4 research outputs found

    Semantic Audio Analysis Utilities and Applications.

    Get PDF
    PhDExtraction, representation, organisation and application of metadata about audio recordings are in the concern of semantic audio analysis. Our broad interpretation, aligned with recent developments in the field, includes methodological aspects of semantic audio, such as those related to information management, knowledge representation and applications of the extracted information. In particular, we look at how Semantic Web technologies may be used to enhance information management practices in two audio related areas: music informatics and music production. In the first area, we are concerned with music information retrieval (MIR) and related research. We examine how structured data may be used to support reproducibility and provenance of extracted information, and aim to support multi-modality and context adaptation in the analysis. In creative music production, our goals can be summarised as follows: O↵-the-shelf sound editors do not hold appropriately structured information about the edited material, thus human-computer interaction is inefficient. We believe that recent developments in sound analysis and music understanding are capable of bringing about significant improvements in the music production workflow. Providing visual cues related to music structure can serve as an example of intelligent, context-dependent functionality. The central contributions of this work are a Semantic Web ontology for describing recording studios, including a model of technological artefacts used in music production, methodologies for collecting data about music production workflows and describing the work of audio engineers which facilitates capturing their contribution to music production, and finally a framework for creating Web-based applications for automated audio analysis. This has applications demonstrating how Semantic Web technologies and ontologies can facilitate interoperability between music research tools, and the creation of semantic audio software, for instance, for music recommendation, temperament estimation or multi-modal music tutorin

    The Effects of Noisy Labels on Deep Convolutional Neural Networks for Music Tagging

    Get PDF
    date-added: 2018-06-06 23:32:25 +0000 date-modified: 2018-05-06 23:32:25 +0000 keywords: evaluation, music tagging, deep learning, CNN bdsk-url-1: https://arxiv.org/pdf/1706.02361.pdf bdsk-url-2: https://dx.doi.org/10.1109/TETCI.2017.2771298date-added: 2018-06-06 23:32:25 +0000 date-modified: 2018-05-06 23:32:25 +0000 keywords: evaluation, music tagging, deep learning, CNN bdsk-url-1: https://arxiv.org/pdf/1706.02361.pdf bdsk-url-2: https://dx.doi.org/10.1109/TETCI.2017.2771298date-added: 2018-06-06 23:32:25 +0000 date-modified: 2018-05-06 23:32:25 +0000 keywords: evaluation, music tagging, deep learning, CNN bdsk-url-1: https://arxiv.org/pdf/1706.02361.pdf bdsk-url-2: https://dx.doi.org/10.1109/TETCI.2017.2771298Deep neural networks (DNN) have been successfully applied to music classification including music tagging. However, there are several open questions regarding the training, evaluation, and analysis of DNNs. In this article, we investigate specific aspects of neural networks, the effects of noisy labels, to deepen our understanding of their properties. We analyse and (re-)validate a large music tagging dataset to investigate the reliability of training and evaluation. Using a trained network, we compute label vector similarities which is compared to groundtruth similarity. The results highlight several important aspects of music tagging and neural networks. We show that networks can be effective despite relatively large error rates in groundtruth datasets, while conjecturing that label noise can be the cause of varying tag-wise performance differences. Lastly, the analysis of our trained network provides valuable insight into the relationships between music tags. These results highlight the benefit of using data-driven methods to address automatic music tagging

    Music Metadata Capture in the Studio from Audio and Symbolic Data

    Get PDF
    PhdMusic Information Retrieval (MIR) tasks, in the main, are concerned with the accurate generation of one of a number of different types of music metadata {beat onsets, or melody extraction, for example. Almost always, they operate on fully mixed digital audio recordings. Commonly, this means that a large amount of signal processing effort is directed towards the isolation, and then identification, of certain highly relevant aspects of the audio mix. In some cases, results of one MIR algorithm are useful, if not essential, to the operation of another { a chord detection algorithm for example, is highly dependent upon accurate pitch detection. Although not clearly defined in all cases, certain rules exist which we may take from music theory in order to assist the task { the particular note intervals which make up a specific chord, for example. On the question of generating accurate, low level music metadata (e.g. chromatic pitch and score onset time), a potentially huge advantage lies in the use of multitrack, rather than mixed, audio recordings, in which the separate instrument recordings may be analysed in isolation. Additionally, in MIR, as in many other research areas currently, there is an increasing push towards the use of the Semantic Web for publishing metadata using the Resource Description Framework (RDF). Semantic Web technologies, though, also facilitate the querying of data via the SPARQL query language, as well as logical inferencing via the careful creation and use of web ontology language (OWL) ontologies. This, in turn, opens up the intriguing possibility of deferring our decision regarding which particular type of MIR query to ask of our low-level music metadata until some point later down the line, long after all the heavy signal processing has been carried out. In this thesis, we describe an over-arching vision for an alternative MIR paradigm, built around the principles of early, studio-based metadata capture, and exploitation of open, machine-readable Semantic Web data. Using the specific example of structural segmentation, we demonstrate that by analysing multitrack rather than mixed audio, we are able to achieve a significant and quantifiable increase in the accuracy of our segmentation algorithm. We also provide details of a new multitrack audio dataset with structural segmentation annotations, created as part of this research, and available for public use. Furthermore, we show that it is possible to fully implement a pair of pattern discovery algorithms (the SIA and SIATEC algorithms { highly applicable, but not restricted to, symbolic music data analysis) using only SemanticWeb technologies { the SPARQL query language, acting on RDF data, in tandem with a small OWL ontology. We describe the challenges encountered by taking this approach, the particular solution we've arrived at, and we evaluate the implementation both in terms of its execution time, and also within the wider context of our vision for a new MIR paradigm.EPSRC studentship no. EP/505054/1

    An Investigation into the Use of Artificial Intelligence Techniques for the Analysis and Control of Instrumental Timbre and Timbral Combinations

    Get PDF
    Researchers have investigated harnessing computers as a tool to aid in the composition of music for over 70 years. In major part, such research has focused on creating algorithms to work with pitches and rhythm, which has resulted in a selection of sophisticated systems. Although the musical possibilities of these systems are vast, they are not directly considering another important characteristic of sound. Timbre can be defined as all the sound attributes, except pitch, loudness and duration, which allow us to distinguish and recognize that two sounds are dissimilar. This feature plays an essential role in combining instruments as it involves mixing instrumental properties to create unique textures conveying specific sonic qualities. Within this thesis, we explore harnessing techniques for the analysis and control of instrumental timbre and timbral combinations. This thesis begins with investigating the link between musical timbre, auditory perception and psychoacoustics for sounds emerging from instrument mixtures. It resulted in choosing to use verbal descriptors of timbral qualities to represent auditory perception of instrument combination sounds. Therefore, this thesis reports on the developments of methods and tools designed to automatically retrieve and identify perceptual qualities of timbre within audio files, using specific musical acoustic features and artificial intelligence algorithms. Different perceptual experiments have been conducted to evaluate the correlation between selected acoustics cues and humans' perception. Results of these evaluations confirmed the potential and suitability of the presented approaches. Finally, these developments have helped to design a perceptually-orientated generative system harnessing aspects of artificial intelligence to combine sampled instrument notes. The findings of this exploration demonstrate that an artificial intelligence approach can help to harness the perceptual aspect of instrumental timbre and timbral combinations. This investigation suggests that established methods of measuring timbral qualities, based on a diverse selection of sounds, also work for sounds created by combining instrument notes. The development of tools designed to automatically retrieve and identify perceptual qualities of timbre also helped in designing a comparative scale that goes towards standardising metrics for comparing timbral attributes. Finally, this research demonstrates that perceptual characteristics of timbral qualities, using verbal descriptors as a representation, can be implemented in an intelligent computing system designed to combine sampled instrument notes conveying specific perceptual qualities.Arts and Humanities Research Council funded 3D3 Centre for Doctoral Trainin
    corecore