33,671 research outputs found

    Compensation methods to support generic graph editing: A case study in automated verification of schema requirements for an advanced transaction model

    Get PDF
    Compensation plays an important role in advanced transaction models, cooperative work, and workflow systems. However, compensation operations are often simply written as a^−1 in transaction model literature. This notation ignores any operation parameters, results, and side effects. A schema designer intending to use an advanced transaction model is expected (required) to write correct method code. However, in the days of cut-and-paste, this is much easier said than done. In this paper, we demonstrate the feasibility of using an off-the-shelf theorem prover (also called a proof assistant) to perform automated verification of compensation requirements for an OODB schema. We report on the results of a case study in verification for a particular advanced transaction model that supports cooperative applications. The case study is based on an OODB schema that provides generic graph editing functionality for the creation, insertion, and manipulation of nodes and links

    Open issues in semantic query optimization in relational DBMS

    Get PDF
    After two decades of research into Semantic Query Optimization (SQO) there is clear agreement as to the efficacy of SQO. However, although there are some experimental implementations there are still no commercial implementations. We first present a thorough analysis of research into SQO. We identify three problems which inhibit the effective use of SQO in Relational Database Management Systems(RDBMS). We then propose solutions to these problems and describe first steps towards the implementation of an effective semantic query optimizer for relational databases

    Compensation methods to support cooperative applications: A case study in automated verification of schema requirements for an advanced transaction model

    Get PDF
    Compensation plays an important role in advanced transaction models, cooperative work and workflow systems. A schema designer is typically required to supply for each transaction another transaction to semantically undo the effects of . Little attention has been paid to the verification of the desirable properties of such operations, however. This paper demonstrates the use of a higher-order logic theorem prover for verifying that compensating transactions return a database to its original state. It is shown how an OODB schema is translated to the language of the theorem prover so that proofs can be performed on the compensating transactions

    On the emergent Semantic Web and overlooked issues

    Get PDF
    The emergent Semantic Web, despite being in its infancy, has already received a lotof attention from academia and industry. This resulted in an abundance of prototype systems and discussion most of which are centred around the underlying infrastructure. However, when we critically review the work done to date we realise that there is little discussion with respect to the vision of the Semantic Web. In particular, there is an observed dearth of discussion on how to deliver knowledge sharing in an environment such as the Semantic Web in effective and efficient manners. There are a lot of overlooked issues, associated with agents and trust to hidden assumptions made with respect to knowledge representation and robust reasoning in a distributed environment. These issues could potentially hinder further development if not considered at the early stages of designing Semantic Web systems. In this perspectives paper, we aim to help engineers and practitioners of the Semantic Web by raising awareness of these issues

    STOP-IT: strategic, tactical, operational protection of water infrastructure against cyberphysical threats

    Get PDF
    Water supply and sanitation infrastructures are essential for our welfare, but vulnerable to several attack types facilitated by the ever-changing landscapes of the digital world. A cyber-attack on critical infrastructures could for example evolve along these threat vectors: chemical/biological contamination, physical or communications disruption between the network and the supervisory SCADA. Although conceptual and technological solutions to security and resilience are available, further work is required to bring them together in a risk management framework, strengthen the capacities of water utilities to systematically protect their systems, determine gaps in security technologies and improve risk management approaches. In particular, robust adaptable/flexible solutions for prevention, detection and mitigation of consequences in case of failure due to physical and cyber threats, their combination and cascading effects (from attacks to other critical infrastructure, i.e. energy) are still missing. There is (i) an urgent need to efficiently tackle cyber-physical security threats, (ii) an existing risk management gap in utilities’ practices and (iii) an un-tapped technology market potential for strategic, tactical and operational protection solutions for water infrastructure: how the H2020 STOP-IT project aims to bridge these gaps is presented in this paper.Postprint (published version
    corecore