasoning. In a tableau proof (in the sense of 

Beth 1955) everything on the left side of the tableau is assumed to be given (known). 

Everything on the right side is assumed (for the sake of the argument) to be false. Hence 

the introduction of new individuals into the argument on the left means simply 

introducing an example of individuals known to exist. But the mirror-image instantiation 

on the right side means introducing an individual that only exists on the assumption that 

the desired conclusion is false — which is known to be not the case. Hence such a step 

cannot be interpreted as a concrete operation on the given objects. The problem here is 

due to the use of the law of excluded middle as the source of the need of the right side in 

a tableau proof. Assuming the ordinary first-order logic as basic, Hilbert’s approach is 

subject to Brouwer’s intuitionist criticism of the law of excluded middle. 

Brouwer introduced his intuitionistic approach to the foundations of mathematics 

in his 1907 dissertation. He defended what might be called an intuitive genesis of 

mathematical objects and criticized different classical approaches to the foundations of 

mathematics. The targets of Brouwer’s criticisms were including Hilbert’s axiomatic 

approach and his early consistency program (mainly Hilbert 1900 and 1905). In his 1908 
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paper Brouwer argued against the unlimited applications of the law of excluded middle in 

mathematical proofs and rejected the law on intuitionistic grounds. In 1912 he began 

criticizing what he called the formalist approach with a stronger voice. Brouwer’s views 

were recognized as truly revolutionary in some mathematical circles. Based on the 

criticism of the law of excluded middle—plus some epistemological presuppositions228—

he and his followers (most notably Weyl) rejected a significant portion of classical 

mathematics in favor of intuitionistic mathematics. This was more than enough to 

disquiet Hilbert, who argued from the beginning that classical mathematics was on safe 

ground and this could be proved by his foundational program.  

The status of the law of excluded middle as a problem concerning the 

admissibility of logical operations has a central role in the Hilbert-Brouwer controversy. 

Brouwer’s rejection of several important results in classical mathematics was based on 

his criticism of the law of excluded middle. On the other hand, Hilbert tried to show 

through his consistency program that no restriction to our logic was necessary. According 

to him classical results were on safe ground. 

Some of the combinatorial aspects— that Brouwer’s criticism illuminates—of the 

problems with the unlimited use of the law of excluded middle can be outlined as 

follows: To prove, for example, whether a mathematical statement in the logical form  

 

(1) (∀x)(∃y) A[x, y] 

 

                                                 
228 See van Dalen 2000 for an introduction to Brouwer’s intuitionistic ideas. 
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is a theorem, it is tempting to assume, by appealing to the law of excluded middle, that  

 

(2) (∀x)(∃y) A[x, y] ∨ (∃x)(∀y) ¬A[x, y]. 

 

Then we could prove (1) by refuting the second disjunct of (2). Separating the cases as in 

(2), nevertheless is for the intuitionist, too strong an assumption to begin with, for we 

might still not have sufficient given information about A, for a procedure of finding y on 

the basis of x in (1). The problem is how to keep the application of the law of excluded 

middle on the concrete level of reasoning. Hence values to consider for x and y must be 

accessible by means of concretely admissible procedures. 

Now, according to Brouwer, every mathematical assertion that is considered to be 

a finitely-bounded possible mathematical construction can be “judged” whether correct or 

incorrect. Therefore, there is no problem for Brouwer with the application of the law of 

excluded middle for such constructions. However, for properties for which there is no 

known way of finding out whether a mathematical object can have that property 

(assuming that for some objects the property is known to hold) the law of excluded 

middle is not applicable. 

 Along these lines, the law of excluded middle cannot be taken as to have 

unproblematic application over (intuitionistically) problematic entities. Brouwer in his 

Cambridge Lectures considers the decimal expansion of π to provide an example for his 

thesis. He asks whether there can be found a natural number x such that in the decimal 

expansion of π the digits x, x + 1, x + 2 … x + 8, x + 9 are identical with 0, 1, 2, …, 8, 9. 
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Brouwer claims that on intuitionistic grounds there is no method to decide this. Hence 

there is neither a positive nor a negative solution of the problem according to Brouwer. 

Therefore, the law of excluded middle fails and the statement that “…in the decimal 

expansion of π a sequence 0123456789 either does or does not occur” has no 

mathematical sense”.229 

Brouwer’s rejection of several important results in classical mathematics was 

based on his criticism of the law of excluded middle. For him the law of excluded middle 

was a dogma that has its origin in finite mathematics and applied to infinite domains 

without justification: 

 
[It has its] origin in the practice of first abstracting the system of classical logic from the 
mathematics of subsets of a definite set, and then attributing to this system an a priori 
existence independent of mathematics, and finally applying it wrongly—on the basis of 
its reputed a priori nature—to the mathematics of the infinite sets.230  

 

From Hilbert’s point of view there is no good reason to follow Brouwer’s line of thought. 

Instead one should try to show through consistency proofs that no restriction to the 

classical mathematical reasoning is necessary.231 Hilbert formulated the law of excluded 

middle as a consequence of his logical ε-axiom. This was his way to avoid its unrestricted 

use in proof theory. However, as was pointed out, Hilbert’s epsilon calculus cannot fulfill 

its purposes. 

                                                 
229 van Dalen 1981, p. 6 
230 Brouwer 1921, p. 27. 
231 Brouwer’s investigation of the genesis of mathematical reasoning could have no mathematical 
significance for Hilbert. Brouwer was pushing it too far the informal inquiry concerning the foundations of 
a formal discipline like mathematics. Thereby he was confusing the job description of a mathematician 
with that of a philosopher. Therefore, from Hilbert’s point of view, Brouwer’s claims cannot be taken as a 
foundation for mathematics. Let alone a restriction to mathematical methods. Hilbert’s axiomatic approach 
was strictly anti-intuitionistic in that sense. 
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On Brouwer’s side, the efforts were made not for a justification of the law of 

excluded middle of course, but in order to avoid its wrong way of applications in 

mathematical reasoning. For example, in Brouwer’s 1923 paper it is argued that “the 

principle that for every system the correctness of a property follows from the 

impossibility of the impossibility of this property” does not hold in every application.232 

Being faithful to his own philosophical views concerning the uselessness of logical 

symbolism, Brouwer did not appeal to symbolization in his argument. However, his 

paper opened up further possibilities for the interpretation of the so-called logic of 

intuitionism.233 Brouwer approved Heyting’s work as the authoritative account of what 

might be called intuitionistic logic.234 Heyting in his 1930a and 1930b papers introduced 

the basics of intuitionistic logic and gave the list of formal rules of it.  

 According to Heyting 1930a, the intuitionistic conception of assertion is different 

from the classical conception. It is different in the sense that the classical assertion of a 

proposition corresponds to a semantic situation whereas the intuitionistic conception 

corresponds to an epistemic situation. For example, when we assert A, in the classical 

conception it has to do with whether A is true. For the intuitionist it has to do whether it 

is known to us how to prove A.235 The intuitionist then, according to Heyting, take truth 

claims that are independent of our knowledge to be mathematically dubious.236 This is 

usually taken to mean that in intuitionistic mathematics only provable propositions are 

                                                 
232 Brouwer 1923, p. 335. 
233 For Brouwer 1923 and some important contributions to the debate, see Mancosu 1998, part IV. 
234 Mancosu and van Stigt 1998, p. 277. 
235 Heyting 1930a, p. 307.  
236 Heyting 1974, p. 87. 
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truths.237  

 It is misleading to assume however that in Brouwerian intuitionism only provable 

propositions are truths. Brouwer in his 1954 corrigenda to Brouwer 1923 distinguishes 

between “testing” and “judging” mathematical assertions. The former corresponds to 

showing the contradictoriness or uncontradictoriness of an assertion. The latter 

corresponds to showing the presence or the absurdity of an entity. In the logical 

framework Brouwer’s distinction has to be taken into consideration as a distinction 

between two different notions of mathematical truth.238 It would simply be dismissive of 

the intended distinction to consider testing and judging both as proving. 

Equating truth and provability would be misleading also for the following reason: 

The real gist of the problematic applications of the law of excluded middle (according to 

Brouwer) lies in our knowledge of combinatorial matters, not in merely whether A or ¬A 

can be proved. The main concern for the intuitionist is what we know and what we do not 

know about the existence of certain mathematical entities. If we partly adopt Heyting’s 

wording, asserting the existence of certain mathematical entities, which are considered to 

be independent of our knowledge is intuitionistically problematic.  

 An intuitionist has to be careful in interpreting the meaning of quantifiers and 

connectives. Quantifiers operating as choice functions might already involve non-

intuitionistic elements (as Hilbert also pointed out; see the relevant quotation in chapter 

20). What this shows is that an enriched treatment of the logic that was postulated by 

Heyting is needed in order to capture the different ways of finding out and distinguishing 

                                                 
237 Cf. Artemov and Beklemishev 2004. 
238 Cf. Brouwer 1923, § 1 and p. 341. 
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intuitionistically true propositions of mathematics. There is no guarantee that 

approaching only the formal axiom schema critically from an intuitionistic perspective 

will provide the correct logical resources for intuitionistic purposes. The meaning of 

quantifiers and connectives has to be reexamined. 

Although the key role of the law of excluded middle was recognized both by the 

intuitionists and by Hilbert, its precise role seems to have been not fully understood. It is 

not clear that the precise limitations that Brouwer intended have been captured by any 

explicit logical formulation. On the other hand, Hilbert did not give a full satisfactory 

justification for the unproblematic uses of the law in mathematics.  

The status of the law of excluded middle in IF logic, however, seems to clarify 

many points in the Hilbert-Brouwer disagreement. The law of excluded middle plays a 

key role in proceeding from (elementary) IF logic to its non-elementary extensions. This 

turns out to be fitting into Brouwer’s diagnosis. That is, the source of the non-elementary 

character of classical mathematics is in the unrestricted use of the law of excluded 

middle. This point illustrates where the borderline goes between elementary and non-

elementary methods in the foundations of mathematics.  

 On the other hand, recognizing the borderline clarifies conceptually what was 

wrong with the logic that Heyting formulated for intuitionistic purposes in 1930. It was 

shown independently by Gentzen 1933 and Gödel 1933 that classical first-order 

arithmetic could be reduced to Heyting arithmetic. Hence the following question arises: 

Is Heyting’s intuitionistic arithmetic really deductively weaker than the classical one? If 

not, what type of non-intuitionistic elements might have survived in Heyting’s 



 

 

132

 

intuitionistic logic? The borderline that was drawn between IF logic and its non-

elementary extensions shows that whatever nonintuitionistic resources were allowed 

unnoticed in Heyting’s axioms, they have to do with the different meanings of finding out 

the truth value of a mathematical assertion. Given an interpreted first-order sentence, 

finding out its truth value may mean two different things: (i) It may mean to find out the 

witness individuals that make the sentence true. (ii) It may mean to find out the (Skolem) 

functions that guarantee the success of the procedure in (i).239 It is not immediately clear 

whether this distinction amounts to making a similar distinction to that of Brouwer 

between testing and judging. Yet both distinctions are intended partly to clarify logically 

the combinatorial situation in different applications of quantifiers and connectives as well 

as the law of excluded middle. The distinction between (i) and (ii) is a direct consequence 

of the interpretation of quantifiers as choice functions. The intuitionist objections as 

Hilbert suggested must be to the meaning of quantifiers, not to the axiom of choice, for 

example.240 Accordingly, criticisms of the law of excluded middle have to be 

reconsidered. 

A formal comparison between extended IF logic and Heyting’s intuitionistic logic 

supports this point. On the propositional level, the two logics share the same modal 

structure, viz. S4.241 On the other hand, IF logic where the law of excluded middle is 

dispensed with is deductively weaker than Heyting’s logic. It can be considered as more 

                                                 
239 Cf. Hintikka 1998, pp. 334-335, and Hintikka 1996 Chapter 2.  
240 Cf. Zach 2001, pp. 70-71 
241 This is seen from the fact that extended IF logic is a Boolean algebra with an operator in the sense of 
Jonsson and Tarski 1951-52. See further Hintikka 2004. 
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faithful to Brouwer’s ideas. Therefore, Hilbert’s combinatorial approach to proof analysis 

can be carried out without being subject to Brouwer’s criticisms. 

Hilbert’s preference of combinatorial methods was not merely for avoiding the 

criticisms; above all, it was to be able to understand the actual process of our 

mathematical reasoning: 

 
The fundamental idea of my proof theory is none other than to describe the activity of our 
understanding, to make a protocol of the rules according to which our thinking actually 
proceeds.242 
 

In search for such a protocol, one of the key problems was to understand the role of 

negation in logical and mathematical reasoning: 

 
It is one of the most important tasks of proof theory to present clearly the sense and 
admissibility of negation: negation is a formal process, by means of which, from a 
statement S, another arises, which is bound to S by the axioms of negation mentioned 
above (essentially, the principle of contradiction and tertium non datur).  
 
 
This point, viz. the connection between negation and the law of excluded middle and the 

law of contradiction has to be considered critically. On this point negation is to be 

considered as an ideal process and not a real one in mathematical reasoning:  

 
The process of negation is a necessary means of theoretical investigation; its 
unconditional application first makes possible the completeness and closure of logic. But 
in general the statement arises through negation is an ideal statement, and to take this 
ideal statement as being in itself a real statement would be to misunderstand the nature 
and essence of thought.243 
 

                                                 
242 Hilbert 1928, p. 475. 
243 Hilbert 1930, par. 38. 
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This line of thought is carried out in Hilbert and Bernays 1934. There Hilbert and 

Bernays state that for elementary statements either the statement itself or its negation is 

correct, since their value can be determined by “intuitive finding”.244 What about 

negation of universal and existential statements? Consider, for example: 

 

(3) ∼(∃x) A(x) 

 

It means that one has no object available for indicating that it is A. For Hilbert and 

Bernays it has no objective meaning due to its “epistemological” condition, which has to 

be avoided anyway. Accordingly, one can say that an object cannot have the property A. 

This kind of move gives more to the meaning of negation, by adding the modality 

“cannot”. Thereof Hilbert and Bernays consider it to bring in a “sharpened” negation. In 

this regard it is not considered any longer as the contradictory negation of an existential 

statement. The existential statement 

 

(4) (∃x) A(x) 

 

amounts to saying that an object is obtainable by means of a (search) procedure. It 

follows from this that (3) and (4) signify different procedures. And since ∼ is taken to be 

the sharpened negation (and not the contradictory one), the law of excluded middle fails 

in Hilbert and Bernays’ approach. 

                                                 
244 Hilbert and Bernays 1934, § 2 
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 Hilbert and Bernays consider the failure of the law of excluded middle by 

distinguishing between the applications of the sharpened negation, namely, in finite and 

infinite domains. Here the difference of Hilbert and Bernays’ approach and the IF logic 

approach is the following: From the IF logical point of view, Hilbert and Bernays were 

right in distinguishing between two negations (contradictory and sharpened negations; 

just like the contradictory and strong negation of IF logic). Game-theoretical 

interpretation of quantifiers in the IF logic shows that different applications of negation 

have to do rather with the notion of quantifier dependence, not with the finiteness or 

infinity of the domain of discourse. The game-theoretical interpretation of quantifiers 

keeps the law of excluded middle out of the ways in which quantifiers operate. Thereby 

the different uses of the two negations are sharply separated. 

The situation changes when the law of excluded middle is applied without 

restrictions to logical analysis of mathematical proofs. If mathematical proofs are 

analyzed by using (fully extended) IF formalizations, where and how the law of excluded 

middle enters in the mathematical reasoning would be one central aspect of such analysis. 

In ordinary first-order logic, the law of excluded middle enters in reasoning in the use of 

cut rules. And all applications of cut rules can be eliminated in that logic.245 What is 

missing in it is a method to investigate non-cut-free rules in mathematical reasoning. 

Non-cut-free rules can be studied directly however in the fully extended IF logic. By 

means of the reconstruction of second-order logic (by extending IF logic so as to capture 

all mathematical reasoning), it seems possible (at least in principle) to recognize the uses 

                                                 
245 Cf. Gentzen 1935. 
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of the law of excluded middle (via the unrestricted uses of the contradictory negations) 

directly in (higher-order) mathematical reasoning. This task can be considered also as an 

extension of Hilbert’s consistency program.  
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22. EXTENSIONS OF HILBERT’S PROGRAM 

In 1936, Gentzen gave a proof of the consistency of arithmetic. Gentzen in his proof had 

to appeal to the principle of transfinite induction, which states that if for all ordinal 

numbers x preceeding y, x has the property A (A being a property defined for all 

ordinals), then y is A. Gentzen first showed how to assign ordinal numbers (less than ε0) 

to each arithmetical proof so as to make a list of the proof figures. Then he showed, in 

case a contradictory formula 0 ≠ 0 occurs as the end formula of a proof, the well-ordering 

of the proof figures would guarantee that the ordinal assigned to the proof ending with 0 

≠ 0  has been kept out of the list. Gentzen’s assignment of ordinals to proof figures is in 

order to give a measure for the complexity of arithmetical derivations.246 And there, the 

well-ordering of the proof figures is “of a special kind”, to put in Gentzen’s words. This 

special character is seen as follows: Suppose one gets some formula of the form 

 

(1) (∀x) F [x] 

 

(by induction) as the end-sequent of a proof figure. Such proof figures must be 

considered as more complex than its infinitely many particular (substitution) instances. 

Thereof the measure of complexity of those proof figures will be inevitably higher than 

what can be ordered by using ordinary induction. That is why transfinite induction is 

needed to measure the complexity of all arithmetical derivations. Ultimately, the needed 

                                                 
246 Cf. Gentzen 1936, p. 186. 
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ordinals reach up to ε0 (as Gentzen shows in his paper) in order to make a list of all the 

proof figures in elementary arithmetic.247 

 Gentzen claimed about his consistency proof that the induction principle he used 

in the proof—more specifically transfinite induction up to the ordinal ε0—was harmless 

such that between the ordinals ω and ε0 “nothing new ever happens”; i.e. every ordinal in 

between can be represented by means of primitive recursive relations.248 As was later 

remarked by different logicians249, about Gentzen’s approach, one might find a high 

degree of intuitiveness about the induction on ε0. However, this kind of intuition is hardly 

found acceptable here under Hilbert’s insistence on (first-order) concrete content in 

logical and metamathematical methods, since “transfinite induction means always a 

detour via an infinite set”, to put it in Gauthier’s words.250 With the help of a game-

theoretical interpretation of Gentzen’s proof, the non-elementary assumptions that are 

brought in by the application of transfinite induction can be made clear, as follows: 

Gentzen’s reductions of given complex formulas to true atomic formulas—formulas are 

obtained by the usual natural deduction rules—can be considered as winning strategies in 

proof-games for the verifier, if we borrow some game-theoretical terminology.251 Then a 

Gentzen-style proof game can be thought of as played between a verifier and a falsifier, 

as in the usual game-theoretical semantics. The difference is that in the game-theoretical 

semantics as it is usually defined for IF logic, the existence of winning strategies is not 

always determinate. This indeterminacy is due to the failure of the law of excluded 

                                                 
247 See Gentzen 1936, § 15. 
248 Gentzen 1936, pp. 195-197. 
249 Especially Gödel, Bernays and Max Black . 
250 Gauthier 2002, 101. 
251 For a game-theoretical treatment of Gentzen’s consistency proof, see Tait 2005. 
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middle. In Gentzen’s case however, strategies are recursively determined. Due to the 

same reason as why that transfinite induction is needed for measuring proof figure 

complexity, the reductions in proof games (and hence winning strategies) will inevitably 

be consisting of verifier’s infinite backtracking of falsifier’s moves. This will in turn 

bring in the non-elementary assumption that all the substitution instances of quantified 

sentences in the proof games must be available to verifier’s information and the verifier 

can try them infinitely often in order to obtain reductions. Essentially, this (infinitistic) 

reduction procedure is as non-elementary as the infinite semantical games (of chapter 11) 

for the fully extended IF logical sentences, where the unrestricted use of the law of 

excluded middle is allowed. 

Beside its non-elementary assumptions, Gentzen’s contribution has been taken as 

a reason to search for other means and techniques than were seen appropriate by Hilbert, 

to learn more about the proof-theoretical structure of mathematical inference. To extend 

the methods of proof theory, as Bernays claimed: 

 
Instead of restricting to finitist methods of reasoning, it was required only that the 
arguments be of a constructive character, allowing us to deal with general forms of 
inferences.252 
 
 
The main aim by following Gentzen’s strategy in pursuing a similar program to that of 

Hilbert’s is to see in a mathematical theory, what derivability results (including whether 

or to what extent the consistency of the theory is derivable relative to another theory) we 

can establish by using other appropriate means than Hilbert’s so-called finitistic 

                                                 
252 Sieg 1999 quotes Bernays 1967.  
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methods.253 What there is in the works of Kreisel, Feferman and Simpson is proposals 

which kept their main ideas on this line, for example by trying to reduce proof-

theoretically what can be done in one deductive system to another.254 

 Proof-theoretical reductions provide proof analyses and certain derivability 

results. Analysis of proofs and the derivability results are relative to further mathematical 

theories. Admittedly they cannot go beyond establishing the relative consistency of a 

mathematical theory, which is (from the conceptual point of view) less than what Hilbert 

hoped to have reached. 

 Proof-theoretical reductions are (or are based on) important mathematical results. 

However they cannot be taken as realizations of Hilbert’s aims, as long as they do not 

clarify the notion of quantification. As has been argued, Hilbert’s primary aim was to 

formulate a humanly practicable account of the apparently infinitistic operations, by 

improving a theory of quantification better than the traditional conceptions. None of the 

proof-theoretical reductions have a claim to provide such clarification. Consequently, 

they do not provide explicit criteria for how one can achieve Hilbert’s aims. As was 

argued in chapters 12-21 such criteria is provided by the resources of IF logic. Thereby, 

Hilbert’s different problems in the foundations of mathematics can be carried out on the 

basis of IF logic. 

 
  

                                                 
253 Cf. Kreisel 1958, p. 155, Sieg 1988, p. 343. 
254 See Simpson 1988, Feferman 1988 and Kreisel 1983. There are also other proof-theorists such as 
Schütte and Takeuti who followed Gentzen’s steps, by going up in the stronger mathematical systems and 
prove their consistency by appealing to the needed induction principle (i.e. up to the correspondent ordinal 
number). For a brief survey of such developments see Feferman 1988 and 2000. 
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