1,568 research outputs found

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin

    Fair termination revisited - with delay

    Get PDF
    AbstractA proof method for establishing the fair termination and total correctness of both nondeterministic and concurrent programs is presented. The method calls for the extension of state by auxiliary delay variables which count down to the instant in which certain action will be scheduled. It then uses well-founded ranking to prove fair termination allowing nested fair selection and loops

    Abstracts of the talks at the Second International Workshop on the Semantics of Programming Languages in Bad Honnef : March 19-23, 1979

    Get PDF

    Nondeterminism and Guarded Commands

    Full text link
    The purpose of this paper is to discuss the relevance of nondeterminism in computer science, with a special emphasis on Dijkstra's guarded commands language.Comment: 34 pages. This is authors' version of Chapter 8 of the book K.R. Apt and C.A.R. Hoare (editors), Edsger Wybe Dijkstra: His Life, Work, and Legacy, volume 45 of ACM Books. ACM/Morgan & Claypool, 202

    Visibly Pushdown Modular Games

    Full text link
    Games on recursive game graphs can be used to reason about the control flow of sequential programs with recursion. In games over recursive game graphs, the most natural notion of strategy is the modular strategy, i.e., a strategy that is local to a module and is oblivious to previous module invocations, and thus does not depend on the context of invocation. In this work, we study for the first time modular strategies with respect to winning conditions that can be expressed by a pushdown automaton. We show that such games are undecidable in general, and become decidable for visibly pushdown automata specifications. Our solution relies on a reduction to modular games with finite-state automata winning conditions, which are known in the literature. We carefully characterize the computational complexity of the considered decision problem. In particular, we show that modular games with a universal Buchi or co Buchi visibly pushdown winning condition are EXPTIME-complete, and when the winning condition is given by a CARET or NWTL temporal logic formula the problem is 2EXPTIME-complete, and it remains 2EXPTIME-hard even for simple fragments of these logics. As a further contribution, we present a different solution for modular games with finite-state automata winning condition that runs faster than known solutions for large specifications and many exits.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Acta Cybernetica : Tomus 4. Fasciculus 4.

    Get PDF
    • …
    corecore