120 research outputs found

    Semantics of deductive databases with spiking neural P systems

    Get PDF
    The integration of symbolic reasoning systems based on logic and connectionist systems based on thefunctioning of living neurons is a vivid research area in computer science. In the literature, one can findmany efforts where different reasoning systems based on different logics are linked to classic artificialneural networks. In this paper, we study the relation between the semantics of reasoning systems basedon propositional logic and the connectionist model in the framework of membrane computing, namely,spiking neural P systems. We prove that the fixed point semantics of deductive databases without nega- tion can be implemented in the spiking neural P systems model and such a model can also deal withnegation if it is endowed with anti-spikes and annihilation rules

    Logic Negation with Spiking Neural P Systems

    Full text link
    Nowadays, the success of neural networks as reasoning systems is doubtless. Nonetheless, one of the drawbacks of such reasoning systems is that they work as black-boxes and the acquired knowledge is not human readable. In this paper, we present a new step in order to close the gap between connectionist and logic based reasoning systems. We show that two of the most used inference rules for obtaining negative information in rule based reasoning systems, the so-called Closed World Assumption and Negation as Finite Failure can be characterized by means of spiking neural P systems, a formal model of the third generation of neural networks born in the framework of membrane computing.Comment: 25 pages, 1 figur

    Semantics of Deductive Databases in a Membrane Computing Connectionist Model

    Get PDF
    The integration of symbolic reasoning systems based on logic and connectionist systems based on the functioning of living neurons is a vivid research area in computer science. In the literature, one can found many e orts where di erent reasoning systems based on di erent logics are linked to classic arti cial neural networks. In this paper, we study the relation between the semantics of reasoning systems based on propositional logic and the connectionist model in the framework of membrane computing, namely, spiking neural P systems. We prove that the xed point semantics of deductive databases and the immediate consequence operator can be implemented in the spiking neural P systems model

    Semantics of Deductive Databases in a Membrane Computing Connectionist Model

    Get PDF
    The integration of symbolic reasoning systems based on logic and connectionist systems based on the functioning of living neurons is a vivid research area in computer science. In the literature, one can found many e orts where di erent reasoning systems based on di erent logics are linked to classic arti cial neural networks. In this paper, we study the relation between the semantics of reasoning systems based on propositional logic and the connectionist model in the framework of membrane computing, namely, spiking neural P systems. We prove that the xed point semantics of deductive databases and the immediate consequence operator can be implemented in the spiking neural P systems model

    Spiking Neural P Systems with Addition/Subtraction Computing on Synapses

    Get PDF
    Spiking neural P systems (SN P systems, for short) are a class of distributed and parallel computing models inspired from biological spiking neurons. In this paper, we introduce a variant called SN P systems with addition/subtraction computing on synapses (CSSN P systems). CSSN P systems are inspired and motivated by the shunting inhibition of biological synapses, while incorporating ideas from dynamic graphs and networks. We consider addition and subtraction operations on synapses, and prove that CSSN P systems are computationally universal as number generators, under a normal form (i.e. a simplifying set of restrictions)

    Exploring the landscapes of "computing": digital, neuromorphic, unconventional -- and beyond

    Get PDF
    The acceleration race of digital computing technologies seems to be steering toward impasses -- technological, economical and environmental -- a condition that has spurred research efforts in alternative, "neuromorphic" (brain-like) computing technologies. Furthermore, since decades the idea of exploiting nonlinear physical phenomena "directly" for non-digital computing has been explored under names like "unconventional computing", "natural computing", "physical computing", or "in-materio computing". This has been taking place in niches which are small compared to other sectors of computer science. In this paper I stake out the grounds of how a general concept of "computing" can be developed which comprises digital, neuromorphic, unconventional and possible future "computing" paradigms. The main contribution of this paper is a wide-scope survey of existing formal conceptualizations of "computing". The survey inspects approaches rooted in three different kinds of background mathematics: discrete-symbolic formalisms, probabilistic modeling, and dynamical-systems oriented views. It turns out that different choices of background mathematics lead to decisively different understandings of what "computing" is. Across all of this diversity, a unifying coordinate system for theorizing about "computing" can be distilled. Within these coordinates I locate anchor points for a foundational formal theory of a future computing-engineering discipline that includes, but will reach beyond, digital and neuromorphic computing.Comment: An extended and carefully revised version of this manuscript has now (March 2021) been published as "Toward a generalized theory comprising digital, neuromorphic, and unconventional computing" in the new open-access journal Neuromorphic Computing and Engineerin

    Explaining Cognitive Computing Through the Information Systems Lens

    Get PDF
    Cognitive computing (COC) aims to embed human cognition into computerized models. However, there is no scientific classification that delineates the nature of Cognitive Computing. Unlike the medical and computer science fields, Information Systems (IS) has conducted very little research on COC. Although the potential to make important research contributions in this area is great, we argue that the lack of a cohesive interpretation of what constitutes COC has led to inferior COC research in IS. Therefore, we need first to clearly identify COC as a phenomenon to be able to identify and guide prospective research areas in IS. In this research, a phenomenological approach is adopted using thematic analysis to the published literature in COC research. Then, we discuss how IS may contribute to the development of design science artifacts under the COC umbrella. In addition, the paper raises important questions for future research by highlighting how IS researchers could make meaningful contributions to this emerging topic
    corecore