
Semantic Audio Analysis Utilities and Applications.
Fazekas, Gy¨orgy

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/8443

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/8443

Semantic Audio Analysis

Utilities and Applications

PhD Thesis

Gy

¨

orgy Fazekas

Centre for Digital Music

School of Electronic Engineering and Computer Science,

Queen Mary University of London

April 2012

I certify that this thesis, and the research to which it refers, are the product of my own

work, and that any ideas or quotations from the work of other people, published or otherwise,

are fully acknowledged in accordance with the standard referencing practices of the discipline.

I acknowledge the helpful guidance and support of my supervisor, Professor Mark Sandler.

Abstract

Extraction, representation, organisation and application of metadata about audio recordings

are in the concern of semantic audio analysis. Our broad interpretation, aligned with re-

cent developments in the field, includes methodological aspects of semantic audio, such as

those related to information management, knowledge representation and applications of the

extracted information. In particular, we look at how Semantic Web technologies may be used

to enhance information management practices in two audio related areas: music informatics

and music production.

In the first area, we are concerned with music information retrieval (MIR) and related

research. We examine how structured data may be used to support reproducibility and

provenance of extracted information, and aim to support multi-modality and context adap-

tation in the analysis. In creative music production, our goals can be summarised as follows:

O↵-the-shelf sound editors do not hold appropriately structured information about the edited

material, thus human-computer interaction is ine�cient. We believe that recent developments

in sound analysis and music understanding are capable of bringing about significant improve-

ments in the music production workflow. Providing visual cues related to music structure can

serve as an example of intelligent, context-dependent functionality.

The central contributions of this work are a Semantic Web ontology for describing record-

ing studios, including a model of technological artefacts used in music production, method-

ologies for collecting data about music production workflows and describing the work of

audio engineers which facilitates capturing their contribution to music production, and fi-

nally a framework for creating Web-based applications for automated audio analysis. This

has applications demonstrating how Semantic Web technologies and ontologies can facilitate

interoperability between music research tools, and the creation of semantic audio software, for

instance, for music recommendation, temperament estimation or multi-modal music tutoring.

3

Acknowledgements

I would like to take this opportunity to thank everyone in the Centre for Digital Music at

Queen Mary University of London. My research would not have been possible without the

help I received, the numerous discussions and wide-ranging collaborations I have had, and

the stimulating and friendly atmosphere I have found in this group. I would particularly like

to thank my supervisor, Mark Sandler, for his encouragement, guidance and support. His

wide-ranging knowledge helped every aspects of my work. I would like to thank to my second

supervisor Simon Dixon for his advice and meticulous corrections of my various PhD progress

reports, and my internal accessor Nick Bryan-Kinns whose objective advice has helped to

steered my research.

I owe a great deal to the work of people I frequently collaborated with. In no particular

order, thanks to Dan Tidhar, who shared his knowledge of musical temperament with me,

Thomas Wilmering for countless discussions that helped me in creating the Studio Ontology,

Mathieu Barthet, Amélie Angalade, and Sefki Kolozali who I very much enjoyed working

with at various music hack days, Kurt Jacobson and Matt Bernstein for their invaluable help

in server configuration, Matthias Mauch and Katy Noland for enthusiastically sending me

bug reports about software I wrote, and Matthew Davies for his encouragement in the early

stages of my academic work. Special thanks to Yves Raimond, without his work and the

Music Ontology, this thesis would not have been possible. I owe a lot to our early discussions

which made me realise the importance of semantics, enabled me to understand Semantic Web

technologies, and helped me to formulate my long term research goals.

Thanks to all past and present members of C4DM who created software I used in my

research. The applications discussed in this thesis would not have been possible without the

contributions of Chris Cannam, Mark Levy, Chris Sutton, Chris Landone, and the brilliant

research of all members of the group that enable the work of Vamp plugins. I must also

acknowledge the work of open source communities, including the enthusiastic people who cre-

ated Audacity, Python, Numpy, Scipy, libRDF, rdflib, Matplotlib, BibDesk, LaTeX, TeXshop

and numerous other open source libraries and software packages I used.

Finally, I thank my Mother and Father and all my family, for their encouragement and

continued support in my endeavour in a distant country.

4

A note on language and style

Throughout this thesis the term ”we” is used (in line with recent trends in academic writing)

to refer to the author’s work, which is influenced by numerous discussions with his thesis

supervisor, faculty and colleagues. This fact is acknowledged through the use of the plural

form, except in cases where its use invites the reader to think alongside, or may well disagree

with the author. The thesis may reflect the sole opinion of the author in some cases however.

Statements in this category are delineated using phrases such as ”in the author’s opinion” or

the occasional use of first person singular.

5

License

This work is copyright c�2012 György Fazekas, and is licensed under the Creative Commons

Attribution-Share Alike 3.0 Unported Licence.

To view a copy of this licence, visit http://creativecommons.org/licenses/by-sa/3.0/ or

send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California,

94105, USA.

6

Contents

Contents 10

1 Introduction 17

1.1 Semantic analysis of musical audio . 17

1.2 Organisation of this work . 21

1.3 Utilities and applications of semantic audio 21

1.3.1 Creative music production . 22

1.3.2 Music Information Retrieval . 26

1.4 Signal processing techniques for semantic audio analysis 30

1.4.1 Physical and perceptual features of sound 31

1.4.2 Semantic features of audio and music 37

1.5 Machine intelligence in music production . 49

1.5.1 Audio engineering workflows . 50

1.5.2 Motivations . 52

1.5.3 Studio specific problems . 56

1.6 Research scope and methodology . 59

2 Information Management and Knowledge Representation

for Audio Applications 61

2.1 Data, Metadata, Information and Knowledge 61

2.2 Information Management in Semantic Audio applications 63

2.2.1 A Semantic Audio Tool . 64

2.2.2 Information Management and Knowledge Representation 66

2.3 Logical Foundations . 69

2.3.1 Propositional Logic . 69

2.3.2 First Order Logic . 69

2.3.3 Higher Order Logics and reification . 73

2.3.4 Temporal and Modal Logics . 73

2.3.5 Description Logics . 73

2.3.6 Knowledge Representation and Ontologies 74

7

2.3.7 Taxonomies and Partonomies . 74

2.4 Semantic Web Technologies . 75

2.4.1 Information Management and the Semantic Web 75

2.4.2 Resource Description Framework . 76

2.4.3 Semantic Web ontologies . 78

2.4.4 RDFS and the OWL . 79

2.4.5 SPARQL . 80

2.4.6 Notation 3 and RIF . 80

2.4.7 Linked data . 81

2.5 Summary . 83

3 Ontology Engineering and Multimedia Ontologies 84

3.1 Ontologies and basic ontological decisions . 84

3.1.1 Ontology and Philosophy . 85

3.1.2 Ontology engineering . 86

3.1.3 Some use cases for ontology design . 87

3.1.4 Ontology design principles . 89

3.1.5 Summary . 93

3.2 Conceptualisations of Music and Multimedia Information 93

3.2.1 Metadata standards . 94

3.2.2 Basic categories of information about intellectual works 95

3.2.3 Bibliographic information . 96

3.2.4 Cultural information . 98

3.2.5 Content-based information . 99

3.2.6 Provenance and workflow information 107

3.3 Metadata harmonisation using core and foundational ontologies 115

3.3.1 ABC . 116

3.3.2 DOLCE and COMM . 117

3.4 Reflections on design principles . 120

4 Ontologies for Semantic Audio Information Management 121

4.1 Overview of the Music Ontology Framework 121

4.1.1 Utilities of the Music Ontology . 122

4.1.2 Domain independent components . 122

4.1.3 Core music specific components . 126

4.1.4 Extensions . 130

4.1.5 Summary . 130

4.2 The Studio Ontology Framework . 132

4.2.1 Motivation . 132

8

4.2.2 Design decisions . 134

4.2.3 Foundational elements . 135

4.2.4 Core components . 150

4.2.5 Extensions . 161

4.2.6 Summary . 170

4.3 Audio Features Ontology . 171

4.4 Audio Plugin Ontologies . 173

4.5 Instrument Ontology . 175

4.5.1 Motivation . 175

4.5.2 Instrument classification systems . 176

4.5.3 Instrument Ontology . 177

4.6 Temperament Ontology . 177

4.6.1 Instrument tuning systems . 178

4.6.2 An open-ended temperament description model 178

4.6.3 Temperament descriptions . 178

4.6.4 Using the Temperament Ontology . 180

4.7 Summary . 181

5 Software Tools and Semantic Audio Applications 183

5.1 RDF data binding with Meta-Object Protocol 183

5.1.1 Design issues of ontology-based information systems 184

5.1.2 Data binding . 185

5.1.3 Meta-object Protocol . 186

5.1.4 Type system . 188

5.1.5 Architecture . 189

5.2 The Semantic Audio Desktop . 190

5.2.1 Metadata management in music production 191

5.2.2 Data collection in the studio . 191

5.2.3 Workflow tracking . 193

5.2.4 Query interface . 195

5.3 SAWA: A Web architecture for semantic audio analysis 197

5.3.1 Objectives . 197

5.3.2 Components . 198

5.3.3 Architecture . 201

5.3.4 SAWA and linked data . 205

5.4 Applications of SAWA . 205

5.4.1 SAWA Feature Extractor . 206

5.4.2 SAWA Recommender . 211

5.4.3 SAWA TempEst . 214

9

5.4.4 SAWA Experimenter . 215

5.4.5 Hotttabs . 215

5.5 Summary . 218

6 Case Studies and Evaluation 219

6.1 Evaluation methodology . 219

6.2 Ontology evaluation . 220

6.2.1 Purpose of ontology evaluation . 220

6.2.2 Evaluating ontology features and ontology design aspects 221

6.2.3 Methodologies and techniques for ontology evaluation 223

6.3 Evaluation of the Studio Ontology framework 227

6.3.1 Quantitative evaluation . 227

6.3.2 Qualitative evaluation . 242

6.4 Summary and discussion . 262

7 Conclusions and Future Work 263

7.1 Summary of this thesis . 263

7.2 Summary of contributions . 264

7.3 Knowledge-based audio analysis and processing 266

7.4 Future work . 268

7.4.1 Ontologies . 268

7.4.2 Web-based tools . 269

7.4.3 General goals . 269

7.5 Closing remarks . 270

A Publications 271

B Components of SAWA 278

B.1 Similarity assessment in SAWA-Recommender 278

B.2 VamPy: A rapid prototyping tool for SAWA 282

C Code listings 286

C.1 A simple onset detector plugin using VamPy 286

C.2 A representation of typed RDF literals using a Meta-Object Protocol 288

D Namespaces 294

References 295

10

List of Figures

1.1 Elements of music perception . 18

1.2 Pitch tracking and pitch transcription . 33

1.3 Timbre modelling using LPC and LSF . 36

1.4 Timbre modelling using MFCCs . 37

1.5 Using segment-duration histograms for periodicity estimation 39

1.6 Detection of transients using cepstral analysis 48

1.7 Detection of steady-state using cepstral analysis 48

1.8 Visualising structural segmentation using colours 53

1.9 Onset detection in reverberant recordings . 58

2.1 Illustrations of audio related metadata . 62

2.2 Balaban’s framework for music software development 63

2.3 Knowledge representation model for intelligent audio editing systems 66

2.4 The graph structure of the basic RDF triple 76

2.5 Graph rendering of an N-Triples statement with URI references 78

2.6 The Linking Open Data dataset cloud . 82

3.1 Products of intellectual works in the FRBR model 98

3.2 Basic relationships in the Open Provenance Model 109

3.3 ABC model showing terms related to situations events and actions 116

3.4 Concept hierarchy of Audio Sample Rate in COMM 118

4.1 Timeline Ontology example. 124

4.2 Relation of FRBR and some selected Music Ontology terms 126

4.3 Music Production Workflow Model . 128

4.4 Overview of the Device Ontology . 138

4.5 Accurate Device State Model . 144

4.6 Signal processing device model . 146

4.7 Overview of the Connectivity Ontology . 148

4.8 Recording studio workflow . 154

4.9 Signal Flow . 158

11

4.10 Microphone Ontology . 161

4.11 Audio Mixer Ontology . 163

4.12 Overview of the Audio Mixer Ontology . 164

4.13 Model for audio e↵ects . 165

4.14 Using the Multitrack Ontotlogy . 167

4.15 Some basic audio editing operations . 169

4.16 Audio Features Ontology . 171

4.17 Vamp Transform Ontology . 174

4.18 Overview of the Temperament Ontology . 178

5.1 Meta-object Protocol . 186

5.2 Type System . 188

5.3 Architecture of the RDF-MOP library . 189

5.4 ID3 Metadata Editor Interface . 192

5.5 Music Ontology Interface in Audacity . 192

5.6 Workflow tracking using Named Graphs . 194

5.7 SPARQL query interface in Audacity . 196

5.8 Components of the SAWA system . 198

5.9 SAWA Architecture . 202

5.10 Audio file upload and collection builder interface in SAWA 206

5.11 Audio file identification in SAWA . 207

5.12 Selecting a feature extractor in SAWA . 207

5.13 Feature extractor configuration in SAWA . 208

5.14 Feature extraction status display in SAWA 209

5.15 Table of feature extraction results in SAWA 209

5.16 Feature extraction results in SAWA . 210

5.17 Paginated results in SAWA . 210

5.18 SPARQL client in Sonic Visualiser . 211

5.19 SAWA-Recommender audio collection and search interface 212

5.20 SAWA-Recommender results display . 213

5.21 SAWA-TempEst configuration interface . 214

5.22 Overview of Hotttabs . 216

5.23 Hotttabs video tutorials . 217

6.1 Parse tree of a Part-of-Speech tagged sentence 240

7.1 Overview of ontologies . 265

7.2 Rasmussen’s hierarchy of human cognitive processing 267

7.3 Context adaptation in audio analysis . 268

12

List of Tables

1.1 Principal dimensions of elementary musical sounds 30

1.2 Di↵erent instrument recordings taken from multitrack master recordings . . . 57

2.1 Elements of First Order Logic . 70

3.1 Three groups of entities defined in the FRBR model. 97

3.2 Some ontologically relevant categorical distinctions of content based features . 100

3.3 MPEG-7 low level audio tools . 104

4.1 Some Music Ontology concepts most relevant in studio production 128

4.2 Some terms in the vocabulary of music production tools 153

6.1 Summary of ontology evaluation methodologies, applicable techniques and the

design choices and ontology features these techniques may evaluate 226

6.2 Schema-based structural ontology metrics using ontoQA 228

6.3 Top 50 words in each part of the data set . 232

6.4 Cosine similarity of ontology modules and di↵erent groups in the data set . . 233

6.5 Some dominant topics in the Sound on Sound data set 236

6.6 Further dominant topics in the data set . 237

6.7 Mapping a topic to di↵erent ontologies . 238

D.1 Namespaces . 294

13

Listings

2.1 RDF statement in N-Triples . 78

2.2 Linking two resources representing a music artist. 78

2.3 A simple SPARQL query. 80

3.1 Property restriction examples . 119

4.1 Using the event and timeline ontologies . 124

4.2 Using the Music Ontology to describe a recording session 129

4.3 A Device description with one parameter . 140

4.4 Reifications of a device description using (A) a reified statement and (B) named

graphs. 140

4.5 Reifications of a device description using (C) a reified property (D) a general

purpose parameter concept. 142

4.6 Device description using consolidated reification. 143

4.7 Description of an analogue input and a digital output with corresponding signal

connections. 149

4.8 A recording session with post-production . 156

4.9 Describing a signal transformation . 159

4.10 Segmentation data expressed using the Audio Features Ontology 172

4.11 Description of algorithm parameters using the Vamp Transform Ontology . . 175

4.12 Temperament Ontology example using deviations from equal temperament . 179

4.13 Temperament Ontology example using the Circle of Fifths 180

5.1 Simple SPARQL query in an semantic audio editor 195

5.2 SPARQL query for retrieving a set of command events 195

6.1 RDF description of Abbey Road Studios and its facilities (partial). 243

6.2 Partial description of recording spaces and equipment at Abbey Road Studios. 244

6.3 Finding the recording room featuring a specific type of microphone. 245

6.4 Description of Abbey Road Mastering Room 5 246

6.5 Application of a Neumann M49 vintage microphone in a recording event. . . 248

6.6 Describing a microphone technique: ambient recording using a spaced pair. . 249

6.7 Description of a Decca Tree . 250

6.8 Describing a performance during a recording session 252

14

6.9 Describing the recording of a performance . 253

6.10 Describing the vocal microphone configuration 254

6.11 Describing the stereo arrangement . 254

6.12 Describing the mixing of analogue signals . 255

6.13 Describing the connections of the mixer . 256

6.14 Describing the configuration of the mixer . 257

6.15 Connecting a recording device . 258

6.16 Multitrack Ontology example (simplified) . 259

6.17 Describing audio clips in a temporal context 260

6.18 Describing a move operation . 261

B.1 Example of a Vamp function call implementation 284

B.2 Using run-time flags to control VamPy plugins 285

C.1 A simple onset detector using VamPy . 286

C.2 Representing typed RDF literals in RDF-MOP 288

15

16

Chapter 1

Introduction

Computers play an increasingly ubiquitous role in many areas of modern life. This is most ap-

parent in creating, editing and managing multimedia content: text, graphics, video and audio.

Bulky machines of the old days, for example, mechanical devices once used for typesetting or

reel-to-reel tape recorders in the music studio, were gradually replaced by light elegant elec-

tronic hardware employing software with digital signal processing (DSP) technologies. The

appearance of content-aware software applications is a relatively recent improvement in this

field. A word processor which is able to find grammatical or spelling mistakes in comparison

with a standard text editor is an every day example. Intelligent tools for media authoring

with the ability of extracting and managing information — by means of content analysis,

data aggregation, or logical inference — related to the meaning of the edited material have

become imminent.

In the context of audio, this information is commonly termed as audio semantics. It may

represent some perceptually or musically meaningful feature of sound, or some contextual

information related to the creative processes of composing, performing or recording music.

The primary motivation for this work is to design information and software systems to support

intelligent content-aware audio editing, facilitate data collection about the music production

workflow, represent audio engineering knowledge, and use this information to support diverse

applications of semantic audio, such as multi-modal music retrieval, recommendation and

other applications within the fields of music information retrieval (MIR) and musicological

analyses.

1.1 Semantic analysis of musical audio

Music theory is the subject matter that springs into mind the most when hearing the term

music analysis. Music however is a many-faceted phenomenon subject to a wide range of

disciplines. It is important to emphasise this, since on one hand, we do not intend to, or even

try to replicate analysis as a musicologist would do. On the other hand, we would not like to

ignore theories related to the analysis and human perception of sound and music.

17

Most music we hear today starts out as human artistic expression in its fundamental

origin. Through playing an instrument, it manifests in physical quantities constituting sound.

Encoded in the variation of these quantities is the message or meaning as it emerges through

human perception. Bertrand Russell [1948] divides sound perception as having physical,

physiological and psychological aspects. Thinking along these lines, we can outline the relation

of various concepts involved in music perception, and the sciences that best describe our

understanding of them. This is summarised in Figure 1.1

Sound�

Sensation�

Perception�

Physics�

Biology and Psycho-acoustics�

Cognitive Psychology�

Structure and�
Meaning�

Human Reaction�

Musicology� Philosophy and Psychology�

Figure 1.1: Elements of music perception

The production of sound waves and their propagation in air is studied by Physics. To-

gether with Mathematics, the field provides us with tools (e.g. frequency transformations)

for measuring its basic characteristics. Biology describes the human auditory system and the

fundamentals of neurological response to sound; the sense of hearing. An inter-disciplinary

field: Psycho-Acoustics studies the properties of the auditory system. The absolute threshold

of hearing, setting the most quiet sound we can hear, or the just noticeable di↵erence, the

smallest change in sound stimulus that can be recognised, may be given as examples.

While sensation is the way we collect information, perception is a higher level cognitive

process responsible for organisation and to some extent interpretation. It is studied by a

branch of Psychology. Two models need to be noted related to perceptual organisation and

memory. Grouping principles prescribed by the Gestalt school of Psychology may describe

the way we organise sounds to form structure. In the context of music segmentation, short

motives are formed by temporal proximity rules. We also group similar sounds together.

The process of stream segregation [Bregman, 1990] separates similar sounds heard in a com-

18

plex background. Directionality (or continuity) and simplicity are further important Gestalt

rules [Zentz, 1992].

Memory also plays an important role in music perception. The recognition of the dis-

tinctive sound of an instrument or certain melodic patterns are related to learned templates,

stored in long term memory. The models based on memory and Gestalt rules sometimes

appear to be contradictory in the music analysis literature. See [Bod, 2001] for an example.

Nevertheless, auditory sensory memory (helping the Gestalt conception) as well as short and

long term memory, all play an important role in perception. Although no exact model of

human music understanding exists, it appears that these models work in parallel inducing

di↵erent levels of hierarchy. Musical meaning, structure and the reaction of the listener are

depicted as emerging equally from the preceding steps in our model. It can easily be argued,

that both individual percepts and higher level structural organisation result in some sort of

human reaction. Russell [1948] asks if we can “compute” this reaction given an input and

an exact model of one’s brain. Although it is unlikely that such a complete model of music

perception will ever become reality, a certain amount of determinism exists in the process

which can be modelled by a computer. However, the higher we try to climb this ladder, the

more complex the model becomes. In Koestler’s view, cognition involves the whole arsenal of

conscious and subconscious channels of sensation and internal constructs [Koestler, 1964].

Composer and musicologist Alfred Pike [1971] argues that the primary focus of music

perception is at the motivic level. The motive is a short sequence of sounds, perceived as a

coherent structural unit of a musical piece. While it can be accepted that this is the smallest

unit in music, it is important to remember, that smaller units exists on the acoustic and

sensory level. Music and an ‘intended’ meaning results from the conscious organisation of

these elementary sounds. From a simplified perspective, a sound might be seen as a symbol

from an alphabet. A single letter of an alphabet hardly means anything without context,

but as soon as we look at an organised sequence of letters, we are able to associate, thus

understand the meaning of a word. Meaning in music however is much more abstract than

meaning in language. Even the existence of the concept is questioned, and it is subject to

philosophical debate. Some aesthetes view music as a group of organised sounds without

meaning. The other extreme is to define meaning outside music, only in its cultural context.

In Cage’s view, as explained in [Pap, 2002], everything is music what we think of it as such.

In prehistoric civilisations for instance, music was almost purely functional [Rezinko↵, 2004].

Some of this aspect of music is retained until today. A military march or a call signal of a

radio station are good examples. In these cases the intention or meaning is clear, and for this

very reason aesthetes often regarded them as non musical. In the more general case, music

transmits its message through inducing emotions. Rezinko↵ assigns elementary meanings

to simple sound intervals of early modal music. In the correct context and temperament,

intervals can express anything from simple concepts of brightness and darkness to emotions

19

of joy or devotion. Today, this expressive capacity has disappeared, which is partly due

to the introduction of equal temperament. Rezinko↵ argues however, that expressiveness

was recovered by using more complex harmonies and structure. More complex timbre, more

complex motivic development with return and alterations of pitch and rhythm patterns of a

motive play an important role in western classical music.

The same argument seems valid in case of contemporary popular music. Electronic in-

struments and computer based music production tools are there to create a more complex

harmonic and structural repertoire. An extended structure is built from repetition and varia-

tion, a play with similarity and dissimilarity, to transmit a message and surprise. The alphabet

of sounds and their combinations are infinitely extended. This makes music very di↵erent

from language, and makes structure an important part of musical expression. Structure and

meaning emerge from return and variation of similar sounds and motives. This is one reason

why audio segmentation and similarity will be examined and discussed in this work. Also,

beyond musical considerations, similarity (in some feature of music) is often the objective

measure in segmentation algorithms. Semantic analysis of music involves finding the hierar-

chy of these individually coherent sections. We can define various levels of abstractions from

an acoustic, cognitive or musical view point. In cognition, the resulting units are grouped

together according to their place in an assumed hierarchy or perceived meaning. These units

form the basis of higher level structural elements, such as the refrain of a song.

These considerations call attention to the interdisciplinary nature of semantic audio anal-

ysis and related research. In my view, the prevailing approach for extracting information

from audio content, which views music solely as data — subject to general purpose statistical

analyses, without the assessment of rich contextual information — has reached its natural

limitation. In the following sections, the most important points of this argument will be high-

lighted, and a way in which complex information management and knowledge-based systems

could help to overcome certain practical problems arising from these practices will be out-

lined. Although we build on relevant previous work, it appears that even a seemingly simple

task of choosing an algorithm that yields good results in a specific analysis task requires deep

insight into many of the subjects outlined in Figure 1.1, hence the complexity of systems

that are able to perform such tasks. To summarise these views, this section shall be closed

with a passage from Pike that best portrays the complex relationships in the perception and

cognition of music.

“Musical perception, in its protensity, takes in relationships, di↵erentiates,

compares, groups, and forms structural and qualitative percepts. . . . The process

involves constant blending of the old and new, a process of continuous, progressive

change which not only satisfies the listener’s appetite for novelty but also widens

his span of attention.” – Alfred Pike [1971]

20

1.2 Organisation of this work

In the rest of this chapter, after outlining the utilities of semantic audio, some basic methods

for analysing music using computer algorithms will be discussed. The chapter is then closed

with an outline of the music production environment and some associated problems, and the

research methodology applied in this work. The rest of the thesis is organised as follows:

• In Chapter 2, the necessary background in information management and knowledge

representation will be reviewed, and a model for intelligent semantic audio applications

that drives the development of ontologies and software frameworks will be introduced.

• In Chapter 3, ontology engineering techniques, and the state of the art of multimedia

information management will be presented using a unique, application specific view on

this hard to navigate field.

• In Chapter 4, we briefly describe the Music Ontology framework, and present a large

ontology extension called the Studio Ontology as one of the main contributions of this

thesis.

• In Chapter 5, novel software frameworks that utilise ontologies will be introduced. This

includes Sonic Annotator Web Application, a Web-based framework for automatic audio

analysis, which is a major contribution in this thesis.

• In Chapter 6, we discuss the evaluation of the Studio Ontology together with case

studies of using the ontology in Semantic Web and Semantic Audio applications.

• In Chapter 7, we outline our future work and conclusions.

The contributions of this thesis are listed in Section 7.2, while a detailed outline of asso-

ciated publications with the author’s specific contributions is provided in Appendix A. The

appendices also provide a brief introduction to minor contributions that are important in the

semantic audio applications discussed in the main body of this work.

1.3 Utilities and applications of semantic audio

The concept of semantic audio is seen in this work as the convergence of technologies for

interacting with audio in human terms. The technologies involved should therefore enable

the analysis of audio content in order for meaningful associations between the content and

musical or other abstract concepts to be made, and enable the representation and management

of these abstractions and associations in a digital computer. Using a musical example, a

semantic audio tool might find notes in a recording and display how they are related to the

temporal extent of an audio signal. It may enable a user to navigate the recording using this

21

information, or enable the retrieval of recordings from a database using similar information.

The capability of representing and structuring information about human or more specific

musical concepts, and the analytical capability which provides for the association of these

concepts with a representation of the recording are two crucial components of semantic audio

applications.

Semantic audio has relevance in multiple fields of study. The broad and multidisciplinary

field of music informatics, which brings together information and communications technology

and music, and its specific sub-fields such as music information retrieval are good examples.

We believe however that semantic audio is increasingly relevant for people who not just enjoy

music, but who create music or participate in the music production process. In the following

sections we briefly introduce these fields and discuss motivating examples for developing

systems that facilitate diverse applications of semantic audio analysis.

1.3.1 Creative music production

Enabling applications of semantic audio in creative music production — for instance, building

intelligent music production environments that rely on data collected from studio processes

— is among the prime motivations for this work. The following sections provide a brief in-

troduction to a specific area where semantic audio has increasing relevance. Audio editing

and its role in music production is discussed in Sections 1.3.1.1 and 1.3.1.2, then, in Section

1.3.1.3, we outline how intelligent music production systems may support audio engineering

workflows. Specific information needs of such systems and state of the art information ex-

traction techniques will be discussed in Section 1.4, while motivating examples and problems

arising in record production will be outlined in Section 1.5. The information management

problems in these applications provide the motivation for developing the ontologies discussed

in Chapter 4. First however, we briefly introduce the basic concepts of audio editing in a

historical context.

1.3.1.1 Recording and editing music

The invention of recording before the turn of the twentieth century profoundly changed the

way music is performed and appreciated. The invention brought the need for producing and

distributing recordings at the best available technological level. Besides gradual advancements

in the reproduction of sound, another important e↵ect of technology on music has been implied

by the ability to alter the characteristics of a performance itself by editing sound. This gave

rise to a new profession: sound engineering.

There are undeniable impacts of the prevalence of edited recordings on both classical

and popular music. Philip [2004] points out the most significant ones very clearly in case of

classical recordings and concert hall performances:

22

”... by the beginning of the twenty-first century, musicians and audiences have

become so used to hearing perfect performances created by editing that the general

standards in the concert hall are also much higher than they used to be.”

Later he elaborates on how recording changed performance practices:

”informality [in music performance] was acceptable, even welcomed, ... due

partly to the fact people did not have the perfection of edited recordings as a yard-

stick.”

The earliest evidence of music editing appears in the process of producing piano rolls, perfo-

rated paper rolls used as medium for early automatic instruments. During the 1920s several

companies were making reproducing pianos to capture real performances of famous pianists.

The perforated paper rolls used as recording medium for these instruments encode the sound-

ing notes and their durations on the piano organised into tracks of holes corresponding to

each key of the instrument. The dynamics of notes were recorded onto separate side tracks.

An notable addition to this fact is the use of binary code by the Ampico company for en-

coding the loudness of each note. This is probably the first use of such a code for a musical

application1. These music rolls – somewhat similar to punch cards – were played back using

pneumatic instruments capable of reading the roll and operate the hammers inside a piano.

The player piano or pianola was such an instrument. Besides the fact that the reproducing

piano — which was used for recording new rolls — has di↵erent action and acoustics from the

instrument the rolls were played back on, piano rolls were criticised for an additional reason.

During the final production of the music roll, timing inaccuracies were corrected, while much

of the expressiveness — which is the most di�cult to capture automatically — was added

by technicians rather than the performing pianist [Philip, 2004]. Automatic instruments and

music rolls had helped to overcome the serious bandwidth limitation thus poor sound quality

of pre-electronic gramophone and phonograph recordings. Microphones and electronic record-

ing devices however rapidly rendered them obsolete. Similarly to the original phonograph,

the first electronic recorders were using wax cylinder medium. For this reason, editing, and

even playback for monitoring purposes was impossible without damaging the recording. Al-

though wax cylinders were replaced by direct-to-disc recordings, sound editing only became

wide-spread after the introduction of the magnetic tape.

Tape recorders were first used in broadcasting during the 1930s. Soon, they became com-

mon in the music studio too, and they remain in use until today. Destructive editing, which

involves physically cutting and joining pieces of tape, became generally accepted, although

this technique was limited to patching mistakes of a master recording using successive takes

recorded during a session. With multi-track tape recordings, it soon became impractical since

these tapes contain several instruments recorded on di↵erent parallel tracks of a tape.

1See for instance instruments exhibited at the Musical Museum in London (www.musicalmuseum.co.uk)

23

The invention of using multiple takes to record instruments and voice separately dates

back to the late 1940s. It is credited to the guitarist and composer Les Paul. This invention

involved a modified tape machine such that an extra play-back head – placed before the erase

head – enabled mixing previously recorded takes with new ones, and re-recording them on the

same tape. This idea created the need for tape recorders with several parallel recording tracks.

These machines were first developed at the Ampex company2. With the use of multi-track

tapes, it gradually became a common practice to record instruments onto di↵erent tracks

several times, then select the best parts for the final composition. Initially, analogue tape

machines were used in the process, but more recently, they were superseded by hardware

based digital recording equipment and finally computers.

In modern audio workstations the recording process as well as the user interaction is con-

trolled solely by software. Despite the rapid change in studio technology, the basic concepts

of recording and editing audio remains unchanged since the 1950s. Most software applications

tend to recreate an analogue multi-track environment in which the engineer manually edits

the best pieces together. Apart from audio e↵ects, not much signal processing, not to men-

tion machine intelligence, is applied to help the work. Using an analogy: a simple software

for schematics design allows an engineer to draw a circuit diagram. Most of today’s CAD

(computer aided design) applications however include circuit simulation and automatic layout

and routing of printed circuit boards, using the drawn schematics. In this sense, a true com-

puter aided recording system, which uses music information, does not yet exist. We believe,

that using music analysis tools in the production process is a promising way of enhancing

computer based recording. For example, automatic extraction of audio fragments showing

strong semantic relation can be used by an engineer as guidance. Labelling these fragments

according to their similarity, musical qualities, or using them as editing constraints can assist

in evaluating the numerous recordings, usually taken during a recording session.

1.3.1.2 Aesthetics of record production

Tape editing which involves manually cutting and splicing audio tape to select the best parts

of a performance, multi-tracking, the recording of individual members of a music group using

separate audio channels and storage, and the appearance of digital audio workstations (DAW)

are among the most important historical milestones in the production of both classical and

popular music records.

The introduction of computers with flexible music editing functionality, audio storage,

and file transfer technology propelled an unprecedented change in the creative environment;

separating recording, editing and mastering space, both in terms of geography and in terms

of expertise. Although the use of computer software had already had a significant impact on

music making, due to the complexities involved in computational analysis of music, machine

2Ampex historical tape recorders. For more details see http://www.ampex.com/l-history.html

24

intelligence is not widely used in the production process. It is di�cult to make machine

analysis comparable to human perception and understanding of musical audio. It may well

be questioned, whether we should perform such analysis at all.

In the early days of tape editing, some producers maintained — especially at classical

music labels — that only minimal or no editing should be applied to recordings [Philip,

2004]. Contrary to this position, the general tendency has leaned towards editing in the

realm of subtleties. These developments have changed the way we experience music, and

perhaps most notably, the way it is performed in the recording studio. Editing allows an

unprecedented amount of perfectionism, impossible to achieve in live performance. It is

outside the scope of our thesis to make an aesthetic judgement on this e↵ect, however, a valid

question can be asked: Why would we deny the instrument of revision, gradual improvement

and polishing of work from the performing musician, observing that it has been practised in

many di↵erent art forms for centuries? Similarly, why would we exclude the result of recent

advancements in signal processing and music information systems from the creative process?

Early versions of composition, text, poem, sculpture or painting are often regarded as inferior

by the artist and the public alike. While they technically mature during refinement, it is

unlikely that the fundamental message or semantics will be significantly changed. The novel

technological features of advanced DSP and music information algorithms can improve the

refinement process in many ways. Improvement of communication between an engineer and a

less technically minded artist, for instance by visualising details intuitively, aiding the work of

a sound engineer, or developing techniques which allow musicians to engineer for themselves

more easily. These advancements may significantly change the way music is edited, mixed

and produced in the studio. In our view, an intelligent music production system should

consequently emphasise on providing help, by means of tools using automatically extracted

and appropriately managed audio information, rather than automating the music editing

process or taking over the work of an engineer. Since supporting engineering decisions is a

complex task, an audio editor capable of this task can be seen as an intelligent system.

1.3.1.3 Intelligent music production systems

A computer-based system may be seen as intelligent if it accomplishes feats which require

a substantial amount of intelligence when carried out by humans [Truemper, 2004]. In the

context of audio engineering, we may think of tasks such as recognising a musical phrase with

bad intonation, and finding one which is similar but superior in some sense. Easier jobs may

include navigation by similarity or metric structure, alignment of phrases played by di↵erent

instruments using corresponding beats, or the ability to join audio clips without noticeable

artefacts. The literature on Artificial Intelligence (AI) and related fields discusses a wide

variety of intelligent systems and their architectures. Most systems fall into the category of

expert systems or decision support systems and intelligent agents. Expert systems on one

25

hand are used interactively by definition [Truemper, 2004]. While the rules supporting their

decisions are written by experts, these systems obtain information from non-experts in their

use. Based on this information, they draw conclusions or give advice. Intelligent agents on

the other hand are autonomous. They perceive their environment, and using the information

they collect, they act on the environment.

Given some common audio editing use cases, and without the assumption that the aes-

thetic goals of an engineer can be achieved automatically, an intelligent music production

system utilising semantic audio analysis would optimally fall somewhere in between these

categories. It is an agent in one sense, because it is required to obtain information from

the environment, which in our case is the edited audio material and the workflow context.

It is an expert system, when the main objective is considered as being workflow support as

opposed to automation. In Section 1.5.1 we will provide motivating examples, and discuss the

information needs of intelligent semantic audio applications. First however, we briefly review

another area if interest, namely music information retrieval.

1.3.2 Music Information Retrieval

The field of music information retrieval (MIR) evolved primarily in response to two chief user

needs, i) managing large digital music collections on personal computers, and ii) accessing

the increasing amount of music content on the Web. The field can be seen as a counterpart

of information retrieval (IR), addressing the unique requirements and challenges presented

by managing, searching or accessing musical audio as opposed to text. Music information

retrieval may also be seen as a sub-field of multimedia information retrieval, which deals with

heterogeneous content; audio, video, images and text. MIR is in our interest since many

of the techniques developed for music retrieval may also be used in creative music produc-

tion. Retrieval itself may bear relevance in applications like managing the back catalogues

of recording studios. However, since MIR is a relatively young area in the centre of scien-

tific research, many of its techniques are in the process of maturing and yet to be applied in

end-user applications.

Despite the explicit reference to retrieval in its name, a review of the MIR literature3

suggests that it is more commonly interpreted as information extraction from audio content

motivated by retrieval use cases; but apart from a few exceptions, without addressing all

issues related to encoding and accessing music related data. In this sense, a large part of

MIR overlaps with the field of semantic audio analysis, particularly the need in both areas

for extracting musically meaningful information from audio such as temp or chords. Other

use cases, for instance, audio-based similarity that is commonly characterised by measuring

distance in a low-level feature space, are usually seen more unique to MIR.

3See for instance papers presented at the International Society for Music Information Retrieval (ISMIR)
conferences throughout the last decade available from: http://www.ismir.net/

26

In this work we take the broadest possible view of both fields however, and focus on

all issues, including methodological ones, arising in the applications of semantic audio and

MIR. This includes information extraction, information aggregation, information manage-

ment, knowledge representation, as well as Web-based, and recording studio-based applica-

tions. The most relevant techniques used in semantic audio analysis and MIR will be reviewed

in Section 1.4, while the necessary background on information management and Web tech-

nologies will be presented in Chapter 2. Observing that information management in MIR

is underdeveloped, and that representing musical information and general Web content are

similar in complexity and in their requirements, we place an emphasis on adopting Semantic

Web technologies [Berners-Lee et al., 2001] for the purposes of semantic audio information

management. The following two sections provide motivations for using these techniques and

a brief introduction.

1.3.2.1 Music and the Semantic Web

Extracting semantic descriptors, such as note onset times, beats, chord progressions and mu-

sical keys from audio recordings can be useful in various applications such as audio collection

management or music recommendation. Since no single solution can address the large vari-

ety of possible user needs, these data can become a valuable resource when interlinked with

cultural or editorial metadata. For instance, events; concerts, tour dates, or artist relations

are rapidly becoming available via a number of conventional Web services4, as well as via the

Semantic Web. These resources can be used to find connections in music in intuitive new

ways as shown in the work of Jacobson [2011].

However, most existing information management solutions and previous research focus on

di↵erent aspects of music related data in isolation. The main reason for this can be identified

in the lack of comprehensive open-ended standards, or the lack of use thereof, for repre-

senting heterogeneous music related data, — for instance, the configuration parameters and

results of audio analyses — in a common, machine-processable, and easily exchanged way.

Several organisations have defined standards modelling di↵erent aspects of the audio domain,

providing schema and their definition in di↵erent syntaxes, and various ways of encoding

information. As a result, multitudes of incompatible standards and methods were produced

without common grounds and principles. Since often a narrow area of a domain is addressed

with a specific set of requirements, interoperability between applications is di�cult, even if

sharing otherwise overlapping information would be useful. The use of non-normative de-

velopment and publishing methodologies, rather than flaws in the design of these schemata,

is the most serious issue. In Section 3.2.1 we argue that common approaches, such as stan-

dardising syntax using the eXtensible Markup Language (XML), do not provide su�cient

4See for instance proprietary online resources like Last.fm (http://www.last.fm/api) or the EchoNest
(http://echonest.com/).

27

ground for modularity and interoperability. One common problem is the ad-hoc definition of

terms in various standards, while the lack of support in the language of choice for establishing

meta-level relationships — such as equivalence and hierarchical relations — is another. These

problems typically prevent interoperability, and the reuse of data expressed in most existing

formats. For a detailed discussion on the problems of metadata standards see Section 3.2 in

this work, or [Klein et al., 2001] and [Smith and Schirling, 2006] in the literature.

Web technologies for knowledge representation, information sharing and interlinking het-

erogeneous resources provide some remarkable solutions to the problems mentioned so far.

The technologies developed to fulfil Tim Berners-Lee’s vision of the Semantic Web include the

Resource Description Framework (RDF) [Lassila and Swick, 1998]. This framework can be

used in conjunction with the Uniform Resource Identifier (URI), and the access mechanism

of the Hypertext Transfer Protocol (HTTP). These technologies enable the formation of the

“Giant Global Graph” of machine-interpretable data. In the RDF data model, information is

represented as statements consisting of subject-predicate-object terms. These terms are typ-

ically named by Web URIs, which may be dereferenced to access more information such as

vocabulary definitions about their meaning. Although RDF provides a simple mechanism to

express vocabularies: the RDF Schema (RDFS) vocabulary description language; this is gen-

erally insu�cient for describing a precise and explicit conceptualisation of a domain similarly

to the capabilities of database and software modelling languages like the Entity-Relationship

(ER) model, or the Unified Modelling Language (UML). The task of providing precise and

explicit conceptualisation is fulfilled by Semantic Web ontologies, which may be expressed

using one of the several layers of the Ontology Web Language (OWL) [Patel-Schneider et al.,

2004]. As opposed to most prior forms of knowledge representations, these languages have

their grounding in mathematical logic, and therefore they support automated reasoning pro-

cedures (see e.g. [Horrocks, 2008]). A more detailed discussion of information management

and Semantic Web technologies will be provided in Chapter 2, while the use of ontologies will

be introduced in Chapter 3. In the next section, we outline how the use of these technologies

may improve the field of MIR, and contribute to research and community e↵orts at large.

1.3.2.2 A Knowledge-based approach to MIR

Bridging the semantic gap, integrating computational tools and frameworks, and stronger focus

on the user can be cited among the most important future challenges of music information

research [Casey et al., 2008]. Prevailing machine learning tools that build statistical models

typically from manually annotated data sets provide good solutions to specific problems in

MIR; however they give little insight into our understanding of the musical phenomena they

capture. In other words, they do not easily allow us to close the semantic gap between

features and computational models on one hand, and musicological descriptors or human

music perception on the other. While cognitive modelling, the use of contextual metadata

28

in MIR algorithms, and the use of high-level reasoning are promising future directions; for

a recent example see [Wang et al., 2010], some common agreement in how knowledge and

information are represented in di↵erent systems is requisite for building on previous work by

other researchers and for deploying complex systems.

Collins [2010] presents a musicological study where influences on composition are discov-

ered through the use of the types of socio-cultural information mentioned above, combined

with content-based audio similarity. While it is feasible to perform such studies using tra-

ditional techniques such as Web scraping, — extracting information from Web pages using

natural language processing techniques — proprietary APIs of online data providers, as well

as content based feature extractor tools such as Marsyas5 [Tzanetakis and Cook, 2000], or

jAudio6 [McEnnis et al., 2005], building robust MIR systems based on these principles could

be made easier through agreement on how diverse music related data is represented and com-

municated. As a result of such an agreement, the laborious process of aggregating information

could be reduced to making queries to distributed resources of linked-data on the Semantic

Web.

The use of a wide variety of programming languages, software libraries and Application

Programming Interfaces (API) within the MIR community is an additional problem to be

noted. This practice hinders the process of exchanging research results, and makes it cum-

bersome to build on prior work. The answer to this problem may be found in using common

interfaces such as Vamp [Cannam, 2009], an API for audio analysis enhanced with easily

extended Semantic Web ontologies. These ontologies, built on the foundations of the Music

Ontology (MO) framework [Raimond et al., 2007] outlined in Section 4.1, can be used for

describing both analysis results and algorithm configuration, as well as other aspects of the

analysed piece of music. The utilities of the combined use of these technologies and ontolo-

gies is demonstrated by the Sonic Annotator Web Application (SAWA), a Web-based system

for audio analysis (see Section 5.3). The motivation for developing this systems is twofold.

On one hand, it provides an easily accessible exposition of MIR algorithms implemented as

Vamp plugins, on the other hand, it aims to show how Semantic Web technologies can facili-

tate interoperability between service components within an MIR system, and provide access

to external systems at the same time. This includes online databases containing editorial

information such as MusicBrainz7, or Semantic Web resources such as DBpedia [Auer et al.,

2007]. The integration of computational tools through the use of interoperable software com-

ponents and extensible metadata management was also in the focus of the OMRAS2 project8.

The software frameworks and ontologies discussed in chapters 4 and 5 are novel contributions

to this project. We aim to show how these components support reproducible research, the

5Marsyas: http://marsyas.info/
6jAudio: http://jmir.sourceforge.net/jAudio.html
7MusicBrainz is a community created open music encyclopaedia: http://www.musicbrainz.org/
8See http://www.omras2.org for details, and [Dixon et al., 2010] for an overview.

29

combination of di↵erent music analysis tools and resources, and collecting data about music

production. First however, we outline some relevant signal processing and machine learning

techniques for extracting information from audio content. These techniques are used as basis

in most systems discussed in this thesis.

1.4 Signal processing techniques for semantic audio analysis

Extracting information from audio recordings is requisite for building semantic audio ap-

plications. An outline of the fundamentals of analysing music using computer algorithms,

including low-level physical and perceptual, as well as high-level semantic feature extraction

techniques is therefore crucial for describing the type of tools we discuss in this work. The

following brief and critical review highlights some information management problems arising

in the applications of audio analysis, and serves to inform about underlying needs for the de-

sign of ontologies and information management solutions discussed in the following chapters.

First, we briefly review the basic categorical distinctions in the features of sound and music,

and the relationships of these features in the physical, perceptual and musical domains.

Physical Quantity (or concept) Perceptual Quality Musical Category

frequency (fundamental) perceived pitch musical note

amplitude (intensity) perceived loudness dynamics

duration (time) perceived duration beat and tempo

waveform (or complex spectrum) perceived timbre tone quality (e.g. instrument)

Table 1.1: Principal dimensions of elementary musical sounds, based on [Olson, 1952].

Olson’s taxonomy of musical dimensions [Olson, 1952] provides an insightful parallel view

on how the qualities of sound and music are interpreted in various disciplines, and provides

a basic terminology related to the concepts of physical and psychological qualities. Following

this line of thought enables us to resolve ambiguities that often appear in relation to acoustical,

perceptual and musical quantities.

Table 1.1 illustrates physical quantities used to describe elementary sounds and the most

related perceptual and musical concepts. It is important to observe that the further we depart

from basic physical quantities, the concepts become more complex, and it becomes more dif-

ficult to establish the correspondence between categories. Olson defines additional properties

which can be understood physically, perceptually and musically. A sound may be charac-

terised by growth and decay, or the attack and release times related to timbre, harmonicity

and inharmonicity, regular or irregular spacing of frequency components, vibrato (frequency

modulation), tremolo (amplitude modulation). In relation of two or more sounds we can talk

about consonance, dissonance or harmony, the fundamental frequency ratio and coincidence

30

of partials, beating,, that is, a perceived pitch and loudness fluctuation of sounds close in

frequency, and rhythm, some uniform variation in duration and dynamics of a succession of

sounds. Obtaining audio features corresponding to simple physical quantities, such as the fun-

damental frequency of a sound, is a question of measurement involving simple mathematical

transformations. Extracting perceptual qualities require more complex computation, often

involving auditory modelling, while musical interpretation of audio recordings (e.g. transcrip-

tion, beat tracking) involves algorithms replicating a complex process of perception and to

some extent cognition.

In semantic audio applications, the more help we wish to provide to users, the more

important the reliance on higher level processing becomes. Due to the increasing ambiguity

in conceptual relationships of quantities across di↵erent domains (e.g. how fundamental

frequency or perceived pitch are related to a musical note), correct identification of musical

categories, for example, recognising a musical note or an instrument will require more complex

processing, such as pattern recognition and classification, or knowledge-based processing,

which relies on logical inference using contextual information alongside directly measured

physical quantities. In the following sections, we provide an overview of relevant audio feature

extraction techniques.

1.4.1 Physical and perceptual features of sound

We may dichotomise audio features several di↵erent ways. Perhaps the most common, though

slightly ambiguous distinction is between low and high-level features (please see a thorough

discussion of audio feature categorisation in Section 3.2.5.1), where low-level features corre-

spond to the first two categories discussed in the previous section, namely physical quantities

and perceptual qualities. These features are generally non-musical, therefore they cannot

be directly associated with high-level meaning. We can further subdivide low-level features

such that perceptual features, (e.g. perceived pitch or complex timbre models of instruments)

are though to be mid-level representations, while physical quantities (e.g. the attack time

or fundamental frequency of a note) are though to be low-level features. In this section we

discuss these two categories.

1.4.1.1 Fundamental frequency and perceived pitch

Most elementary stationary sounds, whether sinusoidal or complex, harmonic or inharmonic

are assigned a pitch by the human auditory system, unless they are completely aperiodic. This

is known as perceived pitch. Because of the complexities involved in perception (e.g. in case of

a missing fundamental, there may be a perceived virtual pitch) and auditory modelling, a large

variety of algorithms were proposed for deriving the perceived pitch both in the time domain

and the frequency domain. These include techniques based on time domain autocorrelation

and the Cepstrum. A comprehensive overview can be found in [Klapuri, 2004].

31

Despite this large variety, the most straightforward interpretation of the pitch of a complex

tone is its time domain repetition rate, or fundamental frequency. Boersma [1993] showed,

that the best candidate for finding the acoustic pitch of a sound is the highest peak of

its autocorrelation function (ACF). In a recent thesis, Purwins [2005] demonstrated through

perceptual experiments, that direct autocorrelation is capable of resolving the perceived pitch

in most cases. Considering these results we compared an autocorrelation based method for

pitch determination with some Cepstral methods.

The autocorrelation of an N-length signal x(n) is given by Equation 1.1. Through the

e�cient implementation using the Discrete Fourier Transform (DFT) (see Equation 1.2), we

find the relation between the ACF and the Cepstrum. This can be written in a generalised

equation given in (1.3). The unification of these methods appears in the literature as the

generalised autocorrelation [Tolonen and Karjalainen, 2000], using the exponent 0.67, instead

of power spectrum or log spectrum computation.

rxx(i) =
1

N

N�i�1X

n=0

x(n) · x(n+ i) (1.1)

X(!) =
X

n

x(n)e�j!n, (1.2)

where ! = 2⇡k/N , and k is the index of frequency bin such that 0  k  N .

rxx(i) = IDFT [f (|DFT (xn)|)] , (1.3)

where

f() =

8
><

>:

f()2 ! ACF

log() ! Cepstrum

f()0.67 ! generalized-ACF

and IDFT is the inverse transform of the DFT given in Equation 1.2.

In order to obtain low-level segmentation, which may be used for instance as guidance

for selecting individual notes in an audio editor [Fazekas and Sandler, 2007b], we employed

Boersma’s algorithm. We first extract a continuous pitch track (see Figure 1.2/b) and use

it in a pitch based onset detection algorithm proposed by Collins [2005]. Boersma’s method

provides an e�cient and relatively accurate way of pitch detection. In an attempt to develop a

general purpose algorithm for symbolic or quasi-symbolic representation of track, we first ver-

ified the results shown in [Monti and Sandler, 2000] for example, that ACF-based techniques

perform well in finding the pitch of instruments with stable, harmonic sound. Although, the

pitch based segmentation proposed by Collins was further enhanced and shown to work well

for pitched non-percussive instruments, such as the violin, in [Schleusing et al., 2008], we

32

found that reliable conversion from a continuous pitch track to symbolic notation turns out

to be very di�cult. This is especially the case when analysing unprocessed multitrack record-

ings (see [Viitaniemi, 2003] for detailed discussion). This is demonstrated in Figure 1.2 with

a worst-case example using singing voice. The dashed black lines in the diagram represent

the ground truth, obtained through a listening experiment, by manually tuning pure tones

such that they sound unanimously with the sung notes.

 �
90� 180� 270� 360� 450� 540� 630� 720� 810�

-0.5�

0 �

0.5�

Time [ms]�

A
m

p
lit

u
d

e
�

(a) Short voiced segment�

5� 10� 15� 20� 25� 30� 35� 40�
120�

140�

160�

180�

200�

F
re

q
u

e
n

cy
 [

H
z]

�

(b) Continuous Pitch Track�

5� 10� 15� 20� 25� 30� 35� 40�
B2�
C3�

C#3�
D3�

D#3�
E3�
F3�

F#3�
G3�

G#3�
A3�

(c) Quantized Pitch Track (12 Tone Equal Temperament)�

Frames�

S
e

m
ito

n
e

s
�

Figure 1.2: Pitch track (b) of a short voice segment (a) and its transcription (c)

Comparing the manual transcription with the quantised pitch track shows that human

cognition ignores pitch instabilities and glides during legato singing. To solve this problem,

Viitaniemi and Klapuri [2003] proposed a hidden Markov model (HMM) based probabilistic

approach, which uses the pitch trajectory and a musicological model. This model was trained

on a large database of folk songs to learn note transition probabilities, however, the tran-

scription accuracy is still worse than human judgement, with error rates up to 20 percent.

Common alternative implementations of pitch estimation include YIN, which can be seen as

a variant of auto-correlation [Cheveigné and Kawahara, 2002]. It makes an attempt to resolve

ambiguities in choosing the ACF peak which corresponds to the fundamental. A more recent

algorithm SWIPE and a general comparison of several methods in the context of di↵erent

instruments is provided in [Camacho, 2007].

Our subjective tests, as well as the relevant literature mentioned above suggest that pitch

transcription alone is not su�cient to obtain a general purpose, reliable method for the

33

symbolic representation of audio tracks. These results indicate however that knowledge-based

music processing systems could benefit from the ability to select the most e↵ective algorithm or

parameters given some contextual information, such as the instrument or recording conditions,

and inform us about knowledge and information management requirements in semantic audio

production tools.

1.4.1.2 Low-level timbre features

Low-level timbre features are often used to characterise sound or serve as bases for higher-

level semantic audio analysis tasks such as speech-music segregation. These features are

commonly computed from the windowed short-time Fourier transform (STFT) of the signal

given in Equation 1.4

X(m, k) =
X

n

s(n)w(mh� n)e�j2⇡nk/N (1.4)

where m is the frame index, h is the hop size, and w(n) is an N length window function.

A typical example of low-level features is spectral centroid, see Equation 1.5, an impor-

tant attribute of timbre. Its high correlation with the brightness of a sound was shown in

psychological experiments using multi-dimensional scaling (MDS) [Kruskal and Wish, 1986].

In Equation 1.5 freq(k) is the centre frequency and |X(m, k)| is the magnitude of bin k of the

N point short-time discrete Fourier transform of frame m.

sc(m) =

PN

2 �1
k=0 freq(k) · |X(m, k)|
PN

2 �1
k=0 |X(m, k)|

(1.5)

Spectral variation or spectral flux (sf) is another commonly used low-level feature. It ex-

presses the dissimilarity or shape change between the magnitude spectra of successive frames.

It is usually implemented as the Euclidean distance (l2 norm) between normalised vectors,

however, depending on the application the implementations often vary. It may be computed

by the normalised cross-correlation as in [Peeters, 2004], or using the l1 norm, for instance,

when applied as an onset detection function as in [Dixon, 2006]. This application is shown

Equation 4.25, where the function H(x) = (x+ |x|)/2 represents half-wave rectification.

sfdf (m) =

N

2 �1X

k=0

H(|X(m, k)|� |X(m� 1, k)|) (1.6)

Because of the ambiguities of use in di↵erent applications, spectral flux is a good example

where a music processing system could benefit from using a knowledge-base. Given that the

extractor is available as a low-level processing block, and our knowledge-base contains the

associations between the descriptors and the applications, our system should be capable of

choosing the implementation most appropriate for the task. In the broader view, for example

34

in onset detection tasks, such a knowledge-base could encode the empirical results of larger-

scale experiments like the one described in [Dixon, 2006].

1.4.1.3 Timbre models and spectral envelopes

Timbre has multiple definitions in the literature depending on how broad our interpretation

is. In one view, timbre describes all aspects of sound but pitch and amplitude, and include

features such as the attack time, or the temporal centroid of a musical note. Others mainly

relate it to harmonic content. Dannenberg [1993] ironically noted: “timbre is by definition that

which we cannot explain”. More recently, especially in the contexts of music similarity and

structural segmentation, timbre has been generally interpreted as the time-varying spectral

envelope. Properties of the human auditory system, namely the finite resolution of auditory

bands, allow a compact representation of the harmonic content. In this sense, the timbre

space has to be just large enough to resolve the perceivable di↵erence between the sounds of

two instruments, textures or phonemes.

The two most common ways to obtain spectral envelopes are Linear Prediction and the

Cepstrum, both are well established in speech communication research. Linear prediction for

instance is commonly used in telephony and speech transmission. Linear predictive coding

(LPC) approximates speech production using the source-filter model. In this model, the vocal

tract is represented by an all-pole resonant filter (synthesis filter), which is the inverse of the

analysis filter. The analysis filter coe�cients are generally estimated from the short-time

autocorrelation of the signal. Due to quantization sensitivity of LPC coe�cients, they are

commonly converted to reflection coe�cients related to the vocal tract tube model, or line

spectral frequencies (LSF), which are frequency domain representations of the filter poles and

the related formant frequencies. A disadvantage of using direct-form LPC coe�cients lies in

the fact that some poles appear deep within the unit circle. This makes finding the roots of

the filter polynomial computationally expensive. A solution to this problem is provided by

using Line Spectral Frequencies [Kabal and Ramachandran, 1986].

A(z) =
1

2
(P (z) +Q(z)) , (1.7)

where

P (z) = A(z) + z�p+1A(z�1) (1.8)

Q(z) = A(z)� z�p+1A(z�1) (1.9)

The LPC analysis filter polynomial A(z) can be rewritten as a pair of symmetric and

anti-symmetric polynomials P(z) and Q(z). This is shown in Equation 1.7. The most impor-

35

 �

0� 2� 4� 6� 8� 10�
0�

0.2�

0.4�

0.6�

0.8�

1�

LPC Spectral Envelope and Line Spectral Frequencies�

Frequency [kHz]�

N
o
rm

a
liz

e
d
 M

a
g
n
itu

d
e
�

Power spectrum�

LPC spectral envelope�

Line Spectral Frequencies�

Figure 1.3: Spectral envelope derived by LPC and line spectral frequencies

tant property of these polynomials is that the roots always lie on the unit circle, and they

alternately surround resonant peaks of the of the LPC filter. These properties make the com-

putation of LSFs e�cient using the iterative root finding algorithm of Kabal. This algorithm

finds the polynomial roots by searching through the unit circle using bisection. Figure 1.3

exemplifies the spectral envelope and LSF coe�cients.

Another representation of timbre we may utilise is Mel-Frequency Cepstral Coe�cients

(MFCC) derived from the computation of the cepstrum [Rabiner and Juang, 1993]. This

representation is commonly used in speech recognition due to its flexibility in describing

spectral envelopes at any desired resolution. The cepstrum separates the slowly varying

components of a signal from the superimposed high frequencies or noise like components by

taking the logarithm and an inverse transform of the power spectrum. This is shown in

Equation 1.10. It can be viewed as a re-arranged spectrum, such that the higher the number

of coe�cients, the more spectral detail is retained.

c(n) =
1

2⇡

Z ⇡

�⇡
log |X(!)| ej!nd! (1.10)

Before computing the cepstrum, it has become common to use non-linear frequency warp-

ing in order to emphasise perceptually important low frequencies. Mel-scaling is a common

method for modelling auditory bands. However, a simple log-frequency scale, the Bark scale,

or Equal Rectangular Bandwidth (ERB) scale may also be used. In these processes, the

spectral bins of a DFT are grouped according to an auditory model or scale. We already

showed the e�cient computation of the cepstrum through DFT and IDFT in Equation 1.3.

The Discrete Cosine Transform (DCT) however is commonly used to compute the MFCCs.

Typically the first twenty to thirty MFCCs are used to representation a spectral envelope.

This is illustrated in Figure 1.4. In the example of Figure 1.4b, the first 22 coe�cients are

used to compute the spectral envelope shown in Figure 1.4a. Note that DC coe�cient is set

to zero. It can be seen that the first two harmonics are not resolved by this representation,

however the accuracy can be increased by using more coe�cients.

36

 �

515� 1033� 1758� 2994� 5097� 8677�

0�

0.5�

1�

(a) Mel Scaled Spectrum and Spectral Envelope�

Mel Frequency Scale (converted to [Hz])�

M
a
g
n
itu

d
e
 (

N
o
rm

)�

0� 10� 20� 30� 40� 50� 60� 70� 80�
-1�

0�

1�
(b) MFCC Coefficients�

extracted (blue) and used (red) MFCC coefficients�

M
a
g
n
itu

d
e
 (

N
o
rm

)�

Mel-Spectrum�
Spectral Envelope�

used MFCCs�
total MFCCs�

Figure 1.4: Spectral modelling of a single audio frame using MFCCs

1.4.2 Semantic features of audio and music

High-level or semantic features of audio closely correspond to musically meaningful concepts,

for instance, notes and note onset times, rhythm, tempi, keys, chords or structural segments,

such as musical phrases, movements, or choruses and verses in popular music. In this section,

we review the most common techniques for extracting this information from audio recordings.

We also discuss some of the limitations of the state of the art, and highlight some information

management needs of semantic audio tools designed to deal with this information.

1.4.2.1 Onset detection, tempo estimation and rhythm analysis

Rhythmic structure and organisation is an essential feature of music. Since various sources

provide di↵erent descriptions, it is di�cult to find a universally accepted definition of rhythm.

Still, we can identify its most important aspects: Tempo is the overall repetition rate of beats,

while metre is the hierarchical structure of musical time. Lerdahl and Jackendo↵ [1983]

identify grouping as an entity distinct from metre, expressing rhythmic structure. Thus

rhythm can be seen as the manifestation of temporal-accentual patterns of musical events.

Similar consensus seems to be accepted by music psychologists and musicologists. See [Clarke,

1999] or [Patel and Peretz, 1997] for detailed discussion and various possible definitions.

Rhythmic analysis of audio recordings usually employs note onset detection as the front-

end feature extraction step. This may be performed in the time domain, but state of the

art techniques use frequency domain processing. Typically, a detection function is computed

first, and the onset locations are identified by selecting local maxima of the detection func-

tion [Hainsworth, 2004] which satisfy certain conditions, for instance, having a magnitude

exceeding a predefined threshold.

A key di↵erence between onset detectors is the choice of the detection function. This may

37

be as simple as the energy or magnitude of linearly weighted short-time Fourier transform

vectors, such as the high-frequency content detection function [Duxbury et al., 2002]. Dis-

tances between successive STFT frames may also be used to derive simple detection functions

measuring the di↵erence in successive spectral profiles. More complex functions, such as the

complex-domain detection function [Bello et al., 2005] take phase information into account.

Using this detection function, note onsets are emphasised either as a result of significant

change of energy in the magnitude spectrum, or the deviation from expected phase in the

phase spectrum caused by a pitch change.

Alternative techniques formulate onset detection as a classification problem, and attempt

to decide whether two frames of a certain temporal distance could be coming from the same

event [Kapanci and Pfe↵er, 2006]. The combination of multiple onset detection functions

were also explored. This may take the form of a linear combination of di↵erent detection

functions, or involve the use of higher-level fusion rules to combine peak information obtained

from several onset detectors. The use of information fusion methods facilitates gathering the

e↵orts of the MIR community, which develops multiple signal processing algorithms for similar

purposes [Degara-Quintela et al., 2009].

Algorithms for various rhythm related tasks such as tempo estimation and beat tracking

may rely on onset detection directly. The method described in [Dixon, 2001], derives tempo

hypotheses from clustering inter-onset-intervals. These are then used within a multi-agent

system, forming multiple beat agents which compete based on how well each can predict

beat locations. Other systems use multiple note onset detection functions derived from dif-

ferent frequency sub-bands of the signal, or incorporate harmonic change detection, and prior

knowledge such as an assumed steady tempo. Comprehensive overviews of these techniques

are available in [Gouyon and Dixon, 2005] and [Davies and Plumbley, 2007].

Despite the multitude of techniques proposed for onset detection, extracting onsets from

audio recordings is not a fully solved problem, and can introduce undesirable errors such as

missed detections and false positives. Therefore Davis uses a continuous detection function

directly as the input to his beat tracker [Davies and Plumbley, 2007], without extracting

onset locations first. In this method the beat period (the time between successive beats) is

estimated using an adaptively filtered and half-wave rectified detection function. To emphasise

the strongest peaks, an adaptive moving mean threshold is computed and subtracted from

the onset detection function. Then, normalised autocorrelation of this function is computed,

and the lag from the autocorrelation domain is mapped into a measure of tempo in beats per

minute, using a weighted comb filtering technique. This tempo hypothesis is used as prior

knowledge in a two-state model, which is able to adopt to tempo changes, as well as able

to prevent the two most common beat tracking errors: i) switching between metrical levels

(elements in the hierarchy of musical metre, e.g. beat and bar level, see [London, 2012]), for

instance half or double the beat period, and ii) switching between on and o↵-beat.

38

 �

0� 20� 40� 60� 80�
0�

10�

20�

30�

40�
(a) Voiced Segment Periods�

Distribution: number of frames�

n
u
m

b
e
r

o
f
se

g
m

e
n
ts

�

1� 2� 3�4� 5� 6�7� 8� 9�10�11�12�
0�

20�

40�

60�

80�
(b) Unvoiced Segment Periods�

Distribution: number of frames�

n
u
m

b
e
r

o
f
se

g
m

e
n
ts

�

0� 100� 200� 300�
0�

10�

20�

30�

40�

50�

60�
(c) Silent Segment Periods�

Distribution: number of frames�

n
u
m

b
e
r

o
f
se

g
m

e
n
ts

�

0� 50� 100� 150�
0�

5�

10�

15�

20�

25�

30�
(d) Voiced plus Unvoiced Segment Periods�

Distribution: number of frames�

n
u
m

b
e
r

o
f
se

g
m

e
n
ts

�

Figure 1.5: Using segment-duration histograms for periodicity estimation [frame size = 11.6ms]

This and other techniques mentioned in the literature above indicate that using contextual

information as prior knowledge in audio analysis tasks can improve the results. For instance,

finding beat locations can be made computationally simpler or more accurate given the priors

such as tempo, time signature or metrical structure. This type of data about a recording

is usually available during production. For instance, the tempo and time signature of a

recording project is typically set by the engineer when generating a click track which guides

the musicians during a recording session. We can therefore easily argue that semantic audio

tools should be able to collect and manage this information, in order to facilitate semantic

audio analysis. The results may be used in music information management and retrieval, or

audio analysis applications that aid the recording process itself.

Tempo and beat analysis can be used to support various other audio analysis tasks. Beat

synchronous analysis is more and more commonly used in tasks such as chord change detection

(i.e. the most likely chord boundaries may coincide with beats), or structural segmentation,

as described in [Levy and Sandler, 2006b] and [Mauch, 2010]. It is also possible to reverse the

process and use for instance segmentation techniques to infer rhythm related information. We

exemplify an application of processing separate tracks in a multitrack recording environment

in [Fazekas and Sandler, 2007b]. Here, we obtain periodic segment duration histograms from

coarse segmentation of voice recordings shown in Figure 1.5a. These segments are extracted

using standard speech processing techniques such as voice activity detection, voiced/unvoiced

39

segmentation and pitch change detection. Seeking for subdivision of these segments, we can

use periodicity information obtained from the histograms to estimate temporal locations of

expected note transitions. Periodicities can also be used to focus similarity search on segments

that are clustered around a peak (thus similar in length).

In an even wider context, to exemplify an application of beat detection in multi-track

processing, we may extract rhythmic information from percussive tracks, and superimpose

this on non-percussive tracks, for example a violin recording or other string or wind instru-

ments, where this information is harder to obtain, assuming that they follow the same tempo

and metre. This can play an important role at later steps, for example in improving note

segmentation or refining the detection of higher-level segment boundaries.

1.4.2.2 Harmony, tonality and chord estimation

Key, tonality and chord detection are of high importance in semantic audio analysis and

prospective intelligent audio production systems. They can be equally useful in numerous

di↵erent applications, such as navigation by harmonic structure, visualisation, content man-

agement or retrieval from music databases or recording studio archives.

Harmony in tonal music [Dahlhaus and Gjerdingen, 1990] relies on the ability of the

human auditory system and cognitive processes to perceive simultaneously sounding pitches,

and associate them with some musical function. Therefore, any algorithm designed to extract

harmony-related information from audio (see for example chord recognition in [Fujishima,

1999; Harte and Sandler, 2005] or [Lee and Slaney, 2008]), has to rely on musically meaningful

lower-level features such as the pitches of musical notes.

The coe�cients of the traditional Fourier transform based spectrum are equidistant in

frequency. However, the fundamental frequencies of musical notes (as well as the associated

perceived pitches) are approximately equidistant in log-frequency, therefore, to obtain musi-

cally meaningful representations of audio, we have to move to log-frequency. This can be done

by mapping the frequency coe�cients of the STFT to log-frequency coe�cients, however large

transform windows are required to resolve the pitches of musical notes notes at lower frequen-

cies, resulting in poor time resolution. Key and chord analysis algorithms therefore typically

utilise time-frequency transforms, whose frequency spacing can be adjusted to match the ge-

ometric frequency spacing of musical notes. It may also be necessary to adjust the analysis

to specific tuning systems and/or recording characteristics such as an unconventional concert

pitch, which may diverge greatly from the standard 440 Hz of middle A.

The Constan-Q transform [Brown, 1991] shown in Equation 1.11 provides a solution to

the problem above, by having a constant ratio of centre frequency to resolution

CQ(k) =
1

N(k)

N(k)�1X

n=0

w(k, n)x(n)e�j2⇡Qn/N(k) (1.11)

40

where w(k, n) is a window function which depends on the frequency bin k, Q is the quality

factor, the ratio between the central frequency fk of the k-th bin and the corresponding

resolution (filter width), and N(k) = Q⇥ (fs/fk) where fs is the sampling frequency.

Early chord extraction algorithms however were still dependent on the STFT. For example,

the basis for chord detection in Fujishima’s method [1999] is the pitch class profile (PCP)

representation, computed by summing the power spectrum coe�cients that are close to the

frequency corresponding to either one of the individual pitches in a pitch class. This results

in a 12 dimensional chroma vector, a chromatic representation of the harmonic content of

an audio signal, where spectral content is essentially wrapped into a single octave [Bartsch

and Wakefield, 2005]. Chord names are then estimated by finding the best matching chroma

profiles given a chroma vector. Harte [2005] improves on these results by using a tuned

Constant-Q transform instead of the STFT. The first chord detection technique that uses

machine learning models was introduced in [Sheh and Ellis, 2003], which employes Gaussian

models of chord templates learned from labelled audio data and a hidden Markov model.

More recent techniques increasingly move towards the use of supervised machine learning

for chord recognition, but the use of the Constant-Q transform, and PCP as the underlying

feature remains predominant (see [Papadopoulos and Peeters, 2007] or [Mauch, 2010] for more

comprehensive overviews). The use of musical contextual in chord recognition was introduced

in [Mauch and Dixon, 2010b], where information such as metrical structure or the key of a

piece are incorporated in the chord extraction process using Dynamic Bayesian Networks

(DBN) [Murphy, 2002].

Di↵erent applications of chord detection in other semantic audio analysis tasks were ex-

plored by several studies. The use of chord extraction, for instance in structural segmentation

(see Section 1.4.2.3), was demonstrated in [Bello et al., 2005], who found, not surprisingly,

that the sequence of chord labels correspond well to the structure of pop songs. The reverse

of this idea, improving chord recognition by structural segmentation, has been found to be

useful in [Mauch et al., 2009], while Lee and Slaney [2008] introduced a key-dependent model

for chord transcription. All these techniques show the high degree of interdependency between

high-level musical features, which supports the notion that using a database, together with

uniform representation of feature components shall lead to the generalisation of these tech-

niques, as well as improved e�ciency in practical applications, since the underlying low-level

features, such as chromagrams, will not need to be recalculated.

Musical key estimation is based on similar techniques described above in the context of

chord detection, i.e. matching compact frequency domain representations of audio (i.e. tone

profiles, profiles of salient pitch classes) with templates of harmony or a model of harmony

progressions, see for instance [Peeters, 2006] and [Noland and Sandler, 2009].

We can speculate that processing multitrack data and utilising information collected in

the recording studio (e.g. metadata about instruments and recording conditions) provide a

41

potential improvement on the state of the art. Using a knowledge base, in which we encode

what instruments contribute positively to chord or key analysis, and which are the ones that

degrade the performance, we can fine tune the processing to a multitrack recording. For

instance, keyboard and guitar accompaniments almost certainly improve the analysis, while

lead instruments or drums may degrade it. Then, an intelligent system can create an optimal

sub-mix from the available tracks before the analysis.

1.4.2.3 Structural segmentation

Semantic music segmentation involves finding the hierarchy of individually coherent sections

in a musical piece. Various levels of abstractions can be defined starting from notes, the most

fundamental units in music, or other perceptually coherent small acoustical units, such as

phonemes of speech or singing. Bars, motives and phrases are sequences of notes, grouped

together according to their place in some hierarchy, such as the metrical structure, or a

perceived meaning, often characterised by direct repetition or similarity within a sequence of

events, such as a repeating melodic phrase or a chord progression. These units form the basis

of higher-level structural structures, such as movements in classical pieces, or the refrain of a

popular song.

In this section, we are concerned with methods for extracting high-level segments from

music. These methods have several potential applications in music production tools that

utilise semantic audio analysis. For instance, it is now standard in the studio to compose

the final mix of a song from the numerous audio tracks taken during a recording session, and

to select technically superior or artistically more expressive phrases played by an instrument

and use them in a song release. Since takes recorded successively and repetitions at di↵erent

song positions can both be used, the process involves exhaustive search and assessment of

musically similar audio sections within or between tracks.

A sound engineer or producer working in a complex multi-track software environment

would greatly benefit from using the song structure as guidance in the post-production process.

Although manual annotation of audio tracks is possible in most applications, it is a time-

consuming and often weary process. An intelligent audio editor would provide the song

structure, visually laid out in the project window, together with simple semantic constructs,

like find the next similar segment, in order to navigate around the recorded material. Based on

segmentation techniques described in [Levy and Sandler, 2006b] and [Levy and Sandler, 2008],

we developed a system for utilising automatic timbre analysis and structural segmentation

in a multitrack audio editor [Fazekas and Sandler, 2007a]. This application provides one of

the main motivations for using structure analysis in semantic audio tools. In the rest of this

section, we review additional methods in the context music segmentation in the symbolic

domain, as well as rule-based algorithm and statistical models for audio-based segmentation.

42

Symbolic and musicological approaches The problem of automatic hierarchical segmen-

tation of music was first introduced in the symbolic domain by Tenney and Polansky [1980],

with a view on applying the same principles in the audio domain. They introduce multidimen-

sional scaling, originally used in cognitive psychological experiments, in search of applying

principles of Gestalt perception to music segmentation. This may seem controversial, knowing

that Gestalt psychology was developed for visual objects — Koestler [1964] and Bod [2001]

provide a critical view — still, it has become widely accepted, since they seem to explain

perception of musical hierarchy on both the auditory and a higher, cognitive level [Moore,

2003]. In Tenney’s view music is a hierarchically ordered network of sounds, motives, phrases,

passages, sections and so on. However, there are perceptual boundaries of sounds and sound

configurations which are di↵erent from the segmentation used in music notation.

Tenney’s Temporal Gestalt Units introduce the conception of distinct spans of time at

several hierarchical levels, which are “internally cohesive and externally segregated” from ad-

jacent segments. The hierarchy of perceptual units, starting from an element, the undivisible

unit, can be extended through a piece and even further. An ordered song collection, a concert

program, or the process of sequence editing during mastering, represent the highest level of

the same hierarchy.

According to Tenney and Polansky [1980], proximity (in time) and similarity (in some

acoustical or perceptual parameter) are “the primary factors in cohesion and segregation

involved in music perception”. They use these rules, plus the principle of relativity (empha-

sising on relative changes in magnitude), and find multilevel hierarchy using pitch intervals,

elementary segment duration, and loudness. The use of timbre is introduced but not utilised.

In their simple linear hierarchy, each high level perceptual unit is formed by two or more lower

level units. The initiation of higher level units depend on the relative magnitude of change in

the features. This is assessed in the context of both statistical averages and terminal elements

of lower level units. They pose the important question, how to integrate the perceptual as-

pects of music into a single measure of change. The answer is in the use of a multidimensional

feature space, in which the dimensions are acoustical or perceptual qualities of sound. In such

space, the similarity or di↵erence between two objects may be characterised by the distance

between them. The most important questions arising in their application are: i) how to assess

the relative significance of each dimension, and ii) what distance metric to use. Since this

has become a common approach, we shortly review distance measures and related techniques

in Section 1.4.2.4. Tenney proposes the l1 norm, and uses empirical weights to express their

subjective significance. For example, pitch intervals might be more important in a piece

than loudness intervals. The method was successfully evaluated in obtaining segmentation of

classical pieces in agreement with expert segmentations appeared earlier in the musicological

literature. There are two important conclusions of the research. The empirical weights have to

be adjusted in a piece by piece manner to obtain good agreement with human segmentation.

43

This indicates that the perceptual dimensions used are not as universal as they might be seen.

Second, the segmentation becomes less and less reliable as we move higher in the hierarchy.

This is due to the increasing significance of cultural elements (memory and expectation) in

human interpretation. This is the boundary, where the points raised by critiques of Gestalt

become more and more valid.

Rule-based approaches Temperley [2001] describes a segmentation system using rules and

dynamic programming techniques. Based on [Lerdahl and Jackendo↵, 1983], a large set of

preference rules are implemented to extract the melodic phrase structure. This method stays

completely in the symbolic domain. Considering the several critiques of the theory, see e.g.

[Balaban and Elhadad, 1999; Cross, 1998; Hofmann-Engl, 2003], and the unknown e↵ects of

transcription inaccuracies on a strictly theoretical approach, makes it di�cult to use in sys-

tems that work with audio. Hofmann-Engl [2003] provides an example of fusing musicological,

cognitive and statistical approaches in the context of melodic music similarity. First, the cog-

nitive aspects of basic features: pitch, loudness and duration are established through listening

tests. A general transformation theory is developed starting from transposition, retrograde

and inversion and applied to the full feature set. A vector space is used to allow algebraic

transformations, however a set of empirical constants are included to allow weighting that

reflects perceptual significance. For example, a melody interval vector can be weighted using

an inverse Gaussian function, in order to reflect that similarity at the beginning and the end

of a phrase is perceptually more important. Although the symbolic methods described so far

are not usually considered for direct application in semantic audio tools, they provide a good

source of principles and musical considerations that can be utilised in audio analysis.

Audio and model-based approaches Most audio-based segmentation algorithms start

from extracting a sequence of low-level features and try to find boundaries within the se-

quence. The choice of feature depends on the underlying assumption for a segment model,

for instance, assuming the consistency of timbre within a segment as in [Levy and Sandler,

2006b]. Although this might be as simple as picking the peaks of a di↵erence function com-

puted from these features, finding boundaries of higher-level segments requires the use of

more complex post processing. This may involve clustering similar frames using k-means

clustering [Peeters et al., 2002], fitting Gaussian models, or training hidden Markov models

on labelled data [Aucouturier et al., 2005] and then compare observed frames against these

models, or extract repeated segments from a self-similarity matrix — a square matrix that

contains a measure of the similarity between pairs of frames [Foote, 2000] — using a rule-

based approach [Goto, 2003]. A more recent, predominantly rule-based approach which uses

chroma sequences and a greedy structure finding algorithm is presented in [Mauch et al.,

2009]. Semantic segmentation and analysis of music in the context of individual instrument

44

parts of master recordings is an open research question we introduced in [Fazekas and Sandler,

2007a]. We reviewed a large number of segmentation and semantic annotation methods, and

applied the algorithm of [Levy and Sandler, 2006b] which uses timbre distribution clustering.

The idea of processing multitrack audio for semantic segmentation was explored further in

[Hargreaves, 2010], where standard features extracted from individual audio recordings are

fused in a single vector before calculating a similarity matrix.

Audio segmentation techniques mentioned so far (as well as the wider literature of the

topic) can be divided based on whether an algorithm assumes a consistent state corresponding

to a segment and attempts to model this state using the features, or attempts to extract

repeated segments from the sequence of features directly. A combination of these approaches

was presented more recently in [Paulus and Klapuri, 2009]. The primary need for developing

additional techniques is in the improvement of computational e�ciency, more precise segment

boundaries and optimisation for our specific content. A multi phase algorithm proposed by

Ong and Herrera [2005] addresses some of these issues. Here, MFCCs are used to obtain

a rough segmentation first, which is then refined using low-level spectral features, such as

spectral centroid, roll-o↵ rate, or spectral flatness. This algorithm avoids training a HMM for

feature extraction, however it is using a fine grain similarity matrix with considerable memory

and computational cost. This is an important factor considering the usual large number of

tracks in a multitrack project. We describe a conceptually similar algorithm in [Fazekas

and Sandler, 2007b] for voice segmentation, which compares models of longer segments,thus

reduces the size of the similarity matrix.

1.4.2.4 Content-based audio similarity assessment

Audio domain similarity is important in several use cases, for instance, recommendation or

similarity based navigation. The three main categories of similarity measurements are:

• frame-level similarity, e.g. similarity quantified by a distance between two feature

vectors

• model similarity, e.g. quantified by the distance between distributions of feature

vectors or the similarity of more complex statistical models fitted on a set of features

• sequence similarity, e.g. quantified by the distance between sequences of features or

corresponding symbols of an alphabet such as the edit distance.

Here, we provide a short overview of the most common metrics we used so far, as well as

some related techniques which can also be used to measure music similarity.

The most common distances, the Euclidean and the City-Block metrics can be unified under

the Minkowski measure as shown in Equation 1.12.

45

dMI(x, y) =

DX

i=1

|xi � yi|p
! 1

p

(1.12)

In Equation 1.12 the distance of two vectors, x and y are measured in a D dimensional

space. The Minkowski metric reduces to the City-Block metric, also called as the Manhattan

distance, given that p=1. If p=2, the equation describes the Euclidean distance. In case

of music similarity, the significance and variance of di↵erent features may not be the same.

For example, we can imagine a piece where dynamics vary in great extent while the pitch

range is limited, still, pitch change may provide better discrimination between segments. In a

multivariate feature space, the measure or scale of features can be very di↵erent, since often

distinct physical quantities are combined in a single vector. Normalised measures can be

used to account for this di↵erence between the variance of features if they are equivalently

significant. The normalised Euclidean distance is given by Equation 1.13, where � is the

standard deviation computed over the sample set of feature vectors.

dNE(x, y) =

DX

i=1

(xi � yi)

�2

2
! 1

2

(1.13)

In fact, any distance measure can be normalised by normalising the features over the

standard deviation or variance. The Mahalanobis distance is scale invariant, and it also takes

into account any correlations in a sample set. In Equation 1.14 ⌃ is the sample covariance

matrix.

dMAH(x, y) =
q

(xi � yi) · ⌃�1 · (xi � yi)
T (1.14)

In measuring audio similarity, it is often a requirement to assess distances independently

of a single feature with great significance. As an example, loudness have too much influence

on the length of timbre features in the Euclidean space. This e↵ect is annihilated by using

the Cosine distance, which measures the angle ✓ between two vectors.

dCOS(x, y) = 1� cos(✓) = 1� x · y
kxkkyk = 1�

Pn
i=1 xiyipPn

i=1 (xi)
2
pPn

i=1 (yi)
2

(1.15)

There are several ways of defining distance measures in order to optimise our approach

to a given problem. The metrics described so far are defined in relation to two points or

vectors. However in assessing similarities, it is important to measure di↵erences between

sets. In statistics and information theory, it is common to measure the distance between

two probability distributions or sample spaces of two random vectors. In computer science,

string metrics are used to measure the similarity between two sequences of symbols or strings.

46

The relation of these to music similarity can easily be shown considering that on a higher

hierarchical level, we have to assess the similarity of a set of feature vectors, rather than single

points representing audio frames or perceptually not divisible elements.

Probability distributions p and q can be compared using the Kullback-Leibler (KL) di-

vergence as described by Equation 1.16. This divergence was defined in information theory

in order to measure the di↵erence in entropy between random variables.

KLpq =

Z
p(x) · log p(x)

q(x)
dx (1.16)

With regards to normal distributions, Equation 1.17 describes the distance between Gaus-

sians given by p(x) = N (x, µp,⌃p) and q(x) = N (x, µq,⌃q) [Mandel et al., 2005].

KLpq = (µp � µq)
T · ⌃�1

q · (µp � µq) + Trace
�
⌃�1
q ⌃p

�
+ log

⌃q

⌃p
� d (1.17)

The divergence described by Equation 1.16 is asymmetric. Therefore, it is common to

compute this metric with regards to each distribution and take the average to form a sym-

metric measure. In [Fazekas and Sandler, 2007b] we faced the problem of computing the

similarity between sound objects with multi modal distributions. The short audio segments

were modelled by a mixture of Gaussians. A GMM is a set of multivariate gaussians which

can be used to model complex non-normal probability distributions. This is expressed in

Equation 1.18.

p(x) =
MX

i=1

↵i ·
1p

|2⇡⌃i|
exp

✓
�1

2
· (x� µi)

T · ⌃�1
i · (x� µi)

◆
(1.18)

There is no clear definition on how to measure the distance between these distributions.

Some research suggests that the correct way of computation is using stochastic Monte Carlo

sampling [Aucouturier and Pachet, 2002]. In this method, samples are drawn from each distri-

butions and pairwise log-likelihoods are computed using samples of one distribution querying

the model of another. The total distance is defined as the normalised sum of likelihoods.

However, this method is computationally expensive. Therefore, we use an approximation by

measuring the minimum distance between elements of the mixture model. This approach was

suggested in [Vemuri and Jian, 2005] and [Goldberger et al., 2003] in the context of image

similarity.

KLpq =
nX

i=1

↵i ·min
j


KL(pi|qj) + log

↵i

�j

�
(1.19)

In Equation 1.19 the distributions p and q are multivariate models such as the one de-

scribed by Equation 1.18. The weights ↵ and � represent weights of the i -th or j -th element

of each mixture model respectively. Each element of p is minimised over the elements of

47

q . Thus the total distance is given by the sum of the smallest distances found. The Earth

Mover’s Distance (EMD) proposed as the minimum cost of transportation between multiple

sources and destinations follows a similar intuition.

A disadvantage of using distributions in measuring the distance between sets of vectors

is that the original structure is not preserved, hence cannot be taken into account. Using a

crude example, if we play a piece of audio backwards it is unlikely to sound similar. yet, it

produces exactly the same distribution of spectral or MFCC vectors. It is becoming more

common in MIR to represent audio using symbols, and using alternative distance measures

(audio hashing, or query-by-humming applications can be noted). For example, Weinstein

and Pedro [2007] proposes fitting a GMM network on audio to represent ‘music phones’,

and uses the edit distance as objective measure in learning the phone transcription. Once

musical audio is transcribed into a set of symbols, whatever the symbols represent, their

temporal organisation is important. Therefore, we provide a brief overview on string metrics

and dynamic programming approaches.

 �

Distance Matrix of Coefficients of the current and next frame�

10� 20� 30� 40� 50� 60� 70� 80�

10�

20�

30�

40�

50�

60�

70�

80�

Log Magnitude Spectrogram�

time [s]�

F
re

q
 [

H
z]

�

0.5� 1� 1.5� 2� 2.5�

500�

1000�

1500�

Figure 1.6: Cost function of transforming cepstra
of successive transient frames (a bar in the spec-
trogram indicates the frames compared)

 �

Distance Matrix of Coefficients of the current and next frame�

10� 20� 30� 40� 50� 60� 70� 80�

10�

20�

30�

40�

50�

60�

70�

80�

Log Magnitude Spectrogram�

time [s]�

F
re

q
 [

H
z]

�

0.5� 1� 1.5� 2� 2.5�

500�

1000�

1500�

Figure 1.7: Cost function of transforming cep-
stra of successive steady-state frames (a bar in the
spectrogram indicates the frames compared)

The distance between two sequences can be characterised by the number of operations

required to transform one sequence into another. This is known as the edit distance and most

often used in the context of strings. Various interpretations and implementations exists. In

the simplest case of equal length binary strings x and y , the edit distance is the sum of ones

in x xor y (exclusive OR). This is known as the Hamming distance. By placing N-length

strings into an N dimensional space, it becomes equivalent to the City-Block metric described

earlier. A generalisation of this measure is the Levenshtein distance, which takes into account

the minimum number of insertions, deletions and substitutions required to transform one

string into another. The implementation of the edit distance is similar to related dynamic

48

programming techniques.

Dynamic Time Warping (DTW) is a common method used for sequence alignment. It also

has an increasing use in music and audio matching [Dixon and Widmer, 2005]. In speech

recognition this technique was frequently used to compare word utterances with di↵erent

speed. It is also closely related to the Viterbi search algorithm used in the context of hidden

Markov models [Gold and Morgan, 2000]. DTW can be used to measure the similarity between

two sequences by measuring the length of the cost function. Using this property, for instance

a similarity measure of cepstral vectors can be implemented, based on the observation that

during steady-state, the peaks of the cepstrum have a slow drift in one direction. If significant

change happens in the audio content, these peaks collapse or reappear at di↵erent locations.

Measuring the cost of transforming one vector into another can yield an improvement over

standard Euclidean-distance based similarity measures. This is illustrated in Figure 1.6 and

Figure 1.7. The curve shows the DTW path for aligning adjacent cepstra during a transient

and a steady-state frame, as indicated by the marker in the spectrograms.

Having outlined some of the main techniques for audio information extraction, from the

detection of acoustical and perceptual qualities to complex musically meaningful features such

as musical structure and similarity, we will continue by outlining some of the applications of

these techniques, and mention some problems that guide us in developing ontologies that

satisfy information needs of complex semantic audio applications.

1.5 Machine intelligence in music production

In popular music production, the dual role of an engineer can be characterised by the aim of

fulfilling some artistic goal on one hand, but also by the use of very specific domain knowledge

on the other. This knowledge is used for the adaptation of tools at hand to the specificity

of a set of recordings comprising a music release. While artistic goals are defined purely by

human factors, such as aesthetic decisions made by the producer or the recording artist, the

domain knowledge mentioned above mainly concerns the appropriate use of tools. Capturing

this domain knowledge for the benefit of the engineer, and thus building context-adaptive

audio processing systems are important use cases of semantic audio. Achieving this goal

requires work on two fronts; one is the development of formalised data models to structure

and represent necessary information, the other is the adaptation of existing music processing

tools for these purposes.

The most prevalent paradigm for the design of today’s digital audio workstations (DAW,

see [Huber and Runstein, 2005]) is a model of real-world analogue counterparts of recording

and signal processing components, such as multi-track tape recorders, mixers and e↵ect units.

These systems however have an inherent limitation in that they blindly process the signals

they receive, that is, adaptation to contextual information, such as the processed instrument

49

or the tempo of the recording, can only be made manually or by using some inferred charac-

teristics of the signals themselves. This presents further limitations which are both theoretical

and practical in nature. Firstly, there is an upper limit in the robustness of high-level features

extracted from audio (which may be improved by considering contextual information), sec-

ondly, the implementation of adaptive tools within this paradigm leads to highly intermingled

components, which often fail to generalise in the context of real-world audio recordings. To

avoid these pitfalls, system components need to be interchangeable, their properties need to

be fully described, and the information flow and data encoding between them need to be fully

formalised.

These design principles distinguish the types of semantic audio applications considered

here from related work, for instance, Verfaille’s adaptive audio e↵ects [Verfaille et al., 2006b],

where signal adaptation serves mainly an artistic goal, or adaptive systems where metadata is

used as basis for more general audio transformations [Amatriain et al., 2003]. These systems

use metadata without considering the wider context of processing, and a general knowledge

representation framework enabling the use of domain knowledge, signal-derived information

as well as incidental information available in a host environment. In the following sections

we outline some semantic audio applications and relevant problems. We focus on supporting

music production workflows with a particular emphasis on audio editing.

1.5.1 Audio engineering workflows

We already noted the serious impact recording and editing had on recent musical developments

in Section 1.3.1.1. Recording became an crucial activity in music production, while editing

music became a form of art.

“The job of an engineer can be best described as an interpreter in a techno-

artistic field. The engineer must be able to express the artist’s music and the

producer’s concepts through the medium of recording technology”

— [Huber and Runstein, 2005]

The roles of the producer, the artist and the engineer are becoming more and more intermin-

gled. In popular music production involving commercial record companies, the producer and

the engineer have taken over significant artistic roles. At the same time, with the advent of

self-publicity through the internet, the independent artist has become an engineer. Technol-

ogy is a main driving force behind the change in the way music is created. It is well signified

by common views that internet publication may overthrow a well established industry. Natu-

rally, the change in music production has its feedback on technology too; creating new needs

and in addition, while the budgets of recording projects shrink, e�ciency too is becoming

more important in the studio.

The independent artist also poses new challenges when he or she tries to replicate the

“professional sound” of recordings created by a sta↵ of engineers working for a record label

50

and an associated professional studio. In this scenario, whether artistic freedom is propelled or

limited by certain music production tools depends on the technical skills of the user. Musicians

however can not generally be expected to be engineers or technically minded individuals.

Therefore tools that capture engineering workflows, allow sharing know-how, and provide

workflow support based on common practices may well be desirable elements of future music

production systems. The use of semantic audio tools in music production (see Section 1.5.2)

can be exemplified in di↵erent parts of the workflow of a typical production sequence. This

workflow consists of the basic steps outlined below [Huber and Runstein, 2005]:

1. Preparation

2. Recording session

3. Correction techniques (e.g. punching-in, bouncing etc...)

4. Overdubbing

5. Mixdown

6. Mastering and Sequence Editing

A wide range of activities from planning a recording session to physically arranging the

equipment such as microphones or amplifiers constitute the process of preparation.

During a recording session, or over several successive sessions, di↵erent versions of the

same song are recorded. Depending on engineering practice, all of these takes are retained

and assessed later. Alternatively, the best parts are selected right on the spot. In both cases,

a tool that is able to identify structural segments of the music and use this for navigation

(e.g. find the next chorus in the guitar track) can speed up the selection process. This allows

jumping between parts and, for instance, listening to di↵erent versions of a verse repeatedly

appearing at various times or in separate recording takes. Such a tool may be seen as a

particular example of a semantic audio tool.

A destructive process in which an audio section – judged to be incorrect – is re-recorded is

known as punching-in. Semantically constrained selection, for example, using the hierarchical

or metric structure of the music, can help to quickly activate the desired region of a track for

recording. Bouncing is less frequently used nowadays due to the high number of virtual tracks

available in digital audio workstations. It is a method used to create preliminary mixes from

a subset of audio tracks before a final mix is produced. In tape editing with limited number

of channels, it was crucial to free up tracks that do not require further editing, thus can be

mixed together. Bouncing selected segments from a single track can be used to create a single

final track from several takes of an instrument. Using a manual process, each section needs to

be selected and bounced individually. However, if a hierarchical object based decomposition

51

of the audio is presented to the user, it is enough to drag ”musical objects” – representing an

audio section – to a new track.

During overdubbing, new instruments, usually short fills or voice parts may be added to

a largely completed project. The final assessment before mixdown is possibly the process

where the use of semantic audio tools can yield the most benefit for the engineer. Although

in some cases mixdown is interpreted strictly as setting the right balance and panning, many

engineers assess all retained takes before creating the final mix and apply additional e↵ects

where needed. Semantic segmentation and navigation tools may be extensively used during

this phase (see for instance [Fazekas and Sandler, 2007a]).

Mastering provides the final touches: overall dynamics and equalisation of mixed tracks

and relative settings between tracks. The project is often handed over to a specialised mas-

tering studio to do this work. Improved music representation and semantic audio tools may

help a mastering engineer in becoming familiar with the material more quickly. It can help

the work by subjectively or objectively comparing important parts of each song. For instance,

in a final music release it is often required to adjust levels the ensure equal (or nearly equal)

perceived loudness across tracks, which is often verified by randomly listening to or monitor-

ing di↵erent structural segments. This leads us to the process of sequence editing, assembling

the final order of songs on an album. Musical key, tempo, or best matching ‘mood’ or ‘feel’ of

the song sequence are among the most important factors in this judgement. We can assume,

that techniques for playlist generation may provide an initial ‘good guess’ on the desired final

sequence.

1.5.2 Motivations

Throughout the workflow described in the previous section, we can enhance the interaction

between the audio engineer and the machine using intelligent semantic audio tools. In this

work, we pay special attention to developing and examining use cases that aid correction

techniques, low-level editing and mastering. The most common representation of music in

audio editors is a waveform, a pressure-level graph which is not an easy reading material for

the untrained eyes it, let alone finding a section in music using this sole cue. Little research

has attempted to improve on this by finding a better alternative. However, we should not

argue for the replacement of the waveform in semantic audio applications. Instead, we argue

for additional visual cues to enhance user interaction. The following are just a few examples:

i) labelling audio tracks and displaying performance related information; ii) using colours

to reflect the semantic structure, or iii) following (and reversing) the ecological approach

of Gaver [1993] who first proposed ‘well thought-out’ auditory icons for human-computer

interfaces (HCI), we can develop a set of visual elements (objects) that associate or resemble

an underlaying sound in some feature. These objects can be used for easy ‘drag and drop’

editing or clicked to expand into a waveform or reveal additional data contained in the object.

52

Figure 1.8: Visualising structural segmentation using colours.
The matching sequences at the beginning and the end indicate two occurrences of the same verse. The
colours in this diagram were obtained by mapping audio similarity, derived using simple features such
as segment duration and amplitude envelope, to a finite set of colours in a discrete colour space.

The latter idea suggests an object-orientated (OO) design, which we may see as a first step

towards more complex knowledge-based representations. In an object based representation,

sounds are decomposed and organised into a hierarchy of inter-related objects, an approach

proposed by Pope [1996] in the context of music description languages. Although traces of

these ideas appear in modern audio editors, for example in Logic Audio, a little pictogram of

an instrument can be assigned to each track representing the object which holds data for that

particular track, see [Duignan, 2008], a formalised hierarchical system does not exist. Even

object-based environments like Max/MSP are often criticised for the lack of visual formalism,

well-defined hierarchy and for an ad-hoc design [Balaban, 1999]. The thorough examination

of music production software presented in [Duignan, 2008] seems to indicate that this has not

changed significantly to date. High level music description and representation is far from a

fully solved problem. More general music representation needs and issues are discussed for

instance in [Dannenberg, 1993]. The majority of problems detailed in the literature however

remain unsolved to date.

Returning to audio editing, in the author’s opinion, audio editors available today are con-

ceptually not more than waveform displays with an increasing collection of sound processing

and manipulation tools. This statement seems to be valid, even if we consider the most

advanced multi-track environments, where the expression advanced may only stand for the

number and (with some good-will) quality of available tools. We provide a simple example.

In state of the art audio editors, it is often undefined what sort of data may be processed by a

particular tool or plugin considering the particularities of the signal or the musical context. If

the user is unaware of certain restrictions, an error message appears, or in the worst case, the

application crashes. A knowledge-based system could try to choose the right tool, or indicate

correct usage by employing some appropriate visual formalism.

In the light of these problems, we propose a context-dependent approach for developing

semantic audio tools, which requires the tools to have definite knowledge about the content

53

and its context. This knowledge can be used to constrain how the tools work on certain kinds

of audio based on structure, similarity or another specified feature. The knowledge can also

be shared with plugins and external applications. In a broader context, metadata can also

be saved and used as basis for a semantic search interface, for instance in a studio database.

These ideas call for more examples in studio use. A de-esser for instance is a common tool

used for correcting distorted syllables in singing voice. The problem usually a↵ects fricative

consonants, plosives and a↵ricates (s,z,p,t,ch[ts]). A de-esser is generally implemented as a

band-stop filter. Although it is possible to set the centre frequency and bandwidth of the filter

as well as an energy threshold to limit the area of intervention, it is hard to avoid the filtering

to be applied where not needed thus distorting the content. Manual selection of fragments

of the waveform is often the only solution to this problem. However, if we are able to group

applicable sounds based on similarity, it would be enough to select one example and apply

the filter to all similar sounds, or all sounds occurring in the same context. A second example

of the possible use of content or context-based metadata is a search scenario. Studios often

keep a large database of multi-track recordings. During a recording session, an audio example

may be the best way to communicate a conceptual or artistic idea. Engineers often try to

find these examples from earlier recordings, which can be made easier if metadata collected

about the recording process and audio content is stored and later reused. For instance, we

could find a bass phrase with a set of given parameters; duration, frequency range or musical

note range.

The development of intelligent semantic audio systems o↵ering context-dependent func-

tionality requires an extensible information management framework with a supporting ontol-

ogy. The theoretical and methodological basis for knowledge representation in music software

development is described in [Balaban and Elhadad, 1999] and [Balaban, 1999]. Our recom-

mendation for developing semantic audio tools is largely based on this approach. For the

purposes of sensing, a semantic audio tool may rely on content analysis using MIR tech-

niques. We can obtain contextual information [Turney, 1996] by taking auxiliary data — for

instance, the name of the instrument associated with a track, or the tempo of the click-track

associated with a recording project — entered using the human interface of an audio editor

into account. In text based information retrieval, the importance of this sort of contextual

information is studied more deeply [Fazekas, 2009], and an elaborate view is presented for

example in [Robertson, 2008].

Knowing the primary sources of information a system may rely on, supporting the audio

engineering workflow in semantic audio tools may be achieved by using by a set of processes

performing content analysis and data collection in the background, and a set of tools and

visual enhancements which the user may invoke while carrying out editing tasks. A common

requirement across these systems is the need for managing structured, or more precisely, semi-

structured information. The term “semi-structured” will be used here to refer to information

54

that is open and can not be strictly constrained by a schema, and which is often but not

necessarily self-describing [Buneman, 1997]. The Web is a good example of this kind of

information source.

Due to the need for approaching the complexity of human-level interpretation of music

signals, almost no tool that is meaningful to an end-user may be built relying on a single

source of information and simple techniques, without the use of formalised and complex

information management methodology. It is easy to see that human information processing

and decision making is based on a complex set of a priori knowledge, empirical evidence and

contextual information. If we were to build systems that support human decisions, we have

to make an attempt to collect, manage and build on multiple of sources of information. The

use of a semi-structured data model seems to be of key importance to represent this kind of

information in an open-ended way.

The need for incorporating multiple information sources has already been recognised by

MIR researchers who have been using editorial, cultural and social information, in conjunc-

tion with content-based features of audio. These data, however, remain focussed on relatively

simple editorial information about artists or songs, data obtained from collaborative filtering

— the analysis of user behaviour — or features resulting from the analysis of commercially

released audio mixtures. These features have certain limitations, due to the limited robust-

ness of feature extraction from rich polyphonic mixtures, or due to being collected after the

recording process.

We argue that an invaluable source of information exists pertaining to the composition

context, history, production and pre-release master recordings of music. Production data may

include microphone arrangements and characteristics, configuration, connection, decomposi-

tion and operation of audio signal processing devices, such as mixers and e↵ect units, projects

and edit decisions in post production workstations, and features extracted from individual

tracks of pre-release master recordings. One reason for these data have been neglected so

far is not necessarily unawareness within the community, or the limited use of this type of

information, but the fact that production data is not easily retained and therefore it is not

available in su�cient quantities to be e↵ectively used in MIR applications. We argue that

the lack of comprehensive open standards and methodologies for collecting production data

is a central issue, and the reason why these data are simply lost.

Gathering information about recording can also contribute to the creative process itself,

besides enabling the use of a previously unavailable data source, and thus building better

models for music information retrieval. Music making is an increasingly social activity. We

believe that the Semantic Web could become a platform for sharing not just music, but

ideas between artists and engineers. To facilitate this process, the ontologies detailed in

Chapter 4, and our particular contribution, the Studio Ontology discussed in Section 4.2,

can be utilised to denote information about music production, and propagate it through the

55

recording workflow. Data expressed using these ontologies enable answering queries such as:

How was this song produced? What e↵ects and parameters were used to achieve that particular

sound of the guitar? How was the microphone array configured when recording this orchestra?

1.5.3 Studio specific problems

The application of semantic audio analysis and metadata in the studio environment is among

the main motivations for our work. Primary reasons for collecting metadata in music produc-

tion include the e↵ective organisation of musical assets, such as sounds in a sample library,

or previously recorded takes of multitrack master recordings. Although various applications

in creative music production such as visualisation, or semantic navigation, and search within

recording projects are frequently mentioned as motivating examples for the development of

semantic audio and music information retrieval technologies; very few research addresses spe-

cific issues arising in music production environments. Using state of the art MIR therefore

does not immediately enable the applications outlined in the previous section. While the

use of more complex machine learning and statistical models in addition to signal processing

often improves performance, the models are usually trained on cleaned and post-processed

audio, or well mastered polyphonic mixtures, thus their application in the studio environment

presents di�culties. We can outline the most common artefacts that may be encountered in

real-world recordings as follows:

• amplitude beating or vibrato as a result of specific playing techniques which a↵ects, for

instance, most string and wind instruments,

• frequency beating and dissonance due to accidentally played notes or polyphony of the

recording,

• e↵ects, reflections, reverberation due to room characteristics or e↵ects applied for aes-

thetic considerations, e.g. recording in a highly reverberant room deliberately,

• intentional distortion and other artistic e↵ects,

• phase problems due to specific recording techniques, such as the use of multiple micro-

phones and the mixing of signals thereof,

• noise, including ambient noise, as well as noise from amplifiers, mains, or cables.

• cross-talk problems resulting form the use of long instrument cables or mixing desks

with poor channel isolation,

• excessive dynamic range of unprocessed recordings, (noting that final master recordings

are typically compressed in several stages before and after mixing).

56

Instrument track Length Labelled onsets

bongo drums 2m40s 888
acoustic guitar 4m04s 541
drum kit mix 4m04s 914
fuzz guitar 4m09s 935
synth bass 4m04s 766
tambourine 4m00s 289

Table 1.2: Di↵erent instrument recordings taken from multitrack master recordings, and the number
of onset labels used as ground-truth.

Specific recording techniques — for instance, the common practice to record an electric

guitar using two or more microphones via di↵erent amplifiers to take advantage of their specific

response characteristics, or the use of multiple microphones placed at di↵erent locations —

can cause artefacts in studio recordings such as phasing e↵ects due to di↵erent delay times

or accidental inversions, and comb filtering when the signals are mixed.

In order to investigate these e↵ects in the context of di↵erent instrument takes of mul-

titrack master recordings, we examined one particular problem, the e↵ect of reverberation

on onset detection tasks [Wilmering et al., 2010]. In this experiment, several individual in-

strument takes shown in Table 1.2 were labelled manually, and compared with four onset

detection techniques, namely, high-frequency content, spectral di↵erence, complex-domain,

and broadband energy rise [Bello et al., 2005]. To synthesise the e↵ect of a reverberant space,

artificial reverberation was applied to each recording with increasing gain. Two standard

configurations were used to simulate a medium and a large room. This resulted in 6000 re-

verberated audio files per room setting. An implementation of the Schroeder-Moorer reverb

model, Freeverb [Smits, 2009] was used in all experiments based on four Schroeder serial all-

pass filters and eight parallel Scroeder-Moorer comb-filters [Schroeder, 1961, 1962; Moorer,

1979]. The best onset detector parameters were determined using the original dry signals by

maximising the F1 score which combines precision and recall with equal weight:

F1 =
2PR

P +R
, (1.20)

where P is the precision given by:

P =
OTP

OTP +OFP
, (1.21)

and R is the recall given by:

R =
OTP

OTP +OFN
, (1.22)

where the number of true-positive onsets (OTP) were counted within a tolerance time window

of 50ms. Undetected onsets were considered false-negatives (OFN), while onsets outside the

57

window of ground-truth onsets, as well as multiple onsets within the same window were

considered false-positives (OFP).

a) drum mix (large room) b) distorted electric guitar (large room)

reverberation level reverberation level
F

1
 s

c
o
re

F
1
 s

c
o
re

Figure 1.9: Onset detection in reverberant recordings showing degradation of performance in a) drum
mix and b) electric guitar recording with increasing reverberation levels.

Keeping the onset detector parameters fixed, we applied the algorithms to the data set of

reverberated material. The results are exemplified by Figure 1.9. Our finding supports the

intuition that onset detection performance generally decreases with increased reverberation

level, and the loss in performance is more pronounced with larger room settings. These

results, together with our earlier observations, indicate a strong need for

• using feature extractors before audio e↵ects are applied in the studio, and

• collecting as much information as possible about recording conditions

in order to improve on the current state of the art of semantic audio analysis and MIR.

Our investigation also suggests that published results are often better than what we may

achieve when the same algorithms are applied to ’raw’ master recordings. This di↵erence can

be attributed to the fact that evaluation databases are typically free from the artefacts of

’unprocessed’ master recordings listed above. The problems however, if ever mentioned, are

considered pathological or simply put aside as engineering as opposed to scientific problems.

Since many of these problems are related to recording conditions, we see the solution in

the adaptation of analysis techniques and parameters to these conditions. This requires a

framework for describing the recording process itself using logical models, and a high-level

layer in the analyses which is able to ’supervise’ underlying signal processing and modelling

techniques. We think of the information necessary to achieve this as the environmental context

of recording.

58

1.6 Research scope and methodology

In previous sections, we outlined several existing and potential applications of semantic audio

analysis. An initial investigation of prevailing techniques revealed some important problems

and di�culties in applying state of the art audio analysis methodologies directly in seman-

tic audio applications. Therefore, in order to achieve the full potential of semantic audio,

we argue for advancements in information management, knowledge representation, and for-

malised software systems, and consider these advancements vital in applications like music

information retrieval and creative music production.

An underlying hypothesis for this work is that collecting data in the recording studio can

improve semantic audio analysis, and enhance the applicability of audio analysis in general.

This may be achieved by enabling tool adaptation to the context of recording, or using high-

level semantics in complex systems, given some contextual information collected about the

recording and audio engineering processes. This hypothesis, however, may seem weak in the

eyes of the falsificationist, who require all scientific theories to be directly refutable.

The idea of using falsifiability to delineate scientific hypotheses from non-scientific premises

was put forward by Karl Popper in his seminal work published in 1934 [Popper, 1959]. While

this theory is often regarded as fundamental to the scientific method, it has been criticised

[Duhem, 1954; Quine, 1951; Kuhn, 1962; Lakatos, 1970; Mayo, 1996], and all but the most

sophisticated forms have been refuted by their inability to explain the growth of science on

historical grounds, see [Lakatos, 1970], or [Chalmers, 1999] for a summary. For one, falsi-

fication is paradoxical, because it requires the observation statements that may lead to the

falsification of a theory to be also fallible. Then, in case of a negative result, we have no

way to know whether the theory is falsified, or the observation criteria are wrong. The as-

sumption that hypotheses may be tested in isolation is also problematic (see [Duhem, 1954;

Quine, 1951]), due to the complexity of realistic test situations that always involve auxiliary

premises and initial conditions. In case of a negative observation, we can only conclude that

at least one of the premises are false, but we do not know which.

A characteristic problem within the scope of this work is related to the evaluation datasets

that are typically drawn from carefully engineered audio recordings, which are at least free

from the artefacts one may find in unmastered studio stems. Algorithms tested on these

datasets will therefore perform better than what we may expect in most real-world situations

(see Section 1.5.3). We can then hypothesise that information about the recording process

and conditions are useful. The complexity involved in utilising this information, and the

knowledge that enables one to act upon it requires sophisticated management and formal

representation of information and knowledge, especially if one wishes to go beyond ad-hoc or

case-specific solutions. The paradigm of competing research programmes o↵ered by Lakatos

[1970] as a solution the problems of falsifiability and hypothesis testing is applicable in our

case. While it has to be noted that finding conclusive evidence is beyond the scope of this

59

(or any single) work, a research programme that includes audio engineering knowledge in its

set of hypotheses has the potential to replace research programmes that do not.

When the ontology comprising this knowledge is seen as a hypothesis in itself, we face the

problem of failing under Popper’s criterion of demarcation again. While the ontology may

be validated or verified and proved wrong under a set of criteria, it is not directly falsifiable

or testable in isolation. We can test if an ontology is syntactically correct, semantically con-

sistent and logically sound (see Section 6.2). Failing under any of these criteria may incur

necessary amendments, but will not refute the underlying hypotheses and conceptualisations,

of which many are plausible and may all be correct. A possible way to evaluate a scientific

or engineering ontology then is by appeal to the criteria proposed in [Lakatos, 1970] as alter-

natives to falsification, that is, novelty and competition, where novelty is what discriminates

between two lines of tradition [Hattaingadi, 1987]. We can examine i) how well does an on-

tology fit new facts, observations or requirements that were unknown or that were deemed

outside of its scope when it was first proposed, and ii) evaluate an ontology by competition,

i.e., does one theory complex underlying the ontology fits better to new facts or requirements

than the conceptualisation in some other ontology? The ontology evaluation presented in

Chapter 6 follows these philosophical guidelines.

Since data collection in the studio is a di�cult task in itself, we focus on information man-

agement, knowledge representation and software requirements in this task. We argue that the

complexity of this task is similar to providing machine-processable representations of general

Web content, which is the reason why we adapt Semantic Web technologies, and develop a

Web ontology for describing studio production. We aim to show that this ontology is able to

capture information about music production. In addition, we observe that knowledge repre-

sentation requirements and thus ontologies are dynamically evolving artefacts. Therefore, as a

further aim of this work, we design software systems which are able to accommodate changing

ontologies, and examine how these systems can be applied in various tasks. The ontologies

and software frameworks form building blocks of an intelligent, content-aware music process-

ing system and semantic audio tools which are able to use several interlinked information

sources.

The utilities of these frameworks are evaluated in i) a Web-based environment, which

can be used for analysing audio recordings and express the results using formal ontologies

(see Section 5.3), and a desktop environment and software library for facilitating manual

data collection in the studio (see Section 5.1). Building these frameworks doesn’t fit well

with the observational methods commonly used in laboratory experiments. The work can

not easily be divided into self-contained hypotheses, rather, it is presented as a collection of

interdependent building blocks which may be designed and developed iteratively. This implies

that our current research method is closer to design based techniques of information science

[Hoadley, 2003], an iterative process with the gradual improvement of components.

60

Chapter 2

Information Management and

Knowledge Representation

for Audio Applications

In the previous chapter, several motivating examples of intelligent semantic audio applications

were discussed alongside prevailing methods in semantic audio analysis, and some challenges in

their use in complex environments such as music production. In order to meet these challenges,

and for future improvements of semantic audio tools, we argued for improved information

management, and highlighted the importance of collecting data about the recording process.

In this chapter, we examine more specific problems, review the information management

technologies we use, and outline how Semantic Web technologies can satisfy information man-

agement and knowledge representation needs in semantic audio. First however, we attempt

to clarify the meaning of fundamental concepts often taken for granted in this field.

2.1 Data, Metadata, Information and Knowledge

In order to be able to talk about information management and knowledge representation

problems, it is useful to define the meaning of Data, Metadata, Information and Knowledge.

The taxonomy of knowledge [Acko↵, 1989] can be used to explain the relationships between

these concepts. This taxonomy also includes Signal as a carrier of data but excludesMetadata.

Similar definitions are given in [Aamodta and Nygardb, 1995] and [Raimond, 2008].

• Data is a set of symbols with no definite meaning. Although, it is easy to see that

without a frame of reference, a single datum removed from its context means nothing,

one may argue that structure can be learned from a set of symbols which gives rise to

meaning. An important question to consider here is that of “sameness of reference”

studied by Quine [1995] in the context of denotation and truth and semantic agree-

61

ment. Without a shared conceptual framework and common references, neither data

nor emergent pattens and relations carry useful information. An array of values result-

ing for instance from the short-time Fourier transform of an audio file has no definite

meaning in and of itself without knowing how its columns relate to temporal segments

of the audio data, and what its rows represent. Furthermore, the precise interpretation

of raw data is di�cult without knowing certain signal processing parameters underlying

the process, for instance, the type of window function used for short time segmentation.

• Metadata is commonly explained as data about data. Its meaning however carries

ambiguities, inconsistencies, and variation. For one, it may refer to a datum related

to another datum such as the musical key of a piece. However, from this, we do not

necessarily know the exact relation between the two items. Metadata may also refer to

data structures or containers which describe data records, that is, the relations between

data items. Metadata can also be associated with other metadata, leading to relational

or hierarchical structures. This is illustrated by Figure 2.1.

Artist

Instrument

Tempo
Sub-

Genre

Gender

Date of

Birth

Frequency

range

Registers

Unit of

measure
Genre

Artist

Instrument

Gender

Date of

Birth

Frequency

range

Registers

Figure 2.1: Illustrations of di↵erent possible arrangements of audio related metadata

• Information is data structured within a certain context such that the relations between

datum are formalised. For instance, if we know how the columns of the array of our

example above is related to an audio signal, and what each row represents, then our

data constitutes useful information.

• Knowledge, in a pragmatic definition, is information structured in such ways that

logical reasoning is permitted. In epistemology, noting that this view may be challenged

[Steup, 2010], knowledge is commonly defined as justified true belief. This requires that

i) a proposition p is true, ii) the subject s believes that p is true, and iii) s is justified

in believing that p is true. This implies that knowledge involves learning or some other

form of justification.

• Information Management is the process of collecting, organising, maintaining, stor-

ing and distributing of information. For example, the process of collecting metadata

62

about user interaction or audio feature extraction, and maintaining its consistency in a

database is information management.

• Knowledge Representation is concerned with methods of structuring information

such that automatic interpretation or formal reasoning becomes possible. The Dublin

Core metadata standard and the Music Ontology are examples of knowledge represen-

tations.

The rest of this chapter discusses information management in semantic audio applications.

First, we discuss a number of di↵erent options for managing metadata in audio applications

through a practical example. A brief summary of the logical foundations of information

management and knowledge representation is discussed next. These foundations become

crucial when we discuss one of the main contributions of this work, the Studio Ontology, in

Chapter 4. Finally, the application and utilities of Semantic Web technologies for the above

purposes is introduced.

2.2 Information Management in Semantic Audio applications

Semantic audio and its applications are in the confluence of a multitude of technologies. The

signal processing techniques outlined in the previous chapter enable the extraction of charac-

teristic features from audio. These features can be used in intelligent algorithms to associate

raw feature data with meaningful representations of audio content such as a sequence of chord

labels, or elements of musical structure. However, in order to interact with semantic audio,

information management tools which allow for the e↵ective organisation of these data, and

knowledge representation tools which provide a frame of reference and enable the represen-

tation of abstract concepts in a machine-processable way are vital. These technologies also

facilitate automatic data aggregation and high-level inferences. In this work, we define se-

mantic audio applications as tools where these methods are working together in a harmonised

manner.

Music�
Representation�

Framework�
Real World Music� Music Tools�

KR�Ontology� Software�
denotation� implementation�

Concepts and�
relations�

How?�
What?�

Analysis�
Visualisation�
Processing�

Figure 2.2: Balaban’s knowledge representation (KR) framework for music software development

These tools may be Web-based or mobile, and aim at facilitating communication between

providers and consumers of musical content, but they may also be desktop or embedded in

63

hardware, and may focus on assisting the artist or the engineer in music production. An

intelligent search engine that is able to answer complex semantic queries by dynamically ag-

gregating and analysing large amounts of musical data on the Web, or an intelligent audio

editor that uses content analysis as well as the information available in the desktop environ-

ment to help the work of an engineer are prominent examples.

The newly recognised role of information management and knowledge representation in the

development of semantic audio applications can be highlighted using a system that exemplifies

intelligent audio editing. This problem is particularly interesting, since it enables looking

at the creation of semantic audio tools from many di↵erent angles. Here however, we are

mainly concerned with the caveats of information management, knowledge representation

and software engineering.

Balaban and Elhadad [1999] outline a knowledge representation framework and require-

ments for designing music processing tools from a general software engineering point of view.

An updated version of this framework is depicted in Figure 2.2. According to Balaban and

Elhadad, the role of knowledge representation is to describe real world requirements, user

demands and the available information. An ontology describes problem entities, operations,

relations and structures. In the context of semantic audio tools, the entities may be sounds

or sound objects, while relations and structures are described by their hierarchy. Opera-

tions describe the available tools and their context. Using the examples from Section 1.5.2, a

navigation tool for instance uses the hierarchical music structure, a de-esser plugin operates

on unvoiced high-frequency sounds of certain characteristics, and finally musical phrases of a

track that sound similar can easily be interchanged by an intelligent editing tool if represented

as high-level objects corresponding to musical or perceptual boundaries within the signal. A

discussion on information management and knowledge representation requirements of these

tools can be facilitated by a model for building semantic audio tools. In the next section, we

present such a model focussing on applications in music production.

2.2.1 A Semantic Audio Tool

A system for integrating components that allow the implementation of the ideas mentioned

so far in this work may be modelled as shown in Figure 2.3. This model has three analysis

layers corresponding to audio feature extractors, three information layers corresponding to

ontologies for describing tools and the results of audio analysis, and three application layers

corresponding to tools that can be built using this information and their descriptions. In the

following, we outline the role of the three layers and the components that may be utilised in

the model.

Analysis Layers: Audio feature extraction. Some of the signal processing compo-

nents required for extracting information from audio content are well researched and may be

64

adapted. Basic feature extraction techniques standardised in speech recognition are success-

fully applied to music, for example, pitch determination and timbre modelling techniques.

We have to note however that they are not well adapted to work with ’unmastered’ raw

recordings in a multitrack environment, which may require the use of contextual information,

structured and uniform knowledge representation and interpretation. High and mid-level

feature extraction is in the focus of MIR research. Semantic segmentation of polyphonic au-

dio is described for instance in [Mauch et al., 2009; Levy and Sandler, 2006b], or [Ong and

Herrera, 2005]. High-level segmentation of audio recordings played by a single instrument

and the analysis of master recordings however were not considered by previous research. In

the symbolic domain, the problem was first examined in [Tenney and Polansky, 1980]. Al-

though utilising successful symbolic approaches by obtaining symbolic representation first is

well worth considering, obtaining clear symbolic music representation from audio is gener-

ally not a solved problem. It may require a high-level cognitive model [Klapuri, 2004] (e.g.

interpreting a glide or vibrato as a single note, or separating tones with smooth changes or

legato). Expressive performance models and their visualisation were discussed for instance in

[Widmer and Goebl, 2004] and [Dixon et al., 2002]. The identification of vibrato, glide, legato

or glissando are also required to obtain a detailed symbolic representation. Signal processing

techniques applicable to these problems are described for instance in [Wen and Sandler, 2008].

Information Layers: Ontologies as frames of reference for describing the domain.

The Music Ontology and its extensions can be used to provide a frame of reference and the

basis for the information management layer considered here. This ontology can be used to

represent for instance a musical piece and its relation to corresponding signals. Its basic

components allow for associating domain entities with time-based events. This is crucial in

representing audio features, and serve as the basis for the Audio Features Ontology1, which

covers basic features in a non-exhaustive way. It does not provide however for the description

of interdependency between features, which we consider important for e�cient feature ex-

traction (e.g. to avoid processing overlaps and enable the reuse of low-level features stored in

a database). The Studio Ontology discussed in Chapter 4 provides extensions for the Music

Ontology for describing studio concepts. This includes the Multitrack2 ontology to associate

information with tracks in a multitrack audio editor. While it is not immediately apparent

from the figure, ontologies for describing audio analysis algorithms, ideally, including even

their low-level DSP components, and ontologies that allow for describing audio processing

tools are equally important in building intelligent music processing environments. Currently

there are no ontologies describing specific signal models or performance related data. These

shall be developed in the future as the need arises.

1http://purl.org/ontology/af/
2http://purl.org/ontology/studio/multitrack/

65

Application Layers: Visualisation and interaction. Examples of visualisation, naviga-

tion and context-dependent tools were described in Section 1.5.2 in more detail. The key to

their development is a well-defined and structured representation of the music and its various

representations a semantic audio tool may operate on. The ontological needs of describing

applications include the ability to describe dependencies (i.e. to create a knowledge base),

that is, the information needed as input for the successful use of a specific tool. This in-

formation can be used to retrieve data, invoke feature extractors if needed, or ask for user

interaction. A relevant example is the LV2 plugin ontology3, which enables the description of

input/output requirements of audio processing plugins.

Low-level Feature
Extraction

High-level (Semantic)
Feature Extraction

Performance Feature
Extraction

Signal Models and
Representations

Semantic metadata

Performance related
metadata

pitch, timbre, voicing type etc...

structure, chords, keys, instruments etc...

vibrato, glissando, legato etc...

Analysis Layers Information Layers Representation Examples

Multi
Track
Audio
Data

Signal Models and
Representations

Semantic metadata

Performance related
metadata

Information Layers

Visualisation

Semantic navigation

Context-dependent
tools

Application Layers

RDF data

External
Interface

SemanticWeb

Search
Interface

SV

External Applications

Figure 2.3: Knowledge representation model for intelligent audio editing systems

2.2.2 Information Management and Knowledge Representation

Loss of information in the media production workflow chain is a major issue when it comes

to collecting, managing and repurposing metadata about various aspects of the music pro-

duction process itself, or the media under consideration. This, as well as the problems and

requirements mentioned previously indicate the need for advanced information management

solutions and formal knowledge representation in semantic audio applications. In the follow-

ing, we examine some options available for these purposes.

The first and obvious choice for structuring information in audio applications is to treat

3http://lv2plug.in/spec/

66

all data describing tools, stakeholders and audio files as metadata. Then, we can use a com-

bination of existing metadata standards to fulfil our information management requirements.

However, there are several problems with this approach. While there are numerous musical

applications of metadata discussed in the literature, see for example [Gomez et al., 2003],

[Verfaille et al., 2006b], [Pampalk et al., 2004a], [Wright et al., 1999], and the author’s own

work detailed in [Fazekas and Sandler, 2007a], these examples focus on specific case-based

implementations. However, no generic formats for metadata, and more generally, informa-

tion management practices emerge from previous research and industrial solutions. Disjoint

purposes for covering overlapping musical domains produce a abundance of disharmonious

standards and methods (see [Smith and Schirling, 2006] or Section 3.2.1). This seriously

impairs the exploitation of metadata in developing ubiquitous creative applications. A part

of this problem can be identified in the use of non-normative development and publishing

techniques, rather than flaws in design. We recognise that common approaches to overcome

this, including standardising syntax through the use of XML or creating a reference library,

such as those accompanying Sound Description Interchange Format (SDIF) [Wright et al.,

1999] or the Advanced Authoring Format4 (AAF) do not provide su�cient ground for mod-

ularity and interoperability. The heart of the problem lies in the assumption that musical

information can be expressed using strictly structured schemata and static data sets. In our

research, we challenge this general assumption and hypothesise that musical information is

better modelled as dynamic semi-structured data.

Perhaps the most important issue arising from common metadata management practices

is related to the association of first class or primary objects and metadata tags. Suppose we

want to associate an audio file with a recording artist. This can be done by extending the

data structure representing audio files with an additional string attribute where the artist’s

name can be stored. Then, we want to describe the instrument played by the artist, and

use this information to infer some properties of the signal. This can be used for example to

support the adaptation of audio processing algorithms to a particular instrument. Since the

instrument in this case is more closely related to the artist rather than the audio file, it would

be illogical to link the instrument to the file directly. Moreover, there may be other attributes

associated with the artist, for example gender, (which might be useful to know about in

voice processing applications). A solution to this problem is to represent the artist as a first

class object with its own set of attributes and relationships. Similar problems arise when we

attempt to describe content-derived features of audio, or audio e↵ects and their parameters

as applied to a recording. Although the solution remains the same, the further we go in the

direction, and start introducing more interlinked first class objects to represent audio signals

and their features, audio e↵ects, instruments or artists, the closer we get to a data structure

best described as a semantic graph or a Semantic Network, a graph structure for representing

4http://aaf.sourceforge.net/

67

information and knowledge in patterns of interconnected nodes and arcs [Sowa and Borgida,

1991].

There are several ways we can conceptualise, encode and store the types of information

described previously. Parts of this information has a corresponding relational data model

[Codd, 1970]. A relational schema is defined in terms of relations and dependencies among

them, which can be formalised using First Order Logic (FOL) formulæ. Relational schema

is often described using the Entity-Relationship (ER) model and corresponding diagram.

While this is common in relational database design, just like FOL, the ER model is more

expressive than what can be described by a set of relational tables. Fundamental to both

the relational, and the more recent Semantic Web data models described in Section 2.4, first

order logic allows us to precisely define the semantics of data structures, database schemata

or ontologies. A brief overview of this logic and its foundations is provided in Section 2.3.

Although the relational data model has solid mathematical foundations in first order logic,

its implementations in the form of relational tables have several disadvantages. We may

mention the loss of explicit identity of first class objects such as an artist or an instrument

from our example in Section 2.2. Objects can only be represented indirectly, characterised

by a set of attributes in a table. Similarly, the identities of relationships have no explicit

representation in the database. They can only be discovered using queries based on some

external knowledge about the domain—that is, the model has hidden semantics [Chen et al.,

2005]. Explicit taxonomical relationships (known as is-a relationships) have no corresponding

representation in the relational model, although they can be expressed in FOL. Moreover,

certain types of heterogeneous, semi-structured data, spatial data or temporal data cannot

be easily accommodated in the model. Since these types of information are often present

in a multimedia environment, this requirement points us to seeking other methods such as

object-based models or models that are closer to logic based knowledge representation. The

relationship between these and the relational model is discussed for instance in [Motik et al.,

2007].

Object-based data models have become popular due to their direct correspondence with

modern object-orientated programming languages, and the fact that additional mapping be-

tween the object graph of an application and a database is not required. Many XML-based

information management solutions are also based on this idea. However, object models in

general have no sound theoretical foundations, and there is lack of support for e�cient query

evaluation or logical reasoning. An alternative to object-based or purely relational data mod-

els is provided by the Resource Description Framework and more expressive Description Logic

(DL) systems, and corresponding Semantic Web ontology languages [Horrocks et al., 2003].

These systems are not only concerned with simple relations between terms or data structures,

but with the representation of knowledge about a domain using a logical formalism.

Recognising the similarities and problems shared between semantic audio tools and the

68

Web in need for representing diverse, virtually unbounded information; we turn to Semantic

Web technologies to fulfil these requirements. In particular, we use RDF, a fundamental data

model, and Semantic Web ontologies such as the Music Ontology as the basis for our domain

model. In the following sections, we review the logical foundations, as well as the logics and

languages that are used to describe ontologies in the rest of this thesis.

2.3 Logical Foundations

Providing a precise description of data models and ontologies is a common requirement in

information management and knowledge representation. Logic languages allow for these de-

scriptions to be denoted and manipulated. In the following sections we outline the logical

foundations of these fields. We start by reviewing some important concepts in propositional

logic and first order logic. The latter is particularly interesting, since it is often used for

formalising ontologies. This language will be used for describing ontologies throughout this

thesis.

Essentially, a logic is a language for the formalisation or axiomatisation of a domain of

information. It allows for a representation of a world using a formal syntax and associated

semantics (meaning), such that some new information (conclusions) can be drawn from this

representation. There are many information management solutions relying on data models

which have no sound theoretical foundations. For this reason, query evaluation in these sys-

tems may be less e�cient, while automated reasoning is not possible. An important advantage

of using Semantic Web technologies is that the RDF data model allows for expressing and

using vocabularies in knowledge representation languages which have solid grounding in math-

ematical logic, in particular, First Order Logic (FOL) and the Description Logics outlined in

the following sections.

2.3.1 Propositional Logic

In propositional logic simple statements or propositions such as ”This audio track has a tempo

of 120 bpm” are used, together with the logical connectives ^ (and), _ (or), ! (implication),

¬ (negation) or $ (equivalence) in order to build a composite formula. The truth value of

propositional formulæ however are dependent on the truth value of atomic propositions, while

the internal structure, that is, the meaning or semantics of propositions is inaccessible in this

logic.

2.3.2 First Order Logic

First Order Logic extends propositional logic with functions, variables (that range over a

fixed domain), universal and existential quantification, and a way to describe relations be-

tween domain objects using predicates. Therefore it is also called Predicate Logic. Table 2.1

69

summarises the syntax of FOL and provides some examples.

Elements of FOL
Constant symbols piano, apple, bach, me
Variables a,b,c...x,y
Logical connectives ^ (conjunction),

_ (disjunction),
! (implication),
¬ (negation),
$ (equivalence)

Quantification 9 (existential)
8 (universal)

Predicates Signal(a) (unary),
Title(artist, album) (binary),
P(term1, term2, ...termn) (n-ary)

Functions +(1,2)

Table 2.1: Elements of First Order Logic (FOL)

First Order Logic formulæ are interpreted as statements describing relationships between

entities. Given for instance the predicates (relations) Signal and hasSignal, in the domain of

an audio editor, we may define an AudioClip using the formula:

8x(AudioClip(x) $ 9y(hasSignal(x, y) ^ Signal(y))) (2.1)

Predicates are atomic statements whose arguments may be constant symbols, functions, or

variables bounded by quantifiers. In this example, the variable x is universally quantified,

which corresponds to the English terms all, each, any. In data modelling terms, we may think

of unary predicates such as Signal(y) as identification or instantiation, and binary predicates

like hasSignal(x, y) as relations. Our example audio clip can be described further as follows:

9x(AudioClip(x) ^ tempo(x, 120) ^ name(x,myrecording)) (2.2)

where the variable x is existentially quantified, corresponding to the notion of some or there

exists, which imply a minimum cardinality of one.

2.3.2.1 Interpretations and Models

A complex FOL formula may be true or false with respect to a given interpretation I. An

interpretation is a mapping of symbols to objects, relations or functional relations in an

arbitrary non-empty set �, which is called the domain (of elements) or domain of discourse.

70

A model for the formula is any interpretation where the formula is true. In a more general

sense, models are formally structured worlds that are used to calculate the truth value of

logical sentences. Conventionally, this is written as h�, •Ii, where I is a function that maps

• any constant symbol a to elements of �: aI 2 �

• any n-ary predicate symbol P to relations over �: P I ✓ �n

• any n-ary function symbol f to functions over �: fI 2 [�n ! �]

where �n is the set of all ordered n-tuples of elements of �, and •I is used as a shorthand

for I(•).
The truth value and satisfiability of ground terms (terms that do not contain variables),

predicates (ground atoms), and atomic formulas are evaluated with respect to such a model.

For instance, the value of the predicate P (t1, t2, ...tn), is true, if and only if the terms referred

to by the arguments t1, t2, ...tn are in the relation referred to by the predicate P itself.

2.3.2.2 Variable Assignment

For the set of all variables V we define the function ↵ : V ! �, that maps variables to

elements of the domain. The interpretation of terms under (I,↵) is then:

• for constant symbol a: aI,↵ = aI ,

• for variable x: xI,↵ = ↵(x),

• for function f : f(t1, ...tn)I,↵ = fI,↵(tI,↵1 , ...tI,↵n).

2.3.2.3 Satisfiability and Tautology

Satisfiability in FOL is given in terms of an interpretation I under a variable assignment ↵.

In general, an interpretation is a model of the formula � under ↵ if (I,↵) |= �, where |=
stands for entailment or logical consequence, defined in the next section. Satisfiablility in

atomic formulas is given, for instance, by (I,↵) |= P (t1, t2, ...tn) i↵ htI,↵1 , tI,↵2 , ...tI,↵n i 2 P I .

The formula � is then said to be

• satisfiable, if there is some (I,↵) that satisfies �,

• a tautology (valid), if every (I,↵) satisfies �,

• falsifiable, if there is some (I,↵) that does not satisfy �,

• unsatisable, if there is no (I,↵) that satisfies �.

71

2.3.2.4 Entailment and Reasoning Procedures

The formula � is a logical consequence of , i↵ � is true in all models of , denoted |= �.

The notion of entailment can be extended to a (large) set of statements as follows: If M(�) is

the set of all models of �, and KB is a set of statements called a Knowledge Base, KB |= � i↵

M(KB) ✓ M(�). That is, the knowledge base entails �, if � is true in every model in which

all the sentences in KB are true.

A method to derive � from KB is called an inference or reasoning procedure, denoted

KB `i �, where i is a reasoning procedure. The two most important properties of reasoning

procedures are soundness and completeness, defined as follows: A procedure i is

• sound, if whenever KB `i � is true, KB |= � is true,

that is, no false consequences are drawn,

• complete, if whenever KB |= � is true, KB `i � is true,

that is, all correct conclusions are drawn.

Inference in knowledge bases is typically based on rules that allow the symbolic com-

putation of sentences that are entailed by the knowledge base. The two main approaches

used in practice are based on the modus ponens rule of inference (a ^ (a ! b) ` b), used in

forward-chaining algorithms which are executed every time some new facts are added to the

knowledge base, or the modus tollens rule of inference: (¬b^ (a ! b) ` ¬a) which is typically

used in backward-chaining executed at query time.

Other reasoning problems include satisfiability, subsumption and model checking. The

Tableaux calculus for instance is a decision procedure which solves the problem of satisfia-

bility for a FOL formula. That is, it finds a model of the formula, by decomposing it and

exhaustively evaluating all possibilities.

2.3.2.5 Decidability

Given a logical system, a reasoning problem is decidable if there is an algorithm which solves

the problem in a finite number of steps. Decidability is therefore a crucial property of a logical

system, as opposed to the decision procedure itself. In FOL, the problem of logical implication

is only semi-decidable [Church, 1936]. There is no decision procedure that determines whether

an arbitrary sentence is valid or not, since, for any arbitrary sentence, if the sentence is false,

the procedure may not terminate. A logic can typically be made decidable by restricting its

expressiveness.

The properties of FOL discussed so far only cover the most important aspects of this

logic. A more detailed discussion about model theoretic semantics [Hodges, 1993] outlined in

Section 2.3.2.1 to 2.3.2.3, as well as details about reasoning procedures and decidability can

be found for instance in [Franconi, 2002] and [Boolos et al., 2007].

72

2.3.3 Higher Order Logics and reification

First Order Logic only allows for the quantification of variables that range over individuals

that are elements of a domain of discourse. Second order logic relaxes this limitation, by

allowing variables that range over sets of individuals, as well as the quantification of predicates.

Higher order logics use quantification of even higher types, for instance, relations between

relations. Although these logics are more expressive, they lose many desirable properties

of FOL, thus it becomes more di�cult to create e↵ective, sound, and complete reasoning

procedures.

The above properties of second order logic allows for writing statements about statements,

which is a very useful tool from a knowledge representation point of view. However, this

feature can also be expressed in FOL through the process of reification. This process consists

of creating a constant associated with a predicate, which then can be used in other sentences.

Note that the term ’reification’ will be used in a somewhat broader sense throughout this

thesis, and will include, for instance, the notion of representing relations as concepts in an

ontology in order to allow for expressing further details about a relation.

2.3.4 Temporal and Modal Logics

Several types of logics exist which extend standard formal logic. These include modal logic

which deals with possibility, probability and necessity. Temporal logic, or tense logic can be

interpreted over temporal structures. For instance, the Interval Temporal Propositional Modal

Logic allows for incorporating Allen’s temporal relationships [Allen, 1983] in its formulæ.

Most of these logics however are undecidable for most interesting problems. In other cases

the problems may be expressed in FOL, using for instance, the above discussed reification

process.

2.3.5 Description Logics

A particular problem of FOL discussed in Section 2.3.2.5 is related to the fact that it is only

semi-decidable. In order to create e↵ective and terminating reasoning procedures the expres-

siveness of FOL has to be limited. Description Logics (DL) [Baader et al., 2003] are di↵erent

restricted fragments (sub-languages) of FOL, with properties providing a trade-o↵ between

expressiveness and decidability making DL languages more suitable for certain applications.

Description Logics have been increasingly used in software engineering and information man-

agement for formalising various aspects of applications; domain models, application logic and

data communication [Borgida, 1995]. They have also been used as basis for modern ontol-

ogy languages of the Semantic Web such as the Ontology Web Language (OWL)5 [Horrocks

et al., 2003]. The stack of ontology languages recommended by the mediator of Web stan-

5http://www.w3.org/TR/owl-ref/

73

dards, the World Wide Web Consortium (W3C), grows progressively closer to Description

Logic languages with OWL-DL corresponding to SHOIN (D) while OWL-2 building upon

SROIQ(D).

DL languages are related to conceptual models in that they allow precise specifications

to be made such as cardinality constraints, for instance, using the features of OWL such

as owl :minCardinality and owl :maxCardinality, or restricted existential and universal quantifi-

cation expressed by owl :someValuesFrom and owl :allValuesFrom respectively. Examples of

using DL based Web ontologies include modelling contextual information in software [Turhan

et al., 2006], or augmenting data with semantic annotations, which is one desirable property

we exploited in our research as described in Chapter 5 Section 5.1.

The symbols constituting the name of a logic describe the features and constructs allowed

in a DL language [Horrocks, 2008]. For instance, N in SHOIN (D) tells us that the language

is capable of expressing cardinality restrictions, while Q in SROIQ(D) stands for qualified

cardinality restrictions constraining the number of values of a particular type for a property.

The symbols S common in both languages is an abbreviation for ALC, an extension of the ba-

sic attributive language providing minimal constructs such as atomic negation and existential

quantification limited to the top concept. This forms the basis for the DL family SH (where

H stands for role or property hierarchies, i.e. the use of rdfs :subPropertyOf in OWL and the

RDF Schema language, see Section 2.4.4), and also the basis for the design of Semantic Web

ontology languages, in particular, all versions and layers of OWL. More details about DL

languages, their constructs and the naming scheme can be found in [Baader et al., 2003].

2.3.6 Knowledge Representation and Ontologies

Knowledge Representation is mainly concerned with providing a formal representation of a

domain of a logic-based system. This includes a vocabulary, which is essentially a set of

objects or entities that are included in the domain, a set of possible relations between the

entities, and also includes a set of constraints over the use of the objects and relationships.

These choices usually reflect the knowledge of a domain expert, and constitute the design of

an ontology. A formal definition of ontology is provided in Chapter 3 and in [Gruber, 1993a].

Several kinds of languages are available for this purpose, including the Entity-Relationship

conceptual data model, or UML mentioned in Section 2.2 which may be expressed as diagrams.

Description Logic languages and corresponding Semantic Web ontology languages however are

more and more commonly used to provide machine processable definitions.

2.3.7 Taxonomies and Partonomies

The vocabulary of entities as well as their relationships within an ontology are often organised

hierarchically. The two most common organising principles are i) taxonomies which express

a hierarchy of is-a or type-of relationships between objects and/or their properties indepen-

74

dently, and ii) partonomies which express meronomical or part-of relations between objects.

Ontologies however do not need to be deeply hierarchical. They define the semantics of con-

cepts in terms of their properties and possible relations, which are often neither taxonomical

nor mereological. Other types of knowledge representation such as the use of restrictions or

constraints on the use of domain entities are often more suitable for a particular application.

2.4 Semantic Web Technologies

The basic idea behind the Semantic Web [Berners-Lee et al., 2001] is to ease information

seeking tasks for humans or Semantic Web user agents, by facilitating the aggregation of Web

content, as well as automated reasoning over this content. Representing the heterogeneous

information found on the Web, however, is a di�cult task from a knowledge representation

point of view, therefore it became an active area of research. The set of techniques, of-

ten termed Semantic Web technologies, amalgamate di↵erent methods for representing and

linking information.

These technologies encompass a set of Web standards for communication and information

sharing. The Uniform Resource Identifier (URI) provides us with a conventional unique

naming scheme for ontological concepts and relationships. In the context of the Web these are

called resources. The Hypertext Transfer Protocol (HTTP), which provides basic methods for

obtaining resources identified by HTTP URIs, is the fundamental linking mechanism used on

the Web, and on top of these we find the Resource Description Framework (RDF) [Lassila and

Swick, 1998] and various Semantic Web ontologies built on the foundations of this framework.

A key enabling concept in the success of the Web is the URI. It solves the problem

of identifying and linking resources (web pages, data, or services) in a simple and e�cient

manner. Together with the access mechanism of HTTP, it enables the formation of a large

interlinked network of documents: the Web as we know and use it today. However, this

infrastructure is not yet used as widely and e↵ectively as it could be. In particular, the

flow of data and access to networked services are cluttered by incompatible formats and

interfaces. In a more technical sense, the Semantic Web aims at resolving this issue, in the

wider context of bringing intelligence to the Web, by creating a “Giant Global Graph” of

machine-interpretable data. In the rest of section we provide an overview of Semantic Web

technologies, first however, we briefly outline the basic idea behind the Semantic Web data

model and why it is useful for musical applications.

2.4.1 Information Management and the Semantic Web

Since information on the Web can stand for just about anything, developers of the Semantic

Web are faced with a major challenge: How to represent and communicate diverse information

such that it can be understood by machines? The answer lies in standardising how information

75

is published rather than trying to arrange all human knowledge into rigid data structures.

Based on this recognition, several remarkable yet simple technologies emerged promoting the

development of the Semantic Web.

We believe that this musical information is just as diverse as information expressed on

the general Web. Moreover, we cannot presume to plan for all possible uses of our system

components. Therefore, we need data structures that are interoperable with other systems,

and extensible even by end-users. This poses problems similar to building the Semantic Web

itself, hence the development of Semantic Web ontologies and the use of technologies produced

in this community became a key element in this work.

Similarly to the general Web: an interlinked network of documents, the Semantic Web

is a heterogeneous network of interconnected data and services. This network may only

work if various disjoint data sets and services speak the same language. Thus, they have

to follow some common data model or structured schema. The problem however is that the

Web exposes unbounded, diverse information, making it hard, if not impossible to design this

schema. Yet, the Semantic Web provides a surprisingly simple solution to this problem: the

Resource Description Framework.

2.4.2 Resource Description Framework

RDF is a conceptual data model providing the flexibility and modularity required for publish-

ing diverse semi-structured data—that is, just about anything on the Semantic Web. It is also

the basis of more complex description languages, such as the OWL Web Ontology Language,

which provides a way of publishing extensible data schema. The model is based upon the

idea of expressing statements in the form of subject – predicate – object (s,p,o), also known as

triples. A collection of triples can be seen as a graph, with nodes representing subjects and

objects, and edges representing predicates as shown in figure 2.4. Therefore, a large set of

statements form a complex network of semantic relationships. All elements of a triple may

be named by a URI, which enables RDF graphs to be linked and distributed across the Web.

Subject Object

predicate

Figure 2.4: The graph structure of the basic RDF triple

2.4.2.1 RDF syntax and semantics

Elements of RDF statements may be resources, literals or blank nodes. Concepts and relation-

ships are represented by resources named by a vocabulary of URIs. This provides the model

76

with its core semantics, an unambiguous way of referring to things since dereferenceable URIs

are globally unique, and permits using HTTP as a linking mechanism. Literals are used to

express data such as the name of an artist, or a numerical parameter of an algorithm. A blank

node is an unnamed resource whose use in an RDF statement corresponds to existentially

quantified variables of logical sentences. This is useful when describing complex hierarchies

where a certain resource may not be, or may not need to be explicitly named.

Formally, an RDF graph is a set of triples of the form (s, p, o). The property, or predicate

p is drawn from a set of URIs R. The subject s is drawn from the union of R and a set of

blank nodes B. The object o is drawn from the union of R, B and a set of literals L. Blank

nodes act as existentially qualified variables over the domain of a particular graph. RDF

graphs can be drawn as a graph using a union of R,B,L as nodes and drawing an edge for

every triple labelled with the property URI. Non-blank nodes are labelled with a URI or a

literal string in quotes [Howe et al., 2004].

2.4.2.2 RDF/XML and RDFa

RDF/XML specifies a syntax for serialising (representing) RDF graphs. Albeit this is the old-

est and most adopted format, more concise and human readable formats are rapidly gaining

popularity. A somewhat related syntax, RDFa uses a set of XHTML attributes to augment

visual data with “machine-readable” data, that is, information which is liked with explic-

itly defined meaning (such as an ontology) such that machines can automatically process or

interpret it. RDFa enables the inclusion of RDF data in traditional Web content.

2.4.2.3 NTriples and Turtle

As we mentioned, the RDF conceptual model does not specify a syntax for encoding informa-

tion in itself. While RDF/XML is a common serialisation format for RDF data, more compact

and e�cient representations exist such as Turtle, which is both human and machine readable.

Turtle is based on the simple NTriples syntax, exemplified in Listing 2.1. Its graph rendering

is given in Figure 2.5 showing how this statement related to an RDF graph structure. Here,

the URIs corresponding to resources are written out in full. This syntax therefore is rather

verbose. In order to provide a more compact and readable representation, the Turtle syntax

uses a shorthand notation exemplified in Listing 2.2.

In our example, the explicitly written URI identifies a web resource representing an artist.

We make two statements about this artist. The first triple, where the predicate rdf:type

and object mo:MusicArtist are written using the namespace prefix notation expresses the

fact that this resource is a music artist. Such URI references are expanded using a namespace

declaration after a @prefix directive like the ones in our example. A prefix can also remain

empty, in which case it is bound to the local namespace of an RDF file or data store.

77

1 <http://dbpedia.org/resource/Dave_Brubeck>

2 <http://xmlns.com/foaf/0.1/name>

3 "Dave Brubeck" .

Listing 2.1: RDF statement in N-Triples

<http://dbpedia.org/resource/Dave_Brubeck>
<http://xmlns.com/foaf/0.1/name>

"Dave Brubeck"

Figure 2.5: Graph of an N-Triples statement with URI references: In a common graphical formalism
resources are depicted using ovals, while literals may be represented by ovals or rectangular boxes.

2.4.2.4 RDF linking mechanism

The second triple in our previous example after the semicolon refers to the same resource; our

artist. Here, the semicolon is used to group RDF statements about the same resource. The

use of the URI exemplifies how RDF may be utilised to link resources. We can now follow the

owl:sameAs link to a resource within DBpedia6, which holds structured data extracted from

Wikipedia. Expanding the prefix notation by concatenating type to the URI correspond-

ing to the prefix, we can also follow the rdf:type link to get more information about what

mo:MusicArtist means.

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

2 @prefix owl: <http://www.w3.org/2002/07/owl#> .

3 @prefix mo: <http://purl.org/ontology/mo/> .

4

5 <http://www.bbc.co.uk/music/artists/1545000730-525f-4ed5-aaa8-92888

f060f5f#artist>

6 rdf:type mo:MusicArtist ;

7 owl:sameAs <http://dbpedia.org/resource/Dave_Brubeck> .

Listing 2.2: Linking two resources representing a music artist.

2.4.3 Semantic Web ontologies

Although RDF provides a fundamental data model, it does not have the facilities for express-

ing complex relationships required for modelling a domain. In order to precisely communicate

6http://dbpedia.org/

78

information using RDF statements, we have to be able to define and later refer to concepts

such as a specific algorithm we use for audio processing, its concrete implementation and its

parameters. We also need a vocabulary of well defined relationships existing in an application.

To use a musical example, an RDF statement may stand for a simple piece of information

like: ”Take Five” - ”composed by” - ”Paul Desmond”. Should we try to express this infor-

mation without referencing an already established data set, we immediately face the need of

having to say more than what is conveyed by our simple statement. For example, we might

need to add that Take Five is a jazz piece. Similarly, one might think of Paul Desmond as

the saxophonist in the Dave Brubeck Quartet. Still, with regards to our particular statement,

he is a composer acting as an agent in the composition event that produced the piece Take

Five. This more logical view is compliant with the Music Ontology, as opposed to the simple

example statement above. In order to avoid ambiguities and be precise in our statements, we

need to be able to define (and later reference) concepts, for instance a Song, a Composer, a

Plugin for audio processing or the FFT size parameter in an algorithm performing the Fast

Fourier Transform. We also have to specify relationships or roles (such as the one associating

a song with its composer) pertinent to our application. Ontologies are the tools for establish-

ing these necessary elements in a domain model. Building ontologies, a process which will be

discussed in Section 3.1 in more detail, is often referred to as knowledge engineering. In the

next section, we provide a very brief introduction to the Ontology Web Language (OWL),

or more precisely, a family of languages most commonly used for building Semantic Web

ontologies.

2.4.4 RDFS and the OWL

Semantic Web Ontologies are created using the same conceptual model that is used for commu-

nicating the data. However, additional vocabularies are needed for expressing formal ontolo-

gies as well as for greater machine interpretability. A hierarchy of languages are recommended

by the W3C for this purpose. This includes the RDF Schema Language (RDFS) [Brickley and

Guha, 2004] for defining classes and properties of RDF resources and OWL [Patel-Schneider

et al., 2004] for making RDF semantics more explicit. OWL has three layers, corresponding

to three levels of expressiveness, OWL-Lite, OWL-DL and OWL-Full. OWL-DL is the most

commonly used layer and it closely corresponds to previously mentioned Description Logics,

although other OWL flavours also have DL equivalents. Using this language we can impose

for instance restrictions on the range and domain types of properties, or constraints on car-

dinality, the number of individuals linked by a property. An updated language OWL-27 has

been released to overcome some of the limitations and increases the expressiveness of OWL.

This language remains backward compatible with the previous version. For a discussion on

how OWL is related to Description Logic languages please see Section 2.3.5.

7See the comparison of OWL-2 to OWL-1 in: http://www.w3.org/TR/owl2-overview/

79

A standardised way of accessing information represented in RDF is an important require-

ment in building applications using Semantic Web technologies. In the next section, we briefly

outline a language most commonly used for this purpose.

2.4.5 SPARQL: a query language for the Semantic Web

The SPARQL8 Protocol and RDF Query Language has recently emerged as a W3C recom-

mendation from a number of similar languages previously designed for accessing RDF data

stores. SPARQL is a query language somewhat similar to the Structured Query Language

(SQL). It allows complex joins of disparate RDF resources in a single query. A Web interface

executing a SPARQL queries is commonly referred to as a SPARQL end-point. The language

can be used in multiple ways. In the simplest case, a query consisting of triple patterns is

matched against a database. Results are then composed of variable bindings of matching

statements based on a select clause specified by the user. For example, the query shown in

listing 2.3 retrieves all triples about the DBpedia resource Bill Evans. In this example, the

HTTP URI identifies the artist in DBpedia’s database. Terms starting with a question mark

represent free variables that are matched when the query is evaluated.

Using SPARQL is the easiest way of accessing the semantic web from an application while

creating an end-point is a standard way of publishing data. Most modern programming lan-

guages have SPARQL libraries, and several open-source RDF stores (including Openlink’s

Virtuoso, Garlik’s 4Store, Joseki or the D2R Server) are available for creating an end-point.

The standardisation and increasing support of SPARQL promotes the adoption of RDF itself

as a prevailing metadata model and language.

1 SELECT ?predicate ?object

2 WHERE {

3 <http://dbpedia.org/resource/Dave_Brubeck> ?predicate ?object .

4 }

Listing 2.3: A simple SPARQL query.

2.4.6 Notation 3 and RIF

The primary aim of Notation 3 (N3) is to create a language that allows for integrating the

expression of logical rules within the RDF framework, using a compatible data model and

a concise syntax [Berners-Lee et al., 2008]. Notation 3 extends the RDF data model with

features often found in logics, such as variables, universal quantification, and formulæ, which

allow N3 graphs to be quoted within N3 graphs. Quantification is discussed in Section 2.3.2.

8http://www.w3.org/TR/rdf-sparql-query/

80

As we previously mentioned, existential quantification can be expressed in pure RDF using

blank nodes.

Syntactically, N3 is a superset of Turtle, and adds elements, such as a set of new key-

words, and curly brackets, which can be used to denote a quoted formula. For instance, the

statement { [a mo:MusicArtist] mo:member [a mo:MusicGroup] } a log:Truth .

expresses the truth value of the set of statements in braces, which represent the sentence

’There exists a music artists who is a member of some music group.’. Universal quantifica-

tion can be expressed using the notation ?x, while existential quantification can be expressed

using blank nodes, as in our previous example, or using the notation _:x. There is a short-

hand for expressing rules, i.e. the notation => corresponds to log:implies, while the use

of the symbol = corresponds to the term owl:equivalentTo. These extensions to the RDF

model and semantics yield a simple rule language whose statements may be interpreted using,

for instance, the Closed World Machine (CWM) [Berners-Lee et al., 2006], a forward-chaining

reasoner for deriving new statements from RDF data using N3 rules.

It should be noted however that N3 is not a standardised or the only rule language used on

the Semantic Web. The Rule Interchange Format (RIF) is a current W3C recommendation9

which facilitates the exchange of rules between many existing rule systems. RIF provides a

model for expressing rules that can be mapped onto RDF triples.

2.4.7 Linked data

The ultimate goal of the Semantic Web is to enable machines to interpret Web resources

and thus execute very complex search tasks currently requiring human-level intelligence. The

more pragmatic goal of Linked Data is to facilitate this process by publishing information

in an open format that shares a common conceptual framework, that is, RDF. The data

sources published in recent years cover a wide range of topics: from music (MusicBrainz10,

Magnatune11 and Jamendo12) to encyclopaedic information (Wikipedia) or bibliographic in-

formation (Wikibooks13, DBLP bibliography14).

The ‘Linking Open Data on the Semantic Web’ community project [Bizer et al., 2007] of

the W3C Semantic Web Education and Outreach group15, aims at making data sources avail-

able on the Semantic Web and creating links between them using the technologies described

in the previous sections. This includes creating SPARQL end-points, exposing partial or full

RDF representation of Web resources by serving both HTML for traditional browsers, and

RDF for Link Data browsers (the correct version is typically accessed using a process called

9http://www.w3.org/TR/rif-overview/
10http://musicbrainz.org/
11http://magnatune.com/
12http://www.jamendo.com
13http://wikibooks.org/
14http://dblp.uni-trier.de/
15http://www.w3.org/2001/sw/sweo/

81

F
igu

re
2.6:

D
atasets

p
u
b
lish

ed
by

th
e
L
in
kin

g
O
p
en

D
ata

com
m
u
n
ity,

S
ep

tem
b
er

2010.
E
ach

n
od

e
corresp

on
d
s
to

a
p
articu

lar
d
ataset.

D
iagram

by
R
ich

ard
C
ygan

iak,
an

d
availab

le
on

-lin
e
at

h
t
t
p
:
/
/
r
i
c
h
a
r
d
.
c
y
g
a
n
i
a
k
.
d
e
/
2
0
0
7
/
1
0
/
l
o
d
/

82

content negotiation), publishing downloadable RDF dumps, and enriching Web pages using

the RDFa format mentioned in Section 2.4.2.2.

The growing community behind Linked Data aims at making information freely available

on the Semantic Web at large. The various data sets published by the end of 2010 is depicted

in Figure 2.6. This includes the DBpedia [Auer et al., 2007] project which extracts structured

information from fact boxes the Wikipedia community-edited encyclopedia, the Geonames

dataset16 which exposes structured geographic information. Finally, the BBC datasets [Ko-

bilarov et al., 2009] cover a wide range of information from programmes17 to artists and

reviews18. Creating bridges between previously independent data sources paves the way

towards a large machine-processable data web, gathering interlinked Creative Commons li-

censed content19, such as encyclopaedic information, domain-specific databases, taxonomies,

and cultural archives.

Linked Data has relevance in this work for two reasons. Firstly, the ontologies presented

in the following chapters facilitate publishing data about music production on the Semantic

Web, thus we contribute a new and presumably valuable source of information to the music

research and Linked Data communities. Secondly, with the growing trend of using multiple

modalities in MIR applications — see for instance the growth of this field in the proceedings of

the ISMIR conference20 — we can hypothesise that semantic audio tools relying on Semantic

Web technologies can utilise Linked Data resources more easily and more successfully.

2.5 Summary

In this chapter, we reviewed the basics of information management and knowledge represen-

tation with a particular interest in using these technologies in audio applications. In Section

2.2, we outlined an information management framework for semantic audio tools. We ex-

amined the requirements of utilising semantic audio tools in music production, and argued

that such systems would benefit from using Semantic Web technologies. The fundamentals

of Semantic Web technologies, as well as the logical foundations of knowledge representation

and Semantic Web ontologies expressed using RDFS and OWL were then outlined in Sections

2.3 and 2.4.

In the next chapter we discuss how these technologies may be utilised in more specific

knowledge representation problems, outline the design principles governing the creation of

shared ontologies, and examine the application of these principles via looking at a narrower

domain with relevance in our work, namely, ontologies for multimedia applications.

16http://geonames.org/
17http://www.bbc.co.uk/programmes
18http://www.bbc.co.uk/music
19http://creativecommons.org/
20http://www.ismir.net/

83

Chapter 3

Ontology Engineering and

Multimedia Ontologies

In previous chapters we saw how information can be obtained from audio material by means

of analysis, what information requirements need to be considered in intelligent semantic audio

applications and music research tools, and reviewed the kinds of technologies currently avail-

able to manage this information. We have seen how Semantic Web technologies and Semantic

Web ontologies can be used in information management, and made a stand for utilising these

technologies due to their solid logical foundations and open ended information model.

In this chapter we go deeper into ontological questions pertaining to semantic audio appli-

cations. We review the most prominent ontologies existing for music and multimedia related

information, and describe some principles which we use in the design of ontologies related to

the information framework outlined in Chapter 2.

3.1 Ontologies and basic ontological decisions

The definition, interpretation, etymology and meaning of ontology vary throughout history

and di↵er in specific areas of philosophy and science. In metaphysics, ontology refers to the

formal study of existence; designations of basic categories and relationships of entities. In the

sciences, this notion can be subdivided further. In artificial intelligence, ontology is seen as the

conceptualisation of a world (a universe or domain of discourse) used for knowledge sharing

between technological artefacts. In computer science and software engineering in particular, it

may be seen as the specification for the domain model of an application or a database. In this

work, noting that knowledge models are distinct from data models, we are primarily interested

in the latter interpretations. When seen in this sense, creating an ontology is, in essence,

collecting and organising objects that form a coherent application domain, and defining their

semantics by means of declaring relationships between them, as well as constraints over their

interpretation and use. These activities amount to a set of ontological decisions, closely related

84

but not equivalent to the design of software application models, where ontology is seen as the

class model of an application, expressed for instance using the Unified Modelling Language

(UML), creating database schemata, or devising communication protocols. The importance

of these aspects of ontologies will become clearer in later chapters. Here, we focus on basic

decisions governing the design of ontologies we describe in the rest of this chapter.

3.1.1 Ontology and Philosophy

Making ontological decisions is far from straightforward and often leads to philosophical prob-

lems. Enumerating and correctly identifying objects in a domain for instance, while only a

part of the design process, can be a di�cult task in itself. Returning to somewhat philosophi-

cal enquiries, we may ask with regards to object identity whether a glass for instance, equates

to the material it is made out of. This example highlights di↵erent sources of ambiguities.

The first arises from language, due to the polysemous nature of the word glass. If we know

that it refers to a container to drink from, we arrive to the philosophical question of identity1,

that is, can we distinguish between co-localised objects occupying the same spatial and tem-

poral co-ordinates? The common sense answer, based on certain properties of the objects in

question, seems to be yes, however there are di↵erent subtle distinctions that can be made.

For example, is a metal can the same entity after squeezing it slightly or squeezing it fully?

Is an audio signal the same entity after some transformation? These questions are not easily

answered. An attempt to give an account on available options of interpretations would require

a careful review of metaphysics, epistemology and related branches of philosophy. Our insight

suggests that the answers are deeply dependent on context, and lay in finding the granularity

in which information have to be represented and understood. To avoid getting bogged down

in questions of this sort, we rely instead on mature and well-established secondary sources

to evaluate ontological decisions. These sources are secondary in the sense that they are

one or more steps removed from the original study of philosophical problems related to on-

tological enquiries, and contain application specific analyses. For instance [Genesereth and

Nilsson, 1987], and [Gruber, 1993a,b], provide useful definitions and discuss design criteria

in artificial intelligence, [Smith, 1995; Brickley et al., 1999; Sowa, 2000; Guarino and Welty,

2002; Gangemi et al., 2002; Masolo et al., 2003a], provide important modelling principles,

[Kania, 2008] discusses methodological aspects of designing musical ontologies and implica-

tions of taking a descriptivist or a revisionary approach (see Section 3.1.4.7), [Horrocks, 2008]

discusses Semantic Web ontologies in the context of Description Logics, while [Berners-Lee,

2006] hints at ontology design issues related to best practices of Linked Data publishing. In

what follows, we discuss basic ontology engineering and design principles drawn from multiple

resources.
1The problem mentioned here is modelled after the metaphysical problem of material constitution, and the

classical example of how the vase and the clay it is formed of are related.

85

3.1.2 Ontology engineering

Although the creation of ontologies for computational purposes have long standing tradition

in artificial intelligence [Sowa, 2000], in many other disciplines, including software engineering,

life sciences, library science or multimedia and music research, their importance have only

become recognised more recently. The revival of the field is partly due to the advancements

in research and technologies related to the Semantic Web, however it is also due to new needs

arising in various research and user communities.

The development of ontologies, often called ontology engineering is a complex design cycle,

which aims at fulfilling diverse needs and requirements. These requirements may come from

a single field or domain, in most cases however they reach across several overlapping domains.

This is for instance the case in multimedia and the music domains mentioned above. Analysing

the domain in order to determine the requirements and scope of an ontology is often cited as

the first tasks in ontology engineering. The complete design cycle can be subdivided into the

following main tasks:

• Requirements analysis

• Define scope and consider reusability

• Ontology design (domain modelling)

• Evaluation and refinement

• Application and evolution

The above partitioning roughly follows the methodology described in [Sure et al., 2009],

however many authors (see [Haase et al., 2005a] or [Fensel, 2001]) argue that the the design

process is fully circular as the domain knowledge behind most ontologies evolves continuously.

Indeed, we can think of the above process as a single cycle or multiple cycles, since almost

any stage can feed back information to an earlier stage. It is important to note that domain

modelling can be subdivided further as shown below, and this process is often circular in

itself. For example, defining relationships and constraints often reveals errors in the initial

class hierarchy or necessitates the introduction of new terms.

• Enumerate concepts, properties and individuals

• Define classes and create a taxonomy

• Define relationships between classes

• Define constraints (e.g. cardinality and value restrictions)

• Add individuals (if necessary)

86

We do not intend to give a more detailed account on ontology engineering here. The

process has a rich literature, see e.g. [Sure et al., 2009] for an overview. The rest of this

section provides basic use cases constituting to our requirements analysis and describe some

design principles resulting from this, or taken from the previously mentioned literature. These

principles provide the basis for the design of the ontology library detailed in Section 4.2.

3.1.3 Some use cases for ontology design

It is important to consider generic needs and requirements for developing ontologies. These

consideration lead to common design principles guiding the development, and may also alle-

viate the need for ex post facto harmonisation between elements of an ontology library. In

this section, we discuss three use cases of ontologies relevant in our work. We also outline

some basic ontology engineering principles through examples in the following areas ranging

from more general to specific:

• Knowledge Representation and Knowledge Sharing

• Information Management and Multimedia Workflows

• Data Exchange in Music Production

3.1.3.1 Knowledge Representation and knowledge sharing

Knowledge sharing has become important especially in research for streamlined flows of work

pertaining to reproducibility of experiments, and information exchange between groups and

communities. For example, in Music Information Retrieval, it is desirable to reach a common

agreement on the meaning and representation of audio features such as Mel-Frequency Cep-

stral Coe�cients described in Section 1.4 that can be computed and interpreted in several

di↵erent ways.

Knowledge sharing requires a shared conceptualisation of a domain. Formally, conceptu-

alisation is a set of relations R over a universe of discourse D [Genesereth and Nilsson, 1987].

If this conceptualisation is represented and published in a syntactically and semantically in-

teroperable formal language, we are talking about a shared ontology. While the concept of

shared is important in our use cases, we keep the scope of this discussion constrained, and re-

frain from further explanation. Please see [Gruber, 1993b] and [Borst, 1997]. Although using

a formal language facilitates syntactic interoperability in itself, it does not guarantee semantic

interoperability, that is, a common interpretation and ontological commitment between agents

interpreting our data. We say that an agent commits to an ontology if its observable actions

are consistent with the definitions in the ontology [Gruber, 1993a]. Making an ontological

commitment pertaining to the meaning of terms and expressions, higher level constructs —

such as definitions that constrain the interpretation and use of terms — are required, leading

87

to a logical system. The presence or lack of this logical system signifies the di↵erence between

database schemata or simple data models expressed using the XML schema language, and

knowledge representations expressed for example in first order logic or Semantic Web ontolo-

gies. Genesereth and Nilsson [1987] and Gruber [1993a] provide formal definitions of the terms

conceptualisation, ontology, and ontological commitment in knowledge sharing applications.

3.1.3.2 Information Management and multimedia workflows

Another important use case for the development of shared ontologies is provided by consid-

ering information management requirements in broad term multimedia workflows, such as

the production, annotation and search of multimedia assets. Some recent motivating exam-

ples include [Troncy et al., 2004; Aubert et al., 2006; Arndt et al., 2007; Raimond, 2008].

The works of Arndt et al. and Raimond consider the use of distributed computational tools

and services. Arndt et al. for example envision a multimedia presentation workflow, where

multiple web services for face recognition provide semantic annotation of images, and argue

that existing industry standards (see [Ossenbruggen et al., 2004] or [Smith and Schirling,

2006] for an overview) are insu�cient for the requirements of the outlined workflow. This is

due to syntactic and semantic incompatibilities of various standards, and the lack of formal

semantics—that is, some logical formalism for the interpretation of terms and relationships

in their definition. Raimond develops a distributed music information system with Seman-

tic Web ontologies in its core. We demonstrate (see Section 5.4) how a tool for visualising

content-based audio features may interoperate with a web service for automated audio analy-

sis using the ontological framework developed in this system. The most important conclusions

we learn from the examples and implementations mentioned above are the requirements for a

conceptualisation and corresponding ontology to be modular, extensible, open and reusable).

Defining shared formal semantics if we expect multimedia information management systems

to co-operate is vital. In Section 3.1.4 we discuss these concepts and their consequences in

more detail.

3.1.3.3 Data exchange in music production

In our final example, we describe why using an explicit conceptualisation (an ontology) can

facilitate data exchange between media production and authoring tools. In music production,

various authoring tools such as sample editors and multi-track recorders are used in di↵erent

stages of the creative process. Interoperability between these tools however is often limited to

raw data exchange, leading to the loss of valuable information such as recording conditions,

signal processing parameters, or editorial metadata attached to recordings.

Most software applications use a set of abstractions to represent concepts such as audio

tracks, plugins, controls and so on. They share a common metaphor, often relating these

concepts to physical hardware equivalents if possible. There are also significant di↵erences

88

as demonstrated in [Duignan, 2008] in the context of commercial music software. The main

problem however is the lack of explicit and shared conceptualisation of this domain. The

implicit conceptualisation present for instance in the class hierarchy (or UML model) of a

tool represents objects in di↵erent contexts, within di↵erent hierarchies, and having di↵er-

ent relations and attributes. This makes standardisation e↵orts di�cult. We argue that by

modelling fundamental abstractions (such as an audio mixer device) independently from the

scope and implementation of an actual tool, we can make rich data exchange possible thus

retaining valuable information throughout the production workflow. This idea is related to

an important design principle, namely, separation of concerns [Dijkstra, 1982]. In ontology

design, this essentially requires that knowledge about individuals and entities in a domain

should be represented separately from administrative issues related to their specific represen-

tation in a tool or a document. A similar example is provided in [Arndt et al., 2007] arguing

why MPEG-7 [Mart́ınez, 2004] is insu�cient for exchanging media annotation data. Having

outlined some important basic use cases, we shall proceed to consider the fundamental design

principles that help to achieve these goals.

3.1.4 Ontology design principles

Gruber [1993a] identifies five design principles we find equally important in our use cases.

These principles were originally developed to fulfil special requirements for interoperability

between knowledge based systems, which communicate using statements in a formal language,

grounded on specific knowledge representations. First, we summarise the criteria described

by Gruber and provide examples how they influence ontological decisions. We also extend

this framework with additional principles drawn from experience in developing Semantic Web

ontologies, and additional resources such as the ontology design patterns outlined in [Gangemi

and Presutti, 2009]

3.1.4.1 Clarity

According to the clarity criterion, definitions in an ontology should be independent of social

and computational context. They should favour the description of necessary and su�cient2

conditions — that is, once a modeller is committed to a specific use of a term, complete

concept definitions are preferred over primitive concept definitions (describing necessary con-

ditions only). It is also preferred that each definition is presented in a logical form and

documented in natural language. In the context of Semantic Web ontologies, these require-

ments can be fulfilled using RDF and OWL (see chapter 3 for definitions) language constructs

describing for instance subsumption relations, (rdfs:subClassOf) or cardinality restrictions

2In logic, A is said to be a su�cient condition for B, whenever A being true is all that is required for B
being true. A is said to be a necessary condition for B if B cannot be true without A.

89

on certain properties. The documentation requirement is usually fulfilled using rdfs:label

and rdfs:comment properties.

3.1.4.2 Coherence

The coherence principle dictates that an ontology should only permit those inferences that

are consistent with its logical axioms and its natural language definitions. This criterion

requires that the ontology should express the designer’s intent as precisely as possible, and

avoid inconsistencies. For example, it may be possible to define a class incidentally, that

can have no instances, by subsuming disjoint classes. From a logical point of view, this

means that the ontology describes an unsatisfiable theory. There are methodologies such as

OntoClean [Guarino and Welty, 2002] to discover inconsistencies, however, it only provides

limited support to verify that an ontology matches the modeller’s intent in all aspects.

3.1.4.3 Extensibility

The extensibility criterion prescribes that definitions should allow the extension of an ontology

monotonically—that is, without a revision of existing definitions. This requirement seemingly

contradicts with the need for clarity favouring complete definitions. The contradiction may be

resolved by anticipating specific uses of a term outside the modelled domain, and allow more

specialised terms to be defined subsuming a concept or property in our ontology, committing

to a more general definition. However, as we will see later, specialisation through subsump-

tion is not the only way we can make connections between vocabularies. When classes are

loosely related in two di↵erent domains, we may relate their individuals for instance using the

owl:sameAs property, or relate terms using rdfs:seeAlso indicating that a resource might

provide additional information about a subject in a di↵erent domain.

3.1.4.4 Minimal encoding bias

This criterion requires that a conceptualisation remains on the knowledge level without de-

pending on implementations—that is, representation choices should not be made for imple-

mentation and notational convenience. This is indeed a tighter and more specific application

of the separation of concerns principle mentioned in the previous section. This consideration

makes us restrain from very specific data type definitions in most of our ontologies, since type

mapping and similar sort of arbitration should be solved at a lower (implementation) level.

3.1.4.5 Minimal ontological commitment

According to this criterion an ontology should aim at specifying only those definitions that are

essential for communication or knowledge sharing. From a logical point of view, this means

that the ontology should admit many possible models of the world, (i.e. by specifying a weak

90

theory making as few claims as possible). According to Gruber, the key of resolving the

apparent conflict between this and the clarity principle (requiring tight concept definitions) is

in the recognition that ontological commitment concerns conceptualisation in a more general

sense, as opposed individual concept definitions. That is, once a term is included in a con-

ceptualisation, a complete definition should be provided. Another possible way of resolving

this and similar conflicts between design criteria is modularisation, a largely presentational

solution described next.

3.1.4.6 Modular design

Modular design requires that ontologies adhere to clear conceptual boundaries. They should

aim at describing small and coherent domains or sub-domains precisely. Although this was

not included in the original set of criteria considered by Gruber, we see modularisation as a

useful tool for resolving apparent conflicts between other design criteria. A modular ontology

may be presented as a single document with clearly defined annotations (e.g. describing

di↵erent levels of a conceptualisation) or as a library or framework of harmonised ontologies

each contributing to a wider shared domain model. In OWL we may use the owl:imports

construct to reference another ontology containing definitions whose meaning is considered

to be part of the importing ontology.

3.1.4.7 Reusability and scope

An important design decision in the ontology engineering process concerns designating the

scope of an ontology—that is, whether it should focus on a well defined small domain, serve

as a core ontology representing a wider area of knowledge with less depth, or remain at a

rather general level. These decisions are also influenced by whether an ontology is intended

to be reused across multiple domains. The above designations suggest the distinction of three

di↵erent types of ontologies:

• Domain Ontologies

• General or Core Ontologies

• Foundational or Upper-level Ontologies

Domain ontologies are centred around either an abstract or concrete concept, for example

an ontology of time, an ontology of people, or an ontology describing a well defined process,

workflow or task. In the music domain we may think of an ontology of instruments, or an

ontology for describing how audio processing devices may be connected. Domain ontologies

tend to be small and aim at providing complete coverage of an area of knowledge. Concrete

91

examples include the OWL Time Ontology3 describing temporal concepts, [Hobbs and Pan,

2006] or the Device Ontology presented in Section 4.2.3.2 describing artefacts of technology.

Core ontologies describe a wider domain defining fundamental concepts and relationships.

They can be seen as more general domain ontologies that do not aim at full coverage. Instead,

they are designed to be extensible (and often modular) allowing more specific ontologies to

be plugged under fundamental concepts. Core ontologies may also import specific domain

ontologies and may form an ontological framework. The Music Ontology, the Core Ontology

for Multimedia (COMM) [Arndt et al., 2007] or the CIDOC Conceptual Reference Model

(CIDOC CRM) [Crofts et al., 2010] are examples of core ontologies. We take a closer look at

these ontologies later in this chapter.

Foundational ontologies do not concern a specific domain, rather they describe funda-

mental concepts reflecting categorical distinctions discussed in philosophy or simply collect

terms that are the same across several knowledge domains. Examples include the Upper

Mapping and Binding Exchange Layer (UMBEL)4, the Standard Upper Ontology (SUO)5 or

the Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE)6. Although the

definitions above suggest common objectives, the role and scope of foundational ontologies

vary considerably.

UMBEL for instance provides a reference structure and base vocabulary for a large number

of concepts extracted from OpenCyc7 with the aim of helping content interoperate on the

Web. It is popular in the Linked Data community for its mappings to other resources such as

DBPedia8 or GeoNames9. It also contains links to Music Ontology terms. Other foundational

ontologies describe few generic concepts grounded on philosophical considerations and provide

rigorous axiomatisations. DOLCE for instance draws from Strawson’s examination on the

conception of basic particulars as general spatio-temporal concepts [Strawson, 1959].

The philosophical status of foundational ontologies is controversial due to myriad of argu-

ments for and against the feasibility of general purpose ontologies. See a discussion by Smith

in [Floridi, 2004] for example. Due to this reason, and to avoid the complexity resulting from

the reuse of ontologies like DOLCE, we argue the need for extending a foundational ontol-

ogy directly, as it is advocated by the developers of COMM and others, described in [Arndt

et al., 2007] and [Gangemi et al., 2002]. We see the role of foundational ontologies in ser-

vices mediating between resources committed to di↵erent domain ontologies and in ontology

alignment tools. We also use them as reference and observe their design considerations. For

example, it is useful to think about whether an ontology should be descriptive or revisionary,

3OWL-Time Ontology: http://www.w3.org/TR/owl-time/
4UMBEL: http://umbel.org/
5SUO: http://suo.ieee.org/
6DOLCE: http://www.loa-cnr.it/DOLCE.html
7OpenCyc is a large manually assembled knowledge base: http://www.opencyc.org/
8DBPedia provides linked data extracted from Wikipedia: www.dbpedia.org/
9A geographical database exposed as linked data: www.geonames.org/

92

or take a multiplicative or reductionist approach with regards to the number and complexity

of definitions. Descriptive ontologies are grounded on common sense, language and human

cognition, while the revisionary approach requires a model to be always defensible on scien-

tific grounds. The reductionist approach aims at defining the smallest number of primitives,

while the multiplicative approach trades simplicity for a more expressive system. For simi-

lar reasons described in [Masolo et al., 2003a], we opt for developing descriptive ontologies,

which tend to be multiplicative. We also focus on particulars, and do not include the kind

of meta-properties in our ontologies described by Guarino and Welty [2002] in the context of

OntoClean. The methodology is applied instead during the design process.

3.1.5 Summary

In this section, we discussed the role of ontology in artificial intelligence and computer science,

outlined the di�culties of making ontological decisions and reviewed some basic concepts

such as the use of a shared conceptualisation as frame of reference, and the meaning of

ontological commitment. We also outlined the typical life cycle of ontologies. Through a

number of relevant use cases, we reviewed the fundamental guiding principles that are used

in the development of ontologies described in the following chapters, as well as the semantic

audio tools that rely on these ontologies.

The apparent conflict between some of the the design principles — for instance, clarity and

minimal ontological commitment — can be resolved by carefully scoping the application of

the principles, as well as by defining small ontologies with clear scope and domain boundaries

and harmonising them in a larger framework. Another important principle is reusability,

which encourages the modeller to think outside the goals of any large framework, and allow

the fundamental parts of an ontology to be used in other applications. This principle, as well

as best practices for Linked Data publishing also suggest that one should attempt to reuse

existing ontologies, and incorporate conceptualisations and ideas proved successful in other

domains. To this end, it is useful to seek reference points, and review relevant areas such

as ontologies created for describing creative works and multimedia documents. Among the

few sources we are conceptualisations for various multimedia information management tasks,

including the standards and ontologies outlined in the next section.

3.2 Conceptualisations of Music and Multimedia Information

In this section, we seek some reference points for the implementation of the framework for

semantic audio information management outlined in the previous chapter. The discussion

is not limited to explicitly conceptualised ontologies, but includes previously published stan-

dards, protocols or exchange formats in the areas of music and multimedia. We are interested

in systems that can be used to associate media items and their content with di↵erent kinds

93

of information, as well as systems for describing media production processes, workflows and

provenance. We are also interested in cases where widely adopted standards fall short of

certain design principles described in the previous section. This broadened view allows us

to examine considerably di↵erent data models based on di↵erent needs, examine how they

are related to the information management requirements in our framework, how much they

overlap with each other, as well as our needs, and to what extent they could be reused.

3.2.1 Metadata standards

In order for applications or research tools to interoperate, some agreement has to be in place

between developers, researcher and a user community. This agreement can take the form of an

industry standard such as those published by the Moving Picture Experts Group (MPEG),

or a highly adapted open framework, consisting of a conceptual data model and a formal

description language.

Emerging metadata standards already proved invaluable in multimedia life-cycle manage-

ment. For instance, content based search facilities can be provided using features defined

by the MPEG-7 standard [Mart́ınez, 2004]. The de-facto standard ID3 tag used in MP3

audio files empowers the online music community, despite its serious flaws in expressing ba-

sic editorial information (see Section 3.2.3). The usefulness of associating media items such

as audio files with additional information often termed simply as metadata is obvious, how-

ever the questions how this association should be made, and how metadata is represented and

organised present problems that are not easily solved.

Several academic and industrial organisations defined constructs ranging from simple data

models and file formats through detailed standards to complex knowledge representation

frameworks. They provide definitions and schemata in a variety of languages and syntaxes

and define di↵erent ways of encoding information. The result is a large number of largely

incompatible standards [Ossenbruggen et al., 2004; Smith and Schirling, 2006]. Since each

addresses domain or sub-domain with a specific set of requirements, interoperability between

applications is di�cult, even if sharing otherwise overlapping information would be useful. We

observe that the areas of music and multimedia information management exhibit a number

of problems related to semantic and syntactic interoperability. In particular, many systems

for describing content and production have little in common.

The problems are rooted in the lack of harmonisation in the development and publishing

methodologies, and the lack of modularity and extensibility of the standards themselves. Most

standardisation e↵orts stop at providing a data model, and then formalising how information

is encoded according to that model. This may be for instance an XML based format, or

the definition of a binary file encoding. However, standards rarely formalise the meaning

of terms within a model, beyond a textual description in the specification document. See

the comparison of XML Schema and Web ontologies in [Klein et al., 2001] for more details.

94

The lack of semantics, or in some cases the lack of even an implicit conceptualisation has far

reaching consequences, which make us move away from reusing metadata standards.

Re-engineering existing standards in a Semantic Web ontology is tempting to solve these

problems, since it enables harmonisation using a core or a foundational ontology. This is

exemplified by the works of [Hunter, 2003] and [Arndt et al., 2007]. However, these e↵orts

do not always solve all problems present in the original metadata model [Nack et al., 2005],

leading to unnecessary complexity or the need for ground up design. The Music Ontology

[Raimond et al., 2007] takes this approach, although it builds on previously published ontolo-

gies that fit its requirement. It provides a particular conceptualisation of the music domain

described in [Raimond, 2008], which is largely void of the problems mentioned above. How-

ever, it does not in itself justify our decision for abandoning metadata standards in favour of

the Music Ontology. In the following sections we discuss several frameworks and the kind of

information they can represent. We also discuss their advantages and limitations, which pro-

vide interesting reference points for our work. First however, we outline the basic categories

of information these frameworks can represent.

3.2.2 Basic categories of information about intellectual works

Metadata related to music, multimedia and intellectual works in general can be grouped into

the following categories:

• Bibliographic Information: Editorial type information associating works with cre-

ators, and publishers, simple subject headers, and items with location, condition and

other cataloguing information.

• Cultural Information: Social information pertaining to consumption and appreciation

of works by di↵erent social groups, relations between works or creators, intellectual

property rights and more generally, information that needs to be interpreted in a certain

cultural context.

• Content-based Information: Particular features of content that facilitate organi-

sation, search, navigation or similarity calculation. Features may result from simple

transformations or complex semantic analysis resulting in representations that can be

used to answer meaningful queries.

• Provenance and Workflow Information: A detailed description pertaining to the

origin and production process of intellectual works, such as elements of the publishing

and production workflow chains.

The boundaries between these categories however are not always clear leading to many dif-

ferent possible conceptualisations. For example, we can envisage a hierarchical system for

95

content-based annotation of audio files blurring the boundaries between automatically ex-

tracted low-level features, and higher level musicological terms which often exhibit a strong

cultural bias. In the following, we attempt to clarify the meaning of these categories by

providing examples in various information management solutions, primarily focusing on mu-

sic related information. This is followed by a brief overview of harmonisation e↵orts and

frameworks covering many or all of these categories.

3.2.3 Bibliographic information

Bibliographic information can be defined as data pertaining to the history, physical descrip-

tion, comparison, and classification of books and other works [de Lavieter L. , Ed.]. In most

metadata formats as well as complex frameworks the interpretation is usually narrower, and

concerns only editorial type information such as the title and author associated with a work.

3.2.3.1 ID3

Perhaps the most commonly used metadata format for encoding bibliographic information in

the music domain is ID310. It defines a set of metadata containers (tags) originally designed

to be included in MP3 audio files, but later adopted by other formats such as AIFF, WMA

and MP4. Its first version ID3v1 provides a limited set of tags, for instance, artist, album,

title, year and genre, each able to hold a fixed number of characters. The second, incompatible

version ID3v2 relaxes this limitation by allowing variable length frames, and extends the type

of information that can be included.

Unfortunately it is still very common that the ID3v1 tag set is the only metadata available

in a music collection. ID3v1 has a strong bias for representing information about popular

music, for example, it has no tags to describe a composer and a performing artist separately,

making it highly unsuitable for describing classical recordings. Although ID3v2 introduces

new elements for this purpose, the specification remains ambiguous. For example, the TPE2

frame may stand for band, orchestra or accompaniment. For these reasons ID3 is an example

of a format which lacks coherence and extensibility. It is also limited to one level of description

strictly related to audio items as identified by Raimond [2008] — that is, we cannot use it to

provide information about a band or an album associated with a song other than their name

or title.

3.2.3.2 DCMI

The Dublin Core Metadata Initiative (DCMI) maintains a basic set of ISO standardised

metadata elements11. These include information such as title, description or creator, language

and rights related to intellectual works in general or particular items. It is not specific to any

10ID3 audio tagging format: http://www.id3.org/
11Dublin Core Metadata Terms: http://dublincore.org/documents/dcmi-terms/

96

media, rather, it provides a cross-domain way of describing a wide range of resources. Dublin

Core was among the first standard to recognise that one particular syntax specification would

not fit all applications, hence no implementation is defined. However, most applications that

use Dublin Core metadata are based on RDF, which brings the widest range of possible uses

forth through its resource linking mechanism.

3.2.3.3 FRBR

The Functional Requirements for Bibliographic Records (FRBR) aims at providing a frame-

work that identifies and clearly defines the entities of interest to users of bibliographic records,

the attributes of each entity, and the types of relationships that operate between entities

[Plassard, 1998]. It encompasses more than 40 years of development in the digital libraries

community by building on previously published standards.

products of intellectual work creators of intellectual work subjects of intellectual work

work person concept
expression corporate body object
manifestation event
item place

Table 3.1: Three groups of entities defined in the FRBR model.

FRBR defines a set of entities divided into three groups as shown in Table 3.1. The first

group depicted in Figure 3.1 describes products of artistic or intellectual works. This model

includes entities ranging from abstract to concrete.

Work may stand for a poem, the lyrics of a song, or a classical composition. Expression

represents a particular realisation that remains intangible and reflects artistic qualities, such

as a recital of a musical piece, or illustrations in a book. Manifestation represents all the

physical embodiments of an expression, that bear the same characteristics, with respect to

both intellectual content and physical form, for example a book about the Semantic Web

published in 2011. Item is the only concrete entity in the model, a single exemplar of a

manifestation, for instance, a copy of the aforementioned book on my shelf, a compact disc

in the collection of the British Library, or an audio file on my computer.

FRBR is particularly interesting as the above model provides useful concepts and rela-

tionships to describe the production workflow of intellectual works, however it is not su�cient

in itself for this purpose. For example, we cannot express temporal relations between certain

stages of the work. FRBR is available in RDF12. Its relationship to the Music Ontology is

defined in [Raimond, 2008] and briefly outlined here in Section 4.1.

12Namespace for FRBR core concepts: http://vocab.org/frbr/core.html

97

Figure 3.1: Entities related to products of intellectual works in the FRBR model [Plassard, 1998].
(Double arrows represent 1:N or N:N relationships.)

3.2.4 Cultural information

The meaning and boundaries of cultural information are perhaps the most di�cult to define.

We argue that it can be characterised by at least two distinct factors, social information

related to the cultural environment such as the popularity of a work, and interpretations or

high level content semantics, which exhibit a strong cultural bias.

3.2.4.1 Social information and content semantics

Pachet [2005] defines cultural information in the music domain as knowledge produced by

the environment or culture. He mentions collaborative filtering, the analysis of online lis-

tening habits, as the particular source of such information. Although this information has

undoubtedly cultural elements, we believe it is more precisely termed as social. According

to the original definition, cultural information may be seen as all data that represents the

status and content of intellectual works with regards to a particular environment and cultural

context. We may easily argue for example, that musicological representations, such as a set

of notes or chords, may only make sense in the context of a particular musical tradition or

theory, such as the western tonal system [Cope, 1997]. In this sense, information bearing high

level semantics related to content is deemed predominantly cultural.

98

3.2.4.2 CIDOC CRM

Perhaps the richest source for ontologies centred around the notion of cultural information is

the museums and cultural heritage conservation community. Examples include the CIDOC

Conceptual Reference Model (CIDOC CRM) a formal ontology intended to facilitate the in-

tegration, mediation and interchange of heterogeneous cultural heritage information [Crofts

et al., 2010] or the MIDAS Heritage data standard13 for the preservation of the knowledge

about historic environments. These ontologies and standards are interesting for their concep-

tualisation of the temporal evolution of objects related to events or actions.

3.2.4.3 OntoMedia

OntoMedia is a Semantic Web ontology for the annotation of multimedia documents to cap-

ture and describe knowledge that is implicit in the context of the given media unit [Jewell

et al., 2005]. Rather than focusing on requirements to represent information resulting from

machine analysis of media, it aims at providing high-level semantics largely inaccessible for

state of the art feature extraction tools. For example, using OntoMedia, we may describe

character development in fiction, a type of information whose interpretation is dependent on

cultural context. OntoMedia is strongly concerned with people and events, for these reasons

it shows similarities with CIDOC CRM mentioned above.

A particularly interesting feature of the ontology is its event hierarchy and model. Sub-

suming a general Event concept, the concepts of Gain, Loss, Transformation and Action can

be used to describe changes in the status of a character. For instance, a change in loca-

tion (travel) is modelled as locational transformation. OntoMedia allows for the modelling

of event chains — situations arising as a result of another — using ordering properties that

are independent from the actual temporal context of events. Temporal associations are made

through an extra layer provided by occurrence representations, which allow for the same event

to occur multiple times, possibly on several timelines.

3.2.5 Content-based information

Describing the content of audio or media items for interoperability or facilitated search is

the core objective of many information management solutions. As opposed to encoding the

content for reproduction, the aim is to represent some aspects of it, such that the results

can be transmitted, stored, identified and compared more economically, as well as queried

on the level of their semantics. In this section, we outline some possible conceptualisations

and organising principles of content-based information (often termed content-based features

or descriptors) centred around di↵erent characteristics outlined in Table 3.2. We argue that

these characteristics are paramount in the representation of knowledge about features, and

13MIDAS Heritage standard: http://www.english-heritage.org.uk/

99

are particularly useful in communication. First we discuss what they mean, and how they

might be applied. Next, we contrast these organising principles with strictly hierarchical

systems or taxonomies. Finally, we review some existing systems for the representation and

encoding of this information.

3.2.5.1 Conceptualisations of feature representation

Content-based information, may represent anything extracted form the original material it-

self: an abridged textual description of prose, the temporal extents and locations of choruses

in a pop song, or an object identified in an image. These features may be classified in a

multitude of ways. Some ontologically relevant distinctions are shown in Table 3.2 (compare

with Table 1.1 in chapter 2).

conceptualisation examples

hierarchical level
symbolic sub-symbolic
perceptual physical

interpretation cultural (contextual) definitive (primary)
temporal characteristics instantaneous durational
data density dense (compact) sparse (scattered)
provenance automatically extracted manually extracted
computation domain signal domain transform domain

Table 3.2: Some ontologically relevant categorical distinctions of content based features

Although we are most interested in music related features, these categories are kept in-

tentionally domain independent to support a more general view point. Here, we provide

examples in the music domain, which is followed by a short discussion of alternative, taxo-

nomical organisation.

Hierarchical level: The di↵erence between symbolic and sub-symbolic representations

can be seen in the music domain as distinction between musicological and acoustical features,

for instance, a musical note or the fundamental frequency of a sound. In this context we call a

representation “subsymbolic”, if it is made by constituent entities that are not representations

in their turn, e.g., pixels or sound images as perceived by the ear, or signal samples [Schomaker

et al., 1995]. This distinction is similar to classifying features into high and low level ones,

however, these terms seem more ambiguous, as there is no common agreement on what is

meant by high-level or low-level features. Symbolic features may also be called semantic,

when they represent a feature that is meaningful according to some theory (e.g. western

music theory), or represent a concept associated with higher level cognitive functions, rather

than physical or perceptual phenomena like fundamental frequency or perceived pitch.

100

Another distinction can be made between features that express a directly measurable

physical quantity and some perceptual quality (e.g. fundamental frequency and perceived

pitch). From a musicological point of view, these features remain on the sub-symbolic level.

We can similarly divide symbolic features further (e.g. notes vs. structural segments), ulti-

mately leading to a hierarchical organisation, which may be encoded in a taxonomy. However

we argue the usefulness of such taxonomical representation later in this section.

Interpretation: From the interpretation point of view, we may consider whether a fea-

ture is meaningful outside a cultural context or not. For example, a spectrogram or a chro-

magram resulting from a straightforward mathematical transform is definitive in the sense

that its meaning is unconditional. A note name on the other hand assumes a specific tonal

system. A note name cannot be safely assigned to a fundamental frequency extracted from

the audio signal, without knowing for example the tuning system (temperament) used during

the analysed recording. This distinction is closely related to Turney’s investigation into the

context dependency of features in machine learning and classification [Turney, 1996]. These

di↵erences are not commonly reflected in multimedia information management frameworks,

which has far reaching consequences. We highlight the problem in Section 4.6, and outline a

possible solution using a Semantic Web ontology.

Temporal characteristics: Regarding their temporal characteristics, we can di↵erenti-

ate features that describe a segment with a fixed duration from features that describe instan-

taneous events. One may question however, whether any event can be seen as instantaneous.

This leads to philosophical problems discussed by Russell [Newton-Smith, 1984], and a num-

ber of theories regarding the representation of time [Hayes, 1996]. Di↵erent interpretations of

a note onset is a good example to consider. In physics, only Planck time — currently held as

the smallest measurable time interval14 — may be considered instantaneous. It can be argued

however that this has no relevance in music or multimedia, therefore instants are outside of

the domain of discourse. From a practical point of view, it is useful to consider events that

are perceived as instantaneous, reflecting a cognitive or perceptual bias in ontology design

discussed in [Masolo et al., 2003b].

Data density: From a representational point of view, it is useful to consider the data den-

sity of features. Especially on the symbolic level, descriptors may represent objects that are

spatially or temporally scattered with respect to the original content. Examples include note

onsets, or structural segments. Other features, such as those resulting from straightforward

mathematical transforms of a digital media items, are best described as dense data structures.

14http://astronomy.swin.edu.au/cosmos/P/Planck+Time

101

Provenance: In most applications it is useful to know the origin or provenance of a set of

descriptors. Although many di↵erent sources are possible, perhaps the most useful distinction

is between features resulting from machine analysis and features produced by human experts.

Considering a knowledge base in scientific research for example, the latter may be used as

ground truth to evaluate the former. It strongly depends on the application what the best

way to conceptualise and represent provenance information is. In most cases, it is more use-

ful to categorise the sources, rather than the features themselves. The notion of provenance

is closely related to the notion of trust, since descriptors from one particular source may be

more valuable than others. Provenance encoding is also related to workflows. An instantiated

workflow template, or simply a description of how something was derived can be seen as a

detailed account on provenance. Such a description may be provided using provenance mod-

els and corresponding ontologies such as the Open Provenance Model [Moreau et al., 2010]

and its encoding in OWL. Complex provenance models are outside the scope of our present

discussion, however we will revisit the problem in Section 3.2.6.3 in the context of workflows.

A detailed overview of provenance encoding in ontologies is provided in [Ding et al., 2010].

Computation domain: We can di↵erentiate between features based on their domain

of computation. Most importantly, whether they are computed from the original raw data

(signal) or some type of simplified or transformed representation of it. In text processing for

instance, a tokenised or stemmed bag of words may be seen as the transform domain of a

document, often used for computing features to derive document similarity. In audio signal

processing, the time domain data is seen as the original signal domain, while the transform

domain representation can be derived from a large number of di↵erent transformations, in-

cluding conventional time-frequency transforms, and more recently sparse representations.

Since certain types of features are often computed from a particular domain, it is tempting to

use it as the main organising principle in feature classification, however, as we will see in the

next section, this may lead to a rigid knowledge representation, as it is very often possible to

derive features with the same or very similar meaning form two or more di↵erent domains.

3.2.5.2 Taxonomies

There are many alternative ways content based features may be organised. A deeply hier-

archical ontology may be based on how features are computed and attempt to encode their

hierarchical dependencies. The use of signal processing and machine learning techniques in

the extraction process can also be an organising principle. A taxonomy of audio features

based on these ideas is presented in [Mitrović et al., 2010], aiming to improve on work by

Tzanetakis [2002] and Peeters [2004].

The highest level of this taxonomy is defined by the transform (or signal) domain (time,

102

frequency, ceprstral, eigen, etc...). This is followed by further dichotomies such as physical or

perceptual, however the choice of transform domains where this distinction is actually reflected

remains ad-hoc. It is unclear whether the overall organising principle for the taxonomy is the

transform domain, the semantic meaning of features or the extraction process. This ambiguity

is apparent in the placement of particular features under certain branches of the taxonomy

tree. For example, it blurs the concepts of fundamental frequency and perceived pitch, yet it

does not reflect the various methods that use di↵erent domains as starting point to compute

these features.

We argue that strict taxonomies do not help in clarifying the meaning of features. They

lead instead to rigid, application specific knowledge representations, which cannot reflect the

heterogeneity of computations and results. They are inappropriate in many applications, as

they cannot accommodate for the conflicting views and needs of researchers and developers.

See for instances [Hepp and de Bruijn, 2007] for a detailed discussion on how ontologies are

related to inconsistent taxonomies and how these problems may be resolved. In our opinion,

issues regarding computation are perhaps best encoded as scientific workflows (see Section

3.2.6.3). We argue that the domain independent conceptualisations listed in Table 3.2 are the

most useful for communication, as they adhere to most design principles such as extensibility,

minimal ontological commitment and minimal encoding bias.

Di↵erent ontologies and standards exist, however, that commit to a diverse set of or-

ganising principles. The MPEG-7 standard (described next) presents a hierarchical model,

separating low-level descriptors from high-level annotations. The Audio Features Ontology

published as part of the Music Ontology framework (see [Raimond, 2008] and also Section

4.3 in this work) di↵erentiates between sparse and dense features on the highest level. In the

following, we outline some commonly used frameworks to represent content based features of

audio.

3.2.5.3 MPEG-7

The Multimedia Content Description Interface (MPEG-7) [Mart́ınez, 2004] is arguably the

most well known standard for the annotation of media content that includes still images,

audio, video, audiovisual items, as well as rich multimedia presentations. Providing an XML-

based metadata framework for high and low level content description appears to be its core

objective. It also contains elements to encode—at least to some extent, editorial and pro-

duction information (content management), as well as data related to storage, transmission,

navigation, access and user interaction.

MPEG-7 provides a rich set of descriptors (D) to define how individual features are repre-

sented in a document, and descriptor schemes (DS) that specify the structure of descriptors

and other descriptor schemes. In the MPEG-7 Audio Framework in particular, we find the

low-level feature categories shown in Table 3.3.

103

Concrete descriptors include AudioSpectrumEnvelope which represent a logarithmic-frequency

spectrum, or the AudioSpectrumBasis and AudioSpectrumProjection descriptors which de-

scribe basis functions derived from the singular value decomposition [Golub and Kahan,

1965] of a normalised power spectrum, and low-dimensional features of a spectrum after

projection upon these bases. The MPEG-7 Audio Framework — exhibiting a predominantly

hierarchical structure — also provides high level tools. These allow the representation of fin-

gerprints, musical instrument timbre, or monophonic melodic information, using, for instance,

the MelodyContour, or MelodySequence descriptor schemes.

category some examples

Basic AudioWaveform, AudioPower
Basic Spectral AudioSpectrumEnvelope, AudioSpectrumCentroid
Signal Parameters AudioHarmonicity, AudioFundamentalFrequency
Timbral Temporal LogAttackTime, TemporalCentroid
Timbral Spectral HarmonicSpectralCentroid, HarmonicSpectralSpread
Spectral Basis AudioSpectrumBasis, AudioSpectrumProjection

Table 3.3: MPEG-7 Low level audio tools (D and Ds)

The usefulness of MPEG-7 descriptors in musical applications has already been noted

during early developments of the standard. See for example [Casey, 2002] and [Kim et al.,

2005] where several applications and extensions are discussed. However, later adaptation

remains low especially in terms of real-life applications. Nack et al. reported the lack of

real-life applications in 2005, four years after the initial publication of MPEG-7 [Nack et al.,

2005]. To the author’s knowledge, there are still very few applications, and reviewing the

relevant scientific literature to date suggests that the standard is not widely used in research

anymore. However, a few important conclusions can be drawn from early applications.

MPEG-7 provides a closed set of descriptors. Although it was designed with extensibility

in mind — it provides a language, the MPEG-7 Description Definition Language (DDL) to

define additional descriptors and descriptor schemes — the need for using the standardised

descriptors in order to remain compliant [Casey, 2002], is a serious constrain on extensibility.

The standard also defines certain computational steps associated with descriptors, but allows

for variability without providing su�cient tools for describing what exactly was computed.

This hinders interoperability, and obscures the aim of the standard, making it di�cult to

decide whether its primary aim is knowledge representation or data exchange. We mentioned

its broad goals, and the diversity of data the standard aims to represent. However, this is

provided without an explicit conceptual model which would tie its descriptors into a common

framework. A number of additional concerns were reported for instance in [Hunter, 2001;

Ossenbruggen et al., 2004; Troncy et al., 2004; Garćıa and Celma, 2005; Nack et al., 2005;

Troncy et al., 2007] and [Raimond, 2008]. We summarise these concerns in the following:

Lack of formal semantics: The lack of formal semantics of MPEG-7 descriptors and de-

104

scriptor schemes is perhaps the most serious problem, a direct consequence of the use of XML

as basis for the standard. XML can only represent a document’s hierarchical and syntactical

structure, it is insu�cient in itself to communicate semantics in a machine-processable way.

Moreover, as pointed out in [Troncy et al., 2007], MPEG-7 allows diverse syntactic variations

to be used with the same intended semantics while remaining valid under the standard.

Non modular schema language: The MPEG-7 DDL extends the XML Schema Lan-

guage. It only provides however the extensions needed to define higher dimensional data

structures (vectors and matrices), but no support for modularity or the definition of semantic

relations. Although the schema language is provided, the structural and syntactical defini-

tions that should be part of the language are defined instead as part of concrete schemata.

These two factors make the reuse and integration of descriptors, descriptor schemes and the

metadata itself outside the context of the standard very di�cult, especially in applications

like ours, which cut across several domains, and where content description is only a small

part of the problem space.

Additional concerns: Without further details, some other problems we find important

to mention include the lack of linking mechanism between certain descriptors types and

the content, the monolithic structure of MPEG-7 documents, and the inadequate reasoning

services provided by the standard. In the context of the Web, Raimond [Raimond, 2008]

mentions the di�culty of mixing vocabularies from heterogeneous domains, the inability to

use URIs as identifiers, and finally the lack of a conceptual model for complex music-related

information. Some of these concerns led to harmonisation e↵orts described for instance in

[Hunter, 2003; Garćıa and Celma, 2005], and [Arndt et al., 2007] which provide mappings

of MPEG-7 elements to Semantic Web ontologies mixed with other ontologies. However,

they neither o↵er an e�cient solution, nor do they solve the fundamental problem of lack of

semantics in the standard specification itself. We will discuss these works in Section 3.3.

Although some of the above concerns may be resolved for specific applications using

MPEG-7 profiling [Troncy et al., 2010], we can conclude that from a structural point of view,

the use of the standard provides little benefit over simpler frameworks such as the Multime-

dia Contents Description Language (MCDL) [Furini, 2007] or the Synchronized Multimedia

Integration Language (SMIL) [Bulterman et al., 2008].

3.2.5.4 SDIF

The original aim of creating SDIF (Sound Description Interface Format) [Wright et al., 1999]

was the e�cient binary representation of frame-based spectral data in an analysis/synthesis

framework. However, this was soon extended to include more complex types and higher level

features. Although this format is available in existing audio applications, unfortunately its

rigid specification is highly particular to its original purpose. This compromises semantics and

extensibility. Moreover, its binary representation is not well suited for searchable persistent

105

database storage. Therefore this format cannot ideally be used in a general information

management framework.

3.2.5.5 ACE XML

The goal of ACE XML [McKay et al., 2009b] is to meet the representational needs of MIR

research in general, and automatic music classification in particular, with maximum extensi-

bility and simplicity. For these reasons, the utilities of this format has to be considered in our

framework. Close examination of its design choices and their consequences reveals however

that the format works best for the particular use cases of music classification described in

[McKay et al., 2009a] and [McKay et al., 2005], rather than as a general purpose exchange

format, or an application outside of ACE XML’s originally defined context.

Rather than defining a monolithic single document format, ACE XML is a framework, a

collection of multi-purpose file formats developed for the jMIR package. It enables communi-

cation between jMIR components such as the jAudio [McEnnis et al., 2005] feature extraction

library and the ACE classification engine. Within this framework, we find five types of files,

for instance, Feature Value Files describing feature values extracted from audio items, or

Feature Description Files describing abstract information about the features themselves. A

notable benefit of this design is the ability to reuse feature files in di↵erent classification

tasks. However, it makes the use of the framework cumbersome in data exchange due to the

issue arising from the need for parsing and interpretation of di↵erent files formats, as well as

keeping related files together. The use of Project Files seems more like a workaround rather

than a satisfying solution for this purpose.

ACE XML is defined using the XML Document Type Definition (DTD) Language. This

choice is justified by two design goals: simplicity and human readability. The language how-

ever is very limited, allowing only the syntactic structure of XML documents to be defined.

Compared with the XML Schema language, it leaves even data typing issues aside. Con-

sequently, when reading ACE XML documents, fetching data types from separate feature

description files has to be dealt with explicitly by the user, as opposed to be part of the stan-

dard parsing process. The choice of DTD as opposed to the XML Schema language requires

the understanding of two, albeit simple, languages. Compared to more recent serialisation

formats of RDF such as Turtle (see Section 2.4.2.3), these languages are less human read-

able, and provide no way to express an explicit conceptual model, while Turtle can be used

to represent both an ontology and data in a single, more compact and more easily readable

format.

ACE XML provides flexibility and extensibility on the expense of not specifying an on-

tology or a conceptual model. This leaves the issues of semantic interoperability entirely to

the user. It may be argued that such interoperability is not required in all circumstances.

However, we may ask in this case what is the benefit of using ACE XML outside the context

106

of jMIR, apart from the use of standard XML parsers. To highlight this issue, we may imagine

the case of combining two large projects containing arbitrarily defined features sets. Since

the format does not specify an explicit model of feature representation, mapping the feature

files into a common format is far from trivial if at all possible, and may require linguistic

analysis of elements of feature definition files, which clearly defeats the purpose of a machine-

processable file format. Although version 2 of ACE XML allows the association of URIs

with instances within feature files and feature descriptions, this is not a requirement, hence

retroactive conversion of projects is made very cumbersome. The overall conceptualisation

implied from the di↵erent file format definitions shows that it largely remains on the level

of audio items. It does not deal with more complicated production workflows, and provides

only non standard ways to encode cultural or provenance information.

Albeit ACE XML is very well designed, complete, and provides the required flexibility

for diverse classification tasks with potentially unforeseen requirements. Given the problems

above, and general concerns regarding XML-based formats mentioned earlier, we conclude

that it isn’t suitable for our framework.

3.2.6 Provenance and workflow information

Describing subtle details about the origin and production of intellectual works, rather than

simple bibliographic information, pertains to describing their provenance and production

workflow. We are interested in, for example, how a piece of music was produced in the

recording studio, or what facilities were used in the production chain. Numerous models and

systems have been developed to describe workflow and provenance information, however the

interpretation of these concepts may be very diverse in di↵erent communities and application

areas. In this section, we first provide a brief outline and attempt to clarify the interrelation

of workflow and provenance, before proceeding to review the state of the art for capturing

workflow and provenance information related to audio signal processing and audio engineering.

3.2.6.1 Provenance

Provenance may simply mean ’source of origin’ (of an artefact) as it is often used by archeol-

ogist. This simple meaning is not uncommon in the context of the Semantic Web, when we

are only interested in the source of a statement, such as a particular database, or a person

or method responsible for the assertion. The RDF specification described in Section 2.4.2

allows for making statements about statements — a process called reification in knowledge

representation — in order to facilitate the attribution of a statement to a particular resource.

The DCMI vocabulary mentioned in Section 3.2.3 defines the property source, to describe

that a resource may be derived from a related resource.

A more complex interpretation, often used in computing as well as by historians and

museums, is ’chain of custody’ or origin to present. DCMI supports this level of provenance

107

expression by defining the concept ProvenanceStatement and the property provenance to

allow describing changes in ownership and custody of a resource since its creation.

The e-Science community [Taylor et al., 2006] in turn is typically interested in ’process

provenance’ — that is, the full execution history of processes which were utilised to compute

some data. In this sense, provenance encoding is a specific type of workflow encoding, and

a crucial component of workflow systems. The Open Provenance Model [Moreau et al.,

2010], described in the next section, is a prime example focussing on process provenance. The

majority of complex provenance encoding systems however are also concerned with some kind

of denotation of process and data dependencies. The Proof Markup Language (PML) [da Silva

et al., 2006] for instance builds on proof theoretic foundations to describe processes such as

logical reasoning and data mining. The justification of a conclusion can be expressed using

the concept InferenceStep linked to rules using the property hasRule. Rules are denoted by

the term InferenceRule, and can be linked to variables through variable bindings. A chain

of dependencies may be expressed using the properties isConsequentOf and hasAntecedent

linking inference steps with antecedents and a consequent. Other provenance ontologies for

describing information manipulation include the Provenance Vocabulary [Hartig and Zhao,

2009], the Provenir Ontology [Sahoo and Sheth, 2009], and the Workflow Driven Ontology

(WDO) [da Silva et al., 2007]. WDO extends the PML provenance ontology to represent

workflows in an abstract way, describing a plan for a workflow without an execution bound to

concrete services. It uses the concept Method aligned with PML’s InferenceRule to represent

the class of actions to be executed, and the concept Data to represent the information to be

operated on by an action in the workflow.

The World Wide Web Consortium (W3C) is also interested in the problem of provenance

encoding, and created and incubator and later a working group15 to investigate technical re-

quirements for provenance encoding on the web. This group issued a report, but no candidate

recommendation yet.

We saw from the above discussion, how complex interpretations of provenance are directly

related to the denotation of workflows. In the next section, we describe a concrete provenance

model, then we examine workflow models and workflow representation systems.

3.2.6.2 Open Provenance Model

The Open Provenance Model (OPM) [Moreau et al., 2010] is a general purpose knowledge

model for the description of workflow or process provenance and information manipulation.

OPM’s language independent specification is synchronised with an OWL ontology. Similarly

to other provenance ontologies, it defines three core concepts: artefacts, processes and agents.

An artefact is defined as an immutable piece of state which may refer to an actual physical

object, a digital representation or some digital data. A process represents an action that

15W3C Provenance Working Group: http://www.w3.org/2011/prov/wiki/Main_Page

108

creates artefacts, either by acting on an existing artefact or by creating a new one. Agent

describes an entity involved in a process by enabling or controlling its execution. The basic

relationships between the concepts defined in OPM is shown in Figure 3.2, reflecting a process

orientated view. The studio ontology described in Section 4.2 borrows from this model for

describing provenance in audio engineering workflows, however it has a data centric rather

than a process centric conceptualisation.

Process

ArtefactArtefact

Agent

wasControlledBy

usedwasGeneratedBy

wasDerivedFrom

Process

wasTriggeredBy

Figure 3.2: Basic relationships in the Open Provenance Model

3.2.6.3 Workflow

The concepts of workflow and workflow management have attracted interest in the business

and more recently, in the e-Science communities. In fact, workflow management is considered

as a predecessor, and an important part of Business Process Management (BPM), concerned

with the automation of business processes using distributed (Web) services and procedural

rules [Taylor et al., 2006; Ko et al., 2009]. Although BPM yielded a wide variety of tools

and languages, having additional goals and requirements that are unique to science, the e-

Science community adopted BPM standards only partially, focussing on workflow systems

that facilitate the reproducibility of scientific experiments.

Workflows are relevant in the context of both MIR research and audio engineering. In

MIR research, workflow can be a useful tool for reproducibility and sharing, but also in an

attempt to generalise music analysis algorithms that are predominantly developed in a highly

specific context. In audio engineering, capturing the workflow pertaining to the production of

individual audio items is the first step in sharing audio engineering know-how, and may lead

to systems that enable the reproduction of audio processing steps. Additionally, workflow or

process provenance provide invaluable data for music information management tools.

Workflow in itself has many di↵erent meanings however. A broad review of the literature

109

(e.g. [Taylor et al., 2006; Ko et al., 2009; De Roure et al., 2009; Gil et al., 2007; Ding et al.,

2010; Moreau et al., 2010; da Silva et al., 2007; Goble et al., 2003]) reveals the following

interpretations, with representations existing on all three levels:

• Workflow plan: A plan or template describing abstract data access and manipulation

steps in a domain specific but service independent way.

• Workflow execution: An instantiated workflow template, or a description bound to

specific data items and service end-points.

• Workflow description: A denotation of a workflow instance with participating Agents,

Processes and Artefacts (data items). This can be seen as a record of provenance.

General workflow plans as well as workflow instances that describe a specific computa-

tional process can be seen as prescriptive, in the sense that they are to be interpreted and

executed by a computational agent or workflow engine. See for example the Scufl language

used in the Taverna [Oinn et al., 2004] graphical workflow modelling system, the Meandre

workflow engine and its ZigZag language [Llorà et al., 2008] or the N3-Tr framework pro-

posed in [Raimond, 2008]. This framework extends the N3 model [Berners-Lee et al., 2008]

discussed in Section 2.4.6 with concurrent transaction logic (CT R) [Bonner and Kifer, 1996],

and represents workflows essentially as logic programs, using built-in predicates to represent

computational services.

A denotation of a specific computational process can be seen as a descriptive workflow, also

called workflow provenance or process provenance. It was shown that prescriptive workflows

can be easily translated to provenance graphs or the other way around. For example, Missier

and Goble [2011] describe Taverna workflows using the Open Provenance Model (OPM)

[Moreau et al., 2010], and also translates OPM graphs to Taverna workflows. Since we

are interested in systems for describing audio production workflows, we review some relevant

workflow systems, as well as metadata models that contain elements for workflow description

in the sections that follow.

3.2.6.4 Workflow systems

Workflow is commonly equated to experiment in the context of e-Science. In the myGrid

project [Goble et al., 2003] for instance, it is used as a synonym for experiments where database

access and computational analysis is used, instead of hypothesis testing in the laboratory.
myGrid builds an architecture for such in silico experiments in biology by binding command

line tools and scripts exposed using Simple Object Access Protocol (SOAP) Web services. The

project is pioneering the use of Semantic Web technology in service and workflow discovery,

metadata management and service registers. The use of RDF however mainly concerns meta-

data management for provenance tracking and workflow linking, but workflows themselves are

110

treated as black-boxes form the semantics point of view. They are expressed in a dedicated

XML-based language: the simple conceptual unified flow language (Scufl), developed for the

Taverna [Oinn et al., 2004] graphical workflow modelling application. Sculf represents each

step within a workflow as an atomic task. It can be used to describe processors, data links,

and coordination constraints, linking two processors and controls their execution. However,

atomic processes in workflows are not uniquely identified or interlinked in a distributed way.

Similarly to Taverna, Trident [Barga et al., 2008] features a graphical workflow editor.

This system is aimed at scheduling and executing scientific workflows in high performance

clusters with possible Web-based deployment. It features a sophisticated workflow control

system with primitive execution patterns such as sequential, split, merge, synchronisation,

and choice. Trident o↵ers two scheduling strategies: cache aware scheduling, to minimise data

transfer or schedule aware caching, to optimise the order of execution and processing expense.

While the above mentioned systems focus on facilitating the creation of workflow tem-

plates and the execution of workflows over heterogeneous services, myExperiment [De Roure

et al., 2009] focusses on reuse and social aspects of both workflow templates and workflow

instances, deployed over a service oriented architecture (SOA). It essentially provides a vir-

tual research environment for social sharing of workflows originating form di↵erent, disjoint

workflow systems. Key design decisions in myExperiment include the support for federation,

by providing an ability to link workflow instances, an Application Programming Interface

(API), that enables embedding functionality in existing interfaces, research objects, that col-

lect data, results, provenance, tags and documentation, and experiment objects, for exporting

data using RDF named graphs [Carrolla et al., 2005]. The metadata available about these

workflows can be accessed via a SPARQL end-point.

The Networked Environment for Music Analysis (NEMA) [West et al., 2010] project is an

e↵ort parallel to myExperiment in many respects. It aims to implement a similar workflow

sharing approach, possibly with joining the two services. NEMA addresses two fundamental

problems in music research: the unavailability of large music data sets due to copyright issues

— a problem first addressed in [McEnnis et al., 2006], and the heterogeneity of programming

languages, algorithms, and data exchange formats used within the community. Hence, the

project focuses on building a distributed workflow environment to facilitate computation over

remote audio and resource collections, interoperability between data formats and types, and

sharing evaluation procedures. NEMA builds on the foundations of previous projects such

as Music-to-Knowledge (M2K) [Downie et al., 2005], a prototyping and evaluation platform

which allows for the specification of data flows operating on multimedia data, but without

the ability of sharing or distributed execution, and the On-demand Metadata Extraction

Network (OMEN) [McEnnis et al., 2006], a distributed feature extraction system which is

built by coordinating instances of the jAudio [McEnnis et al., 2005] feature extractor engine

running on di↵erent machines.

111

NEMA itself extends these ideas by adding support for workflows related to MIR experi-

ments, which include feature extraction as well as training, applying and evaluating machine

learning models against di↵erent data sets. NEMA primarily uses ACE XML [McKay et al.,

2009b] with a view of extending its data model to incorporate Semantic Web ontologies de-

veloped in the OMRAS2 project [Fazekas et al., 2010]. Workflows are executed using the

Meandre workflow engine [Llorà et al., 2008] and denoted using ZigZag, its dedicated flow

language. This language may use Web URIs as identifiers of workflow components facilitating

the creation of a distributed system. However, due to the concerns discussed in Section 3.2.5

regarding the present use of ACE XML for data communication, the system does not enable

interoperability between heterogeneous systems, or the creation of inter-framework workflows.

Although it allows semantic annotations of Meandre workflows, workflow components them-

selves are not described, i.e. inputs, outputs and configuration are not communicated in a

more interoperable format like RDF. Even provenance information is stored using a propri-

etary package. Workflows are still treated as black-boxes, without a shared conceptualisation

of workflows and workflow components.

While the NEMA approach is well suited to evaluate the most common MIR algorithms,

not concerned with using multiple resources (i.e. cultural information obtained from the

Semantic Web), a more transparent system utilising fine grained workflow description and

execution, (perhaps facilitated by a common data exchange and workflow language), and

the ability to tie in several, potentially unknown systems in the execution, supported by a

common ontology and uniform resource identification, would be desirable in testing future

MIR algorithms.

Two systems developed in OMRAS2 move towards these goals. One is the N3-Tr frame-

work mentioned previously, and its implementation: Henry, described in [Raimond, 2008].

This system focuses on automated execution of music analysis workflows on the Semantic

Web, using a SPARQL end-point. The other is our SAWA framework [Fazekas et al., 2009]

described in Section 5.3. This system features a Web based user interface, and the ability to

express algorithm configuration as well as the returned features within the same ontological

framework described later in this chapter. This framework also includes an ontology for the

transparent denotation of signal processing workflows, see Section 4.2. Although the aims

and complexity of these systems are not comparable to NEMA on the whole, they provide a

model for building truly semantic systems.

There are many other applications in the music domain that are related to the execution

of music processing or music signal analysis workflows. Marsyas [Tzanetakis and Cook, 2000]

provides a framework for distributed music processing [Bray and Tzanetakis, 2005]. CLAM

[Amatriain, 2007] features a graphical music analysis workflow editor and execution engine.

Pure Data (PD) [Puckette, 1997] provides similar facilities for real-time audio synthesis and

112

signal processing, and commercial tools like MAX/MSP16 and Reason17 (for an analysis of

commercial music software see [Duignan, 2008]) exists, geared toward the needs of creative

professionals. However, these systems are closed in many sense. Lacking a common concep-

tualisation of audio processing components, configuration data and exchange formats, they

cannot communicate with each other. They do not provide information on process prove-

nance in an interoperable way, as their internal workflows are coupled with implementation

details, without abstract workflow models. This loss of information aggravates the problems

of experiment reproducibility and code reuse in MIR research, and the lack of production

information both in MIR and audio engineering applications.

In this present work, we are concerned about descriptive denotation of workflow prove-

nance rather than workflow execution. Next, we outline some frameworks and standards that

contain metadata elements for this purpose.

3.2.6.5 AES31

The AES31 standard of the Audio Engineering Society (AES) is concerned with network and

file transfer of audio as well as metadata storage and transmission. It includes the latest

extension to the Broadcast Wave Format (BWF-E) defined in AES31-2. In our particular

interest, the recently revised third part of the standard AES31-318 encodes information related

to audio workflows.

AES31-3 defines a simple textual markup language called Edit decision markup language

(EDML), which — although strictly speaking not related to XML as none of the standard

definition languages such as DTD or XML Schema are used — results in a simplified XML-like

document when implemented. An EDML compliant document is divided into sections iden-

tified by start and end tags such as <EVENT_LIST> ... </EVENT_LIST>. Each section may

contain a number of entries starting with a specific keyword. The core of an EDML document

is the Audio Decision List (ADL) section, which contains some project and system specific

information, and enables the restoration of the track and clip composition of a project, as well

as fades, transitions and to some extent automation. Within an ADL header section, we can

refer to the source audio material used in a project, and define the possible destination tracks.

The clip composition is described using a number of edit events paced in the event list section

of the ADL. This however is limited to two types of events, Cut or Silence, corresponding to

placing some audio source material on a destination track, or defining a silent region without

a specific source. A Cut entry may look like as follows:

(Entry) 0010 (Cut) I 1234 1 2 03:00:00:00/0000 01:00:00:00/0000 01:00:10:00/0000 _

16A visual signal processing environment: http://cycling74.com/products/maxmspjitter/
17A virtual studio environment: http://www.propellerheads.se/products/reason/
18AES31-3-2008 Standard: http://www.aes.org/publications/standards/search.cfm?docID=32

113

The above entry denotes the source index of an audio file, source and target channel des-

ignations, and specifies three time codes in time-code character format (TCF) to provide

sample-accurate position and synchronisation information. These are used to index into the

source audio file, and to identify the start and end of the corresponding audio clip on the

destination track. Similar data structures may be used to describe fades, cross-fades, and

automation of volume fader and pan parameters for spatial positioning.

The simple data model of AES31-3 outlined above only provides for encoding the state of a

recording project, so that it can be saved and restored. There is no explicit conceptualisation

of audio clips, events and timelines assumed by the standard specification, therefore we cannot

attach additional information to events, or link them with di↵erent timelines to denote a

sequence of modifications in a production workflow. The main motivation behind AES31-3 is

to facilitate simple project transfer. It was published in text, without the use of a definition

language, therefore its semantics is highly intermingled with its syntax specification. This

makes it di�cult to implement, reuse or extend. Although AES31-3 influenced our ontology

designs detailed in Section 4.2, due to its overly simple conceptualisation highly optimised for

project transfer, we could not directly map or reuse concepts defined by this standard in our

ontologies.

3.2.6.6 AAF and OMF

The Advanced Authoring Format19 (AAF) is in our concern because of its ability to describe

media production workflows. It is the successor of Open Media Framework (OMF) and

considered to be a superset of the AES31-3 standard. AAF specifies an object-orientated

class model for interchanging audio-visual content as well as associated metadata. This maps

well on the typical class hierarchy of application storage containers. For extensibility, the

format specifies Meta-Classes which can be included in Meta-Dictionaries and sent along

with an AAF file. Yet, the specification contains statically coded information such as media

types. Therefore it fails to support a dynamically extensible system. Most extensions would

require generating and recompiling source code. This does not permit easy adaptation to

user’s needs in situations such as describing new signal processing elements of a production

system. The rigid data model consisting of closely joint objects and properties, and the

typically used binary encoding, do not support the development of query interfaces to assist

workflow management, nor does it support automated inferencing on previously computed

and stored metadata. Building an interlinked database over various facilities would also be

problematic. Finally, the supplied SDK confines monolithic, single language implementation.

These drawbacks led to the need for mapping AAF terms onto XML based vocabularies and

data encoding [Beenham et al., 2000] types. However, the format is still lacking semantic

associations, therefore the afore-mentioned problems are not fully solved.

19AAF specification and supporting documentation available at: www.aafassociation.org

114

3.2.6.7 IXD

The Integra Extensible Data (IXD) [Bullock and Frisk, 2007] format was developed within

the Integra project for the libIntegra library. This software library provides interlinking and

persistent storage facilities for audio processing and live composition environments (such as

PD and Max/MSP) in a software independent manner. It is based around the concept of

multimedia module encapsulating signal processing functionality. The IXD format appears

to be well designed and well suited for representing module information for the purposes of

storing module states and parameters in the local file system or in a remote database. It

provides a good example of an XML-based schema which doesn’t entirely overlook semantics

and ontological considerations. For instance, it is possible to define hierarchical inheritance

relations between modules. However, it is not possible to do so in defining module attributes,

closely tied with module definitions in an object-orientated manner. Although the format

moves in this direction, it does not permit the definition of semantic associations rich enough

to be used in a more generic way.

3.3 Metadata harmonisation using core and foundational on-

tologies

There exists a conflict, inherent between certain ontology design principles and best metadata

management practices, and some goals fundamental to the Semantic Web and heterogeneous

information management systems in need of a universal knowledge representation. In partic-

ular, the modularity principle, discussed in Section 3.1.4, serves us well in avoiding unnec-

essary complexity when describing a small specific domain. It also reduces the temptation

to represent entities in an ontology that are more fundamental then what is required by the

granularity of the resulting data in a target application, thus creating multitudes of universal

ontologies. Furthermore, it is desirable that metadata practitioners focus on a specific domain

of expertise, since no single person or community is able to create the universal ontology for

the Semantic Web.

Foundational ontologies do exist however (see Section 3.1.4), which tend towards a univer-

sal status, regardless of the philosophical controversies around them discussed for instance in

[Floridi, 2004]. In brief, it is disputable whether a universal ontology accepted by all commu-

nities can ever be created. Information management solutions which have to deal with parts

or all of the di↵erent kinds of information discussed so far in this chapter, ontology alignment

tools, and metadata model harmonisation provide the best cases for the need of foundational

and core ontologies. In this section, we outline some solutions which aim at facilitating

interoperability between multiple metadata standards by developing core ontologies.

115

3.3.1 ABC

The ABC model [Lagoze and Hunter, 2002] is the result of harmonisation between the digital

libraries and museum communities. It takes several metadata packages such as the earlier

mentioned FRBR [Tillett, 2004; Plassard, 1998] and CIDOC/CRM [Crofts et al., 2010] models

into account. However, rather than attempting to build a universal ontology, it simply aims

to find the most frequently occurring set of entities and relationships (e.g. events, places or

people), that can be considered domain independent. ABC is intended to facilitate machine

interoperability as a conceptual model. It is not concerned with the implementation language

or data interchange syntax, but it builds fundamentally on RDF, and provides trivial map-

pings to RDFS and OWL ontologies20. The main goals of ABC can be summarised as follows

(see [Lagoze and Hunter, 2002] for a more detailed discussion):

• Guide ontology analysis or design: Provide a base vocabulary that can be used in

the analysis of existing, or the development of new community-specific vocabularies.

• Facilitate metadata mapping: Provide a common logical model, that is more inter-

operable than one-to-one mapping between specific domain ontologies.

Action

ActualityActuality

Actuality

usesTool

hasResulthasPatient

hasAction

Event

isSubEventOfSituation Situation

precedes follows

Agent Agent

hasPresence hasParticipant

Figure 3.3: ABC model showing terms related to situations events and actions (partial).

The core of ABC’s model are i) a layered conceptualisation of the life cycle of intellectual

works (i.e. books, works of art, music, etc...), and ii) an event model centred around three

concepts: situation, event, action, as shown in Figure 3.3.

20http://metadata.net/harmony/ABC/ABC.rdfs and http://metadata.net/harmony/ABC/ABC.owl

116

ABC’s conceptualisation of the life cycle of intellectual works is similar to the FRBR

model described in Section 3.2.3. It includes entities ranging from abstract to concrete such

as work, manifestation, and item, however, it leaves the expression layer out, which turns

out to be of paramount interest in describing music production workflows as described in

[Raimond, 2008]. ABC considers events as transitions between situations, linked with actions

performed on actualities (agents or physical artefacts). This can be used to describe for

example the transformations of an item. Using the property hasPresence, events or actions

may be linked with agents that are simply present during an event. Agents that actively

participate are linked using hasParticipant, a subproperty of hasPresence.

With regards to the intended use of ABC mentioned above, the first kind of usage is

demonstrated by the Music Ontology for instance, in that it borrows from ABC’s event-based

conceptualisation for its model of music production workflows by refining and simplifying

this model (see Section 4.1 and [Raimond, 2008]). When describing audio transformations,

we also use a model similar to how actions perform transformations in ABC, but rely in-

stead on refined concepts from the Music Ontology. The second usage is shown in [Hunter,

2003], fusing a museum ontology (CIDOC/CRM), multimedia content description (MPEG-7),

rights management (MPEG-21), and a biomedical ontology (ON9.3) under ABC’s common

framework, based on principles of an event-aware integration model described in [Hunter and

James, 2000].

3.3.2 DOLCE and COMM

The Core Ontology for Multimedia (COMM) [Arndt et al., 2007] is one of the many approaches

which aim to reuse MPEG-7 to create a harmonised multimedia ontology for Semantic Web

applications, and alleviate the problems of the standard discussed in Section 3.2.5.3. As

opposed to alternatives proposed in [Hunter, 2001, 2003], [Tsinaraki et al., 2004], [Garćıa

and Celma, 2005], based on one-to-one mapping from MPEG-7 descriptors to OWL entities,

COMM uses a completely re-engineered version of MPEG-7. This was required to fully

capture the intended semantics of the written standard, and to avoid interoperability problems

resulting from the many di↵erent ways it provides to encode the same information.

Similarly to the way Hunter extends ABC to harmonise her MPEG-7 ontology with other

domain ontologies [Hunter, 2003], COMM enables harmonisation using a foundational ontol-

ogy called DOLCE [Masolo et al., 2003a; Gangemi et al., 2002] already mentioned in Section

3.3.2. A thorough review of these ontologies is beyond the scope of our work. Instead, we

focus on the extension approach and its consequences, and discuss why we do not take this

route.

Integration in COMM is achieved by using two refined design patterns from DOLCE: the

Description and Situation (D&S) and Ontology of Information Objects (OIO) patterns. This

is demonstrated in Figure 3.4, where the concepts parameter and abstract-region defined

117

parameter

structured-data-parameter

nested-media-descriptor-parameter

audio-coding-descriptor-parameter

abstract-region

scalar

double-scalar

non-negative-real

sample-rate

is-a

is-a

is-a

is-a

is-a

is-a

is-a is-a

Figure 3.4: Concept hierarchy of the Audio Sample Rate concept in COMM. Only the five most
relevant hierarchical levels are shown. (Reproduced from the COMM OWL ontology using the OWL-
Viz Protégé plugin.)

in DOLCE are subsumed to describe multimedia specific concepts, such as the sample-rate

of an audio file. More precisely, the parameter concept is defined in the Description and Sit-

uation Ontology extending DOLCE. D&S implements a reification schema for descriptions,

and a basic framework for situations and for their elements, where description and situation

are disjoint concepts, and can be thought of as synonyms for conceptualisation (or representa-

tion), and configuration (or state) respectively. A situation can satisfy a description in many

ways through a hierarchy of satisfaction (referenced by) relations.

The ramifications of using this schema are adverse in domain specific applications in

need of simple knowledge representation and information access. D&S forces reification of

even simple data type properties such as a sample rate, and requires the use of foundational

properties which encode role semantics between concepts (for example, requires, defines, or

valued-by), rather than direct semantic relations between a domain object and its attributes.

This has the following consequences: i) the RDF data encoded using this ontology becomes

exceedingly verbose, a direct result of reification, ii) it is very di�cult to write queries for

data expressed using COMM without a deep understanding of the philosophical foundations

of DOLCE, iii) query complexity and execution cost increases with data complexity, iv) the

use of generic properties obstructs the use of many RDFS/OWL features in simple knowledge

representation.

We can see from Figure 3.4, that COMM uses subclass axioms to represent data type

constraints. This is a less flexible approach than range constraints and OWL restrictions

expressed over properties. This is demonstrated in Listing 3.1. Here, we define sample_rate

as a functional property — a global cardinality constrain meaning that it may only have

118

one value — and as a data type property, which means that its object has to be a data

value. A simple global data type constrain is also expressed by specifying the range as an

XML Schema data type. Furthermore, we can also define class specific restrictions. In the

ex:CDtrack definition example, we state that the value of sampe_rate is constrained to be

44100 when describing tracks of an audio CD. In more precise logic terms, we define the class

CDtrack as the set of things, that form a subset of things having a sample rate attribute with

the value 44100, noting that the subsumption relation expresses necessary but not su�cient

conditions, and the value restriction in this case expresses existential quantification. These

knowledge representation options become very cumbersome (and in some cases impossible)

to use in the context of COMM and DOLCE without introducing even more complexity in

an already excessive structure.

1 @prefix owl: <http://www.w3.org/2002/07/owl#> .

2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

3 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

4 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

5 @prefix ex: <http://example.org/ex_ontology#> .

6

7 ex:sample_rate rdf:type owl:FunctionalProperty , owl:DatatypeProperty ;

8 rdfs:range xsd:double .

9

10 ex:CDtrack a owl:Class ;

11 rdfs:subClassOf

12 [rdf:type owl:Restriction ;

13 owl:onProperty ex:sample_rate ;

14 owl:hasValue "44100"^^xsd:nonNegativeInteger

15] .

Listing 3.1: Property restriction examples

When to use reification is among the most complex decisions is ontology design. Repre-

senting all domain entities as concepts on principle eases this choice, but it a↵ects both data

and query complexity. It is one of the most powerful modelling constructs on the other hand,

therefore we opt for using reification, even when simpler models are possible, when its use

provides flexibility that would be hard to achieve otherwise.

Although foundational ontologies like DOLCE provide very sound logical and philosophical

foundations to an extending ontology, and they are useful to eliminate semantic interoper-

ability problems of ambiguous metadata schema like MPEG-7, due to the complexity issues

discussed above, we see their role only in manual or automatic harmonisation of schemata, and

119

in reasoning agents requiring to understand data from heterogeneous, cross-domain resources.

Mapping from domain ontologies to foundational ontologies can be provided separately, free-

ing the user of the domain ontology (both human and machine) form the burden of dealing

with extra complexity. Such a separate mapping ontology is demonstrated by Tsinaraki et al

[2004], although in a di↵erent context, and also advocated by Lagoze and Hunter [2002] in

the context of the ABC ontology.

The Music Ontology framework takes the approach of defining some core, domain inde-

pendent elements, that are no more fundamental than what is required within a knowledge

representation framework for describing music. Then, these terms are extended with music

specific concepts in a modular ontology library. We follow and advocate this approach.

3.4 Reflections on design principles

The Studio Ontology described in the next chapter focuses on practical issues regarding the

description of music production processes in the recording studio environment. Due to its

many desirable properties detailed in Section 4.1, we align this ontology with the Music

Ontology. We also describe additional Music Ontology extensions unrelated to the Studio

Ontology itself, but contribute to the general framework for an intelligent music production

environment outlined in Chapter 2. The Temperament Ontology (see Section 4.6) is an

example of such an extension. We opt for a modular and extensible ontology library design.

Some fundamental elements of this library remain general as they are intended to be reusable

across di↵erent domains. Examples include the Device Ontology described in Section 4.2.3.2.

We also aim at reusing previously published ontologies. Conforming to Linked Data principles

[Berners-Lee, 2006], we try to avoid the redefinition of terms available elsewhere, unless it is

necessary to fulfil alternative design goals.

We develop a novel framework. Although this includes elements covered by other ontolo-

gies, many parts of the knowledge domain we describe have not been explicitly conceptualised

before. Consequently, we have few reference points and grounds for comparison. Among the

few reference points we use are conceptualisations for multimedia information management

outlined in Section 3.2. The structural evaluation of ontologies, — an important part of the

development cycle rather than the evaluation of an ontology as a theory — is performed

through examining how they reflect certain design principles outlined in this chapter. We ac-

knowledge however the existence of many possible conceptualisations of the domains covered

in this work, and do not see the ontologies presented here as rigid, definitive or the best for

all purposes. This view is signified by the citation opening the next chapter.

120

Chapter 4

Ontologies for Semantic Audio

Information Management

“When I use a word, it means just what I choose it to mean — neither more,

no less.” — Humpty Dumpty, Through the Looking-Glass by Lewis Carroll, 1872.

Utilising the design principles as well as the lessons learned from examining state of the

art methods for representing music and multimedia related information, we develop a set of

ontologies for describing the process of music production. The Studio Ontology detailed in

this chapter is closely related to the information management framework for semantic audio

tools outlined in Chapter 2. It is designed to satisfy some of its requirements, for instance,

the need for collection information about production, and uses the technologies deemed to

be most appropriate for managing heterogeneous information in an open ended way. The

ontology library presented here builds on the Music Ontology, however it also diverges from

it in the conceptualisation of a few fundamental entities relevant in the domain of recording.

The Studio Ontology allows for describing music production in more detail than what was

possible using previously published ontologies.

4.1 Overview of the Music Ontology Framework

The aim of the Music Ontology [Raimond et al., 2007] is to provide comprehensive, yet easy to

use and easily extended domain specific knowledge representation for describing music related

information. Integration of music related resources (Web services and data repositories) on

the Semantic Web [Raimond and Sutton, 2007], and facilitation of service integration and

data communication in distributed music processing environments [Abdallah et al., 2006],

[Raimond, 2008] are paramount among its existing applications. Compared to the ontologies

and metadata frameworks discussed so far, the Music Ontology has certain properties which

make it particularly suitable as basis for a general semantic audio information management

framework as well as data collection in the studio. In this section we provide a brief overview.

121

4.1.1 Utilities of the Music Ontology

The Music Ontology covers and integrates the di↵erent kinds of information we discussed in

the context of intellectual works in Section 3.2.2. However, it does not do so in equivalent

detail. The Music Ontology is particularly well suited to describe the following types of

information:

• Editorial metadata: Concepts and relationships involving artists, bands, labels, al-

bums, tracks, audio files or downloads and their identifiers in various databases.

• Music production workflow: The life cycle of musical works from composition

through performance, to the produced sounds and recorded signals and their publication.

• Event decomposition: Further details about particular events in the production work-

flow such as individual performances by di↵erent musicians in a recording.

• Content annotation: Audio signals and temporal annotation of their content.

Rather than building a monolithic structure, the Music Ontology defines a framework

involving some domain independent components which provide the basis for describing the

above information. These are extended with music specific terms, which may be further

specialised in ontologies extending the framework. The key design considerations of this

framework can be summarised as follows:

• Reuse of existing models: The Music Ontology is built upon existing Semantic Web

ontologies and metadata modelling frameworks by design.

• Modularity: The Music Ontology is published as a framework forming a modular

ontology library.

• Extensibility: The Music Ontology is designed to be extensible instead of being clut-

tered by highly domain specific components.

4.1.2 Domain independent components

An ontology dealing with strictly editorial or bibliographic information may safely assume

that the entities in its domain are stable and unchanging. Therefore, it can set aside the

description of temporal relationships, as well as the precise conceptualisation of man made

artefacts and their life cycle; staring from ideas to di↵erent possible manifestations. This

is not the case if we build an ontology about music. Musical works may have a myriad of

conceptual forms existing at di↵erent times, for example, two performances of the same piece

happening perhaps centuries apart, or an audio CD containing the recording of one of these

performances.

122

The ABC ontology described in Section 3.3.1 o↵ers an event-aware integration methodol-

ogy for tying up entities existing at di↵erent times and in di↵erent forms. The Music Ontology

refines this model, both by simplifying it, and by extending it with elements important for de-

scribing music. Two ontologies are defined for this purpose: the Timeline Ontology [Raimond

and Abdallah, 2007] and the Event Ontology [Raimond and Abdallah, 2006]. They include a

clear conceptualisation of time, incorporating Allen’s calculus of interval relationships [Allen,

1983], and the ability to relate events to di↵erent time-based multimedia items, similarly to

the time model of the HyTime ISO standard [Goldfarb, 1991]. In the following, we provide a

brief overview, and some examples that are important in our use cases. The formal definitions

of these ontologies can be found in [Raimond, 2008].

4.1.2.1 Timeline Ontology

The Timeline Ontology [Raimond and Abdallah, 2007; Abdallah et al., 2006; Raimond, 2008]

extends OWL-Time [Hobbs and Pan, 2006], which includes two important temporal con-

cepts: instants and intervals, as well as Allen’s interval relationships. The Timeline Ontology

adds the ability to define specific timelines which may be continuous or discrete, supporting

di↵erent temporal coordinate systems, or abstract, without an absolute coordinate system.

Timelines may be linked through timeline maps, as shown in Figure 4.1. Indeed, this is a

reification mechanism, which permits useful information to be attached about the relation of

two timelines, in this case, a continuous timeline of an analogue signal, and a sampled discrete

timeline of a digital signal. This allows the coordinate system most appropriate for the task

to be conveniently used.

The conceptualisation on timelines and temporal entities provided by the Timeline Ontol-

ogy is particularly rewarding in two use cases. The first is the association of dense content-

based features or signal transformations obtained through shifted (overlapping) windows.

This results in a data rate, di↵erent from the original audio sampling rate. A similar prob-

lem is encountered when associating low data rate signals controlling some signal processing

parameter with an audio signal. In audio engineering terms, this is called automation, for

example, a set of events or a discrete time signal controlling fader movements on a mixing

console. We will thoroughly discuss this problem in the context of recording.

4.1.2.2 Event Ontology

The Event Ontology [Raimond and Abdallah, 2006; Abdallah et al., 2006; Raimond, 2008]

aims to provide a way to classify spacial and temporal regions. For example, we may want to

describe and localise a performance happening at a particular place and time, the temporal

location and extent of a chorus relative to a pop song, or the location of a note onset.

The Timeline Ontology provides the fundamental concepts such as instants and intervals for

temporal localisation, but it is not su�cient to classify a performance or a chorus per se.

123

Continuous
Timeline

Discrete
Timeline

Uniform
Sampling

Map
domainTimeline rangeTimeline

Instant Interval

"PT2.77S"

timeline

at

"122157"

beginsAtInt

"1024"

durationInt

timeline

"44100"

sampleRate

Figure 4.1: Timeline Ontology example: An Instant and an Interval starting at the same time, ex-
pressed using a continuous and a discrete timeline, linked through a timeline map.

The Event Ontology allows for such classifications to be made by considering event tokens

as first-class entities [Vila and Reichgelt, 1996]. Although this approach is similar to ABC’s

event model shown in Figure 3.3, here, events are defined as the way by which cognitive agents

classify arbitrary regions of space-time, an act of classification [Raimond, 2008], as opposed

to transitions between situations. Compared to ABC, the Event Ontology also eliminates

the need for describing actions, since event decomposition can easily substitute this facility.

Then, the Event Ontology simply defines an Event concept, which can be linked with objects

at a particular place and time, and participating agents. Events may have products and

factors such as tools, or products of other events, and may be decomposed into one or more

sub events.

Using the Event and Timeline ontologies alone, we can already say quite a lot about

events. For example, we may describe a recording session1 as shown in listings 4.1 followed

by its FOL translation. Throughout this chapter, taking advantage of the precision of FOL

sentences compared to natural language, the FOL syntax described in Section 2.3.2 will be

used. Unary and binary predicates typeset in sans serif correspond to concepts and properties

in specific ontologies. Individuals are set in small case italic font, variables are set using

capital letters. Colon separated namespace prefixes are given in Table D.1, Appendix D.

1Further examples are available at: http://wiki.musicontology.com/index.php/Examples

124

1 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

2 @prefix event: <http://purl.org/NET/c4dm/event.owl#> .

3 @prefix tl: <http://purl.org/NET/c4dm/event.owl#> .

4 @prefix : <http://example.org/> .

5

6 :rs a event:Event ; # recording_session

7 event:place <http://example.org/my_studio> ;

8 event:agent <http://foaf.me/fazekasgy#me> ;

9 event:time [

10 a tl:Interval ;

11 tl:timeline tl:universaltimeline ;

12 tl:beginsAtDateTime "2011-03-20T09:00:00Z"^^xsd:dateTime ;

13 tl:durationXSD "P1DT"^^xsd:duration

14] ;

15 event:sub_event :rec ;

16 event:product <http://example.org/album> .

17

18 :rec a event:Event ; # recording

19 event:factor [rdfs:label "Shure SM58"] ;

20 event:product <http://example.org/signal> .

Listing 4.1: Using the event and timeline ontologies

event :Event(rs) ^ event :Event(rec) ^ event :place(rs,my studio) ^ event :agent(rs,me)

^ 9 I(tl : Interval(I) ^ tl : timeline(I, universaltimeline)

^ tl :beginsAtDateTime(I, ”2011-03-20T09:00:00Z”)

^ tl :durationXSD(I, ”P1DT”))

^ event : time(rs, I) ^ event :sub event(rs, rec) ^ event :product(rs, song)

^ 9 F (rdfs : label(F, ”ShureSM58”)) ^ event : factor(rec, F)

^ event :product(rec, signal)
(4.1)

Although we are not able to define and identify all factors precisely, these ontologies

provide the basic logical framework for describing events. More domain specific ontologies

are required however to distinguish between the individual events recording session (:rs), and

125

recording (:rec) and designate them appropriately, or to specialise the meaning of properties

like place, agent or factor in order to refer to a studio, a sound engineer, or a microphone, for

example.

The Music Ontology provides domain specific concepts and properties to describe musical

works and the music production workflow. It provides a level of detail su�cient for archival

purposes, and the use cases of most online music applications or linked data services, however

further extensions, as well as a few more basic components — such as an ontology of signal

processing and recording devices — are required to describe audio engineering workflows

precisely. In the following, we review the core components of the Music Ontology and its

extensions, then we describe the Studio Ontology.

4.1.3 Core music specific components

The Music Ontology itself is the core component of a framework of related ontologies. It pro-

vides music related refinements of the previously discussed ontologies [Raimond, 2008]. The

Music Ontology can be roughly divided into three parts or levels according to the specificity

and expressiveness of concepts and relationships defined on these levels.

4.1.3.1 Editorial level

The first level builds on the Friend of a Friend (FOAF) Ontology [Dumbill, 2002] in order

to describe agents; people and groups (e.g. composers, bands or engineers), organisations,

(e.g. record labels), and also makes use of basic relations defined by Dublin Core (DC)

such as dc:title. Furthermore, it extends FRBR discussed in Section 3.2.3. FRBR defines

four layers of abstractions in the life cycle of intellectual works. These layer are ranging from

abstract to concrete. Based on this model, the Music Ontology defines the concepts: Musical

Work, Musical Expression, Musical Manifestation, Musical Item and specialises them

as shown in Figure 4.2. Please note that only some relevant concepts are shown for brevity.

frbr:
Work

frbr:realisation

frbr:
Expression

frbr:
Manifestation

frbr:
Item

mo:Musical
Work

mo:Musical
Expression

mo:Musical
Manifestation

mo:Musical
Item

mo:
Movement

mo:
Signal

mo:
Sound

mo:
Record

mo:
Track

mo:
Medium

frbr:embodiment frbr:exemplar

mo:available_asmo:published_as

Figure 4.2: Relation of FRBR and some selected Music Ontology terms. (Dashed lines represent
subclass or subproperty relationships.)

126

This is su�cient to describe artists and their relations, their works, published records,

individual items in a collection such as audio files available locally or on the web.

mo :MusicGroup(dave brubeck quartet) ^mo :MusicArtist(paul desmond)

^mo :member(dave brubeck quartet, paul desmond)

^mo :Track(take five) ^ foaf :maker(take five, dave brubeck quartet)

^mo :Record(time out) ^mo : track(time out, take five)

^mo :available as(take five, file :///Library/iTunes/music/take five.mp3)

(4.2)

For example, the above sentence (4.2) describes how an audio file is related to a track on a

published record as well as the performing artists. However, we cannot yet explain that the

song Take Five was composed by Paul Desmond. More precisely, we cannot describe on the

editorial level, how a composition is related to a performance and its recording, a resulting

track, or an individual audio item. The Music Ontology provides a workflow model for this

purpose.

4.1.3.2 Workflows, events and signals

Higher levels of the Music Ontology define events that establish links between musical concepts

corresponding to the di↵erent conceptual layers of the FRBR model. This allows for instance,

to describe what it takes for a particular musical expression, such as a sound, to become

represented in a manifestation, e.g. a track on a record. Essentially, this level provides a

workflow model illustrated in Figure 4.3. This allows tying together di↵erent concepts using

an event-aware methodology similarly to the ABC ontology discussed in Section 3.3.1.

The model extends the Event Ontology by subsuming the Event concept and specialising

its properties. For example, the concept mo:Composition is a subclass of event:Event, while

the property mo:produced_work is a subproperty of event:product. We note that Figure

4.3 shows a largely simplified model. For example, there are several inverse relations as well

as short-cuts that facilitate simpler descriptions in situations where the full workflow model

is not required by the application.

There are also more complex event and expression types which permit the description of

real-life recording and publishing scenarios. The latest revision of the Music Ontology defines

some concepts which are particularly interesting in studio production. These are summarised

in Table 4.1. The inclusion of recording sessions and the ability to group their products

(signal group) addresses the need for collecting the recordings of songs that are recorded and

intended to be released together on an album, or by some other means. This works well in the

broad production workflow of the Music Ontology, however more granularity and precision is

required in certain studio specific use cases. We will discuss these in Section 4.2.

127

mo:
Composition

mo:Musical
Work

mo:
Recording

mo:Release
Event

mo:
Performance

mo:Sound mo:Signal mo:Release

mo:Record

mo:produced_work mo:produced_sound mo:produced_signal mo:release

mo:record

mo:Track

mo:published_as

mo:performed_in mo:recorded_in

mo:
AudioFile

mo:available_as mo:track

event:factor_of

Event
Musical Work
Musical Expression
Musical Manifestation
Musical Item

Figure 4.3: Music Production Workflow Model: key concepts and selected properties showing how
events (top row) make connections between the layers of the FRBR model.

concept basic type description selected properties

Recording Event Takes a sound as a factor
and produces a signal.

mo:recording of,
mo:produced signal,
mo:engineer

RecordingSession Event A set of performances,
recordings and mastering
events.

mo:produced signal group,
mo:engineer

Signal Expression A signal produced by
recording a performance.

mo:records, mo:channels

SignalGroup Expression A group of signals, e.g.
a set of masters resulting
from a recording session.

mo:signal

SoundEngineer Agent A sound engineer associ-
ated with a performance.

mo:engineered

Table 4.1: Some Music Ontology concepts most relevant in studio production

Returning to our previous example of Listing 4.1, we can now refine the description

of the two events introduced there. This is shown in Listing 4.2. For instance, we can

clearly distinguish between recording sessions and recordings. We can say that the resource

<http://foaf.me/fazekasgy#me> represents an engineer, instead of some arbitrary agent.

We can also more clearly describe the products of the events. However, ambiguities still re-

main, as the Music Ontology does not allow for describing all details arising in a recording

scenario. More specifically, we do not know precisely what event:factor and event:place

refer to. The Music Ontology does not deal with tools such as recording devices used in the

production workflow, therefore we cannot identify passive factors in recording events. The

current use of event:place in Music Ontology applications is also rather unclear. Sometimes

it refers to an exact geographical coordinate (latitude, longitude, altitude), but it may refer

to a country, a city, a studio or a room. When we describe a recording however, we are more

interested in the distance of the microphone from the sound source, rather than in its exact

128

geographical location. Furthermore, the concept mo:Recording is too broad in the studio

context. Even though it is defined as single recording event, in its common use, it may refer

to the recording of a complete song with many constituent recordings corresponding to sep-

arate instruments. We will discuss these problems, as well as the above examples further in

Section 4.2, in the context of the Studio Ontology.

1 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

2 @prefix event: <http://purl.org/NET/c4dm/event.owl#> .

3 @prefix tl: <http://purl.org/NET/c4dm/event.owl#> .

4 @prefix mo: <http://purl.org/ontology/mo>

5 @prefix : <http://example.org/> .

6

7 :rs a mo:RecordingSession ;

8 event:place <http://example.org/my_studio> ;

9 mo:engineer <http://foaf.me/fazekasgy#me> ;

10 event:time [

11 a tl:Interval ;

12 tl:timeline tl:universaltimeline ;

13 tl:beginsAtDateTime "2011-03-20T09:00:00Z"^^xsd:dateTime ;

14 tl:durationXSD "P1DT"^^xsd:duration

15] ;

16 event:sub_event :rec ;

17 mo:produced_signal_group :album_signals .

18

19 :album_signals a mo:SignalGroup ;

20 mo:signal :signal1, :signal2 .

21

22 :signal1 a mo:Signal ;

23 dc:title "Take Five"^^xsd:string .

24

25 :signal2 a mo:Signal ;

26 dc:title "Blue Rondo a la Turk"^^xsd:string .

27

28 :rec a mo:Recording ;

29 event:factor [rdfs:label "Shure SM58"] ;

30 mo:produced_signal :signal1 .

Listing 4.2: Using the Music Ontology to describe a recording session

129

4.1.3.3 Content annotation and event decomposition

The third conceptual level of the Music Ontology provides models for the temporal annotation

of audio content, and events that can be described as parts of more complex events, using

the event decomposition model defined by the Event Ontology. In fact, most facilities of

this level are defined in other ontologies, such as the extensions outlined in the next section.

Accordingly, we discuss these concepts elsewhere, see Sections 4.1.2.2, 4.3 and 4.1.4.

4.1.4 Extensions

The Music Ontology Framework contains a number of extensions [Raimond, 2008] that deal

with more specialised domains whose inclusion in the core ontologies would result in too

specialised and less flexible ontologies. Most notable extensions include the Symbolic On-

tology dealing with scores and symbolic music notation, and the Chord Ontology describing

chords corresponding to Harte’s notation [Harte et al., 2005]. This generalises common chord

notations used in jazz and popular music. The Audio Features Ontology (see Section 4.3)

defines common high and low level features such as af:Spectrogram or af:Note, and deals

with content annotation, — that is, how to describes features and associate them with the

audio content relying on the Event and Timeline Ontologies. The primary scope of this on-

tology is feature representation and association. Therefore it does not attempt to classify

them, describe their interrelationships or their computation. We make use of this model in

our SAWA framework (see Section 5.3) for Web-based audio analysis developed as a demon-

strator of OMRAS2 components. The workflow model provided by the Music Ontology is

also extensible. It defines only basic events required to describe music production workflows

in broad terms, however further extensions are needed to describe more specific production

procedures.

4.1.5 Summary

In this section we summarise the features which make the Music Ontology more suitable

for our work than its alternatives, for instance, COMM [Arndt et al., 2007], the Kanzaki

Music Vocabulary [Kanzaki, 2007], the SIEMAC Ontology [Garćıa and Celma, 2005], or the

metadata harmonisation framework advocated by Hunter [2003]. Detailed comparison with

some of these Web ontologies are available in [Raimond, 2008].

• Workflow-based conceptualisation of the music domain: The Music Ontology can

be used to describe di↵erent entities in the life-cycle of intellectual works — defined

in the Functional Requirements for Bibliographic Records (FRBR) — ranging from

abstract to concrete entities: Musical-Work, Expression, Manifestation, Item. These

layers can be tied together in complex descriptions using events.

130

• Event decomposition model: Events are modelled as first-class objects (event to-

kens) with participating agents and passive factors, and may be decomposed into sub-

events.

• Timelines and temporal entities can be used to localise events on di↵erent timelines:

abstract, discrete, or continuous; relative, or physical.

• Modular and extensible design: The Music Ontology is published as a modular

ontology library whose components may be reused or extended outside of its framework.

• Ease of use: The Music Ontology provides only the terms required for descriptive

knowledge representation without more foundational elements. It extends or simplifies

models described elsewhere.

• Adaptation: It has become a de-facto standard for publishing music-related data on

the Semantic Web with several existing applications2 in industry and academia.

The above models provide the basis for content annotation as well as the decomposition

of events in complex workflows, so that we can precisely say who did what and when. While

elements of these models can also be found in other ontologies, they are not present all at

once in a single unified framework. The Music Ontology provides a model to describe the

production workflow from composition to delivery, including music recording, but it lacks

some very basic concepts to do so in detail. The Studio Ontology fills this gap.

2http://www.musicontology.com

131

4.2 The Studio Ontology Framework

In this section we discuss knowledge representation issues arising in studio production, and

introduce the Studio Ontology framework for describing and sharing detailed information

about music production in the recording studio. The primary motivation for creating this

ontology is to facilitate capturing the nuances of record production by providing an explicit,

application and situation independent conceptualisation of the studio environment. We may

use the ontology to describe real-world recording scenarios involving physical hardware, or

(post) production procedures on a personal computer.

The Studio Ontology framework builds on Semantic Web technologies for knowledge rep-

resentation and knowledge sharing. It extends the Music Ontology framework in order to

take advantage of the foundations it provides for dealing with music-related information. In

the rest of this section, we first provide some motivating examples and discuss some design

criteria. Then we outline the foundational and core elements of the Studio Ontology, fol-

lowed by a review of its extensions dealing with highly specific domains such as microphone

techniques, mixing consoles and audio e↵ects.

4.2.1 Motivation

Our most important motivating use cases for creating an ontology of studio production are

centred around the following applications:

• Music Information Retrieval: Exploit production data in MIR systems (e.g. music

recommendation).

• Audio engineering notation: Capture the creative contribution of the engineer or

producer to a musical work.

• Intelligent audio editing: Provide a knowledge representation model that supports

intelligent audio editing systems.

• Recording studio database: Facilitate information management in the studio through

the collection of production information for archival, search and educational applica-

tions.

Music Information Retrieval: Recognising that simple metadata based approaches

are insu�cient in complex music information management and retrieval scenarios, researchers

have been focusing on cultural information — obtained predominantly from crowd sourcing,

for instance, the analysis of listening habits published by online radio stations — as well as the

use of content-based features extracted from commercially released audio mixtures. Certain

types of cultural and contextual information are rapidly becoming available on the Semantic

Web and via a number of Web services. For example, events (concerts, tour dates) or artist

132

relations can be obtained and used in intuitive ways to find connections in music. See for

example Passant [2010], Jacoboson [2009] or an overview in [Fazekas et al., 2010]. However,

these data remain largely editorial and focussed on artists as opposed to music and produc-

tion. We argue that another invaluable source of information exist, largely neglected to date,

pertaining to the cultural context, history, production and pre-release master recordings of

music. The reason for this neglect is not ignorance or the ine↵ectiveness of these data, but the

fact that they are unavailable in large quantities, hence their use hasn’t been explored yet. I

firmly believe that the reason is the lack of comprehensive open standards and methodologies

for their collection, therefore production information is simply lost.

Audio engineering notation: It can be argued that contributions from the producer or

the sound engineer are just as important in popular music production as composition, how-

ever, we have no way to record his/her actions and choices, with the same transparency music

is denoted using scores. The engineer has a dual role which can be characterised by the aim

of fulfilling artistic goal on one hand, and by the use of very specific domain knowledge on the

other, (see [Huber and Runstein, 2005] for an overview of audio engineering practice). This

knowledge is used for the adaptation of tools at hand to the specificity of a set of recordings

comprising a music release. While artistic goals are defined purely by human factors, such as

aesthetic decisions made by the producer or the recording artist, the domain knowledge men-

tioned above mainly concerns the appropriate use of tools. Capturing this domain knowledge

for the benefit of the engineer can also lead to building context-adaptive audio processing

systems which are in the primary focus of our research. Achieving this goal requires work on

two fronts; one is the development of formalised knowledge models to structure and represent

necessary information, the other is the adaptation of existing music processing tools for our

purposes.

Intelligent audio editing: The most prevalent paradigm for the design of today’s digital

audio workstations (DAW) is a model of real-world analogue counterparts of recording and

signal processing components such as multi-track tape recorders, mixers and e↵ect units. For

an overview of state of the art music production software see [Duignan, 2008]. These systems

however have an inherent limitation in that they “blindly” process the signals they receive,

while adaptation to contextual information such as the processed instrument or the tempo

of the recording can only be made manually, or by using some inferred characteristics of the

signals themselves. This presents further limitations which are both theoretical and practical

in nature. Firstly, there is an upper limit in the robustness of high-level features extracted

from audio (which may be improved by considering contextual information), secondly, the

implementation of adaptive tools within this paradigm leads to highly intermingled compo-

nents. Typically, this fails to generalise in the context of real-world audio recordings. For

133

example, we can think of the limitations of supervised machine learning algorithms for audio

analysis, whose performance almost certainly drops when the characteristics of the analysed

music or signal are di↵erent from what was included in the initial training set. To avoid these

pitfalls, we argue for a system where components are interchangeable, their properties are

fully described and the information flow and data encoding between them is fully formalised.

Then, higher-level logical supervision becomes possible.

Recording studio database: Information management in the recording studio is a

largely underdeveloped area. Few metadata standards exist, but they are disharmonious and

concerned only with project transfer between audio workstations. They do not provide an

application independent conceptualisation of the studio domain. Fortunately, Semantic Web

technologies provide a solution to the complex information management problems arising in

music production, and facilitate sharing the captured data. This may include microphone

arrangements and characteristics, configuration, connection, decomposition and operation of

audio signal processing devices such as mixers and e↵ect units, projects and edit decisions in

post production workstations and features extracted from pre-release master recordings. The

ontologies we describe are designed to propagate this information through the production

workflow to enable building better models for music information retrieval, hence facilitate ap-

plications like the retrieval of songs based on production procedures. This information can be

utilised in the daily audio engineering routine, and it also has a considerable educational value.

4.2.2 Design decisions

We discussed ontology design principles in a more general context in Section 3.1.4. While we

aim to adhere to these principles, some design considerations are specific to the development

of the Studio Ontology Framework, and are paramount in finding the best balance in the

application of general principles. These considerations can be summarised as follows:

• Monotonic extension of ontologies: We attempt to reuse existing ontologies, and

where possible, do so monotonically, without the need for updating the meaning of

terms in the base ontology.

• Modular design: We separate our ontology into a set of harmonised modules forming

a framework.

• Balanced use of reification: While flexibility is an important objective, we try to

achieve a flexible design with a balanced use of reification, without significantly increas-

ing complexity.

134

• Reusing the Music Ontology: For reasons detailed in Section 4.1.5, we use elements

of the Music Ontology Framework as the primary basis for the Studio Ontology.

Although these design decisions seem to be easily implemented, we found that this is

not always the case. For example, monotonic extension of terms defined elsewhere can lead

to models that are more complex than necessary, or less precise when capturing domain

specific knowledge. However, the benefits of reusing an existing ontology often outweighs

these drawbacks. Avoiding the use of reification — which often leads to a more complex

model — while maintaining design flexibility is also a di�cult task. Our solution to this

problem is to o↵er di↵erent models with increasing complexity, — that is, allow the user to

choose a desired level of granularity for the application. However, this solution has to be used

sparingly in order to maintain consistency. We will discuss alternative design choices where

applicable.

Despite the above concerns, our framework is designed to reuse existing terms and models

published elsewhere that fit its requirements. It is presented as a modular and extensible

ontology library, containing some general, domain independent elements, a set of core concepts

and relationships to describe the studio domain, and some extensions covering more specific

areas like microphone techniques and multitrack production tools. In the following sections

we outline the most important parts of this framework.

4.2.3 Foundational elements

The Studio Ontology is grounded on similar concepts as the Music Ontology itself, therefore

we can use and extend some of its components directly. However, it does not provide every

basic element required to create a studio ontology. For instance, it does not contain elements

for describing audio processing devices, or a descriptive workflow model for signal processing.

While the N3-Tr framework described in [Raimond, 2008] (see also Section 3.2.6.3) takes steps

in these directions, it is concerned with concurrent execution of signal processing workflows

in audio analysis, as opposed to the description of audio processing. It does not include an

ontology of audio or signal processing devices.

Here, we first outline how the core components of the music ontology are reused in our

framework, then, we introduce the basic components for describing audio engineering work-

flows. Although we have domain and task specific implementation goals, these ontologies

approach a foundational, domain independent status in the sense described in [Masolo et al.,

2003b] or [Lagoze and Hunter, 2002], and can be seen as generalisations of more domain

specific ontologies.

135

4.2.3.1 Workflows, Events and Timelines

We distinguish between two types of workflows: prescriptive and descriptive (see Section

3.2.6.3). Prescriptive workflows are best understood as templates describing common data

access and manipulation steps. Descriptive workflows can be seen as denotation of specific

instances of the above. Broadly speaking, a workflow step is a description of who (or what)

produced what, when, and how, using what. Such a description requires a conceptualisation

of entities existing at various stages of the workflow. The Music Ontology provides such

a conceptualisation: A composition (musical work) may be performed producing a sound

which may be recorded producing a signal (musical expressions). This is exemplified in the

following sentence (4.3), where the predicate mo:MusicalWork identifies a work (take five),

while mo:Sound and mo:Signal define musical expressions (sound,signal) resulting from its

performance and recording:

mo :MusicalWork(take five) ^ dc : title(take five, ”Take Five”)

^mo :Performance(perf) ^mo :Sound(sound)

^mo :performance of(perf, take five)

^mo :produced sound(perf, sound)

^mo :Recording(rec) ^mo :Signal(signal)

^mo : recording of(rec, sound)

^mo :produced signal(rec, signal) (4.3)

In the Studio Ontology, we follow this workflow model and hook into it at the level of

expressions. Audio engineering workflows concern the manipulation of sounds and signals.

For example, the arsenal of recording techniques includes placing a powered speaker cabinet

into a specially treated room with a microphone, in order to record an electric guitar such that

its sound is influenced by the room characteristics or the qualities of the amplifier-speaker

combo3. This can be seen as the manipulation of sound by the engineer. The manipulation

of signals by means of signal processing devices is a more common case.

In FRBR terms, when the sound engineer manipulates a sound or a signal, new expressions

are created to which additional information can be attached on how it was produced. In order

to describe this process, we need to be able to talk about events (performance, recording,

mixing, transformation) which may be spatially and temporally localised and linked with

agents (engineer) and factors (tools). We use the Event and Timeline Ontologies (see Section

4.1.2) for this purpose. The Music Ontology sets aside the problems of how and using what

in its workflow model, — that is, it doesn’t have a model for describing tools and how they

are used. The ontologies we outline in the rest of this section provide a solution.

3Vintage equipment, such as certain brands of guitar amplifiers are often used for their unique characteris-
tics, such as the non-linear distortions introduced by vacuum-tube amplifiers and coupling transformers.

136

4.2.3.2 Technological Artefacts

One of the most important things in modelling audio engineering workflows is to be able

to describe technological artefacts, — that is, tools, such as microphones, amplifiers, mixing

consoles, recording devices, plugins, audio editing software, and complex digital audio work-

stations. We also have to consider how these devices are used, for example, how to describe

their variable parameters during an event. The first fundamental element we add to the set

of core ontologies is the Device Ontology. It deals with the kind of tools mentioned above

in a very general sense. Terms in the Device Ontology are kept entirely domain indepen-

dent, therefore we may also use it for instance, as a base ontology to describe laboratory

instruments.

Signal processing devices are a special class of devices commonly used in audio engineering

to manipulate audio signals. We develop a Signal Processing Device Ontology which builds

on the Device Ontology, and serve as basis for describing more complex tools such as mixing

consoles or audio e↵ect units. A small separate ontology is used to describe how signal

processing devices are interconnected, and describe their input and output terminals, with

associated physical connectors and communication protocols.

4.2.3.3 The Device Ontology

The Device Ontology can be used to describe artefacts of technology. Central to its model

is the Device concept which may be subsumed by a term in a more specific ontology for

representing any man-made object; concrete or abstract. The Device Ontology generalises

terms from the ontologies described in [FIPA, 2002], and [Bandara et al., 2004] which are

specific for their application domains, namely smart phones and computer networks. Its

basic model is shown in Figure 4.4. We first provide the definition of terms in this ontology,

then we discuss the rationale behind these definitions, and outline some applications. We

define the Device concept as follows:

8 D(device :Device(D) ! owl :Thing(D)) (4.4)

A device may participate in an event as a passive factor, providing a particular service in a

particular state. (We note that the use of these concepts is optional).

8 S(device :Service(S) ! owl :Thing(S)) (4.5)

8 S(device :State(S) ! event :Event(S)) (4.6)

8 D,S(device :state(D,S) ! device :Device(D) ^ device :State(S) (4.7)

8 D,S(device :service(D,S) ! device :Device(D) ^ owl :Thing(S) (4.8)

A state is considered as an abstraction of changeable attributes of a device, whose concrete

137

parameters hold for a specific time and at a specific location. For example, it can be used to

represent a configuration, such as variable polar pattern or sensitivity settings of a microphone

during a recording. This provides a reification mechanism, when we need to consider multiple

device states in a single event. The concept of service is useful to describe multifunctional

devices, for instance a multi-e↵ect unit, whose specific application is not clear from its identity.

This can be seen as the generalisation of hardware and software description terms considered

in [Bandara et al., 2004].

rdfs:subClassOf rdfs:subClassOf

device:service device:state

device:Device

device:component

device:

AbstractDevice

device:

PhysicalDevice

device:Statedevice:Service

Figure 4.4: Overview of the Device Ontology

A device may be decomposed into abstract or concrete components, such as an extension

module or firmware. For instance, we may want to describe a digital monitoring system in a

studio, linked with its constituent loudspeakers and a firmware component implemented across

the whole system. (In our example, the firmware typically implements the audio networking

and device control protocols, and it is distributed across many physical constituents of the

system.) We define a component relation for this purpose as follows (4.9).

8 D1, D2(device :component(D1, D2) ! device :Device(D1) ^ device :Device(D2)) (4.9)

Form a mereological point of view, a component is held as an identifiable part of an object

[Tversky, 1989]. Device decomposition therefore expresses a partial order relation over the

set of components of a device, which is, in the most general sense, a reflexive, transitive and

antisymmetric property. Here, we discuss only two of the mereological problems: i) whether

we should consider a component a proper part (an irreflexive relation) and ii) whether we

should consider the component relation transitive. In the light of the arguments presented

in [Varzi, 2003], it seems more favourable in both cases to support the weakest theory or

the most general definition. For example, one may argue that transitivity does not hold for

direct functional relations — that is, if x is a �-part of y and y is a �-part of z, x need not

be a �-part of z: the predicate modifier � may not distribute over parthood [Varzi, 2006].

138

However, this just shows the non-transitivity of the specialised relation which can be expressed

using explicit predicate modifiers. We also note that only transitivity may be expressed in

OWL-DL, which requires that no local or global cardinality constraints should be declared

on a transitive property or its super-properties. Expressing the other logical characteristics

requires the ontology to be updated to OWL-2, therefore they are not currently expressed.

Our ontology commits to a categorical distinction of devices, the di↵erence between phys-

ical and abstract objects (4.10, 4.11). This distinction is worth making for the following

considerations: Physical and abstract objects have di↵erent primary characteristics. For

instance, physical devices have size and weight, and may be decomposed into physical or ab-

stract components. Abstract devices on the other hand may be intangible models of physical

devices.

8 D(device :PhysicalDevice(D) ! device :Device(D)) (4.10)

8 D(device :AbstractDevice(D) ! device :Device(D)) (4.11)

We use this mechanism primarily to distinguish between hardware and software components,

for instance, elements of digital audio workstations. Software and other intangible compo-

nents are subclasses of device:AbstractDevice, but abstractions, having both physical and

abstract components directly subsume device:Device. See for example our model of device

terminals discussed in Section 4.2.3.9. This is useful since digital interfaces typically consist

of a physical connector, some circuitry and a communication protocol, that is, they have both

tangible and intangible components.

8 D1, D2(device :component(D1,D2) ^ device :PhysicalDevice(D1)

! device :PhysicalDevice(D2) _ device :AbstractDevice(D2)) (4.12)

8 D1, D2(device :component(D1, D2) ^ device :AbstractDevice(D1)

! device :AbstractDevice(D2)) (4.13)

4.2.3.4 Modelling variable device parameters

In many cases it is insu�cient to provide a static description of a device. For instance, the

application of a tool in a recording event may involve several changeable characteristics and

the modification of many di↵erent variable parameters. Although we can think of recording a

concert for example, such that a mixing console is configured before the performance, and then

left untouched until the end, an ontology which can only be used to describe this situation

would not reflect reality in most circumstances. This consideration raises the question of how

to model change in RDF. Several solutions were proposed to solve this problem.

139

Suppose we have a device with a sole variable parameter sensitivity modelled as a datatype

property. A static description can be given as shown in Listing 4.3.

1 :e a event:Event ;

2 event:factor :d .

3

4 :d a device:Device ;

5 device:sensitivity "20"^^xsd:int .

Listing 4.3: A Device description with one parameter

This model implies that the parameter is fixed during the event. However, we want to

describe several changes made by an engineer. One solution would be the decomposition of

the event into several sub-events, each linked with a device with di↵erent parameter settings.

The problem with this solution is that our model would not reflect reality. We are talking

about a single event involving a single device whose parameter is changing, instead of several

di↵erent individuals whose parameters are di↵erent. Moreover, event decomposition in this

way could lead to an excessive amount of data, considering a large number of changes.

1 # A) Reification of RDF statements

2 s: rdf:Statement ;

3 rdf:subject :d ;

4 rdf:predicate device:sensitivity ;

5 rdf:object "20"^^xsd:int ;

6 dc:date "2011-03-20"^^xsd:date .

7

8 # B) Named graphs

9 :G1 { :d a device:Device ;

10 device:sensitivity "20"^^xsd:int . }

11

12 :G2 { :d a device:Device ;

13 device:sensitivity "30"^^xsd:int . }

14

15 :G1 dc:date "2011-03-20"^^xsd:date ;

Listing 4.4: Reifications of a device description using (A) a reified statement and (B) named graphs.

Typically we would want to express that a parameter value holds for a certain amount

of time in a given situation. Various forms of reification provide a solution, since they allow

140

linking additional information, such as a time object to a statement. In Listing 4.4 we

exemplify two solutions; the first (A) is using the RDF reification syntax [Hayes, 2004], the

second (B) is based on named graphs [Carrolla et al., 2005], which — though strictly speaking

not equivalent to reification — is often used in place of the former syntax.

Reification of RDF statements is considered obsolete for several theoretical and practical

reasons. A theoretical problem is related to the fact that the reified statement is equivalent

to the original from an RDF model theoretic [Hayes, 2002] point of view. This solution

is therefore paradoxical, since two equivalent statements cannot be part of the same set of

statements. Furthermore, if a simple RDF triple is restored from a reified statement, the

attached information is lost [Miller, 2000]. It is also problematic to write queries for data

stored in a reified form.

The above problems can be resolved using named graphs, where statements are isolated

in separate RDF graphs. Di↵erent graphs may include conflicting statements, while their

use permits additional data to be attached to a graph specifications as shown in Listing

4.4. Although this approach is widely adopted, it requires an extension of the RDF data

model related to RDF data-sets, originating from the development of SPARQL. This model

lacks an e↵ective means of distinguishing between graph sources once the information is

published. In terms of storage, it requires the use of quads instead of triples, such that a

unique graph identifier is attached to each statement. The application of named graphs for

tracking modifications of audio files parameters in an audio editor was explored in [Fazekas

and Sandler, 2009], but this model was dropped in favour of the one described in Section

4.2.4.3.

Another commonly used form of reification equates to promoting properties to first class

objects, — that is, modelling relationships as concepts. Two alternatives of this approach are

shown in Listing 4.5. The first form of property reification (C) simply treats the parameter

sensitivity as a concept. The second form (D) is more flexible in that it considers a gen-

eral purpose reified parameter device:Parameter, and enables the description of any device

attribute using this concept.

The property reification approach (C) is similar to how the relationship between timelines

is modelled in the Timeline Ontology (see Figure 4.1) in order to provide additional infor-

mation on how two timelines are related. This works well if the number of relationships we

need to reify in a model is relatively low. However, considering the potentially large number

of device attributes we may want to describe, this can lead to the introduction of countless

additional concepts in our ontologies. The approach essentially forces the modeller to follow

similar design patterns discussed in the context of COMM, such that all relationships are

modelled as concepts. This results in a large, relatively obscure, and di�cult to manage

structure, exhibiting the same knowledge representation issues discussed in Section 3.3.2.

The second approach to property reification (D) shown in Listing 4.5 is basically a varia-

141

tion of the first one. This is especially useful in cases where devices have parameters unknown

to the ontologist. Although this approach does not require the introduction of new concepts

for each property, from a knowledge representation point of view it is very limited. For in-

stance, we cannot express constraints over the described parameters. Furthermore, we need

to describe each parameter using a unique instance of device:Parameter (or using a blank

node), and in both cases, binding parameters that change together or represent a single state

is di�cult. From a data access point of view, all reification models mentioned so far su↵er

from the issue of being quite verbose, and exhibit a problem when we need to find parameters

which hold in a certain situation, for instance, when we have to find all values bound to the

same time object.

1 # C) Reified parameter (using property reification)

2 :d a device:Device ;

3 device:parameter :p .

4

5 :p a device:Sensitivity ;

6 device:value "20"^^xsd:int ;

7 device:time [a time:TemporalEntity] .

8

9 # D) Reified parameter (using a generic parameter concept)

10 :d a device:Device ;

11 device:paramter :p .

12

13 :p a device:Parameter ;

14 device:parameter_name "sensitivity" ;

15 device:parameter_value "20"^^xsd:int ;

16 device:time [a time:TemporalEntity] .

Listing 4.5: Reifications of a device description using (C) a reified property (D) a general purpose

parameter concept.

4.2.3.5 Consolidated reification

We propose an alternative reification model which we call consolidated reification in the

context of the Device Ontology. In this approach, we make use of the concept device:State.

This concept is thought of as an abstraction of those aspects or conditions of a device which

represent its changeable attributes and relationships. A device may have several states linked

with specific parameter values using traditional data type or object properties. Listing 4.6

shows an example device description using this model.

142

Recall that we defined the concept device:State as a subclass of event:Event. This

allows us to treat a device state as specific form of classification of space-time in the life cycle

of a device, and link it with temporal objects, expressing that the parameters collected by

the state hold during a specific space-time extent. Note that we only allow intervals to be

linked to states.

1 # E) Consolidated reification using a device state model

2 :d device:Device ;

3 device:state s1, s2 .

4

5 :s1 a device:State ;

6 device:sensitivity "20"^^xsd:int ;

7 device:threshold "0.5"^^xsd:float .

8

9 :s2 a device:State ;

10 device:sensitivity "30"^^xsd:int ;

11 device:threshold "0.8"^^xsd:float .

Listing 4.6: Device description using consolidated reification.

The benefits of this approach can be summarised as follows: Our device description stays

within RDF/OWL specifications with regards to theory, model and syntax, as opposed to

the approaches using the RDF reification syntax or named graphs. It is significantly less

verbose than reifying each property whose object may be changing during the use of a device.

Our model requires a minimum of N+2 triples when reifying N predicates, while reifying

each predicate individually will result in a minimum of 3N triples using to the most concise

alternative (C). This is because the consolidated model requires only two additional triples to

declare a state and link it to the device, while reifying properties individually require 3 triples

for each; one instantiating a reified concept, one linking it to the device, and one describing

the value. Additionally, parameters that change together can be easily grouped using our

model, and it is also easier to query for all parameters pertaining to a specific state.

Finally we have to consider i) how this model is linked to audio engineering workflows, ii)

how to ensure device states are non-overlapping in time, and iii) how to describe individual

decisions or conditions pertaining to changes in device parameters.

The first problem is easily solved using the Event Ontology. We can define events related

to audio engineering tasks such as mixing or transformation (these are defined in the main

part of the Studio Ontology), and link these to devices having one or more of their state

parameters defined as sub-events. If the application does not require this level of detail,

we may also forgo a detailed device state description. Therefore we have two degrees of

143

complexity so far in our model. However, the second and third problems from above require

a third level, in which we model the device life-cycle more accurately.

4.2.3.6 An accurate device state model

On the third and most complex level, we can still use the concise reification model described

above, however we provide a mechanism to describe conditions of state changes.

Let a device D be a factor of a main event EM having a temporal extent. This can be a

recording for example. We can decompose this event into a number of instantaneous events

En pertaining to changes in the states Sn of the device. A graphical illustration is provided

in Figure 4.5. The predicates binding device states to events are defined as follows:

8 S,E(device :entry(S,E) ! device :State(S) ^ event :Event(E)

^ event :sub event(S,E)) (4.14)

8 S,E(device :exit(S,E) ! device :State(S) ^ event :Event(E)

^ event :sub event(S,E)) (4.15)

8 S(device :State(S) ! 9 1E1, E2(event :Event(E1) ^ event :Event(E2)

^ device :entry(S,E1) ^ device :exit(S,E2))), E1 6= E2 (4.16)

Sn-2 Sn-1 Sn Sn+1 Sn+2

En-2

EM

D

En-1 En En+1 En+2

state

entry exit

sub_event

entry

SI

entry exit entry exit entry exit

state state state state

timeline

exit

...

E0 ...

...

...

D: Device
S: State
E: Event
object property

link via temporal entity

state

Figure 4.5: Accurate Device State Model

144

The counting existential quantification in the above definition (4.16) represents a global

cardinality constraint on the properties: we may only define one entry and one exit event for

each state. We may also forgo this description depending on the granularity of knowledge rep-

resentation in a particular application. These constraints therefore are best encoded in OWL

using the built-in classes owl:FunctionalProperty and owl:InverseFunctionalProperty

which ensure pair-wise unique identification and exactly the required cardinality restriction.

In the above model, we borrow knowledge representation elements from the OWL descrip-

tion of UML state machines provided in [Dolog, 2005]. Our model however is considerably

simpler, and resembles the paradigm of event driven finite state machines, in that it describes

events related to an application of the device as the reason for state changes. These events

are tied together as sub events of a main event representing the application. The model has

the benefit of encoding chains of state changes during an event (with or without a temporal

context), and the ability to assign additional information to entry and exit conditions which

are modelled as events themselves. This information may be a link to an engineer, so we

can encode fine details such as an option turned on by one engineer, and then turned o↵

by another, or classifications of events causing state changes (e.g. automatic control, fault

condition, engineering decision etc...).

Having defined a basic logical framework for describing devices and their parameters, we

consider how simple or complex signal processing devices in audio engineering workflows may

be described using this model, and how their connections can be represented.

4.2.3.7 Describing Complex Devices

An important class of devices in music production are artefacts for generating or manipulating

audio signals. Here, we provide a conceptualisation of signal processing devices that represents

their di↵erent aspects and supports versatile device descriptions. First, we outline a general

model, that is useful, for instance, to describe audio e↵ect units, and how they are related to

corresponding physical phenomena. Then, we focus on representing concrete signal processing

devices.

Signals are representations of some aspect or feature or the physical world. They may also

be generated using a fine or coarse model of the world or an imaginary process, For instance,

the physical model of a non-existing instrument. Similarly, signal processing devices are

typically representations of real world phenomena, such that they reproduce the e↵ect of a

modelled phenomenon in the domain of signal representations.

We propose a layered conceptualisation of signal processing devices which accommodates

this view. Not surprisingly, our model comes very close to the layered conceptualisation of

intellectual works proposed in the FRBR model (see Section 3.2.3). However, due to having

very di↵erent base entities in this domain, our ontology does not directly derive from FRBR.

Figure 4.6 shows the basic entities and relationships we consider. It also illustrates the

145

resemblance of our model to the relationships between the first group of FRBR terms.

Phenomenon

representation

Model Implementation Device

Algorithm
Circuit
Design

actualisation instantiation

Computer
Code

Hardware
Design

Software
Plugin

Hardware
Unit

Audio
Effect

Visual
Effect

abstract concrete

Work

realisation

Expression Manifestation Item

embodiment exemplar

FRBR model

Signal Processing Device model
possible subclass

property relation

Figure 4.6: Fundamental entities and relationships in the model of signal processing devices

A phenomenon in our domain is best conceptualised as some perceived e↵ect of a physical

process. For example, the reflection of sound waves (echo) produces an audio e↵ect, conden-

sation of moisture in the air (fog) obscures visibility thus produces a visual e↵ect. Here, the

model is introduced through an image processing use case to emphasise its domain indepen-

dence. Audio related examples will be discussed in the context of the core Studio Ontology.

A physical phenomenon in this sense is the most abstract element of our model. It loosely

corresponds to the abstract conception of intellectual works in FRBR. An algorithm, that

reproduces the blurry e↵ect of fog in a digital image, is essentially a model that approximates

the perceived e↵ect. Similarly to how a work may be realised thorough several expressions, a

physical process may be represented in a di↵erent domain using several models. A model may

have many di↵erent implementations, (loosely corresponding to manifestations), for instance,

an algorithm implemented (actualised) in di↵erent programming languages, or a circuit design

implemented using discrete components or using a Field-Programmable Gate Array (FPGA).

An instance (exemplar) of an implementation is a concrete device, for example, a plugin

for an image editor producing the foggy e↵ect, running on a computer which is in someone’s

possession. Thus our model is very similar to FRBR’s conceptual layering. We can describe

concrete instances of signal processing devices, linked to an actual implementation of a model

or algorithm that represents a physical phenomenon.

We define the terms of this general model in the device ontology in order to keep it general,

however, it is not a valid model of every possible technological artefact. For instance, we could

not conceptualise a microphone this way. Our framework uses it to facilitate the description

of complex signal processing devices. Since we consider this model more fundamentally ap-

plicable, it is also a good candidate for further modularisation. The specialisations of the

146

entities shown in Figure 4.6 are examples only. Concrete classes deriving from this model are

scattered throughout our framework. Next, we focus only on concrete devices, — that is, we

provide more specific subclasses of the device:Device concept.

4.2.3.8 Signal Processing Device Ontology

We define the concept SignalProcessingDevice as a subclass of the more general device

concept described in Section 4.2.3.3, having inputs or outputs for signal connectivity. From

an ontological point of view this is su�cient to identify a signal processing device. The concept

is interpreted broadly, and may stand for anything from a basic filter to a complex device

such as a mixing console or an audio e↵ect unit.

8 D(spd :SignalProcessingDevice(D) ! device :Device(D) (4.17)

8 D,T (spd : input(D,T) ! spd :SignalProcessingDevice(D) ^ con :Terminal(T)

^ device :component(D,T)) (4.18)

8 D,T (spd :output(D,T) ! spd :SignalProcessingDevice(D) ^ con :Terminal(T)

^ device :component(D,T)) (4.19)

We define SignalProcessingDevice subsuming Device, see (4.17), in a dedicated ontol-

ogy called the Signal Processing Device Ontology (SPDO, prefix spd:), together with some

fundamental signal processing components. More complex devices however are defined in the

core Studio Ontology, where we also provide an appropriate workflow model (see 4.2.4.3).

A particular problem we need to consider at this point is how signal processing devices

may be interconnected. While it appears convenient to link devices directly to audio signal

entities defined in the Music Ontology, we have to be able to describe the relation of device

characteristics and signal characteristics (e.g. analogue or digital or number of channels). In

the above definitions (4.18 and 4.19) we make use of an additional fundamental element of

our framework, the Connectivity Ontology (prefixed con:) which serves this purpose. This

ontology provides essentially a reification mechanism to describe device connections precisely,

and follows a paradigm used in audio processing workflow environments like MAX/MSP

mentioned in Section 3.2.6.3.

147

4.2.3.9 Device Connectivity

The Connectivity Ontology allows for describing how signal processing devices, or other tools,

such as microphones, in a recording and processing workflow are interconnected. Its central

concept con:Terminal represents inputs and outputs in an abstract way, encompassing elec-

trical or software interfaces and may be linked with a particular physical connector and

communication protocol. In Figure 4.7 we illustrate its basic structure. The Connectivity

Ontology incorporates the following three main aspects of device connectivity:

• Concrete physical level: dealing with types, form factors, pin layout and pin function

of physical connectors. (This can be relevant in certain industrial applications of the

ontology.)

• Terminal characteristics: defines a basic classification of terminal types: electrical

or optical, analogue or digital, input or output, balanced or unbalanced, mono, stereo or

multichannel, and permits describing, for instance, electrical characteristics of terminals.

• Data communication level: enables linking terminals to communication protocol

standards, and describe their modes.

In Figure 4.7, the exemplified instances of con:Connector and con:Protocol can be

thought to represent the output of a digital microphone having a 3 pin male XLR connec-

tor, and using the AES42 digital microphone interface protocol. The ontology defines some

individuals of connectors and protocols common in audio production, however we may also

define individuals of connectors or protocols in concrete device descriptions, where we need

to go further than simple identification, for instance, if we need to describe the functionality

of each pin of a complex connector type. Our ontology provides primitives for this purpose.

rdfs:subClassOf

rdfs:subClassOf

con:connector con:protocol

con:Terminal

con:Optical
Terminal

con:Electrical
Terminal

con:Protocolcon:Connector

rdfs:subClassOf

rdfs:subClassOf

con:Analog
Terminal

con:Digital
Terminal

con:XLR_3M

rdf:type

con:AES42

rdf:type

Figure 4.7: Overview of the Connectivity Ontology (with some subclasses and simplified examples)

148

1 :device1 a spd:SignalProcessingDevice ;

2 spd:input :in1 ;

3 spd:output :out1 .

4

5 :sig1 a mo:AnalogSignal .

6

7 :in1 a con:AnalogInput, con:BalancedTerminal ;

8 con:connector con:XLR_3F ;

9 con:terminal_channels "1"^^xsd:int ;

10 con:signal :sig1 .

11

12 :out1 a con:DigitalOutput, con:BalancedTerminal, con:StereoTerminal ;

13 con:connector con:XLR_3M ;

14 con:protocol con:AESEBU ;

15 con:terminal_channels "2"^^xsd:int ;

16 con:signal :sig2 .

17

18 :sig2 a mo:DigitalSignal ;

19 mo:channels "2"^^xsd:int .

Listing 4.7: Description of an analogue input and a digital output with corresponding signal

connections.

An important feature of the ontology, illustrated in Listing 4.7, is the ability to match

signal characteristics to interface characteristics. For instance, we can describe how many

channels of a particular signal are accepted by a device terminal. In our example, we describe

a device which has a balanced analogue input, and a balanced digital output using the AES3

digital audio standard4 published as IEC 60958 Type I, (it prescribes balanced 3-conductor

cabling with a 3 pin XLR connector), commonly called the AES/EBU standard in professional

installations. Please note that the predicate con:terminal_channels is redundant in the

output description, since we defined our terminal as con:StereoTerminal which has two

channels by definition, provided in the ontology. This statement is included to illustrate the

type of data that may be inferred, or used as constraint in a real-world application.

4see the European Broadcasting Union specification of the AES/EBU interface:
http://tech.ebu.ch/docs/tech/tech3250.pdf

149

4.2.4 Core components

Having outlined the fundamental components required to describe the work of audio engineers,

we now turn to more specific refinements of these ontologies that facilitate the description of

the studio domain.

The Studio Ontology is the core component of our framework. It parallels the three levels

of expressiveness of the Music Ontology and provides basic, recording-studio specific terms.

On the first level, it provides for describing recording studios and facilities which loosely

corresponds to the editorial level of the Music Ontology. The second level includes complex

events, such as di↵erent types of recording and post production sessions, and provides for

describing the production workflow on the level of audio transformations and signal processing

(see Section 4.2.4.3). The third level provides some extension points to describe specific tools,

such as multitrack audio production software (see Section 4.2.5.4); the audio editing workflow

and project structure.

4.2.4.1 Describing recording studios

On the first level, the Studio Ontology provides for describing recording studios and facilities.

This level builds on FOAF, Dublin Core, MO, and the Device, and Signal Processing Device

ontologies. For example, we can di↵erentiate between mastering, project and home studios:

8 S(studio :RecordingStudio(S) ! foaf :Organization(S)) (4.20)

8 S(studio :HomeStudio(S) ! studio :RecordingStudio(S)) (4.21)

8 S(studio :ProjectStudio(S) ! studio :CommercialStudio(S)) (4.22)

8 S(studio :MasteringStudio(S) ! studio :CommercialStudio(S)) (4.23)

8 S(studio :CommertialStudio(S) ! studio :RecordingStudio(S)

^mo :CorporateBody(S)) (4.24)

We can describe basic studio facilities using the terms:

8 F (studio :StudioFacility(F) ! owl :Thing(F)) (4.25)

8 F (studio :RecordingRoom(F)

_ studio :MasteringRoom(F)

_ studio :ControlRoom(F)

_ studio :ListeningRoom(F) ! studio :StudioFacility(F)) (4.26)

8 S, F (studio : facility(S, F) ! studio :RecordingStudio(S)

^ studio :StudioFacility(F)) (4.27)

150

We also define di↵erent audio engineering and music producer roles, and enable linking

engineers to di↵erent studios or studio facilities. This is useful when we need to describe

commercial studios, where the name of the engineer or producer associated with the studio

is often the most important factor.

8 E(studio :SoundEngineer(E) ! foaf :Person(E)) (4.28)

8 P (studio :Producer(P) ! foaf :Person(P)) (4.29)

8 S,E(studio :enigneer(S,E)

! studio :RecordingStudio(S) _ studio :StudioFacility(S)

^ studio :SoundEngineer(E) _ studio :Producer(E)) (4.30)

Audio engineering roles such as studio:mastering_engineer, studio:mixing_engineer,

studio:lead_engineer and so on, are defined as subproperties of studio:engineer. The

above definition is a case in point where the Music Ontology could not be extended mono-

tonically. Although it defines mo:SoundEngineer, it tightly links the term to its production

workflow by defining that a necessary and su�cient condition for being an engineer is having

to engineer a performance. This is not appropriate for our use case since we need to describe

studios independently, therefore we link the term to the Music Ontology using rdfs:seeAlso

only. We also define the term studio:Producer. This is a versatile role in music produc-

tion. Producers often own or manage recording studios, participate in arrangements, and,

especially in smaller studios, they fulfil engineering roles.

Finally, we define a vocabulary of tools. Instead of a detailed description, we list only some

concepts in this vocabulary in Table 4.2. The terms typeset in bold are top level concepts

in the Studio Ontology. Since these concepts are all conceptualised ultimately as some form

of man made object, they are all derived from some subclass of device:Device (see Section

4.2.3.3). For the static description of studios, we define the predicate studio:equipment to

link devices to recording facilities.

8 S,D(studio :equipment(S,D) ! device :Device(D))

studio :RecordingStudio(S) _ studio :StudioFacility(S) (4.31)

Now, we can provide descriptions such as:

”George Martin is a producer associated with AIR Studios including Studio1,

which features a custom made 72 channel analogue Neve console George Martin

and Rupert Neve made together.” (see 4.32)

or

”My bedroom studio features a digital audio workstation which consists of a Mac

running Cubase and a Fireface800 audio interface.” (see 4.33)

151

studio :Producer(george martin) ^ studio :CommercialStudio(air)

^ studio :producer(air, george martin)

^ studio :RecordingRoom(studio1) ^ studio : facility(air, studio1)

^mx :AnalogConsole(neve) ^ studio :equipment(studio1, neve)

^ foaf :maker(neve, rupert neve) ^ foaf :maker(neve, george martin)

^mx :channel count(neve, 72) (4.32)

studio :Engineer(http : //foaf.me/fazekasgy#me) ^ studio :HomeStudio(my studio)

^ studio :engineer(my studio, http : //foaf.me/fazekasgy#me)

^ studio :DigitalAudioWorkstation(daw) ^ studio :equipment(my studio, daw)

^ studio :AudioInterface(fireface800) ^ device :HardwareDevice(mac)

^ device :DAWSoftware(cubase) ^ device :component(daw, cubase)

^ device :component(daw,mac) ^ device :component(daw, fireface800) (4.33)

Please note that mx:AnalogConsole (a subclass of studio:MixingConsole) and the prop-

erty mx:channel_count is defined in a dedicated Audio Mixer Ontology (see Section 4.2.5.2).

In fact, most categories of tools listed in Table 4.2 would ideally require an ontology extension,

with the Studio Ontology tying together the top level concepts. Currently, we only cover a

fraction of the domain of tools, most important in describing audio engineering workflows.

The vocabulary of tools provides only a shallow taxonomy of devices. We make a high

level distinction between physical and other devices (such as software), as early as possible,

based on the principle that some tools cannot exist without a physical manifestation. For

example, microphones may have software models, (e.g. certain types of audio e↵ects that are

virtual models of highly regarded microphones) but these cannot replace the functionality

of a physical microphone, similarly to how audio e↵ect units and software e↵ect plugins are

functionally equivalent. These types of decisions therefore need to be deferred, sometimes until

defining a particular individual, relying on the type of polymorphism provided by the ability

to declare an individual as a member of several classes. We found in fact, that taxonomical

organisation in describing complex audio production tools such as Digital Audio Workstations,

is less important than partonomies [Tversky, 1989], an organising principle based on the

part-of relation as opposed to the kind-of relation. Although partonomies are not directly

supported by OWL, our device decomposition model discussed in Section 4.2.3.3 can be used

to describe complex devices as shown for instance in Sentence 4.33.

Having defined the basic entities in the studio environment, we now turn to describing

how they may be applied in audio engineering workflows.

152

concept base type some subclasses comments

Microphone PhysicalDevice CondenserMicrophone,

DynamicMicrophone,

RibbonMicrophone,

SurroundMicrophone,...

subclasses are de-

fined in an extension

(see Section 4.2.5.1)

AudioInterface PhysicalDevice - typical part of a

DAW

Amplifier PhysicalDevice PowerAmplifier,

PreAmplifier

a more basic term

is available in SPDO

(see Section 4.2.3.8)

MixingConsole Device AnalogConsole,

DigitalConsole,

SoftwareConsole,...

subclasses are de-

fined in an extension

(see Section 4.2.5.2)

RecordingDevice PhysicalDevice AnalogRecorder,

DigitalRecorder,

TapeRecorder,

DiskRecorder,...

excludes pre-

electrical units

DigitalRecorder RecordingDevice HardDiskRecorder,

CDRecorder,

DATMachine,

ADATMachine,...

e.g. a DATMachine

is a DigitalRecorder

and a TapeRecorder

DigitalAudioWorkstation DigitalRecorder - the most complex

recording device

DAWSoftware SoftwareDevice - e.g. Audacity, Pro-

Tools, Cubase,...

MonitoringDevice PhysicalDevice NearFieldMonitor,

FarFieldMonitor,

Headphone,...

-

MeteringDevice Device SPLMeter,

RT60Meter,

CorrelationMeter,

MeterBridge,...

-

E↵ectUnit PhysicalDevice - see Section 4.2.5.3

E↵ectPlugin SoftwareDevice - see Section 4.2.5.3

Table 4.2: Some terms in the vocabulary of music production tools

153

4.2.4.2 Describing audio engineering workflows

The second level of the Studio Ontology defines terms which enable tying together tools, agents

and other entities in audio engineering workflows. It is based on the broad conceptualisation

illustrated in Figure 4.8. This conceptualisation is supported by the author’s experience as a

sound engineer, and aligned with text book descriptions [Huber and Runstein, 2005] of audio

engineering procedures, discussed in Section 1.5.

Multitrack recording

Selection, editing and
post-processing individual tracks

Mixing and mastering

mo:
SignalGroup

studio:
Multitrack
Master

mo:
Signal

studio:
MasterSignal

Figure 4.8: Recording studio workflow and corresponding signal entities (MultitrackMaster and
MasterSignal are subconcepts of corresponding MO terms SignalGroup and Signal)

Here, we are most interested in describing audio post-production, providing workflow prove-

nance in the context of an intelligent music production environment. Our model extends the

workflow model of the Music Ontology. More precisely, it is embedded into its model, by

defining additional events pertaining to audio signal transformations by an engineer, using

the tools we discussed previously, and refining the concepts related to the grouping and the

outcome of these transformations. We start by introducing production session types, loosely

corresponding to the group of activities shown in the two bottom boxes of Figure 4.8.

154

The Music Ontology provides two concepts mo:Recording and mo:RecordingSession

(see Table 4.1) related to audio engineering workflows. mo:RecordingSession corresponds

to all activities which lead to a record that may be published. We can decompose a session

into individual mo:Recording events, such as a recording of a song or individual recordings

of instruments. This broad conceptualisation works well, if we want to express information

such as: ”The songs on this album were produced during a recording session lasting 3 days

and include all the recordings of the songs.” Audio engineering however includes many types

of activities other than recording. These need to be grouped using a richer semantics related

to sessions in a recording studio.

First, we introduce a broad top-level concept studio:StudioSession (4.35) to describe

session types not necessarily related to recording sessions. For instance, AIR Studios men-

tioned in our earlier example, features dedicated rooms for song writing, or rehearsal sessions,

without special recording equipment. Here however, we only detail those sessions related to

engineering workflows.

8 S(studio :StudioSession(S) ! event :Event(S)) (4.34)

8 S(studio :PostProductionSession(S) (4.35)

! mo :RecordingSession(S)) ^ studio :StudioSession(S)) (4.36)

8 S(studio :EditingSession(S) ! studio :PostProductionSession(S)) (4.37)

8 S(studio :MixingSession(S) ! studio :PostProductionSession(S)) (4.38)

8 S(studio :MasteringSession(S) ! studio :PostProductionSession(S)) (4.39)

Using the above terms, we can group activities related to post-production. Being an event

itself, studio:PostProductionSession (4.36) may be decomposed into editing, mixing and

mastering sessions (4.37-4.39), which, in modern record production are often carried out by

di↵erent studios, and involve di↵erent audio engineers.

Compared to the Music Ontology, we also refine the possible products of recording sessions.

The concept mo:SignalGroup can be used to collect signals produced by recordings. Its

semantics however are not clear enough to know whether a signal group refers to the multitrack

master recordings of a song, or all signals ever recorded during a long recording session. In

fact, the Music Ontology defines this concept in the latter sense, but it is used for both cases

lacking a more precise definition. We provide two extensions shown in Figure 4.8 to refer to

multitrack masters, and mixed and finalised release masters.

8 S(studio :MasterSignal(S) ! mo :Signal(S)) (4.40)

8 S(studio :MultitrackMaster(S) ! mo :SignalGroup(S)) (4.41)

A master signal represents a particular adaptation of the recording of a song to a given

155

media (i.e. CD, vinyl, radio, download) which require di↵erent mastering procedures; e.g.

di↵erent loudness compression and equalisation. The concept studio:MultitrackMaster

(4.41) represents the edited and synchronised signals — strictly related to the performance

of a single work — that can be mixed to produce a final release. We also define the sub-

properties studio:produced_master and studio:produced_multitrack_master, to refer to

these concepts directly. Using the facilities introduced so far, we can describe the recording

and post-production of a song as shown in Listing 4.8.

1 :rs a mo:RecordingSession ;

2 mo:engineer [a mo:SoundEngineer ; foaf:name "Mike"] ;

3 event:sub_event :rec1, :rec2, :ps;

4 mo:produced_signal_group :record_takes ;

5 mo:produced_signal :master_signal .

6

7 :rec1 a mo:Recording ;

8 rdfs:comment "voice" ;

9 mo:produced_signal :sig1 .

10

11 :sig1 a mo:Signal .

12

13 :rec2 a mo:Recording ;

14 rdfs:comment "guitar" ;

15 mo:produced_signal :sig2 .

16

17 :sig2 a mo:Signal .

18

19 :record_takes a mo:SignalGroup ;

20 mo:signal :sig1, :sig2 .

21

22 :ps a studio:PostProductionSession ;

23 studio:mastering_engineer [

24 a studio:SoundEngineer ; foaf:name "Chris"] ;

25 event:factor :sig1, sig2 ;

26 studio:produced_master :master_signal .

27

28 :master_signal a studio:MasterSignal .

Listing 4.8: A recording session with post-production

156

As we can see from the example, this is not a big departure from the original Music

Ontology workflow. We were able to say that the recording session involved post-production

with a di↵erent mastering engineer. This session took the originally recorded signals as factors,

and produced a (presumably mixed) master signal. We could not yet describe, however, what

exactly happened during post-production, or precisely define how its factors are related to

the main event. We now outline how audio engineering workflows can be described in detail.

Recall that the Music Ontology describes production workflows by using events which

enable moving between the di↵erent layers of the FRBR model. For instance, a perfor-

mance event of a musical work produces a sound. A recording event of this sound produces

a signal (both sound and signal are musical expressions). The next event in this model is

mo:ReleaseEvent which takes an expression (signal) and produces a manifestation, e.g. a

published record or track. Most audio engineering work is related to the recording of a per-

formance, and what happens between recording and publication. Therefore, our model has to

deal with the transformation of expressions, sounds and signals. Here, we are most concerned

with post-production workflows, and with signal transformations.

We define four new event types which come after mo:Performance and mo:Recording in

the overall workflow, but before mo:ReleaseEvent.

8 E(studio :Edit(E) _ studio :Transform(E) _ studio :Mixing(E) ! event :Event(E)) (4.42)

8 M(studio :Mastering(M) ! studio :Transform(M)) (4.43)

The concept studio:Edit corresponds to actions such as select, cut, or move. These

refinements are provided in an extension of the Studio Ontology in the context of multitrack

editing (see Section 4.2.5.4). The term studio:Transform represents the application of audio

processing tools, such as audio e↵ects, while studio:Mixing refers to the combination of

audio signals. In order to describe the relationships of these events to signals operated on,

we need to extend the event model discussed in Section 4.1.2.2. The music ontology defines

mo:produced_signal as a sub-property of event:product, to link a recording event to a

signal it produced. Similarly, we introduce the properties studio:consumed_signal and

studio:consumed_signal_group as follows:

8 E,S(studio :consumed signal(E,S)

! event :Event(E) ^mo :Signal(S) ^ event : factor(E,S)) (4.44)

8 E,S(studio :consumed signal group(E,S)

! event :Event(E) ^mo :SignalGroup(S) ^ event : factor(E,S)) (4.45)

The properties defined in Sentence 4.44 and 4.45 can be used to link events to signals that

are used as factors in events. For example, a mixing event may consume a group of signals and

157

produce a mixed signal. The definitions could be refined by constraining the domain of these

properties, for instance, to a union of studio:Edit, studio:Transform, and studio:Mixing.

However, this is currently not provided. We similarly define studio:produced_signal, be-

cause the domain of mo:produced_signal is limited to mo:Recording. Next, we outline how

the above tools can be used to describe signal processing workflows in the studio. First outline

how a set of mixing and transformation events form an event flow, and then we examine how

these can be linked to actual devices, and describe the signal flow and device configuration.

4.2.4.3 Signal processing workflows

To describe how a piece of music is processed in the studio, it is insu�cient in itself to de-

scribe a signal flow (i.e. flow chart) or a set of transformations. We need to consider a

random set of mixing or transformation events, as in non-linear editing (i.e. with random

or non-sequential access), as well as real-time, quasi-simultaneous transformations, such as a

signal routed through several processing units for recording. (Apart from the small latency of

signal processing units, these have the same duration as the recording event itself.) To fulfil

both requirements, we consider parallel signal and event flows linked using signal entities that

are instances of the mo:Signal concept. This is illustrated in Figure 4.9.

signal flow

RecordingSession PostProductionSession

event flow

mo:Music Ontology

studio:Studio Ontology

con:Connectivity Ontology

mo:Recording

con:Output
Terminal

studio:
Microphone

studio:
microphone

device:output

studio:signal

mo:produced_signal

con:Output
Terminal

studio:Mixing
Console

device:output

con:Input
Terminal

studio:signal

studio:produced_signal

studio:
console

device:input

con:Output
Terminal

studio:Effect
Unit

device:output

studio:signal

con:Input
Terminal

consumed_signal

studio:signal

studio:produced_signal

studio:
effect

device:input

studio:
Transform

studio:
Mixing

studio:signal

mo:Signalmo:Signalmo:Signal

consumed_signal
studio: studio:

Figure 4.9: Recording, mixing and transformation events with an associated signal flow

The top part of the figure shows a recording, a mixing and a transformation event. Several

signals (not shown for brevity), or a signal group can be attached to a mixing event and

corresponding device. The mixed results may be processed further, for instance in a mastering

session, producing a master signal.

We conceptualise the event flow as a series of events, where each processing event uses

the product of another event as factor. The relationship between events is made explicit

by the sub-properties studio:produced_signal and studio:consumed_signal we defined

previously. The outlined set up signifies our ontological commitment to changing identities,

a problem thoroughly discussed in philosophy [Strawson, 1959]. Once transformed, a signal

158

receives new identity which alleviates di�cult transaction management problems in our sys-

tem regarding the changing attributes of signals.

1 :tr a studio:Transform ;

2 studio:mastering_engineer <http://foaf.me/fazekasgy#me> ;

3 studio:device [a studio:EffectUnit ; device:model "TC M300"] ;

4 event:time [a tl:Instant ;

5 tl:timeline tl:universaltimeline ;

6 tl:at "2011-03-20T09:00:00Z"^^xsd:dateTime] ;

7 studio:media_time [a tl:Interval ;

8 tl:timeline :sig_in_timeline ;

9 tl:beginsAtInt "20000"^^xsd:int ;

10 tl:durationInt "441000"^^xsd:int] ;

11 studio:consumed_signal :sig_in ;

12 studio:produced_signal :sig_out ;

13

14 :sig_in_timeline a tl:DiscreteTimeLine ;

15 rdfs:comment "The timeline of the source signal" .

16

17 :sig_out_timeline a tl:DiscreteTimeLine ;

18 rdfs:comment "The timeline of the result signal" .

19

20 :sig_in a mo:Signal ;

21 mo:sample_rate "44100"^^xsd:float ;

22 mo:time [a tl:Interval ;

23 tl:timeline :sig_in_timeline] .

24

25 :sig_out a mo:Signal

26 mo:time [a tl:Interval ;

27 tl:timeline :sig_out_timeline ;] .

Listing 4.9: Describing a signal transformation

Our use cases include the need for describing the event flow of audio transformations, as

well as tracking the provenance of signals and edit decisions. Therefore, we have to consider

linking processing events to the universal timeline in order to describe exactly when and in

what order they have happened, and to a signal timeline to express that a transformation was

applied, for instance to the chorus section of a song, or that a mix involves two signals with

di↵erent time intervals at di↵erent positions related to the time extents of each signal.

159

This is achieved by introducing the property studio:media_time which is used to link

transformation, mixing and edit events to signals. At the same time, the property event:time

can be used to link processing events to the universal or an abstract timeline which can be

used to simply order events without explicit timing. This is exemplified in listings 4.9. Here,

we describe a transform event, represented by studio:Transform which was executed exactly

at 9 AM on 2011-03-20, and provide a sample accurate description of how the transform was

applied to a 10s portion of the signal starting at sample 20000. We also describe the resulting

signal, and link the transform to an engineer and a device executing it. This description thus

provides full provenance or the application of the transform. We can also link this description

to our previous example of Listing 4.8, making it part of a post-production, recording or

mastering session.

Using this information, an agent is able to render the audio by selecting the signal at each

point in time, that is the result of the most recent or last transformation in the flow. This

is in fact very similar to how an audio editor program — with an unlimited undo bu↵er —

structures audio data and metadata related to user actions. Therefore, our ontologies are

relatively easily linked to data structures, if implemented in a semantic audio editor.

Finally, we describe how the event flow is connected to a signal flow, illustrated in the

bottom part of Figure 4.9. Essentially, we link events to devices using studio:device, a sub-

property of event:factor. Some specialisations such as studio:microphone, studio:console

or studio:effect can be used to make the relationship more explicit. We reify device con-

nections using subclasses of the con:Terminal concept defined in the Connectivity Ontology.

We already discussed a reason for this reification in Section 4.2.3.9 — that is, the need for

matching signal and terminal characteristics. For example, we need to be able to describe

that a device processes only the first two channels of a multichannel signal. Another reason

for this reification is the need for describing exact signal connections in events which work

with multiple signals. For instance, in case of mixing events, we may link several instruments

to particular channels of a mixing console, with specific channel configurations. We discuss

these problems in more detail in the context of the Audio Mixer Ontology in Section 4.2.5.2.

The description of device configuration was discussed in the context of the Device Ontology,

please see for instance listings 4.6 in Section 4.2.3.5.

The third level of the studio ontology defines highly specific terms related, for instance,

to media adaptation, format transfer or sequence editing, a kind of mastering session where

the best order of songs for an album is selected. This level is includes some very closely

tied extensions which rely on both the fundamental elements of our framework, (e.g. the

Microphone and Audio Mixer Ontologies depend mainly on the Device, Signal Processing

Device and Connectivity ontologies) or provide extensions to the audio engineering workflow

such as the Multitrack Ontology describing multitrack audio editors and software components

of digital audio workstations. In the next section, we provide a brief outline of some extensions.

160

4.2.5 Extensions

Ontology extensions are useful to allow the user to choose a desired level of granularity,

given some domain specific details provided by the modeller. In this section we describe

some extensions of the Studio Ontology. We examine four core areas of the audio engineering

workflow, where we need to provide more specific device descriptions, or need to cover specific

know-how, such as microphone techniques. These areas are: Audio Recording, Audio Mixing,

Audio E↵ects and Audio Editing.

4.2.5.1 Audio Recording

The Studio Ontology framework provides one extension to describe audio recording at present,

the Microphone Ontology. This ontology concerns both microphones and microphone tech-

niques. Its core concept mic:Microphone is plugged under the studio:Microphone concept,

and serves as basis for a small taxonomy of microphones, organised by their transducer prin-

ciple or diaphragm type. (The diaphragm of a microphone captures air pressure variation

caused by sound and converts it to mechanical motion (in most cases) which may be cap-

tured as another form of energy.) This is the most common way audio engineers categorise

microphones, besides their polar patterns, also known as directivity pattern which describes

how sensitive a microphone is to sounds arriving from a particular direction.

mic:Microphone mic:PolarPattern
mic:polar_pattern

Fiberoptic

Microphone

Surround

Microphone

Dynamic

Microphone

Electret

Microphone

Ribbon

Microphone

UniDirectional

Cardioid

HemisphericalMultiPolar

BiDirectional
Omni

Directional
Condenser

Microphone

Shotgun

Figure 4.10: Microphone Ontology (partial extract - dashed lines represent subsumption relations)

Our ontology includes both taxonomies, and defines the predicate mic:polar_pattern,

to link microphones to individual polar patterns, that are specific instances of the main types

161

of polar patterns shown in Figure 4.10 (please note that concept names are abbreviated for

brevity compared to the ontology definitions). Individuals of mic:CardioidPolarPattern in-

cludes for instance mic:Cardioid, mic:WideCardioid, mic:SubCardioid, mic:HyperCardioid,

and mic:SuperCardioid. However, more esoteric polar patterns can also be described in in-

dividual cases. A further advantage of this configuration, is the ability to express class specific

restrictions on polar pattern predicates, to represent that not all polar patterns can be realised

by all capsule technologies, however this is not currently included in the ontology.

The Microphone Ontology also allows for describing most properties one may find in a

microphone data sheet, for instance mic:diaphragm_size, mic:high_frequency_rolloff or

mic:output_impedance. The mic:Configuration concept (subclass of device:State) can

be used to describe variable parameters of microphones such as sensitivity, or variable polar

pattern setting if these change during a particular recording event as described in the context

of the Device Ontology (see Section 4.2.3.3).

We can also describe microphone placement, using properties for describing distance from

the sound source, as well as azimuth and elevation relative to the longest axis or the principal

radiating direction of the sounding body of the instrument. This is in contrast with the

Music Ontology which only allows the localisation of recording events using geographical

coordinates. This isn’t very useful from an audio engineering point of view. However, our

conceptualisation is still not clear of ambiguities. For instance, it may be the case that

neither the radiation pattern nor the main axis is easily identified. There are no agreed upon

standards for describing microphone placement, therefore these data may not be interpreted

precisely without a natural language description. A possible solution to this problem is the

development of a Musical Instrument Ontology (see Section 4.5) which enables the description

of an instrument. We can then provide instrument specific terms to describe recording.

The Microphone Ontology includes the concept mic:MicrophoneArrangement and al-

lows for describing stereo and spatial recording techniques, such as a mic:BlumleinPair, a

mic:MidSide, mic:ORTF, or mic:DeccaTree, with their constituent microphones, their dis-

tances, angles and configurations. For instance, the description of the Mid/Side technique

involves two microphones, one with a cardioid polar pattern placed on-axis, and one with a

bidirectional polar pattern, arranged in a 90 or 270 degrees angle. In these cases, the place-

ment predicates mentioned above should describe the placement of the whole array (i.e. how

its central axis is related to the sound source).

Besides microphones, further ontology extensions are required to describe the details of

recording devices or audio interfaces. This constitutes future work. In the next section we

review our ontology for audio mixing.

162

4.2.5.2 Audio mixing

The Audio Mixer Ontology allows detailed description of mixing consoles both in terms of

static characteristics and particular settings such as channel strip configuration in a recording

event. The ontology is modelled after a generalised blueprint of mixing consoles shown in

Figure 4.12. This was obtained from studying several commercial hardware designs5, however,

software implementations were also taken into account. Our ontology depends on terms

defined in the Device (Section 4.2.3.3) and Connectivity (Section 4.2.3.9) ontologies.

The ontology itself defines concepts such as mx:Channel which represents a channel strip.

This can be linked with parameters such as fader levels, panning, and equalisation using,

for instance, an equaliser module defined in an Audio E↵ects Ontology (Section 4.2.5.3).

The concept mx:Bus represents a mixing bus of which several can be defined and linked

with channels using the mx:bus property. Such an association represents signal routing in

audio engineering terms. The concept mx:InsertTerminal is defined as subclass of both

con:InputTerminal and con:OutputTerminal as it serves both functionality.

The description of panning, that is, stereo and multichannel spatial positioning cannot be

generalised apart from the simple stereo case. Therefore this is not shown in the diagram.

Here, we adopt an approach which is similar to how surround panning is described in the

AES31-36 standard. The predicate mx:pan and its equivalent mx:left_right_position rep-

resents traditional stereo panning, while using a combination of mx:left_right_position

and mx:front_rear_position we can represent surround panning irrespectively of the num-

ber of target channels.

mx:Mixing
Consolemx:Channel mx:Channel

mx:Input
Terminal

con:Insert
Terminal

mx:Insert
Terminal

con:Input
Terminal

mx:insertmx:input

mx:channel mx:channel

mx:Mix
Bus

mx:bus

mx:inputmx:insert

mx:bus

con:Output
Terminal

mx:output

xsd:float

mx:fader_level

xsd:float

mx:fader_level

Figure 4.11: Using the Audio Mixer Ontology

5Circuit diagrams were obtained through an authorised service centre of studio equipment.
6AES31-3-2008 Standard: http://www.aes.org/publications/standards/search.cfm?docID=32

163

+

Input Stages and Routing Matrix

+

+

con:Terminal

con:InputTerminal

con:AnalogInput

con:DigitalInput

Insert points

Input Gain

Channel
EQ

Channel
Fader

Pre/Post Fader
Routing

mx:SendBus

Mix Outputs

Sends

Mix 1

Mix 2

Mix N

Channel Strip

Analogue or
Digital Input
terminals
(signal inputs)

mx:InsertTerminal

mx:Channel

mx:gain_level

mx:channel_eq

mx:fader_level

mx:bus

mx:bus_prefader

mx:MixBus

mx:MixBus

mx:MixBus

mx:OutputTerminal

con:TRS

con:XLR

con:connector

Mixing buses

Figure 4.12: Overview of the Audio Mixer Ontology (simplified - mx: terms set in bold represents
concepts, all other terms are predicates)

164

The simplest use of the ontology is depicted in Figure 4.11. We describe a static mixing

situation, involving two channels and a single mixing bus. In more complex cases, the full

configuration may be linked to a device state (recall, this is conceptualised as an abstrac-

tion of the changeable attributes of a device, see Section 4.2.3.3) instead of a mixing console

instance directly, which allows the description of a sequence of routing decisions and other

random parameter changes during a recording event. Some configuration changes however,

such as fader automation, may be too frequent, and are too uniform to be e�ciently repre-

sented by the full-fledged device state model. Therefore we provide object properties, such as

mx:fader_automation which link a channel to an automation signal. An automation signal is

a discrete time signal, whose timeline is linked to the audio signal timeline using the timeline

map concept discussed in Section 4.1.2.1. This provides a mechanism for sample accurate

representation of automated mixing parameters.

4.2.5.3 Audio e↵ects

The core Studio Ontology includes concepts to refer to audio e↵ect units and plugins that

are particular hardware or software devices (see Table 4.2 in Section 4.2.4.1), and a small

independent taxonomy of audio e↵ects and processors based on their typical applications in

audio engineering. This adheres to the common distinctions engineers make between non-

linear audio transformations and audio e↵ects based typically on whether they are used in the

side-chain or send bus or at an insert terminal. This distinction however is not scientifically

sound, nor can it be explained by implementation details or perceptual characteristics.

device:
Phenomenon

device:
representation

device:
Model

device:
Implementation

device:
Device

device:
actualisation

device:
instantiation

abstract concrete

subclass or
subproperty

property relation

fx:AudioEffect

fx:model

fx:
Model

fx:
Implementation

fx:
EffectDevice

fx:implementation fx:device

fx:
Chorus

fx:Reverb
Model

fx:
VST

fx:
LADSPA

fx:Effect
Unit

fx:
Reverb

fx:Effect
Plugin

fx:
Schroeder

fx:
FDN

fx:Reverb
Impl.

fx:Reverb
Impl1

fx:Reverb
Impl2

Figure 4.13: Harmonisation of an Audio E↵ects Ontology with the Device Ontology

Audio e↵ects in essence are best conceptualised as physical phenomena, separated from

their models (circuit designs or algorithms), particular implementations that bear the same

165

characteristics (an algorithm implemented in Matlab, C++ or Python), and concrete devices,

such as a plugin or an e↵ect unit that one may own. This can be expressed using the

device description model discussed in Section 4.2.3.7. The harmonisation of an Audio E↵ects

Ontology to our model is shown in Figure 4.13.

The reason for defining four conceptual layers for describing audio e↵ects can be justified

by the need for expressing di↵erent attributes of entities existing on these levels. Similarly to

the way one may explain the FRBR model, we can argue that a physical process producing

an audio e↵ect does not have the same characteristics as a computer model, of which several

di↵erent types can be created. This is similar to how a musical work may be expressed

di↵erently in various performances.

The distinction between model, implementation and device is more subtle. However, we

can argue that an implementation may not have the same parameters as the model, for

example, some complex parameters of an algorithm may not be exposed to the user in a

particular implementation. The di↵erence between implementation and device is analogous

to the di↵erence between a manifestation and an item in FRBR terms. A record may be

available on CD, Vinyl, or as a digital download, yet it is the same record. Similarly, an

implementation of an e↵ect may be available as a VST plugin, and extension module for

a digital console, or a standalone e↵ect unit, yet it is the same implementation (e.g. same

C++ code compiled for di↵erent CPUs, and wrapped in di↵erent APIs). Albeit this model

is accurate, using all layers can result in complex data which may be unnecessary in some

applications. This issue is easily resolved however by defining short-cut properties between

layers. For instance, we may link a plugin directly to an e↵ect, if we don’t care about the

algorithmic model and implementation details.

Using the Studio Ontology, the application of audio e↵ects to signals can be described using

the concept studio:Transform which is an event that takes a signal as a factor, (expressed us-

ing studio:consumed_signal) and produces a transformed signal (studio:produced_signal).

This concept is subsumed in a more specific e↵ect ontology. The transform can be linked to

two time objects, one relating it the the universal timeline, and another to the processed

signal timeline.

The Studio Ontology sets the problem of audio e↵ect classification aside. Creating Audio

E↵ects ontologies based on multidisciplinary classification [Verfaille et al., 2006a] is our on-

going collaborative work [Fazekas et al., 2011], [Wimering et al., 2011]. The four organising

principles we consider are as follows:

• Perceptual attributes: describe how an e↵ect modifies loudness, pitch, timbre, or

spatial localisation. This classification has mainly an aesthetic value.

• Implementation: A technical classification may be based on the type of algorithms

involved, (e.g. filter, delay, modulator), or whether the e↵ect uses time or frequency

domain processing.

166

• Parameters: Another technical classification is possible by considering standard pa-

rameters, (e.g. delay time, LFO frequency) common in di↵erent underlying implemen-

tations.

• Application: Classify e↵ects by their typical application in audio engineering. For

instance, we can distinguish between artistic e↵ects and processors that are used for

signal conditioning, e.g. mastering processors.

All four organising principles result in di↵erent classification schemes which have specific

applications in audio production. For instance, find audio e↵ects which a↵ect the same

perceptual attribute, e↵ects which have the same parameters, or match audio e↵ects by

di↵erent manufacturers. Since accommodating these di↵erent views are best achieved by

designing di↵erent ontology modules, we consider moving all audio e↵ect related terms to

an extending ontology apart from the top level concepts related to the identification and

application of e↵ect devices.

4.2.5.4 Audio editing

The final set of extensions we provide deal with two specific domains of audio editing: complex

tools, such as multitrack audio editing hosts and digital audio workstation software, and edit

decisions in audio post-production workflow.

Figure 4.14: Using the Multitrack Ontotlogy

Modern digital audio workstations organise recording projects into a set of tracks —

which may correspond to physical input channels or virtual channels created in an ad hoc

way — and potentially overlapping clips contained in them corresponding to various takes

167

during a recording session. This organisation is best represented independently from the

signal processing workflow. The Multitrack Ontology serves this purpose. It relates the the

hierarchy of Clips and Tracks to other concepts in the Music and Studio ontologies, and defines

terms such as mt:MultitrackProject, mt:MediaTrack, mt:AudioTrack, and mt:AudioClip

as follows:

8 P (mt :MultitrackProject(P) ! foaf :Project(P)) (4.46)

8 T (mt :ProjectTrack(T) ! owl :Thing(T)) (4.47)

8 C(mt :MediaClip(C) ! event :Event(C)) (4.48)

8 M(mt :MediaTrack(M) ! mt :ProjectTrack(M)) (4.49)

8 U(mt :AnnotationTrack(U) ! mt :ProjectTrack(U)) (4.50)

8 A(mt :AudioTrack(A) ! mt :MediaTrack(A)) (4.51)

8 V (mt :VideoTrack(V) ! mt :MediaTrack(V)) (4.52)

8 AC(mt :AudioClip(AC) ! mt :MediaClip(AC)) (4.53)

8 V C(mt :VideoClip(V C) ! mt :MediaClip(V C)) (4.54)

The most important properties are defined as:

8 P, T (mt : track(P, T) ! mt :MultitrackProject(P) ^mt :ProjectTrack(T)) (4.55)

8 T,C(mt :clip(T,C) ! mt :ProjectTrack(T) ^mt :MediaClip(C)) (4.56)

8 C, S(mt :signal(C, S) ! mt :AudioClip(C) ^mo :Signal(S)) (4.57)

8 C, T (mt :project time(C, T)

! mt :MediaTrack(C) _mt :MediaClip(C) ^ time :TemporalEntity(T)) (4.58)

The use of these terms and their link to other ontologies in shown in Figure 4.14. Audio

tracks and clips are conceptualised as container structures, as opposed to signals themselves.

A track may represent several takes during a recording session, and contain a set of clips

linked to signals, however they may also be empty. To express temporal relations between

signals, clips, tracks and recording projects, these entities may be associated with time ob-

jects, defined on the timeline corresponding to a recording project. For instance, the relative

temporal location of a track within a project can be described using mt:project_time. This

conceptualisation closely corresponds to the object model of multitrack audio editors, where

signals are represented as raw data object related to files on disk (which may be split to small

blocks addressed separately), and clips refer to these object using pointers. For this similarity,

our ontology is relatively easily linked with classes in a semantic audio editor.

A small Edit Ontology provides for describing successions of edit decisions. This ontology

168

defines a handful of common operations in audio editors shown in Figure 4.15. For instance,

we define a complex choice concept edit:Choice which operates on mo:SignalGroup entities.

The result of such an operation is typically a signal group which contains only some elements

of the original. This operation represents the act of choosing the takes corresponding to a

single song, or the best takes of a song from a signal group holding all signals produced by a

recording session.

edit:Choice

edit:Group

edit:Move

edit:Transform

edit:Select

edit:Join

edit:Split

edit:Cut

Figure 4.15: Some basic audio editing operations

169

Edit decisions are modelled as events linked to the universal timeline using event:time

and the audio signal timeline using studio:media_time. Our ontology should support both

sample editors which directly operate on audio signals, and multitrack workstations which

use more complex abstractions such as the previously discussed clip and track composition.

Therefore, edit operations are defined such that they can describe lower level signal manipu-

lation as well as operation involving clips. Similarly to transformations, edit actions produce

new entities in our framework, therefore the ontology can be used to capture full provenance

related to the audio editing workflow encoding a series of modifications in a single RDF graph.

To support the need for providing application specific specialisation or links to implemen-

tation classes when used in a specific audio editor, is the reason for the modularisation of

this ontology, as opposed to defining relevant terms in the core Studio Ontology. For each

particular audio editor, we may provide a suitable Edit Ontology module which holds specific

terms that subsume the basic operations defined in this ontology.

4.2.6 Summary

The Studio Ontology Framework provides a novel conceptualisation of the recording studio

environment. Although it contains some knowledge representation elements that may be

found elsewhere, for instance, in metadata standards or UML models of audio editors, its im-

plementation as a Semantic Web ontology, and the fact that it provides an explicit knowledge

representation without bounding it to specific software makes it unique and the first of its

kind.

The ability to provide machine-processable representations of the information one may find

on web pages of recording studios is a contribution to the Semantic Web in itself. Our frame-

work facilitates finding studios with specific equipment or personnel using complex queries.

However, a more significant benefit comes with the ability to denote how a piece of music was

produced. We can argue that contributions form the producer or the sound engineer are just

as important in modern music as composition, but we had no way to record his/her actions

and choices with the transparency music is denoted using scores.

Collecting these data in production is a significant e↵ort, however a lot can be done

automatically if we can make ontology based models are available in digital mixing consoles,

and post production tools. The Meta Object Facility Specification7 enables source code

generation from conceptual models. To take the continuously evolving nature of ontologies

into account, we provide an alternative using run-time model generation. This is described

in Section 5.1.

7http://www.omg.org/mof/

170

4.3 Audio Features Ontology

Representing content based features of audio is an important requirement both in a semantic

audio applications, as well as knowledge based environment for Music Information Retrieval.

The Audio Features Ontology published in [Raimond, 2007] is a collaborative e↵ort designed

to fulfil representation requirements in research projects, including OMRAS2 [Fazekas et al.,

2010], as well as the requirements for distributed music information systems [Raimond, 2008],

and online music analysis applications, for instance, the one we discuss in Section 5.3.

The Audio Features Ontology can be used to express both acoustical and musicological

features. It allows publishing content-derived data about audio recordings and provides con-

cepts such as af:Note, af:Segment, af:Beat, or af:KeyChange on top of the Event Ontology.

It can therefore be used to classify temporal regions of audio signals. Figure 4.16 shows the

basic structure of the ontology.

Figure 4.16: Audio Features Ontology

171

The main scope of the ontology is to provide a framework for communication, feature

representation, and describe the association of features and audio signals. Therefore it is free

from deep taxonomical organisation, and does not attempt to describe the interrelationships

or computation of audio features. With regards to the di↵erent conceptualisations of feature

representations presented in Table 3.2 (see Section 3.2.5.1), the Audio Features Ontology

deals with data density, and temporal characteristics. It di↵erentiates between dense signal-

like features of various dimensionality, for instance chromagrams and detection functions, and

sparse features that are scattered across the signal timeline, for instance notes or note onsets.

The first group of features are commonly represented by the term af:Signal. Sparse fea-

tures may be segments (af:Segment) or points (af:Points) linked to time intervals or time

instants.

1 <http://isophonics.net/sawa/audiofile/temp/AU775621fe> a mo:AudioFile ;

2 dc:title """music-test.wav""" ;

3 mo:encodes :signal_1.

4

5 :signal_1 a mo:Signal ;

6 mo:time [

7 a tl:Interval ;

8 tl:onTimeLine :signal_timeline_1

9] .

10

11 :signal_timeline_1 a tl:Timeline .

12

13 :event_2 a <http://purl.org/ontology/af/StructuralSegment> ;

14 event:time [

15 a tl:Interval ;

16 tl:onTimeLine :signal_timeline_1 ;

17 tl:at "PT19.600000000S"^^xsd:duration ;

18 tl:duration "PT10.500000000S"^^xsd:duration ;

19] ;

20 af:feature "9" .

Listing 4.10: Segmentation data expressed using the Audio Features Ontology

Listings 4.10 shows an example of describing a structural segment within an audio file,

extracted using the algorithm detailed in [Levy and Sandler, 2006b]. First, we identify an

audio file then describe a timeline instance. This timeline is used to link the segment feature

description with the time extent of a signal entity representing the audio file.

172

The Audio Features Ontology currently does not cover all of the commonly used audio

features. However, if we need to publish features that have no predefined term in this ontology,

we can synthesise a new class within an RDF document as a subclass of an appropriate class

in the Event ontology. This ensures that the features can be interpreted as time-based events,

even where further semantic associations are unavailable. The present version of the ontology

was created to fulfil some case specific design goals, and therefore its domain boundaries are

fuzzy, while its vocabulary is incomplete with regards to user needs within the audio research

communities. Further work will be required to provide a better coverage of features commonly

used by researchers, as well as to enable better generalisation of its model, and harmonisation

with existing research tools supporting a wider set of use cases and existing research data

sets. This work should increase community involvement and should be completed with a view

of extending the vocabulary to cover most state of the art feature extraction techniques.

4.4 Audio Plugin Ontologies

Plugin interfaces provide a standard way to extend an application with additional functional-

ity without the need for changing the application. In this context, the program extended by

a plugin is called the host application. The host works independently of plugins and provides

services — typically through an application programming interface (API) — that plugins can

use. The two main services a host API has to provide are i) a way for plugins to register their

functionality within the host application and present this functionality to the user, and ii) a

standard way to exchange information with the host.

The use of plugin architectures is a widely adopted way of creating extensible software

applications. From a software engineering point of view, this fulfils most requirements of

semantic audio applications as well. In order to e↵ectively interact with semantic audio how-

ever, we need to be able to manage audio analysis components within an application together

with the configuration parameters and the resulting data. Since di↵erent applications, use

cases and signal types require di↵erent algorithms and configurations, a modular plugin archi-

tecture is highly desirable. An problem exists however with APIs that are typically language

specific, while the semantics of communication between a host and the plugin is bound to

specific implementations. These problems make it di�cult for instance to collect provenance

information, that is, track the use of a plugin, or associate an application context (e.g. plugin

parameters) with the produced output. Here we briefly review two plugin APIs which use

RDF to address some of these issues.

The LV2 plugin standard [Wilms et al., 2007] is an incarnation of the Linux Audio De-

velopers Simple Plugin Interface (LADSPA) format, which uses RDF as a crucial part of its

API. It comes with a simple OWL ontology which enables describing plugins and plugin ports,

173

and contains a vocabulary of plugin types. The RDF data expressed using this ontology may

contain information such as the index and name the ports a plugin may use. The purpose of

the LV2 plugin ontology essentially is to move the problem of input and output descriptions

outside of the C++ API specification.

vamp:Transform

"512" "1024"

vamp:step_sizevamp:block_size

vamp:Parameter

Binding

vamp:Parameter

vamp:Plugin
vamp:

PluginOutput

vamp:output

vamp:parameter_binding

"20"

vamp:plugin

vamp:parameter vamp:value

Figure 4.17: Vamp Transform Ontology

For the ontological representation of audio feature extraction algorithms, the Vamp plu-

gin ontology8 corresponding to the Vamp plugin API [Cannam, 2009] provides an example.

This ontology features similar capabilities in describing plugins as the afore mentioned LV2

ontology, however Vamp hosts can also query the plugin binary directly for the informa-

tion necessary to run the plugin, therefore host environments can run Vamp plugins with or

without RDF descriptions. A related transform ontology was developed for the automatic

configuration of feature extractors available as Vamp plugins. The basic entities defined in

this ontology are shown in Figure 4.17.

The term vamp:Transform is used to conceptualise a feature extractor algorithm together

with a set of parameters expressed as generic parameter bindings. This model allows for

the representation of zero or more general purpose parameters, with the vamp:step size

and vamp:block size parameters — common across short-time windowed feature extrac-

tion algorithms — liked to the transform using mandatory predicates. Listing 4.11 shows

an example of using the Vamp Transform Ontology to describe the segmentation algorithm

whose output is shown in Listing 4.10 of the previous section. We make use of this ontology

for communication between a Web-based audio analysis tool and its computation engine as

described in Section 5.3. While this is already a good starting point, further refinement is

necessary to describe complete workflows within music analysis algorithms, in order to allow

8vamp-plugins.org/ontology/vamp

174

inference over contextual data and use the most suitable components for a specific analysis

case.

1 :transform a vamp:Transform ;

2 vamp:plugin <http://vamp-plugins.org/rdf/plugins/qm-vamp-plugins#qm-

segmenter> ;

3 vamp:step_size "8820"^^xsd:int ;

4 vamp:block_size "26460"^^xsd:int ;

5

6 vamp:parameter_binding [

7 vamp:parameter [vamp:identifier "featureType"] ;

8 vamp:value "1"^^xsd:float] ;

9

10 vamp:parameter_binding [

11 vamp:parameter [vamp:identifier "neighbourhoodLimit"] ;

12 vamp:value "4"^^xsd:float] ;

13

14 vamp:parameter_binding [

15 vamp:parameter [vamp:identifier "nSegmentTypes"] ;

16 vamp:value "10"^^xsd:float] ;

17

18 vamp:output

19 <http://vamp-plugins.org/rdf/plugins/qm-vamp-plugins#qm-

segmenter_output_segmentation> .

Listing 4.11: Description of algorithm parameters using the Vamp Transform Ontology

4.5 Instrument Ontology

An important use cases for developing ontologies describing musical instruments from a

recording point of view was already outlined in Section 4.2.5.1. In this section we describe

our ongoing collaborative work in musical instrument ontology design.

4.5.1 Motivation

A particularly interesting application of an instrument ontology is in describing audio engi-

neering workflows, in particular, describing microphone techniques. Currently, there is no

standard to describe the placement of a microphone relative to an instrument, even though

175

it has a profound e↵ect on the recorded sound due to the diverse radiation patterns of mu-

sical instruments, and the fact that the frequency characteristics of the recorded sound is

dependent of this relation.

The Music Ontology provides a way for spatial localisation of recording events including

the position of microphones. However, the use of geographical coordinates for this purpose

is insu�cient in audio engineering applications. We introduced more precise methods to

describe the relation of a microphone (or a microphone arrangement) to the instrument in

Section 4.2.5.1. This is based on describing the distance and angles between the microphone

pickup and its main axis, and the sound source. However, we found that in many cases,

identifying reference points for this relation requires the description of the instrument in

question. Other important use cases include instrument identification in a knowledge based

environment, and semantic labelling of audio recordings using shared instrument resources,

as well as the ability to identify instrument families. Instrument classification is not an

easy task however. Several classification systems have been proposed by musicologists and

etno-musicologists, but no universally accepted system has emerged.

4.5.2 Instrument classification systems

The Music Ontology relies on the instrument taxonomy published by Herman9 and defines

only the top level concept mo:Instruemnt. This taxonomy is based on the MusicBrainz

instrument tree, and uses the Simple Knowledge Organisation Systems (SKOS)10, a model

for expressing controlled vocabularies, thesauri, and taxonomies in RDF.

SKOS defines skos:Concept, whose individuals may be associated with one or more

lexical labels, using skos:prefLabel, skos:altLabel, and placed within a hierarchy using

skos:broader, skos:narrower, or skos:related properties. While this is well suited for

hierarchical classification schemes, it provides limited support for other types of relationships;

skos:related for example, may be used to describe associative relations, but only in a semi-

formal way, without a more explicit definition of the semantics of this relation. Moreover, the

transitivity of broader and narrower relations are not guaranteed, therefore it is di�cult to

infer, for instance, the instrument family of a given instrument without additional knowledge

not expressed in the model. This taxonomy is therefore su�cient for applications requiring

only a semantic label to represent instruments associated with audio items, it cannot represent

the heterogeneity of instrument relations, or express detailed information, such as shape, size

and the various parts of instruments.

The most widely used instrument classification scheme in the museum community as well

as by musicologists is the Hornobostel and Sachs [von Hornbostel and Sachs, 1914] system.

This exhibits a downward taxonomy by logical division. Many attempts have been made to

9http://purl.org/ontology/mo/mit
10http://www.w3.org/TR/skos-reference

176

improve this [Elschek, 1969], [Lyslo↵ and Matson, 1985], but very few of these departed from

taxonomical organisation.

4.5.3 Instrument Ontology

Although taxonomies allow us to organise data in a hierarchical structure very e�ciently,

they encode a strict relationship between a parent node and a child node without defining

the detailed relationships among instruments or their parts. Musical instruments however

have a multi-relational model, an instrument may belong to more than one family or sub-

family. Our recent collaborative research [Kolozali et al., 2011, 2010] showed that ontologies

based purely on the above mentioned system are insu�cient for rich knowledge representation

of instruments. They cannot support complex query answering, or encode the instrument

characteristics required for the use cases mentioned in Section 4.5.1 and 4.2.5.1.

Our current work includes the design of a Musical Instrument Ontology, which addresses

the issues discussed above. We consider two alternative designs. The first utilises the most

agreed upon classification scheme as a starting point, and expresses multi-relational instru-

ment family memberships which can be encoded in OWL. This can be extended with a

vocabulary of instrument parts, and linked with the hierarchical organisation to describe in-

dividual instruments using our device decomposition model discussed in Section 4.2.3.3, A

foundational ontology (see Section 3.3.2) may also be extended for this purpose. The other

design can be based on a flat vocabulary of instruments and parts as a starting point, and

develop methods to transform this into specific domain ontologies using additional data sup-

plied to a reasoning engine. The benefit of this is that several applications which require

alternative instrument classification can rely on the same shared vocabulary of instrument

terms.

4.6 Temperament Ontology

Knowledge about musical temperament — that is, the tuning of an instrument using a partic-

ular tuning system — is very important in recording pieces composed before the predominant

use of equal temperament staring from the 18th century. This tuning system exhibits a uni-

form frequency ratio between the fundamental frequencies of adjacent notes. With historical

temperaments, each musical key has its own character, therefore it is useful to capture infor-

mation about temperament. It is useful to provide a semantic label to identify temperament,

as well as detailed information about the specifics of tuning used for an instrument in a

recording. We developed a Temperament Ontology for this purpose as an extension of the

Music and the Studio Ontology frameworks, and utilised it in the Web-based temperament

recognition system discussed in Section 5.4.3.

177

4.6.1 Instrument tuning systems

Tuning an instrument consists of choosing the frequency values and spacing or ratio of pitches

that are used. Pure (just) intervals of pitches correspond to whole number ratios of their

frequencies, however these ratios are not compatible with each other as they arranged in

scales (the way octaves are divided into discrete pitch classes) in Western music. It is not

possible to fit for instance twelve pure fifths into seven octaves, i.e. (32)
12 6= 27. The di↵erence

is called the Pythagorean or Ditonic comma equivalent to 23.5 cents. This di↵erence has to

be tempered out — that is, some or all fifths has to be mistuned slightly in order to fit them.

There are many tuning systems. Most commonly, they di↵er in the way they compromise

pure intervals to solve this problem.

4.6.2 An open-ended temperament description model

There is no mutual agreement in the literature on the description or classification of temper-

aments. Therefore, in this ontology we do not impose a hierarchy between types of tempera-

ments.

Figure 4.18: Overview of the Temperament Ontology

We define an opaque top-level temperament concept illustrated in Figure 4.18. Subclasses

of this concept can be used in describing individual temperaments, if necessary, using multiple

class memberships. Since there is more than one way to associate tuning systems with their

properties, we treat temperament descriptions as concepts as well, and use reification to keep

the model open and extensible.

4.6.3 Temperament descriptions

Temperaments can be characterised in several di↵erent ways. The most common methods

are using either the circle of fifths or give the pitch deviations from equal temperament. We

define these descriptions as concepts in the ontology, however, other descriptions may be used

and defined in the future. For example, one might find it convenient to express the same

information using the circle of fourths.

178

4.6.3.1 Deviations from Equal Temperament

In equal temperament, an octave is divided into twelve equal intervals. As a result, only

octaves are pure. All other intervals are impure, and the deviation from pure is di↵erent in

case of each interval. Since equal temperament has become very common, other tempera-

ments are often described by the frequency deviations, in cents, of each pitch class from the

corresponding pitch class in equal temperament.

1 @prefix : </> .

2 @prefix pc: <http://purl.org/ontology/temperament/pitchclass/> .

3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

4 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

5 @prefix tm: <http://purl.org/ontology/temperament/> .

6 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

7

8 :temperament_0 a tm:Temperament ,

9 tm:Valotti ;

10 tm:description :description_00 ,

11 :description_01 .

12

13 :description_00 a tm:DeviationsFromEqual ;

14 rdfs:label "Deviations from equal temperament in cents." ;

15 tm:deviation_from_equal

16 [a tm:PitchClassDeviation ;

17 tm:pitch_class pc:G ;

18 tm:value "3.90984723"^^xsd:float] ,

19 [a tm:PitchClassDeviation ;

20 tm:pitch_class pc:Gs ;

21 tm:value "1.95488264"^^xsd:float] .

22 # ... up to 12 pitch classes

Listing 4.12: Temperament Ontology example using deviations from equal temperament

4.6.3.2 The Circle of Fifths

The circle of fifths has several uses in music theory. It shows the harmonic relationships of the

twelve major and minor keys, and it can be seen as a circle of the corresponding pitch class

intervals, such as (C-G), (G-D), (D-A) and so on. If we go around the circle using pure fifth

intervals, it wouldn’t close. What remains is the Pythagorean comma. Hence, it is often used

179

to describe temperaments by showing how the comma is distributed among the intervals to

close the circle. Note that there are several other types of commas related to di↵erent tuning

problems. These are defined in the ontology.

1 :description_01 a tm:CircleOfFifths ;

2 rdfs:label "Deviations from pure fifth given by a fraction of

Pythagorean comma." ;

3 tm:interval

4 [a tm:FifthInterval ;

5 tm:deviation [a tm:IntervalDeviation ;

6 rdfs:label "-1/6" ;

7 tm:comma tm:PythagoreanComma ;

8 tm:value "-0.166376139378"^^xsd:float] ;

9 tm:lower pc:D ;

10 tm:upper pc:A] ,

11 [a tm:FifthInterval ;

12 tm:deviation [a tm:IntervalDeviation ;

13 rdfs:label "0" ;

14 tm:comma tm:PythagoreanComma ;

15 tm:value "0.0"^^xsd:float] ;

16 tm:lower pc:B ;

17 tm:upper pc:Fs] .

18 # ... up to 12 fifths

Listing 4.13: Temperament Ontology example using the Circle of Fifths

4.6.4 Using the Temperament Ontology

This ontology was designed to describe the results of automatic temperament classification

[Tidhar et al., 2010a], as well as standard temperament profiles. The RDF data expressed

using this ontology may contain the information shown in listings 4.12 and 4.13

The examples describe the temperament of a real-world recording classified as Valotti.

Here, we provide two types of temperament descriptions. The first, :description 00 uses

pitch class deviations from equal temperament to specify how the extracted temperament

is related to equal temperament. The values for each pitch class (only two are shown for

brevity) are given in cents. The second description type, :description 01 is inferred from

the first. It characterises the same temperament using the Circle of Fifths such that the

deviations from pure intervals are given for 12 fifths on the circle in fractions of Pythagorean

180

comma. The human readable rdfs:label is computed using a small tolerance around the

actual deviation derived from measured data.

4.7 Summary

In this chapter we first reviewed ontology design principles, and how they may be applied in

developing ontologies for audio applications. We discussed the state of the art in semantic

audio information management, and outlined how ontologies may be used to enhance present

the state of the art.

As main contribution, we introduced novel ontologies for this purpose. Notably, this in-

cludes the Studio Ontology Framework (Section 4.2), which extends the Music Ontology to

capture detailed information about music production in the studio, and the Temperament

Ontology (Section 4.6), which can be used to identify tuning systems, and describe specific

instrument tuning characteristics. The Studio Ontology framework covers the following do-

mains:

• Technological Artefacts: see the Device and Signal Processing Device Ontologies

(Section 4.2.3.3, and Section 4.2.3.8).

• Modelling change of variable attributes of devices (Section 4.2.3.4)

• Describing recording studios on the Semantic Web (Section 4.2.4.1)

• Modelling the audio engineering workflow by describing recording session types

and audio transformations (Section 4.2.4.2).

• Signal processing workflow provenance: Provide detailed description of events and

device connections in audio signal processing (Section 4.2.4.3).

• A model of describing the life cycle of complex audio e↵ects: A model that par-

allels FRBR in describing signal processing devices, in particular, audio e↵ects (Section

4.2.5.3).

• Recording techniques: Ontologies for microphones and microphone techniques (Sec-

tion 4.2.5.1), audio mixing (Section 4.2.5.2) and audio editing (Section 4.2.5.4).

We also reviewed our current collaborations in developing ontologies for musical instru-

ments and multidisciplinary classification of audio e↵ects. These ontologies will extend the

two main ontology frameworks discussed in this chapter, the Music Ontology and the Studio

Ontology.

While ontology development on one hand serves the purpose of shared knowledge rep-

resentation across several domains or communities, as well as facilitate data communication

181

between computational agent and tools using the Semantic Web in itself, on the other hand,

our use cases in semantic audio information management require novel software architectures

to reach the full potential of the developed ontologies. In the next chapter we outline how

these ontologies are utilised in audio production tools and Web based music information

environments.

182

Chapter 5

Software Tools and Semantic Audio

Applications

The ontologies described in the previous chapter provide the means for communicating in-

formation about many important aspects of music in the context of semantic audio tools.

However, the use of ontologies in music software presents di�culties. Ontologies are struc-

turally complex, therefore generating and interpreting data adhering to an ontology is far

from trivial. This problem can be mitigated by creating software libraries and high-level

tools that hide complexities from the end user, who is, in our case, a developer or a researcher

using an ontology-based system.

Most existing tools for this purpose are either too low-level, e.g. require the manipulation

of individual RDF statements, or not particularly well suited for audio related use cases. These

problems are discussed in more detail and addressed in this chapter. First, a software library

for creating ontology-aware adaptive data structures will be introduced with applications

in audio, then a Web-based demonstrator framework will be described that dynamically

computes features of uploaded audio files and stores the results in RDF. Finally, we outline

some applications of this framework, including an acoustic similarity-based recommender, and

a service for musical temperament estimation.

5.1 RDF data binding with Meta-Object Protocol

Relying on a flexible, ontology-based information management and knowledge representa-

tion framework for audio analysis and intelligent, semantic audio tools turned out to be an

important requirement in our research. Our primary motivation is in the use of modular

ontology schema instead of existing disharmonious metadata formats. In order to advocate

uses of metadata in audio processing, we developed a unified information framework and data

collection tool. This tool can be easily integrated in existing audio production software.

183

5.1.1 Design issues of ontology-based information systems

Although ontologies provide modularity in specifying metadata schema and flexible knowl-

edge management, often, static software implementations limit the extensibility of a system.

Among the most common problems we find is the use of external database software accessed

through hard-coded query templates. This limits the ability to adapt to changes in metadata

schema, besides, accessing the database involves expensive query processing. It is not un-

common that an object-based or even RDF-based information system is used together with

a relational database back-end. This incurs complicated mapping to relational schema which

would otherwise be unnecessary. The RDF-MOP library described in this section addresses

this issue.

Our system avoids the above problems by relying on an e�cient local hash database im-

plementation providing a native RDF store and low-level manipulation of statements in an

RDF graph. In order to abstract these low-level calls, we develop an automatic mapping

mechanism between application objects and RDF statements. This system is able to persist

application data stored in an existing object hierarchy, together with semantic associations

obtained from ontology definitions. The mechanism also provides atomic transaction man-

agement for groups of RDF statements associated with data from a single application object.

Since our framework is to be used as an e�cient semantic metadata store, we avoid the

overhead of network communication between the database and the host application. There-

fore, we implement this system as a shared dynamically loaded library, compiled together

with a database implementation.

Finally, the novelty of the system is the ability to extend an application with dynamically

generated storage containers representing metadata terms defined using the Semantic Web

ontologies described in the previous chapters. This is achieved using a meta-object protocol

and an associated type system outlined in Sections 5.1.3 and 5.1.4.

5.1.1.1 Requirements

The most important requirements of the system can be summarised as follows:

• Extension: The system is be able to extend the application with metadata storage

dynamically.

• Mapping: The system is able to translate and store application data represented in an

existing object hierarchy.

• Consistency: The system maintains metadata and database consistency during inter-

action with a user.

• Integration: The system can be appended to an existing audio application with the

least possible interference with original code.

184

5.1.1.2 Dependencies and configuration

Our aim is to build a reference implementation for existing audio applications written in

C++. This includes the open-source audio editor Audacity1. This confines our choice of

RDF tools to those with C/C++ support. As basis for our triple store implementation, we

use the Redland RDF libraries [Beckett, 2008]. This library permits in-memory or persistent

storage. We configure the library to use an e�cient hash database. For this purpose, we

use BerkleyDB2, a high-performance open-source embedded database solution distributed by

Oracle. Our current implementation makes use of the cross-platform framework wxWidgets3

for greater compatibility with Audacity. Ideally, the system should rely on the Standard

Template Library (STL), however, wxWidgets provides compatible classes which makes such

transition relatively easy.

5.1.2 Data binding

If we wish to use RDF to capture information resulting from audio analysis or user interaction

in semantic audio tools, we need to be able to match the information sources within the tool

to the RDF data model and/or a corresponding data store. This corresponds to the process

commonly termed as data binding in software engineering. It is a technique that binds two

data sources together and maintains synchronisation.

Finding an e�cient way of accessing from or updating information to a triple store within

a typical audio application written in an object orientated language is a primary challenge.

Using a local database which is dynamically loaded into the application, this can be achieved

in two ways: using in-process API calls, or using SPARQL. Because of the computational

expense associated with query processing, we base our implementation on low-level API calls.

However, besides the burden of manipulating the RDF store at a fairly low level, an important

problem arises form conflicting data models: the class hierarchy of a typical object-orientated

application, and the RDF graph. As a solution to this problem, we use a software engineering

technique called metadata mapping. This is similar to object-relational mapping used in the

context of relational databases. We provide a mechanism which allows persisting application

objects in an RDF database automatically. However, this requires the data in the application

to be associated with ontological semantics (see Section 2.4.3). A further requirement is the

ability to dynamically instantiate objects representing arbitrary metadata terms defined in

an ontology, and accommodate changes in the ontology without significant reengineering, or

the need for recompiling the application. In our system, a run-time Meta-object Protocol

(MOP) [Kiczales et al., 1991] provides the basis for the solution to these problems.

1http://www.audacityteam.org/
2http://www.oracle.com/technology/products/berkeley-db/index.html
3http://www.wxwidgets.org

185

5.1.3 Meta-object Protocol

A Meta-object protocol (MOP), in simple terms, provide a way to interact between a set of

functional objects, which are at the base-level in typical object orientated systems, and a set

of meta-objects which describe base-level objects and their behaviour at the meta-level.

Meta-object protocols can be used to implement reflective systems which can reason about

and act upon themselves. Such systems are composed of a base-level and a meta-level, whereby

objects at the meta-level have access to representations of the base-level being reasoned about.

The meta-level is causally connected to the base-level, such that changes at the meta-level

cause changes to the behaviour of the base-level [Welch and Stroud, 2001]. From our perspec-

tive, the most important property of a meta-object system is the ability to associate objects

with descriptions, that is, the ability to move from simple data within a software system

towards the representation of information and knowledge (see Section 2.1).

Static model OO model MetaObject model
Address Address Address
0x0000 0x0000 0x0000

0x1000 0x1000

0x2000

0x101F

0x1....

0x2....

0.79 0.79
.....
.....

code
...

string
type
0.79
.....
.....
generic
slots

meta
object

extensive type
descriptor

32 bit float
value

assumed
meaning
only object

encapsulation

implicit
meaning

link to type
descriptor

explicit
meaning

- URI
- Qname
- Parents
- Properties
- Equivalent terms
- ...

*

Figure 5.1: Memory Model for Meta-object Protocol

Meta-object protocols were originally developed for the Common Lisp Object System

(CLOS) [Levine, 2003]. They can also be found in the context of more recent dynamic

languages interpreters such as that of Python’s4, and have been utilised in numerous other

applications. For instance in the Python language interpreter, objects representing data

elements are always associated with a type object describing the base object and controlling

its behaviour. Other examples include using a MOP for facilitating atomicity in database

transactions [Stroud and Wu, 1995] to support maintaining data consistency in unreliable,

concurrent, or multiuser environments, providing language extensions for C++ [Chiba, 1995],

developing distributed object systems [Lee et al., 1999], implementing behavioural reflection

4http://www.python.org/

186

in byte code interpreters [Welch and Stroud, 2001], and finally the development of fault-

tolerant systems [Taiani et al., 2005]. Using meta-objects allows for extensible association

of data with semantics within an application, therefore, the application is able to inspect

the relations, associations or state of its objects, and dynamically change their meaning

and behaviour. For our particular use case however, we do not need to implement the full

protocol required for instance for a dynamic interpreter. Yet, its use is beneficial for blending

functional and logic programming paradigms when managing metadata in an e�cient but

static programming environment.

From an implementation point of view, there are two main types of meta-object protocols,

run-time MOPs, and compile-time MOPs. Run-time protocols use meta-objects, such as

extensive type descriptors in the run-time environment, while compile-time MOPs provide

control over the compilation of a program, therefore the meta-level remains static.

In our library, we implement a run-time meta-object protocol to facilitate metadata map-

ping between application data and RDF data. In this scheme, each object representing some

arbitrary data is linked with a meta-object, which associates the object with an URI corre-

sponding to an ontological definition. Some inferred characteristics, such as the object’s place

in the taxonomy part of the ontology, its permitted relationships, or links to equivalent terms

are also included. This is illustrated in Figure 5.1 with the comparison of simplified memory

models of various strategies for storing application data.

Two specific types of meta-objects are used in our system to represent RDF classes and

properties. These meta-objects are statically designed to represent information defined by

ontology schema, however, they are dynamically instantiated by a generator via an inference

mechanism when loading schema documents into memory. This is achieved using the following

protocol: Ontology schema are parsed into a model using a suitable Redland syntax parser.

Obeying RDF and OWL language rules, we build meta-objects for each class and property

defined in the ontologies in question. First, we enumerate class and property declarations in

the conjunctive model and instantiate a skeleton object for each. Next, we separately infer the

inheritance hierarchy within the disjoint hierarchies of ontological terms and relationships.

This information is appropriately used to model the same hierarchy within the set of previously

created meta-objects. This is followed by assessing equivalence relationships and update the

object model accordingly. Finally, the assignment of properties to classes in the model can

be made. The meta-objects resulting from this process are stored in hash maps with keys

corresponding to the resource URIs used for identifying them. These objects are available

in the application and can be used to link data with semantics, and to create metadata

containers according to their descriptions. In practice, this is achieved by constructing objects

of a specialised type system we describe in Section 5.1.4.

187

5.1.4 Type system

For the purpose of instantiating metadata containers as needed in the editing workflow, we

develop a type system associated with the meta-object protocol and the basic node types

appearing in the RDF model. Elements of this system can be dynamically created and used

to store metadata in a generic way.

Figure 5.2: Type System

The system addresses the various data representation needs in our software. Generic

resource types are assigned a corresponding meta-object, linking the resource to its ontological

class definition. These objects contain a map in order to model the properties associated with

the class. Literals are modelled after the types permitted in RDF and XML Schema. We can

represent both plain string literals, and string literals coupled with a language tag this way.

Numerical types however require a more complex representation. Our solution is based on

C++ template specialisation. We map permitted XSD types (which are used for identifying

data types in RDF) to corresponding simple or complex C++ data types wrapped into generic

container templates. For instance, vectors and matrix classes can be mapped as plain strings

or suitable XML literals in the RDF representation. As an example, a C++ meta-program

for representing typed RDF literals can be found in Section C.2 of the appendix.

The classes of this subsystem can be configured in three di↵erent ways. They can act

as references simply associating semantics with data stored elsewhere. This is similar to the

implementation of logic references in the Castor logic programming library [Naik, 2006]. The

objects can be added to existing data structures, wrapping existing functionality. Finally, they

can be used independently, within a separate hierarchy, for fulfilling more complex metadata

management needs. For example, this shall be used for storing the wide range of audio

features associated with a track. In all modes of operation, a set of overloaded constructors

are used for creating appropriately configured objects depending on their use.

188

5.1.5 Architecture

The architecture of the library consists of several classes with a complex interaction model.

A simplified diagram showing the main building blocks can be seen in Figure 5.3.

Figure 5.3: Architecture of the RDF-MOP library

The inference layer is used to extract the class and property hierarchy of ontology defini-

tions to build meta-objects. Logic programming functionalities can be added at this level in

the future.

The interface and transaction layer is responsible for persisting the data stored in the

object system, wrapping low-level graph manipulation calls and coordinating the addition of

triples that must be stored atomically.

The mapping layer consists of a name space manager, a meta-object map, an object

registry and a type mapper class. It is mainly responsible for linking meta-objects and

dynamic-objects used in the system. The TypeMapper class maps XSD data type URI’s used

for identifying RDF typed literals onto function objects. These function objects (or functors)

are used for creating dynamic objects, appropriate instances of dynamic class templates as

described in the previous section.

The object management layer consists of the meta object and dynamic object managers.

189

Their primary function is storing and maintaining the objects created during the interaction

with the model. Some additional functionality, common across dynamic objects, is imple-

mented here using external polymorphism.

Meta-objects contain information corresponding to RDF and OWL classes and properties.

For example, a classInfo object holds the inheritance hierarchy of a particular class. These

instances are dynamically generated when parsing ontology schema.

Dynamic objects represent terms and relationships as objects in the application, string

literals, simple XSD types as well as more complex numerical types. The previously described

type system is implemented here.

The software library and core architecture described in this section provides the basis for

a semantic audio desktop, which builds on and extends the idea of using RDF and Semantic

Web technologies for personal information management in typical desktop environments.

5.2 The Semantic Audio Desktop

Among the first steps towards a complex and interactive environment — where human and

machine intelligence are working together — is a suitable information management system.

The system proposed here consists of two main parts, one of which is a knowledge repre-

sentation model. To this end, recognising the parallelism between the unbounded nature

of musical information needs in our application, and the general information needs on the

Web, we borrow the data and knowledge representation model of the Semantic Web. A soft-

ware framework constitutes the second part of the system. This framework implements the

afore-mentioned data model, provides connectivity, representational mapping, and grounds

for interaction, for example, the ability of tracking user actions. In the rest of this section,

we outline some applications using these principles, as well as applications of the software

components and ontologies in music production.

The proposed framework is conceptually related to the Semantic Desktop paradigm; the

idea of an intelligent desktop environment [Decker and Frank, 2004]. By definition, the

Semantic Desktop [Sauermann et al., 2005] is a device in which an individual stores digital

information — that is, data which are otherwise stored on a personal computer by means of

conventional techniques such as binary files, spread sheets, and so on. Its most prominent aim

is the advancement of personal information management through the application of Semantic

Web technologies to the desktop environment. In our work, we extend this idea to the audio

production environment, and in particular, audio editors used in post production. Besides

seeing the Semantic Audio Desktop as requisite for building intelligent audio tools, there is

additional benefit from using this system. We shall be able to collect high-quality metadata

during the music production process, and open up the creative environment to social media

or other means that allow the creation and exchange of user-generated content [Kaplan and

190

Haenlein, 2009]. The metadata — being in the same format as other data on the Semantic

Web — can be fed back into the public domain, for example as a Linked Data resource. Thus,

these data can be used in advanced cataloguing, content-based music recommendation and

search services, as well as music education, collaborative music making and other future Web

applications.

5.2.1 Metadata management in music production

Consider the user interface shown in Figure 5.4. If we were to express this information in

RDF, we have several choices: A programmer may manually pick the relevant terms from

ontologies and write some static code for each individual tag that translates the values entered

by the user. Alternatively, we can rely on an API or SPARQL. In the first case, we have to

use API commands to compose RDF statements from terms and values, then serialise the

statements or store them in a database. In the second case, we may use SPARQL update

protocol5 to store the information in a database. Yet again, we have to hard code either a

SPARQL update or query for each item we wish to publish.

In each of the above cases we lose two of the most important advantages of using RDF: the

greater expressive power and its open-ended nature. First, our expressiveness is limited not by

the data model or the richness of the ontologies, but by the interface implementation. Second,

as ontologies evolve, both programming and user interfaces become deprecated, requiring a

software update. We address these issues by building both our internal data representation

and the user interface directly from schema expressing ontologies. It has to be noted that we

neither assume a persistent network connection, nor we rely on an external database for most

proposed functionality to work. This application relies on a built in database back-end and

RDF library described in Section 5.1.

5.2.2 Data collection in the studio

Developing a dynamic user interface for RDF data poses similar challenges to the mapping

problem detailed in Section 5.2.1 In fact, in order to generate a user interface we use the

same process to collect information about terms and relationships. This allows us to load

hierarchies into dynamic list controls or tree controls provided by application programming

frameworks. Such an interface is shown in Figure 5.5 with a possible view on the data.

It exemplifies loading terms from the Multitrack Ontology allowing to describe a recording

project in detail.

The three panels of the interface are divided between a listing of classes or categories

available in a domain, instances or individuals of a selected class, and lastly, the properties

of a selected individual as shown in the third pane. We generate the content of the Hints and

Help box from rdfs:comment predicates.

5http://www.w3.org/TR/sparql11-update/

191

Figure 5.4: ID3 Metadata Editor Interface

If we were to add a new track type to the editor this interface does not have to be changed.

New terms added to the ontologies will show up in the correct place. Admittedly, there are

di�culties in generating a user interface for ontologies expressed in RDF. Most notably,

allowing a large number of terms to be seen directly is confusing to the user. We address this

issue by using a tabbed interface such that each page has a limited focus. For example, the

interface of Figure 5.5, separate pages are designated for project details, people or devices.

The selection of focus is semi-automatic since we choose top-level classes and display both

derived types and the ones which can be taken as values for some properties declared in the

same ontology. Additionally, the terms may be grouped using expandable tree controls to

provide an even clearer user interface.

Figure 5.5: Music Ontology Interface in Audacity

192

A lot of information that would normally require manual data entry can also be generated

during the normal working procedure. A track title for example can be obtained from a

relevant widget of the audio editor interface. The clip sequence names might be obtained

from labels naturally assigned to recording takes. This releases the user from entering trivial

information and allows to concentrate on interesting details. User defined terms can also be

added or removed using the appropriate buttons. However, this may incur dynamic ontology

expansion which is problematic if such data is published online.

Instances can be added in the middle pane using the New button. A necessary URI is

generated automatically, however if a specific URI is to be assigned, for example a FOAF

link to a person, we may also use that here. A lookup mechanism that allows access to more

information about a resource in this interface constitutes future work.

5.2.3 Workflow tracking

In this section, we describe a subsystem for logging user actions in an audio editor. The

primary motivation behind developing such a system is the requirement for tracking the

application’s state. This is vital if we wish to keep metadata consistent with the audio

data during an editing session. Example use cases include running a processing algorithm

destructively, in which case new metadata has to be extracted, or splitting an audio track,

in which case references have to be updated. A useful side e↵ect of this system is the ability

to describe the edit history in RDF. In future applications, this may also be applied for

establishing a user context. In a personalisation framework, this can be used to aid the

editing process itself.

Human-Computer interaction in a typical graphical environment is centred around com-

mands corresponding to mouse clicks or key-strokes. In response to these commands, the

machine performs some of its functionality which results in some changes of data values in

the software. This general model applies to audio editing procedures such as moving an audio

clip on a timeline, or running a processor plugin. If we choose to have metadata representing

some aspects of the data, it has to be kept consistent both in memory and in a database.

We developed an Edit Ontology described in Section 4.2.5.4. This provides the necessary

semantic framework for recording user events. The ontology is able to represent user actions

operating on data. In order to fulfil our requirement for consistency, these changes need to

be reflected in the metadata, thus reflected in the database. In practice this means that we

have to deal with conflicting statements, as a result of edit commands. Unfortunately, this

cannot trivially be expressed in a single RDF graph or document. Several approaches were

suggested to resolve similar problems, such as the RDF reification syntax or the introduction

of contexts, [Guha et al., 2004] turning triple statements into quads for representing a context

in which a statement is trusted. The use of named graphs was suggested in [Carrolla et al.,

2005]. This allows the representation of possibly conflicting information in separate graphs.

193

Figure 5.6: Workflow tracking using Named Graphs

In one experimental setup we used named graphs to represent changes to the metadata,

as a result of a command events. This technique is supported by both the Redland library

and the SPARQL specification for issuing queries on a set of graphs called RDF data sets.

An RDF Dataset comprises one graph, the default graph, which does not have a name, and

zero or more named graphs [Prud’hommeaux and Seaborne, 2008]. A named graph is an

RDF graph associated with a URI reference. This reference may appear in another graph,

typically a default graph. Following the Redland naming convention, we call this reference a

context node and associate it with the concept of context in the Edit Ontology. We consider

a set of modifications as a result of a command atomic and immutable. We start from an

empty graph associated with the zeroth context. Each command event produces a new pair

(context,named graph). Then, the new named graph is used to store the statements related

to the metadata objects, changed as a result of executing the command. Further, we consider

a group of statements about a single metadata object immutable. Any change to the state

of the object is stored into a new named graph associated with the context. An example

of using this system is depicted in Figure 5.6. It describes a typical sequence of commands:

creating a new audio track, changing its name and finally creating a recording. The context

nodes in the default graph are used to identify the named graphs, which record the changes

to particular statements about subjects.

This methodology has been inspired by, and in some respect similar to other workflow

modelling frameworks including PML [da Silva et al., 2006], and the music processing workflow

model N3-Tr [Raimond, 2008] discussed in Section 3.2.6.3. Our main objective however is

workflow tracking as opposed to planning or execution. Albeit our method provides a working

solution, it has considerable drawbacks. Most importantly, the use of named graphs presents

194

di�culties in query formulation (see Section 5.2.4) and data serialisation. Other concerns

associated with this representation of change are discussed in Section 4.2.3.4. For this reason,

we have moved away from this model in favour of the consolidated reification mechanism

discussed in Section 4.2.3.5. However this has not been extended to the whole set of entities

that need to be considered in a semantic audio desktop environment. This constitutes future

work. In the next section, we discuss a SPARQL query interface which provides access to

data collected using the data entry interface, as well as workflow data collected using the

named graph model.

5.2.4 Query interface

A SPARQL query interface was built to retrieved the information collected by the interface

described in Section 5.2.2. This interface also supports the workflow tracking model described

in the previous section. The following simple example shows how one could find the working

project title using a SPARQL query:

1 PREFIX dc: <http://purl.org/dc/elements/1.1/>

2

3 SELECT ?projectTitle

4 WHERE {

5 <urn:project:0001> dc:title ?projectTitle .

6 }

Listing 5.1: Simple SPARQL query in an semantic audio editor

1 PREFIX eo: <http://purl.org/ontology/studio/edit#>

2 PREFIX mt: <http://purl.org/ontology/studio/multitrack#>

3

4 SELECT ?description ?trackName

5 WHERE {

6 ?gr eo:cmd_event ?commandEvent.

7 ?commandEvent eo:description ?description.

8 GRAPH ?gr

9 {

10 ?track mt:track_name ?trackName.

11 }

12 }

Listing 5.2: SPARQL query for retrieving a set of command events

195

The example in Listing 5.2 demonstrates how to query the database containing the work-

flow data described in accordance with the named graph model detailed in the last section.

Assume we would like to list the sequence of modifications to the editor so far. Here, the query

is matched against all named graphs in the database, containing various states of metadata as

a result of a user operating on the editor interface. Using the model in Figure 5.6, this query

provides the following results: Besides spreadsheet like browsing of metadata (see fig. 5.5),

we extend the previously described interface to enable the evaluation of SPARQL queries on

the local database. This is illustrated in Figure 5.7.

description trackName

"New Track" "untitled"

"Rename" "guitar"

"Recording" "guitar"

Figure 5.7: SPARQL query interface in Audacity

196

5.3 SAWA: A Web architecture for semantic audio analysis

Sonic Annotator Web Application6 (SAWA) was developed with the intention of providing

an easy to use graphical user interface (GUI) for automated audio analysis on the Web.

This is in contrast with systems providing a Web services API only such as the EchoNest

service. It was designed specifically for demonstrating audio feature extraction technologies,

and the use of RDF and Semantic Web technologies in audio analysis. The demonstrator

was gradually developed into a harmonised framework of support libraries which facilitate

the rapid development of Web-based applications involving audio analysis.

The Web applications built on this framework currently include SAWA-Feature Extractor,

an audio analysis tool, SAWA-Recommender, a system using content-based similarity as basis

for recommendation, as well as applications built collaboratively, such as SAWA-TempEst,

an online system for Harpsichord tuning estimation [Tidhar et al., 2010a], and Hotttabs, a

multimedia guitar tutor [Barthet et al., 2011]. These applications are detailed in Section

5.4. Further applications are currently in development including SAWA-Experimenter which

supports the easy setup an execution of experiments such as the ones discussed in Section

1.5.3. SAWA ties together many of technologies developed at the Centre for Digital Music

during the OMRAS2 project7 [Dixon et al., 2010; Fazekas et al., 2010; Cannam et al., 2010a].

It utilises Semantic Web technologies and it uses Semantic Web ontologies which provide its

internal model. In this section, we outline the software architecture of this framework.

5.3.1 Objectives

We can summarise the main objectives of the SAWA framework as follows:

• Facilitate the use of semantic audio analysis on the Web.

• Support a wide range of di↵erent algorithms.

• Allow the use of stable released code together with research prototypes.

• Use a flexible, ontology-based common data model for representing information about

audio analysis algorithms, configurations and results.

• Be able to adopt to changes in configuration parameters.

• Automatically generate user interfaces for di↵erent algorithms and configurations.

• Store feature extraction results, and avoid repeated computation of features given the

same audio content and algorithm, with the same parameter configuration.

6http://isophonics.net/sawa/
7http://www.omras2.org/

197

5.3.2 Components

The SAWA framework is built on a number of modular components combining software

developed collaboratively, as well as using third-party components. The author’s contribution

include the development of VamPy and VamPy plugins (see Section 5.3.2.3), contribution to

the design of ontologies used by the system, contribution to open source projects such as MoPy

(see Section 5.3.2.6) that facilitate using ontologies in software, and finally writing the SAWA

system that ties these components together. SAWA itself consists of a set of Python libraries

written using the components detailed below, as well as standard application wrappers around

these components that other Python libraries can use.

Figure 5.8: An illustration of how various software components and ontologies are used in SAWA

Figure 5.8 shows how various components and ontologies interact in a client-server ar-

chitecture for building browser-based applications. The server manages multiple concurrent

user sessions, maps user queries to computational or database requests, and holds parameter

repositories describing audio analysis plugins. It communicates with the computation engine

and the end-user application using data expressed in RDF, and with a database back-end

using SPARQL. In the following section, we first briefly outline the most important compo-

nents that are utilised in the SAWA system. The architecture and implementation is then

discussed in Section 5.3.3.

5.3.2.1 Vamp plugins

Vamp [Cannam, 2009] is an plugin system designed for audio feature extraction. It consists of

a binary plugin interface with C linkage, and a C++ SDK for plugin and host development.

198

Vamp plugins accept audio data as input and produce structured data as output.

The use of Vamp plugins enable SAWA to support a wide range of di↵erent algorithms.

A large library of Vamp plugins are available8, while the plugins are supported in host appli-

cations such as Sonic Visualiser (see Section 5.3.2.4), Sonic Annotator (Section 5.3.2.5), and

the Audacity9 audio editor. The range of existing Vamp plugins include:

• Estimators for musically meaningful features, including note onset detectors, beat and

tempo estimators, structural segmentation, and key estimators;

• Low-level audio feature extractors, such as amplitude, measures of spectral shape;

• Metadata annotators such as audio fingerprinting and identification;

• Calculators for dense features that are often used in visualisations, such as chromagram

and harmonic spectrum.

The features represented in C++ data structures returned by a Vamp plugin are rich

enough to contain the necessary data to represent musically meaningful features such as

beat or key-change information. However, they are not rich enough to describe what those

features represent. They do not provide enough information for a host program to place them

in context among other musical features.

While it may be evident to a human that a plugin named “key change detector” detects

key changes, a program cannot know that the outputs of this plugin will be comparable to

other sources of key information [Fazekas et al., 2009]. In order to establish this relationship

and ensure that the returned features are correctly understood, the plugin’s output needs to

be associated with relevant concepts in the Audio Features Ontology (see Section 4.3). The

terms used to make this connection are found in the Vamp Plugin Ontology (see Section 4.4).

5.3.2.2 Vamp ontologies

The Vamp Plugin Ontology (see Section 4.4 and [Cannam et al., 2010a]) consists of two

conceptually di↵erent sub-ontologies: The main part of the ontology describes Vamp Plugins

as separate entities and allows linking them to individual plugin outputs, that is a type of

output a plugin is capable to produce. It also allows grouping plugins into libraries similarly

to their binary distribution.

The most useful aspect of this for the SAWA system is the association of a plugin outputs

with terms in the Audio Features Ontology to express what the output describes. These may

be distinct event types like note onsets, features describing aspects of the whole recording

such as an audio fingerprint or dense signal data such as a chromagram. SAWA uses this

8http://vamp-plugins.org/download.html
9Vamp Plugins in Audacity: http://audacityteam.org/wiki/index.php?title=Vamp_Plug-ins

199

ontology to identify the exact source of data and to annotate the result so that they can be

used more meaningfully. The Vamp Transform Ontology is published as part of the Vamp

Plugin Ontology, though it is considered conceptually separate. It contains terms to describe

how a plugin may be configured and run. SAWA uses this to drive its processing, identifying

parameter values and other details such as audio block and step sizes. This information is

expressed and stored using the same RDF format as the results without imposing any addi-

tional encoding requirements. Any agent reading these results will therefore have certainty

about how they were computed. This type of information is a very valuable detail in the

context of any data-centric field of research.

5.3.2.3 VamPy

VamPy, a Python wrapper for Vamp plugins is a crucial component in several applications of

SAWA. This wrapper plugin acts as an ordinary Vamp plugin which may be installed in the

usual manner. When it is installed, any appropriately structured Python scripts found in its

script directory will be presented as if they were individual Vamp plugins for any Vamp host

to use. VamPy permits Vamp plugins to be rapidly and dynamically developed using Python

libraries for numerical and scientific computation such as NumPy and SciPy. Here, we only

outline how VamPy is used in SAWA. Its architecture and services, such as the type inference

mechanism which enable the use of dynamic typing in VamPy plugins is briefly described in

Appendix B.2.

The most useful aspect of VamPy for the SAWA system is that it permits the use of audio

analysis research prototypes written in Python, without the need for implementing the plugin

in C++ first. We utilise this feature of VamPy in the TempEst system discussed in Section

5.4.3, where the audio analysis as well as the resulting RDF data is produced by a VamPy

plugin. Another possible application of VamPy is illustrated in Figure 5.8, where it allows for

the extension of the system using experimental scripts. However, for security, this requires

sophisticated sandboxing facilities which are currently not provided.

5.3.2.4 Sonic Visualiser

Sonic Visualiser10 [Cannam et al., 2010b], is an audio analysis application and Vamp plugin

host. It is also capable of loading and viewing features calculated by other programs. In

particular, it can load multiple sets of features associated with a single audio file from an

RDF document generated by SAWA or Sonic Annotator. It therefore serves as a possible

“o✏ine” visualisation interface for the SAWA system [Fazekas et al., 2009].

10http://sonicvisualiser.org/

200

5.3.2.5 Sonic Annotator

Sonic Annotator11 is an audio analysis application which applies Vamp feature extraction plu-

gins to audio data in a batch. It is built using Sonic Visualiser libraries, the two applications

therefore share capabilities such as broad support for di↵erent audio file formats, network

retrieval of audio files, and the interpretation of feature extraction specifications (also called

“transform” in the context of Vamp related ontologies) in RDF using the Vamp Transform

Ontology (see Section 5.3.2.2).

Sonic Annotator currently serves as the main computation engine and Vamp plugin host

within SAWA, albeit other solutions, such as Python Vamp host SDK (a low-level Python

wrapper around the Vamp C++ host SDK) is under development. SAWA includes a Python

wrapper library around the functionality of Sonic Annotator, which communicates with the

application using Unix pipes. This library provides a simple API for other parts of the system

to use, including methods that are similar to those of the Vamp host API for enumerating,

configuring and calling Vamp plugins. The communication between the Python wrapper and

Sonic Annotator is based on sending and receiving data encoded using RDF.

5.3.2.6 MoPy

MoPy12 is a Python interface for the Music Ontology and related ontologies. It generates

Python classes associated with ontology terms which simplifies interaction with RDF data.

SAWA uses an adapted version of MoPy in generating Vamp plugin configuration pages, and

in general to complement its object model using terms defined in Semantic Web ontologies.

5.3.2.7 CherryPy

SAWA builds on its own Python-based Web server using the third-party open-source library

CherryPy13. This library allows for writing HTTP request handlers as ordinary methods

defined within a web application class. This way it is straightforward to serve dynamically

generated web pages, as well as publishing data received from other system components. Cher-

ryPy supports the Web Server Gateway Interface (WSGI) interface, making SAWA portable

to other server environments and implemented, for instance, as a traditional Common Gate-

way Interface (CGI) application behind an Apache server.

5.3.3 Architecture

SAWA combines the previously described components into a framework that facilitates the

development of Web-based applications involving semantic audio analysis. SAWA supports

11http://omras2.org/SonicAnnotator
12http://sourceforge.net/projects/motools/mopy
13http://www.cherrypy.org/

201

applications that follow the Representational State Transfer (REST) style Web application

design, where Web pages form a virtual state machine, allowing a user to progress through the

application by selecting links, with each action resulting in a transition to the next state of

the application by transferring a representation of that state to the user [Fielding and Taylor,

2002]. It also supports applications that follow linked-data principles [Berners-Lee, 2006],

and Semantic Web user agents, that connect to an application using a SPARQL-endpoint.

Note that currently the SPARQL interface is in experimental status, and supports only the

retrieval of previously computed transforms from SAWA’s database.

Processor /

Vamp Host
RDF Database

Wrapper

Data Model, Application Logic

(Session Management)

Audio storage /

File system

Wrapper

Upload ServerStatus ServerTransform Server

HTML

Generator
Plugin

Server

Common API Layer

SPARQL

Server
API Server UI Server

REST / RDF,

JSON

SPARQL / RDF,

JSON

Semantic Web

user agent

3rd Party Service

Wrappers

Web Applications

REST / HTML

Figure 5.9: Simplified software architecture of SAWA

A somewhat simplified architecture of the SAWA framework is shown in Figure 5.9. These

building blocks are implemented as one or more classes in the actual application. Di↵erent

types of applications are serviced by conceptually di↵erent server components available at

di↵erent ports, or using di↵erent URIs. The API and UI servers together provide for building

web applications that use interfaces generated on the server side. This supports building light

weight clients using a combination of standard Web technologies (HTML, CSS, Javascript).

Web applications that use client side interface generation can makes use of, for instance, the

JQuery14 library to dynamically load content from the server via XMLHttp requests. This

communication can relay on the the Web API server alone, but the client has to be able

to process the returned RDF or Javascript Object Notation (JSON) data. An experimental

14http://jquery.com/

202

SPARQL server provides access to information stored in SAWA’s database, such as previously

computed features of audio files. The various functions provided by SAWA are bound together

in a common layer, a simple Python API provided by a set of underlying classes, which can

be used to implement di↵erent types of servers.

5.3.3.1 Domain model and control logic

The communication between the clients and the server is co-ordinated using the Model View

Controller (MVC) architectural pattern [Evans, 2003]. Some important domain objects in

the MVC model, as well as the database schemata for the application framework are provided

by the Music Ontology, its extensions and the Vamp plugin ontologies. The corresponding

data structures are generated from the ontology specification using the previously mentioned

MoPy library (see 5.3.2.6).

The controllers in the MVC model are implemented by the classes managing information

about feature extraction plugins (plugin server), caching and previously executed transforms

(transform server), file uploads (upload server) and the current status of the application (sta-

tus server). These components are implemented by multiple classes, each providing a simple

API with relevant functionality. For instance, the Transform Server consists of two classes:

the TransformManager is responsible for maintaining information about previously computed

transforms accessing the database for storing or retrieving results and notifying the domain

logic to perform feature extraction if the transform is not stored. The TransformServer class

is responsible for content negotiation and accessing di↵erent views of the data according to

the requested output type. It provides for returning data in di↵erent formats, for instance,

RDF data in Turtle syntax, RDF/XML embedded in HTML (to be displayed to a user who

wish to learn about the use of RDF in audio analysis), or a file download. The necessary data

conversions may be performed by di↵erent classes such as the underlying ResultsController

or the HTML user interface generator.

The status server is responsible for informing clients about the status of long processes

such as feature extraction or data conversion in response to API calls. This is important

in cases where numerous audio files or computationally expensive transforms are part of

a request. The upload server accepts and manages file uploads, and perform tasks such as

verification of the uploaded file (i.e. check if a valid audio file was indeed uploaded by the user)

and generating responses necessary to support multipart HTML5 uploads. The plugin server

maintains and provides information about the available feature extractors in the system.

These functionalities are tied together by additional application logic for accessing the

feature extractor engine, the underlying database, the file system for temporarily audio file

storage, and third-party Web services such as MusicBrainz, the EchoNest15 or YouTube16.

15http://www.echonest.com/
16http://www.youtube.com/

203

5.3.3.2 User session management

SAWA operates in a multi-user environment. It is able to handle multiple concurrent user

sessions and maintain information such as uploaded audio files, executed transforms, and

saved transform configurations in several isolated execution contexts. User session manage-

ment is implemented as an extension plugin hosted by CherryPy’s multi-threaded Web server

environment. The extension called DirectorySession isolates user sessions by creating a

separate file system directory for each active session where audio files, configuration data and

temporary files o↵ered by the transform server can be stored. It maintains status information

in memory for the duration of the user session and notifies the relevant logic to delete tem-

porary files and any uploaded audio material (assumed to be copyrighted) when the session

expires.

5.3.3.3 Dynamic user interface generation

SAWA provides for generating a configuration interface for audio feature extractors which light

weight clients can request and use. These interfaces are automatically built by interpreting

RDF data describing Vamp plugins using the Vamp plugin ontology (see Section 5.3.2.2).

The interfaces are expressed in HTML, which is generated by mapping plugin parameter

types to HTML form elements. Similarly, RDF data describing plugin libraries can be used

to generate high-level descriptions of Vamp plugins such as the main interface of SAWA-

FeatureExtractor discussed in Section 5.4.1. The automatically generated user interfaces can

accommodate di↵erent feature extractors as long as they are described in RDF. Therefore it is

possible to extend SAWA with new functionality (i.e. adding new plugins) without changing

or updating its codebase.

5.3.3.4 RDF caching and pagination

SAWA identifies uploaded audio files by computing a fingerprint using the third-party Mu-

sicDNS17 system and retrieves an associated identifier. This identifier is matched against the

MusicBrainz database to obtain editorial metadata which can be added to the results of audio

analysis. The fingerprints are also stored in an RDF database together with these results.

SAWA caches output of feature extractors at the level of audio items. All data related to

a unique fingerprint is stored in a named RDF graph [Carrolla et al., 2005] together with

the provenance of the transform execution. This includes the configuration parameters of

the algorithm computing the features. Caching can be enabled or disabled by the user or

a description associated with the algorithm stating whether the transform is deterministic

producing the same result at each execution, or non-deterministic producing di↵erent results

at each execution.
17http://www.musicdns.com/

204

Additionally, SAWA can divide large RDF descriptions of audio feature extraction results

for e�cient communication and storage. This is especially useful when retrieving results of

low-level transformations such as spectrograms which tend to be very large when expressed

in RDF. This process is called pagination. We utilise the RDF vocabulary associated with

the link-data API18 for describing how result sets belong together and how they may be

recombined on the client side.

5.3.4 SAWA and linked data

Using RDF and the linked data concept is key in creating the modular architecture described

above. The server side application uses RDF data to communicate with other components

such as Sonic Annotator and interprets RDF data to generate its user interface dynamically.

It also accesses third-party data sources to obtain metadata, and incorporates these in the

output. An additional benefit may come from the fact that the data collected by this appli-

cation may be released and linked with additional linked open data repositories discussed in

Section 2.4.7. The advantages of using the RDF format in the context of SAWA are manifold:

• Generic interface design: Interfaces can be generated for any number and type of

plugins and their output configuration.

• Generic implementation: The system may rely on any suitable Vamp plugin host

or computation engine.

• E�ciency: Cached results can be returned from a suitable RDF store instead of re-

peating computation.

• Extensibility: The system can access other linked data services to augment the results

with di↵erent types of metadata.

So far we have discussed the core components and principles that are utilised in building

the framework of libraries that constitute the SAWA system. In the next section we describe

several applications that were built using this framework. This includes Web applications for

batch audio feature extraction, music recommendation, music tuition, and the analysis and

estimation of musical temperament.

5.4 Applications of SAWA

In this section we outline some Web-based tools built using SAWA and Semantic Web tech-

nologies. These tools support primarily music informatics use cases. The SAWA framework

introduced in Section 5.3 provides for flexible Web-based access to music analysis algorithms

18http://purl.org/linked-data/api/vocab

205

wrapped as Vamp or VamPy plugins and serves as the basis for a set of Web applications

with similar underlying needs. Some of the prime goals of the applications descried in this

section can be summarised as follows:

• Demonstrate the utilities of dynamic interpretation and generation of RDF data in

end-user applications.

• Prototype some data modelling concepts to be adapted in information management for

semantic audio applications.

• Promote the use of the RDF data model for interoperability in music information re-

trieval.

5.4.1 SAWA Feature Extractor

The main application of SAWA is a Web-based audio analysis system19. Contrary to systems

using a Web Services API, this program is developed with the intention of providing an easy

to use human interface as well as a SPARQL query interface. SAWA Feature Extractor works

with a collection of audio files uploaded by the user. A collection can be built using the

interface shown in Figure 5.10.

Figure 5.10: Audio file upload and collection builder interface in SAWA

The system supports multipart HTML5 form uploads, therefore a set of audio files to be

analysed can be compiled locally and several files can be uploaded in parallel. An interface

19SAWA Feature Extractor: http://isophonics.net/sawa/

206

for creating a collection from content available on the web is also in development. The various

interfaces can be selected using the tabbed interface shown in the above figure.

Figure 5.11: Audio file identification in SAWA

Optionally, each audio file is identified using a fingerprint, and basic bibliographic meta-

data given an associated identifier (PUID) is retrieved from the MusicBrainz service. Figure

5.11 exemplifies the result of identification. The fingerprint serves as the identifier that is

used for storing and later identifying provenance information and to facilitate RDF caching.

Figure 5.12: Selecting a feature extractor in SAWA

SAWA Feature Extractor allows for the selection and configuration of one or more Vamp

outputs and execute transforms on previously uploaded files. Here, a transform is seen as an

algorithm associated with a Vamp plugin output and a specific set of configured parameters

used during the execution. That is, a single algorithm configured di↵erently is seen as distinct

transforms. Results are returned as RDF data. This can be examined using an RDF browser

207

such as Tabulator, imported in Sonic Visualiser and viewed in context of the audio or published

on the Semantic Web. SAWA’s plugin selection interface can be seen in Figure 5.12.

5.4.1.1 Configuration interface

The interface is designed using a combination of faceted-browser and RDF-browser concepts

to accommodate the specialised nature of the application. This means that some constraints

are imposed on what is displayed to the user, however, when available, individual Vamp plugin

descriptions can be browsed freely. Plugin libraries such as qm-vamp-plugins in Figure 5.12

are displayed as top level elements. The user may click on the triangular symbols associated

with libraries or plugins to expand the content such as the description of each output of

a plugin. One or more transforms can be configured for a selected plugin output. These

transforms are saved temporarily and applied individually on each audio file after submitting

a query. It is required to select at least one transform, however configuration is optional. By

default, the system computes a predefined transform associated with a plugin output. Feature

extractors may be configured using an automatically generated interface. This is exemplified

in Figure 5.13 showing the parameters for a tempo and beat tracker.

Figure 5.13: Feature extractor configuration in SAWA

Once a set of feature extractors have been selected and configured, a query can be sub-

mitted to perform the analysis of all or a user defined subset of the uploaded audio files. The

progress of the analysis can be monitored using the status display shown in Figure 5.14. While

the feature extraction process is running, the results are loaded by the Web application as

208

they become available, and a table of results shown in Figure 5.15 is dynamically expanded.

Figure 5.14: Feature extraction status display in SAWA

Figure 5.15: Table of feature extraction results in SAWA

The feature extraction results are available in several di↵erent formats generated on

demand from the default RDF/Turtle syntax. These results can be examined within the

application as shown in Figure 5.16, downloaded as uncompressed RDF or as a ZIP com-

pressed file, or examined in a data viewer. Additionally, each result receives a permanent

URI. This allows all transform results to be accessed later, even after the user session has

been expired. For instance, the permanent URI: http://isophonics.net/sawa/transform

/result/20110116/df16eb4d-3cb4-558a-a290-634927d275f9 is associated with the result

shown in the example. The URI is designed to include the date of feature extraction and a

universally unique identifier (UUID) generated given the audio fingerprint and the transform

configuration in order to avoid potential URI collisions. These permanent links are available

in RDF/Turtle and RDF/XML formats. Results consisting of a large number of RDF triples

and those that include large matrices are paginated as shown in Figure 5.17.

209

Figure 5.16: Feature extraction results in SAWA

Figure 5.17: Paginated results in SAWA

5.4.1.2 SPARQL client

In order to test the experimental SPARQL-endpoint of SAWA Feature Extractor, we built

a SPARQL client prototype for Sonic Visualiser. This client is wrapped in a VamPy plugin

which accesses a user defined SPARQL-endpoint and converts the returned data into a format

a Vamp host can understand. A drawback of this solution is that the plugin protocol still

210

requires the audio content to be transferred to the plugin instead of simply identifying the

file we wish to retrieve the data for. Nevertheless, it is suitable for querying the database

of SAWA and displaying the results in a visual host like Sonic Visualiser or Audacity. The

simple query interface of this client is shown in Figure 5.18.

Figure 5.18: SPARQL client in Sonic Visualiser. Note that only onset information available about a
song is assumed to be present in the database in the experimental query shown above. The query is
executed in a VamPy plugin which converts JSON results from the SAWA end-point into Vamp::Feature
data structures.

5.4.2 SAWA Recommender

Assessing the similarity between sounds including short audio segments such as recording

takes as well as complete songs have many potential uses in semantic audio applications.

A measure of similarity can form the basis of music browsing and recommendation systems

[Logan and Salomon, 2001; Levy and Sandler, 2006a], as well as intelligent tools in the studio

[Fazekas and Sandler, 2007b], for instance, for finding similarities across multiple recording

takes. An important aspect of similarity is timbre which describes a perceptual characteristics

of sound independent of its pitch (see Section 1.4.1.2). In this section, we describe SAWA-

Recommender20, a query by example type content-based music recommendation service. Its

main goal is to demonstrate an application of the SAWA system in a simple recommendation

tool using content-based similarity, and the use of the music similarity database and search

technique briefly outlined in Appendix B.1.

20SAWA-Recommender: http://isophonics.net/sawa/rec/

211

SAWA-Recommender finds songs in its database which sound similar in some sense to one

or more uploaded music files. Most notably, it finds songs which have similar instrumenta-

tion or similarly sounding dominant instruments such as lead vocals, saxophones, or violins.

SAWA-Recommender uses a database of timbre features extracted from over 150,000 tracks in

a distributed way by users of SoundBite21, a playlist generator plugin introduced in [Sandler

and Levy, 2007] for the iTunes22 and SongBird23 media players. This software analyses each

user’s music collection and reports the features alongside some metadata to a central server.

The returned data is the basis for the Isophone database [Tidhar et al., 2009] and our online

recommender system. This database mainly consists of popular music, however the similarity

algorithm itself proved valuable in informal testing also in the context of classical recordings.

Figure 5.19: SAWA-Recommender audio collection and search interface

In SAWA-recommender, a query is formed by one or more audio files uploaded by the user.

It is typically based on single file, however, uploading multiple audio files is also allowed. In

the latter case, a small set of songs forms the basis of the query, either by considering similarity

to any of the uploaded songs (and ranking the results appropriately), or formulating a single

common query by jointly calculating the features of the query songs. The file upload and

audio collection builder interfaces are shared between various SAWA applications. The search

interface of SAWA-Recommender is shown in Figure 5.19.

Query processing is performed in three steps. First, we extract features from the uploaded

21http://www.isophonics.net/content/soundbite
22http://www.apple.com/itunes/
23http://getsongbird.com/

212

audio files. The calculated query is matched against the Isophone database holding timbre

similarity features and MusicBrainz identifiers associated with each song in this database. For

optimised search, the query features are matched against a self-organising similarity model.

This model is a modified Self Organising Map (SOM) discussed in Appendix B.1. Each node

of this map is associated with a Gaussian distribution as opposed to a simple weight vector as

in the original algorithm [Kohonen, 1995]. Finally, a selected group of songs are ranked based

on their similarity to the query. The MusicBrainz database is accessed to obtain metadata

about songs in the result set, and these are displayed to the user. The metadata consist of

basic information such as song title, album title and the main artist’s name associated with

each song. We also provide direct links to MusicBrainz, as well as Linked Data services such

as BBC Music24 artist pages.

Figure 5.20: SAWA-Recommender results display

Since similarity assessment in this system follows the same principles applied in SoundBite,

these results can be seen as content-based recommendations. However, given the size of

the database they might be useful for identifying unknown songs or song segments. In a

commercial application, the service might be useful for finding an alternative for a song

where, for instance, a copyright agreement for its use cannot be obtained.

24http://www.bbc.co.uk/music/

213

5.4.3 SAWA TempEst

SAWA-TempEst25 is a content based instrument tuning recognition system for harpsichord

recordings. It uses the temperament estimation algorithm described in [Tidhar et al., 2010b].

In order to expose the algorithm as a Web application, we implemented it as VamPy plugin

(see Appendix B.2) which can be executed in the SAWA environment. Using TempEst, one

may upload a set of harpsichord recordings for analysis, and receive a detailed description of

the temperament used in these recordings. This includes the temperament identified by the

classifier, some known properties of the temperament resulting from inference on measurement

data, and the measurements themselves on which the classification and inference are based on.

The signal processing component of TempEst produces deviations from equal temperament.

This description format is converted to the circle of fifths before inferring additional properties

of the temperament such as regularity. These results are returned as RDF documents and

expressed using the Temperament Ontology discussed in Section 4.6.

SAWA-TempEst shares the file upload interfaces with other SAWA applications, but pro-

vides a di↵erent configuration interface for the temperament estimation algorithm shown in

Figure 5.21.

Figure 5.21: SAWA-TempEst configuration interface

25SAWA-TempEst: http://isophonics.net/sawa/tempest

214

In order to find properties of the analysed temperament (i.e. its position in the hierarchy

of temperaments), TempEst utilises the Closed World Machine (CWM) [Berners-Lee et al.,

2006], a Python based reasoning engine developed as part of the Semantic Web Application

Platform (SWAP). The description of related rules can be find in [Tidhar et al., 2010a].

The RDF data returned by the TempEst SAWA application may contain the information

detailed in Listing 4.12 and 4.13 of Section 4.6. This provides a description of the recognised

temperament as a set of deviations from equal temperament for each note, and the circle of

fifths description type derived from this, which is a set of deviations from pure intervals on

the circle of fifths given in Pythagorean commas. The output also contains all provenance

information regarding the feature extraction and the temperament classification results.

5.4.4 SAWA Experimenter

SAWA Experimenter is an extension of SAWA Feature Extractor with functionality to accept

ground truth data in RDF such as the data described in [Mauch et al., 2009], and compare

these data with results. The service facilitates MIR experiments, for instance, the onset

detection evaluation described in Section 1.5.3. It can be used to automatically determine

the most suitable set of parameters to be used for a Vamp plugin and a class of signals. This

service is currently in development and will soon be available online.

5.4.5 Hotttabs

Hotttabs [Barthet et al., 2011] is a multimedia guitar tutor Web application which uses

video tutorials and guitar tablatures commonly referred as “tabs”. It takes a multimodal

approach to tuition and tab recommendation, and successfully integrates several data sources

by aggregating and internally correlating information in a process whereby the Music Ontology

provides the common ground. It also demonstrates the use of SAWA for rapid development

of semantic audio applications. The application was built collaboratively26 based on the idea

of Amélie Anglade during the Music Hack Day London and Barcelona 2010 events.

Hotttabs recommends the user a list of songs for practice and rehearsal consisting of the

twenty most popular songs at the time of the query. These songs are obtained using the

“hotttness” measure of The EchoNest service27. To retrieve relevant guitar video tutorials

for a selected song, Hotttabs accesses the YouTube video database. The audio track of the

YouTube video is extracted and processed using the chord recognition algorithm described

in [Mauch and Dixon, 2010a], and the identified chords are displayed synchronously with the

video. The application includes a crawler [Macrae and Dixon, 2011] for mining the web for

guitar tabs as well as parsing the data before classification and display. To help the user to

26For full credits, see http://isophonics.net/hotttabs/about.
27http://the.echonest.com/

215

choose between tabs, they are clustered into three categories based on the size of their chord

vocabulary; easy, medium, and di�cult (see fig. 5.23 and [Barthet et al., 2011]).

The Echo

Nest

You

Tube

EchoNest

API

YouTube

API

Song

query
Popular song

recommender

YouTube Video

Retriever

Audio

Exractor

Automatic

Chord Recognition

Am

Guitar Tab

Crawler

Guitar Tab

Parser

Guitar Tab

Recommender

Guitar video

tutorial
Synchronised

chords

Guitar tab

clusters

Hotttabs Audio/Video Processing

Hotttabs Guitar Tab Processing

Figure 5.22: Overview of Hotttabs [Barthet et al., 2011]

The Hotttabs application integrates the functionality described so far in a Web-based

client-server architecture. The client runs in most popular web browsers and provides an easy

to use interface. It allows the user to interact with the application and perform the following

actions: i) query for popular songs, ii) select from the results of the popular song query, and

retrieve a list of video tutorials and three sets of tab clusters, iii) select from the list of video

thumbnails and play the clip in an embedded video player synchronised with automatically

extracted chords, and finally iv) select a tab from the tab clusters. Similarly to a search

engine, this links to the site where it was originally published.

The light weight client uses a combination of standard web technologies (HTML, CSS,

JavaScript) and makes use of the JQuery28 library to dynamically load content from the server

via XMLHttp requests. This content includes the list of popular songs and the a list of video

thumbnails for a selected song. We developed client-side JavaScript code which interacts

with the embedded YouTube player to display chord names next to the video. The chord

sequence is requested when the user starts the video, and returned with timing information

which is used to synchronise the chords with the video. The tab clusters are displayed using

an adapted version of the WP-Cumulus Flash-based tag cloud plugin29. This plugin utilises

XML data generated on the server side from the results of the tab search and tab clustering

algorithm.

28http://jquery.com/
29http://wordpress.org/extend/plugins/wp-cumulus/

216

The server side of the Hotttabs application builds on semantic audio and Web technologies.

SAWA is used as the basis for Hotttabs, extended with modules to access The Echo Nest

and YouTube, and perform additional application specific functionality as shown in Figure

5.22. The communication between the client and server is co-ordinated using the MVC

model of SAWA (see Section 5.3.3.1). The domain objects of this model as well as the

Hotttabs database are provided by the Music Ontology framework such that corresponding

data structures are generated from the ontology specification using MoPy. For instance,

information about popular artists and their songs are stored in objects and database entries

corresponding to the mo:Track and mo:MusicArtist concepts. Besides user interaction, the

server also performs scheduled queries for popular songs to bootstrap the database. This is

necessary since crawling for guitar tabs and the feature extraction process for chord analysis

are too computationally expensive to be performed in real-time. This process uses the crawler

mentioned previously, as well as the chord extraction algorithm implemented as a Vamp audio

analysis plugin which can be loaded by the processing engine of SAWA.

Figure 5.23: Video tutorials in Hotttabs

Hotttabs integrates several data sources, however, due to the lack of machine-processable

information in guitar tab sharing sites and the disharmonious nature of Web APIs and their

underlying data models, building applications using multiple modalities presents significant

challenges. We believe that the use of dynamic query interfaces, for instance, SPARQL

end-points relying on shared ontology-based schemata instead of proprietary Web APIs, as

well as other principles advocated by the Linked Data community (see Section 2.4.7) would

substantially facilitate the making of applications like Hotttabs.

217

5.5 Summary

In this chapter we described several software components for semantic audio analysis. The

RDF-MOP library is designed to facilitate building ontology-based information management

systems in desktop audio applications such as audio editors. This library is based on the

concept of Meta-object protocol commonly used in dynamic language interpreters. This pro-

tocol allows us to associate domain objects within an application with ontological semantics

by generating meta-objects from ontology specifications, and binding these objects with the

relevant objects in the application domain. Using the RDF-MOP library, we demonstrated

the first prototype of the Semantic Audio Desktop in Section 5.2.

Extending the Semantic Desktop paradigm, the idea of an intelligent desktop environment

in which individuals store digital information which are otherwise stored on a computer by

means of conventional techniques, our tool adapts Semantic Web technologies to the audio

production environment. This allows the collection and sharing of metadata about the music

production process, and serves the basis for an intelligent audio editing environment.

Sonic Annotator Web Application (SAWA) discussed in Section 5.3 is a framework which

enables the rapid development of Web-based semantic audio applications. SAWA utilises a

number of software components which were developed collaboratively during the OMRAS2

project, and ties these components into a coherent Web-application framework. These com-

ponents also include unique contributions by the author such as VamPy, a wrapper for the

Vamp audio analysis plugin system provides for using Python, a high productivity interpreted

language for prototyping and implementing audio feature extraction algorithms. This permits

the use of Vamp plugin hosts such as Sonic Visualiser and SAWA to be used with research

prototypes written in this language. It also enables writing complex feature extractors which

require a dynamically typed functional language, which supports language features such as

introspection and labmda calculus. We also devised a method for e�ciently indexing and

searching a database of music similarity features based on models of musical timbre. This

provides an extendible model for indexing similarity features using parametrised Gaussians

of MFCC vectors and potentially scales up to a database containing millions of songs. This

architecture is utilised in the music recommendation system described in Section 5.4.2. Sev-

eral other applications of the SAWA framework were presented in Section 5.4. These include

a feature extraction tool with a Web-based graphical interface and a SPARQL interface, a

tuning recognition system, and a multimedia guitar tutor.

Building the Hotttabs system enabled us to identify some important challenges in creating

multimodal applications that use the social Web, for instance, video and guitar tab sharing

sites. We argued that building applications like Hotttabs could be made easier if Linked Data

principles were routinely followed, and proprietary Web services were replaced by standardised

service end-points grounded in shared ontology-based schemata.

218

Chapter 6

Case Studies and Evaluation

In previous chapters we discussed knowledge representation models for semantic audio applica-

tions, and outlined some software technologies to facilitate the use of explicitly conceptualised

knowledge models in audio engineering and music information retrieval. In this chapter we

evaluate important aspects of our framework. First, we discuss methodological problems, and

outline various options available for ontology evaluation. Then, we present the evaluation of

the Studio Ontology including data-driven automated tests, as well as case studies which

show how our software and ontology frameworks may be used in real-world applications.

6.1 Evaluation methodology

The reasons why we follow a largely design based instead of empirical research methodology

was briefly discussed in Section 1.6. Our evaluation is adopted to this method. Most com-

ponents discussed in this work are intended to be part of larger systems, while very few are

aimed directly towards end users. Therefore user evaluation requires domain experts who

are able to adopt to and assess new technologies and able to devote the time necessary. We

developed a set of closely coupled ontologies and tools which may only be assessed in the con-

text of multiple disciplines, for instance, audio engineering, music information retrieval, and

ontology engineering. The unavailability of experts knowledgeable in these disciplines and

the potential associated cost renders user evaluation unfeasible. Our evaluation methodology

is therefore centred around the following techniques:

• data-driven automated testing,

• task-based evaluation examining how components may be utilised,

• objective self-assessment based on domain-specific case studies.

219

6.2 Ontology evaluation

Ontology is an emerging field in engineering sciences. Although it has long been discussed

in philosophy and artificial intelligence, ontologist in these fields are less concerned with the

application or comparison of existing ontologies, than the underlying philosophical theories

and knowledge representation languages. Therefore rigorous methods for ontology evaluation

from an engineering perspective are yet to be developed.

The most common reason for creating an engineering ontology is to provide an explicit

conceptualisation or model of a specific domain, or a wider body of knowledge. However, from

a purely philosophical point of view, knowledge can not be managed or represented1. When

knowledge is verbalised, it becomes information. Ontology languages then provide meta-

level tools to structure this information, so that it can be shared, or subjected to automated

reasoning procedures. The ultimate evaluation would then be to ask the question: How

well an ontology represents someone’s innate knowledge, or some shared knowledge amongst

members of a community?

This depends on many implicit factors however, — for instance, how well a body of knowl-

edge can be verbalised in the first place? — rendering most evaluation strategies common

in engineering disciplines inappropriate. As pointed out in [Brewster et al., 2004], preci-

sion/recall based measures would ideally reflect the amount of knowledge correctly identified

with respect to the whole knowledge available in the ontology, and the amount of knowledge

correctly identified with respect to all the knowledge that should be captured by the ontol-

ogy. However, what this means remains rather unclear. This is in part due to the di�culty in

quantifying knowledge the same way false or true outcomes or data items may be enumerated.

6.2.1 Purpose of ontology evaluation

The most comprehensive reviews [Vrandečić, 2009], [Obrst et al., 2007] of ontology evaluation

to date, albeit useful resources, do not provide a very clear picture of the field. For instance,

evaluation methodologies and concrete techniques are intermingled. While Vrandečić [2009]

and Gómez-Pérez [2004] attempt to separate the notions of ontology validation from ontology

verification — that is, the question of whether the right ontology was built for a domain (val-

idation), from the question of whether the ontology was built in the right way (verification),

the techniques used in these aspects of ontology evaluation are not clearly separable. Set-

ting aside a detailed review of methodologies available in the literature, here we provide only

a high-level, but more ordered alternative view, which help to choose the right evaluation

methodologies and techniques for our case.

An important question to discuss is related to the primary purpose of ontology evaluation

with regards to a particular ontology-based application. Many existing methods assume a

1See the epistemological definitions of knowledge for instance in the Stanford Encyclopedia of Philosophy
available at http://plato.stanford.edu/entries/epistemology/

220

so-called gold-standard, or the existence of multiple ontologies covering the same domain.

Neither of these are available in every situation. The most common use cases for ontology

evaluation are:

• Suitability testing: Evaluate if a given ontology is appropriate in a particular appli-

cation, i.e. how adaptable or extensible it is.

• Choosing an ontology: Given multiple ontologies covering the same domain, and

preferably developed following the same principles, select the best ontology.

• Scientific and experimental reasons: Evaluate automatically extracted ontologies

against a manually created one, which is usually considered a gold-standard.

In each of the above cases, there are multiple features of an ontology that may be subjected

to evaluation. For instance, when examining suitability in the context of an application, we

may ask if an ontology is extensible enough, how di�cult it is to adopt it to the application,

how clear it is, or how well it covers a domain. In choosing an ontology, the first thing one

may want to do is some automated comparison using quantifiable features. When evaluating

against a gold-standard, one may be interested to compare the richness and structure of a

generated ontology with a manually created one.

6.2.2 Evaluating ontology features and ontology design aspects

When dealing with hand-built ontologies, their features are ultimately a result of a number of

design decisions, related to the principles discussed in Section 3.1.4. Therefore evaluation can

be considered from at least two distinct perspectives: evaluate whether the right decisions

were made in the first place, or evaluate the resulting ontology features. This is somewhat

related, but not identical to a distinction between validation and verification, providing a more

straightforward designation. Here, we outline the features and design aspects of ontologies

that are commonly evaluated.

• Domain coverage: Richness, granularity, and completeness (also competency) of the

ontology; that is, how much of an expert’s domain knowledge is acquired.

• Logical properties: Consistency, coherence and integrity of an ontology. For instance,

is the ontology free of contradictory axioms? Does it describe an unsatisfiable logical

theory? Does it comply with meta-level principles (i.e. rigidity or unity discussed in the

context of ontoClean [Guarino and Welty, 2002])? Does it allow only for the inferences

consistent with its specification?

• Formal properties: Documentation and conventions used by the ontology; i.e. Does

the ontology have a documentation matching its axioms? Does it follow a uniform

naming scheme for its vocabulary terms?

221

• Accuracy: Correctness and precision of the knowledge representation; i.e. How well the

ontology represents the real world, how well it complies with the modeller’s expertise.

• Clarity and Conciseness: E↵ectiveness of the knowledge representation; i.e. Does

the ontology comply with the principles of clarity, minimal ontological commitment

and minimal encoding bias? Does it contain redundancies? (Does it specify the weakest

theory possible and define only essential terms?) Does it provide a complete definition

of its terms? Does it make representation choices for notational convenience?

• Extensibility, Reusability, Adaptability: These features are mainly related to the

modularity and extensibility principles; i.e. Does the ontology have the right scope and

granularity of knowledge representation? Does it anticipate uses outside of its primary

domain? Can it be extended monotonically? Does it feature a set of harmonised

modules, separating domain specific and domain independent components?

From a substantially di↵erent point of view, we may want to evaluate decisions related

to design choices in the development process of a particular ontology, rather than evaluating

how its features adhere to general design principles. The following list of design aspects is

based on [Vrandečić, 2009], although we argue some of the definitions given there.

• Vocabulary: The choice of terms (concepts, properties and individuals) included in

the ontology, and choices related to their representation, e.g. notational conventions.

• Syntax: The serialisation syntax used for encoding the ontology. Some syntaxes sup-

port a wide range of di↵erent knowledge representations, others may be equivalent, or

transformable one or both ways. For instance, all RDX/XML may be written in N3,

but not all N3 can be written in RDF/XML. Documentation given in syntax specific

formats however are generally not transformable.

• Structure: The concrete structure of the ontology given by the underlying RDF graph.

The same semantics may be encoded using di↵erent structures.

• Semantics: The actual set of logical models described by the ontology. For instance, a

specific cardinality constrain may be expressed using di↵erent language features, result-

ing in di↵erent graph structures, but all these structures express the same constraints

on the resulting data.

• Representation: Related to both structure and semantics, representation may be

analysed to find di↵erences between the formal specification and the shared conceptu-

alisation of an ontology. For instance, we can compare graph-based measures between

an ontology and a simplified, but semantically equivalent version of it.

222

• Context: The notion of context captures many of the design principles and require-

ments mentioned previously. For instance, the suitability of the ontology in an appli-

cation with regards to its design requirements, how well it can be used for representing

information in a concrete data source, or how suitable it is for answering specific queries,

often formalised using competency questions.

6.2.3 Methodologies and techniques for ontology evaluation

Each of the ontology features and design choices discussed above may be evaluated from sev-

eral di↵erent perspectives, using a variety of methodologies and concrete techniques. In fact,

it is useful to discuss these aspects of evaluation separately, since di↵erent methodologies are

not equally suitable for evaluating independent aspects and features of an ontology. Method-

ologies in general may fulfil distinct evaluation goals, and may be used at various stages of

the ontology engineering process. Meanwhile, concrete evaluation techniques can be used in

the context of several di↵erent evaluation methodologies. In Table 6.1, we summarise some

notable categories of evaluation methodologies and the techniques related to each category.

We also indicate the ontology design aspects and features that may be evaluated by each

method.

Rule-based methodologies are primarily used for evaluating the logical properties of

ontologies, such as consistency and integrity. OntoClean [Guarino and Welty, 2002] is the

most widely used technique for this purpose. The main goal of OntolClean is to expose mis-

uses of knowledge representation options like the subsumption relation. It specifies certain

meta-properties (essence, rigidity, identity, unity, dependence) that characterise the intended

meaning of classes and relationships. The user then labels ontology terms using these prop-

erties, and re-examines the ontology based on the rules specified by ontoClean. For instance,

an anti-rigid term, that is not essential for all instances, cannot subsume a rigid term, that

is essential in all circumstances. The principles related to identity and unity can be used to

discover instantiation problems (i.e. help to decide if an entity should be a sub-class or an

instance of a class), or common confusions of di↵erent taxonomic relations, such as hypon-

omy (is-a) and meronomy (part-of). Rule-based techniques can also be used, for instance, to

discover if an ontology specifies unsatisfiable classes (i.e. a subclass of two disjoint classes),

or to find circular class definitions. The ODEval tool [Corcho et al., 2004] can be used for

this purpose. However, the techniques mentioned so far are more related to ontology design,

rather than evaluation. With relatively small domain ontologies, they can be easily performed

by manual inspection during the design process, as we did in case of the Studio Ontology.

Metrics-based methods focus on quantifiable features, for example, graph-based struc-

tural parameters of ontologies. Most of these features however express relatively simple

aspects of ontologies, therefore they are most commonly used in ontology selection as a pre-

liminary inspection step, or to measure the contribution of a module to a framework of

223

ontologies. OntoQA [Tartir et al., 2005] for instance, specifies metrics such as relationship

richness or inheritance richness (see Section 6.3.1.1 where we utilised these measures) which

may be directly extracted from the RDF graph representing the ontology schema. It also

specifies more complex features which can be used if a su�ciently populated knowledge base

is available, using the examined ontology. oQual [Gangemi et al., 2006] also specifies similar

graph based measures, but it goes beyond the structural level by prescribing a set of functional

metrics, that may be used in the context of expert user evaluation, or Data-driven evaluation

using Natural Language Processing (NLP) techniques. In fact, more complex metrics-based

methods are used as part of data-driven, query-driven or cost-based evaluation.

Evolution-based methods attempt to characterise ontologies based on how they change

over time. For instance, Haase et al [2005b] describe a technique which detects inconsis-

tencies in evolving ontologies, and repairs them across di↵erent versions by eliminating the

statements that cause inconsistency. An ontology can also be evaluated against the presence

of certain patterns that are typical in an application. These patterns essentially act as unit

tests [Vrandečić and Gangemi, 2006] for ontologies. For instance, we can test if certain axioms

can or cannot be derived from the ontology. In the context of evolving or dynamic ontologies,

we can test certain assumptions with regards to the ontology. These techniques are more

related to ontology engineering (and change engineering) rather than final evaluation at the

end of an initial development cycle. They are most beneficial with frequently changing and

very large ontologies.

Cost-based evaluation tries to characterise either the cost of application within an or-

ganisation, or the performance in terms of the cost of the errors in information extraction, or

other NLP-based techniques. The former is most useful in ontology selection, to evaluate for-

mal properties such as the quality of documentation, or the ease (or di�culty) of use related

to the clarity and adaptability of the ontology. The latter technique is substantially di↵erent

and can also be seen as a form of data-driven evaluation. It defines a relevant cost model for

an application, using some expected prior target statistics. A cost would typically be associ-

ated with a miss or a spurious answer within each category of result, while the expected costs

of error would typically be based on probability, estimated using an expert annotated test

corpus and manual mapping. See [Paslaru et al., 2006] for examples of cost-based evaluation.

Data-driven ontology evaluation was introduced in [Brewster et al., 2004]. It focuses on

the comparison of ontologies with a text corpus from a relevant domain. Brewster introduces

a basic method for measuring lexical coverage, using a vector-space model of terms built

from a corpus and an ontology. This provides a measure of the agreement between the

ontology and the corpus (representing domain knowledge), similarly to how documents are

ranked relative to a query in a search engine. A more complex ’tennis measure’ is based on a

method consisting of feature extraction (identification of key terms), query expansion (using

for instance hypernyms from WordNet), and mapping the key terms to the ontology. This

224

method provides an ontology fit seen as a structural fitness measure. We utilise this techniques

in our evaluation, and provide more details in Section 6.3.1.2. Other data-driven techniques

primarily focus on human assessment instead of NLP-based automated or semi-automated

evaluation. Semantic agreement, can be based on the measurement of human agreement on

classification tasks, for instance, the problem of classifying instances using an ontology, or

mapping concepts to candidate classes in one or more ontologies [Obrst et al., 2007]. This

technique however is highly influenced by how well humans are trained in a set of guidelines

for labelling examples in terms of ontological categories, as well as the quality of the guidelines

themselves.

Task-based methodologies focus on evaluating the suitability of an ontology in a given

application. Similarly to metrics-based evaluation, task-based evaluation is an umbrella term,

where having a set of pre-defined requirements for a task is the common element across

methodologies. Task-based evaluation may o↵er a measure of practical aspects, such as the

human ability to formulate queries using an ontology, or the accuracy of responses provided

by the system’s inferential component [Obrst et al., 2007]. It can take the form of data-driven

evaluation using a corpus, an evaluate the agreement between typical features of the corpus

(such as commonly occurring scenarios) and the ontology involving human assessment, or

some metrics discussed earlier. Task-based evaluation may also be based on the applicability

of an ontology in a given tool or system, for instance, by examining whether we can fulfil for-

malised communication requirements, or represent data stored in a legacy relational database.

Generally, these methods evaluate whether an ontology can fulfil requirements in specific use

cases.

Query-driven methodologies focus on query answering tasks, and may be seen as a

combination of data-driven and task-bask based evaluation. For instance, the ’ontology fit’

described in [Raimond, 2008] measures how well certain features extracted from a set of

verbalised user queries can be represented by an ontology, using techniques mainly based on

the tennis measure describes in the context of data-driven evaluation. Other methods are

based on formulating hypothetical queries given one or more ontologies, and a data source

that can be mapped to these ontologies. The evaluation is then based on how di�cult it is to

write actual queries (e.g. using the SPARQL language) to get relevant answers. We may also

evaluate based on the complexity of required queries, or the cost of query execution, in order

to get the same answers, using di↵erent ontologies. In this context, the best ontology is the

one which supports the most queries, which are also easy to write, and cheap to evaluate. In

[Kolozali et al., 2011], we used similar query-driven techniques to evaluate di↵erent musical

instrument ontologies.

225

Evaluation

Methodology

Evaluation

Technique

Ontology

Design Aspect

Ontology

Feature

Rule-based

(logical)

consistency checking

OntoClean1

ODEval2

semantics

structure

representation

logical properties

accuracy

conciseness

Metrics-based OntoMetric3

OntoQA4

oQual5

ontology fit6

vocabulary

structure

representation

context

domain coverage

accuracy

Evolution-based application

change evaluation8

unit testing9

semantics

vocabulary

representation

context

adaptability

extensibility

reusability

logical properties

Cost-based cost of error

cost of application

Ontocom10

semantics

representation

context

formal properties

domain coverage

clarity

conciseness

Data-driven lexical coverage (NLP)7

tennis measure6

human assessment

vocabulary

semantics

context

domain coverage

accuracy

clarity

Task-based application

human assessment

vocabulary

syntax

semantics

context

formal properties

adaptability

domain coverage

extensibility

Query-driven

(task-based)

ontology fit6

query formulation

query complexity

human assessment

vocabulary

semantics

context

domain coverage

accuracy

logical properties

1 OntoClean: see [Guarino and Welty, 2002].
2 ODEval: see [Corcho et al., 2004].
3 OntoMetric: see [Lozano-Tello and Gómez-Pérez, 2004].
4 OntoQA: see [Tartir et al., 2005].
5 oQual: see [Gangemi et al., 2006].
6 tennis measure and ontology fit: see [Brewster et al., 2004] and [Raimond, 2008].
7 Natural Language Processing (NLP): see for instance [Brewster et al., 2004].
8 Change evaluation: see [Haase et al., 2005b].
9 Unit testing: see [Vrandečić and Gangemi, 2006], [Vrandečić, 2009].
10 Ontocom: see [Paslaru et al., 2006].

Table 6.1: Summary of ontology evaluation methodologies, applicable techniques and the design
choices and ontology features these techniques may evaluate

226

The assignment of features and design aspects to techniques and methodologies in Table

6.1 is based on common uses in the literature, yet it may be arguable and provides only a

coarse indication of what method to use for testing certain aspects of an ontology.

Before choosing a particular set of techniques, we also face the more general decision of

whether we need a primarily qualitative or a quantitative (metrics-based) method. Quanti-

tative techniques may tell us about the structure or richness of the ontology, but they are

typically not su�cient for judging the overall quality of an ontology. Qualitative techniques,

for instance, task-based evaluation with human assessment, or testing an ontology in a de-

scription or query answering task, tell us more about how well an ontology may perform

in a certain application, and in a certain environment, however this requires human level

intelligence. Choosing the right users for qualitative evaluation could be a challenging task.

6.3 Evaluation of the Studio Ontology framework

In the light of the above discussion, we argue for the need to perform both quantitative

and qualitative evaluation of the Studio Ontology. Due to the facts that this ontology is

the first of its kind, and expert users in this domain are unavailable, some methods, such

as evolution and cost-based evaluation are not applicable, while others, such as rule-based

evaluation were applied during development. Therefore we opt primarily for metrics-based

as well as data-driven quantitative evaluation, followed by task-based qualitative evaluation

with self-assessment.

6.3.1 Quantitative evaluation

First, we perform quantitative evaluation to measure the contribution of the Studio Ontology

to an ontology framework of music production, consisting of the Music Ontology and its core

components, and the Studio Ontology frameworks. This evaluation includes simple structural

features computed from ontology schemata. Then we measure lexical coverage and conceptual

ontology fit using a relevant text corpus.

6.3.1.1 Structural schema metrics

The purpose of using structural ontology metrics can be two-fold. On one hand, it is used

to measure the di↵erence between certain aspects of ontologies designed to cover the same

domain. This is the most common use, for instance, in ontology selection. On the other

hand, simple quantifiable features of ontology schema can provide an indication of how a set

of modules contribute to a framework of ontologies.

The Studio Ontology framework was designed to extend the Music Ontology framework.

In order to measure its contribution, we rely on three schema metrics defined in the ontoQA

227

metric-based ontology quality analysis system [Tartir et al., 2005]. We updated the terminol-

ogy to better suit OWL ontologies, but the method of computation is essentially the same.

We extract the following features from ontologies constituting both frameworks:

Inheritance richness (IR) is defined in Equation 6.1 as the average number of subclasses

per class, where |SC| =
P

C
i

2C |HC(Cl, Ci)|, the sum of classes defined as a subclass for each

class Ci in the concept taxonomy HC ✓ C ⇥ C of the ontology.

IR =
|SC|
|C| (6.1)

Relationship richness (RR) is defined in Equation 6.2 as the ratio of the number of

relationships defined between classes, divided by the number of inheritance relationships plus

the number of relationships. In OWL terms, the number of relationships is equivalent to

the number of object properties (|OP |), where OP is a set of relations and the function op:

OP ! C ⇥C relates concepts non-taxonomically. The number of inheritance relationships is

equivalent to the sum of classes defined as a subclass for each class in the concept taxonomy

(|SC|), defined as before.

RR =
|OP |

|SC|+ |OP | (6.2)

Attribute richness (AR) is defined in Equation 6.3 as the average number of attributes

per class. It is computed as the number of data type properties (|DP |) for all classes divided
by the number of classes, where DP is a set of relations and the function dp: DP ! C relates

concepts with literal values.

AR =
|DP |
|C| (6.3)

The results of extracting features from three groups of ontology modules is shown in Table

6.2. The first group (FFDET) consists of the core parts of the Music Ontology (FRBR, FOAF,

Dublin Core, Event and Timeline ontologies), the second group (MO) represents the Music

Ontology framework without extensions, while the third group (MOS) includes the Music

and Studio Ontology frameworks. The values stand for the number of classes |C|, number of

inheritance relationships |SC|, the number of object property relationships |OP |, the number

of data type properties |DP |, and the three metrics defined above.

Ontology |C| |SC| |OP | |DP | IR RR AR

FFDET 74 76 183 68 1.0270 0.7066 0.9189
MO 133 201 412 115 1.5113 0.6721 0.8647
MOS 369 745 542 201 2.0190 0.4211 0.5447

Table 6.2: Schema-based structural ontology metrics using ontoQA

228

The calculations take the logical ontology model into account. The values |SC|, |OP |, |DP |
therefore include not only the number of relationships directly asserted by the ontology

schema, but inferred relations resulting from the transitivity of is-a relations for example,

and the inheritance of object property and attribute relations. In case a property is not fully

defined in an ontology, i.e. no domain and range are declared, we only considered it as one

relation to avoid distorting the measures when the intended use of a property is not clear.

The features IR, RR and AR quantify the following aspects of our ontology modules:

The increase in inheritance richness indicates that we move from small domain ontologies,

defining few classes with a rich set of properties, towards ontologies representing a wider range

of general knowledge. For instance, the Event Ontology defines only three taxonomically

unrelated classes and seven properties, while the Music and Studio ontology frameworks add

a large number of classes subsuming core concepts.

The decrease in relationship and attribute richness is also related to the above change

in the nature of the measured ontologies. We observe however a rather sharp decrease in

both RR and AR when our Studio Ontology framework is considered (MOS). This is due

to the fact that it defines a large taxonomy of music production tools with a similar set of

properties. Only microphones and audio mixers are currently covered in detail by providing

a rich set of properties in two domain specific extensions. Other tools, such as recording

devices or audio e↵ects may be included in the workflow model and description, but their

class specific attributes and relationships are not included in the ontology. These measures

therefore indicate an area where our ontology framework can be improved.

In addition to schema-based features, OntoQA defines a set of knowledge base (KB)

metrics. Class Richness for instance measures how instances are distributed across classes,

while Class Connectivity indicates what classes are central in the ontology based on the

instance relationship graph. These metrics however require a su�ciently large and correctly

populated knowledge base, which is not available for us. A possible option is populating a

knowledge base from a text corpus automatically, using natural language processing (NLP)

and ontology learning methodologies. However state of the art techniques [Cimiano et al.,

2009] are not guaranteed to produce a knowledge base, precise enough to compute ontology

metrics reliably. Therefore we consider the use of KB metrics in future work only. In the next

section, we apply two corpus-driven evaluation techniques which do not require sophisticated

natural language understanding.

229

6.3.1.2 Data-driven evaluation

The schema based structural ontology metrics discussed in the previous section do not provide

information on how well an ontology represents a specific domain, and how well it supports

describing information in this domain. In the following sections, we perform data-driven

evaluation of the Studio Ontology, using a text corpus specific to music production. We first

describe the data set, then we measure the lexical coverage of of this data set given di↵erent

combinations of ontology modules. Finally, we measure how well some characteristic features

extracted from this data set can be expressed by our ontologies.

6.3.1.3 Text corpus

For our data-driven evaluation, we consider extracting music production specific text from the

online archives of Sound On Sound, a periodical popular with music industry professionals2.

We downloaded over 8000 articles comprising issues of the magazine between January 1994

and March 2011. We processed the files using the BeautifulSoup3 HTML parser library, in

order to extract plain text from non well-formed HTML. This process produced 7757 text

files, each containing an article with some metadata, such as the title and publication date of

the article, and the column it originally appeared in.

Given the large size of this corpus and the varying scope of the articles, we partitioned

the data set according to the following principles: i) We split the data by date into two parts.

Part A contains 3686 articles between 1994-2001, while part B contains 4071 articles form

January 2002 to March 2011. ii) Articles were then grouped by column, resulting in the

following groups in each part of the data set:

• Opinion: editorials, relationships between artists, producers and engineers

• Reviews: predominantly reviews of music production tools

• Technique: descriptions of audio production and audio engineering techniques

• All others: articles related to music business and other small columns

In both parts, the first three groups cover approx. 95% of the total content. A typical article

from the Opinion column includes for instance:

Wayne Bennett & Speech Debelle: ”It took rapper Speech Debelle years to find a

producer who could bring to life the sounds in her head. The answer, as Wayne

Bennett discovered, was to record her music as if it were a folk album.”

2Sound On Sound archive: http://www.soundonsound.com/AllIssues.php
3BeautifulSoup: http://www.crummy.com/software/BeautifulSoup/

230

The Reviews column typically contains articles such as:

SSL X-Patch Studio Router: ”Creating complex routing chains in a hybrid DAW/out-

board setup presents its own set of problems to which Solid State Logic o↵er this

solution...”

A representative example from the Technique column would be:

Secrets Of The Mix Engineers: Veronica Ferraro: ”Veronica Ferraro mixed ’When

Love Takes Over’ at her Super Sonic Scale studio near Paris, in which pride of

place goes to her unique 56-channel Amek DMS desk, which contains Neve mic

preamps, EQ, compression and gates. The presence of the desk is an outcome of

her training in the late ’80s at one of France’s major studios, Studios Ferber.”

Finally the articles are pre-processed for the evaluation techniques discussed in the follow-

ing sections. Each article is tokenised, common stop words4 (e.g. articles, prepositions) are

removed and the tokens are stemmed using the Porter Stemmer algorithm5 for regularising

morphological and inflexional endings of English words. Stop words are either insignificant or

too frequent, therefore they are typically removed from search queries and database indexes

as well. Table 6.3 shows the 50 most frequently occurring stemmed terms in each part and

in each group of the data set.

6.3.1.4 Lexical coverage

Similarly to our structural evaluation, here, we consider the Studio Ontology framework as

an extension of the Music Ontology, and aim to measure its contribution by comparing the

music production specific corpus discussed above, and di↵erent sets of ontology modules. In

order to measure the lexical coverage of di↵erent ontology modules given our data set, we

utilise a vector space representation [Salton et al., 1975] with term frequency - inverse docu-

ment frequency (TF-IDF) weighting, and use the cosine distance to determine the similarity

between the corpus and the ontologies. This method was first proposed in [Brewster et al.,

2004] in ontology evaluation. It was also applied in [Raimond, 2008] for evaluating the Music

Ontology.

We first create a vector space representation of each group in the data set, and each

group of ontology modules, by extracting literal terms corresponding to rdfs:label and

rdfs:comment (the inclusion of comments is seen as a form of query expansion) predicates

in the schemata. This forms a combined document set D. In this model, each document

d 2 D is represented by a vector, such that each vector dimension corresponds to a unique

term t 2 d 2 D, and the values are the TF-IDF weights wt,d = tft,d ⇥ idft, where tft,d is

the number of times term t occurs in document d, divided by the number of words in the

document, and idft is given by Equation 6.4.

4http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
5http://tartarus.org/~martin/PorterStemmer/

231

P
a
rt

A
P
a
rt

B

O
p
in
ion

R
ev
iew

s
T
ech

n
iq
u
e

A
ll
oth

ers
O
p
in
ion

R
ev
iew

s
T
ech

n
iq
u
e

A
ll
oth

ers
record

824
sou

n
d

1843
record

1000
m
ake

109
record

707
sou

n
d

1460
record

921
m
ake

186
m
u
sic

760
m
ake

1673
w
ork

980
w
ork

97
m
u
sic

621
m
ake

1306
au

d
io

868
sou

n
d

169
w
ork

684
set

1666
sou

n
d

922
tim

e
97

w
ork

524
set

1301
m
ake

836
m
u
sic

145
sou

n
d

651
w
ork

1637
m
u
sic

919
record

94
sou

n
d

519
w
ork

1281
w
ork

835
tim

e
144

p
ro
d
u
c

588
con

trol
1604

tim
e

916
sou

n
d

93
p
ro
d
u
c

436
in
clu

d
1276

sou
n
d

782
w
ork

134
tim

e
584

record
1571

m
ake

893
m
u
sic

91
m
ake

427
con

trol
1261

tim
e

738
record

131
m
ake

553
in
clu

d
1492

au
d
io

865
go

o
d

85
tim

e
421

au
d
io

1260
track

735
in
clu

d
123

stu
d
io

549
tim

e
1488

set
844

en
d

82
stu

d
io

409
record

1233
set

730
great

117
track

533
p
rov

id
1474

b
ack

747
p
ro
d
u
c

80
track

382
o↵

er
1177

m
u
sic

693
au

d
io

110
th
in
g

505
go

o
d

1458
start

724
start

80
sign

al
354

ran
g

1082
creat

602
o↵

er
105

set
498

ou
tp
u
t

1444
n
u
m
b
er

718
fi
n
d

79
th
in
g

351
tim

e
1080

in
clu

d
585

m
ad

e
104

p
lai

486
p
ow

er
1435

fi
n
d

717
th
in
g

79
m
ix

343
p
rov

id
1061

sign
al

572
set

102
p
eop

l
480

ran
g

1427
sign

al
715

give
79

m
icrop

h
on

325
p
ow

er
1049

m
ix

570
stu

d
io

102
d
igit

478
e↵

ect
1416

con
trol

709
p
lai

79
set

318
d
esign

1038
version

567
fi
n
d

102
go

o
d

471
au

d
io

1401
p
art

708
b
ack

78
p
lai

318
ou

tp
u
t

1027
b
ack

558
go

o
d

100
year

470
sign

al
1389

in
clu

d
699

set
78

d
ev
ic

316
sign

al
1010

p
art

545
b
ack

100
au

d
io

470
level

1347
gen

er
698

p
u
t

77
au

d
io

313
featu

r
1003

con
trol

544
th
in
g

99
p
art

469
o↵

er
1337

m
id
i

694
p
oin

t
76

go
o
d

305
e↵

ect
992

start
539

p
ro
d
u
ct

99
b
ack

465
in
p
u
t

1317
track

693
p
art

74
b
ack

296
level

949
p
erform

528
p
lai

99
start

461
featu

r
1313

go
o
d

688
gen

er
72

lot
295

version
931

e↵
ect

525
p
art

98
m
ix

457
d
esign

1305
sy
stem

688
p
rov

id
70

en
gin

286
m
u
sic

928
p
lai

505
version

97
p
u
t

449
sw

itch
1287

p
ro
d
u
c

687
m
ean

69
m
ad

e
280

go
o
d

924
p
ro
cess

503
start

92
m
ad

e
444

select
1287

th
in
g

672
n
u
m
b
er

69
d
igit

280
in
p
u
t

921
d
ev
ic

501
p
ro
d
u
c

90
lot

443
stereo

1246
p
rov

id
671

track
68

p
art

279
select

894
p
ro
d
u
c

489
req

u
ir

90
in
clu

d
428

u
ser

1245
p
lai

668
lot

67
year

278
sw

itch
873

o↵
er

473
creat

89
sign

al
424

gen
er

1242
creat

663
p
eop

l
67

start
275

in
stru

m
en
t

859
featu

r
471

e↵
ect

89
en

d
423

n
u
m
b
er

1231
e↵

ect
661

tu
rn

65
p
u
t

273
b
ack

859
n
u
m
b
er

461
p
u
t

88
fi
n
d

413
sy
stem

1230
version

645
in
clu

d
65

p
eop

l
273

op
tion

857
th
in
g

458
track

87
call

410
p
ro
d
u
c

1224
d
igit

644
e↵

ect
65

listen
263

m
ain

857
go

o
d

452
live

87
m
icrop

h
on

407
m
u
sic

1200
d
ev
ic

638
creat

64
in
clu

d
262

n
u
m
b
er

844
select

450
p
ow

er
87

p
ro
d
u
ct

407
b
ack

1187
ru
n

636
con

trol
63

p
ro
d
u
ct

262
m
ix

840
sh
ow

446
top

85
id
ea

406
m
ain

1172
ch
an

g
628

im
p
ort

62
in
stru

m
en
t

253
ad

d
it

830
in
stru

m
en
t

446
n
u
m
b
er

84
ru
n

397
fi
n
d

1168
p
oin

t
625

take
62

en
d

252
gen

er
829

fi
n
d

445
en

d
83

b
it

394
m
id
i

1154
en

d
617

call
62

alb
u
m

243
p
ro
d
u
c

819
gen

er
441

featu
r

83
d
ev
ic

394
p
lai

1145
p
erform

610
m
ad

e
61

ro
om

241
u
ser

819
en

d
439

give
83

p
oin

t
392

p
erform

1144
resu

lt
598

d
i↵
er

61
p
erform

241
rev

iew
816

fi
le

438
lot

82
in
terest

389
d
igit

1133
n
ote

597
am

ou
n
t

61
son

g
239

stereo
815

n
ote

431
b
it

81
e↵

ect
385

m
ix

1121
softw

ar
594

p
rob

lem
61

fi
n
d

238
p
erform

801
ru
n

430
p
erform

80
live

383
op

er
1105

lot
592

m
ix

60
b
an

d
238

m
icrop

h
on

798
m
ain

426
sy
stem

79
sam

p
l

382
sin

gl
1098

h
ard

581
sin

gl
60

great
237

sam
p
l

792
stu

d
io

410
b
u
i

78
n
u
m
b
er

380
fou

n
d

1096
p
ro
cess

580
ru
n

60
gu

itar
233

stu
d
io

789
op

en
410

p
oin

t
78

p
ro
ject

379
op

tion
1094

req
u
ir

580
sm

all
60

b
it

231
sin

gl
757

ch
an

g
409

op
tion

77
lon

g
377

ch
an

n
el

1090
ty
p
e

578
resu

lt
60

con
trol

231
creat

756
level

404
cost

77
m
ove

376
b
u
tton

1084
p
rob

lem
577

level
59

live
230

en
d

749
m
ove

402
p
rov

id
77

great
376

q
u
aliti

1081
sim

p
li

576
com

p
let

59
releas

226
fi
n
d

744
d
igit

399
select

77
p
ro
cess

375
ad

d
it

1069
ou

tp
u
t

575
ty
p
e

59
gen

er
225

com
b
in

743
ad

d
398

sm
all

77
ch
an

g
374

en
d

1069
give

563
stu

d
io

58
d
ru
m

225
fou

n
d

740
m
id
i

397
d
esign

76
d
ai

373
start

1067
m
ove

563
b
ig

58
creat

225
d
igit

737
sin

gl
397

so
76

give
372

stu
d
io

1064
o↵

er
563

o↵
er

58
p
ro
cess

224
m
id
i

732
origin

396
gen

er
75

con
trol

372
p
oin

t
1061

m
ix

561
b
it

57
p
oin

t
223

softw
ar

732
lot

396
m
ix

73

T
ab

le
6.3:

T
op

50
w
ord

s
in

each
p
art

of
th
e
d
ata

set

232

idft = log
|D|

1 + |{d0 2 D|t0 2 d0}| (6.4)

In the equation above, |D| is the total number of documents, and |{d0 2 D|t0 2 d0}| is
the number of documents that contains the term t. Each ontology is then compared with a

group in the corpus using the cosine distance given in Equation 6.5. This provides a measure

of similarity that is invariant of document lengths, by taking only the cosine of the angle ✓

between document vectors X and Y into account. The result ranges between 0 and 1, as the

TF-IDF weights are always positive, thus ✓ is bound at 90 degrees.

dCos(X,Y) = cos(✓X,Y) =
X · Y

||X||⇥ ||Y || (6.5)

Part A

Ontology Opinion Reviews Technique All Others
similarity change similarity change similarity change similarity change

FFDET 0.1020 0.1152 0.1252 0.1048
MO 0.1501 47.15% 0.1497 29.94% 0.1424 13.73% 0.1892 80.53%
MOS 0.1634 8.86% 0.1990 32.93% 0.2114 48.45% 0.2012 6.34%

Part B

Ontology Opinion Reviews Technique All Others
similarity change similarity change similarity change similarity change

FFDET 0.1137 0.0819 0.1102 0.1207
MO 0.1540 35.44% 0.1230 50.18% 0.1205 9.34% 0.1764 46.14%
MOS 0.1747 13.44% 0.1879 52.76% 0.2135 77.17% 0.1848 4.76%

Table 6.4: Cosine similarity of ontology modules and di↵erent groups in the data set, and relative
change in similarity when adding the Music Ontology (MO) and the Studio Ontology (MOS) frame-
works to the combined set of modules compared.

Table 6.4 shows the results of computing the inter-document similarity between the same

set of combined ontology documents discussed in Section 6.3.1.1, and di↵erent groups in

our data set. The benefit of using the Studio Ontology (MOS group) is most apparent in the

technology orientated columns of the magazine: Reviews and Technique. The Music Ontology

framework alone covers many aspects of other types articles. In the Opinion column for

instance, while it also contains technical articles, information about artists, albums, engineers,

or music venues dominate.

It is interesting to observe that the improvement as a result of using the Studio Ontology

is greater in part B of the data set, which contains articles between 2002-2011. We speculate

that this is due to the dominance of computer-based production in the ’00s compared to the

previous decade, which caused an increase in both the size and use of a technical vocabulary

in music production. This also explains the slight decrease in similarities overall. However,

it can also be interpreted as an indication of the bias towards traditional music production

procedures our ontology framework currently exhibits.

233

Although the measures computed so far provide an indication of how the Studio Ontology

contributes towards a system for describing studio production, they are by no means su�cient

to evaluate our framework against a data set or other ontologies. In the next section, we

address this issue by applying similar ontology fit measures proposed in [Brewster et al.,

2004] or [Raimond, 2008].

6.3.1.5 Structural and conceptual ontology fit

Simple lexical overlap based evaluation has two main limitations: i) it does not take the logical

model of the ontology into account, ii) it requires direct correspondence between terms, i.e.

hypernyms and synonyms are not considered similar, and the context of the use of terms is

ignored. In order to overcome these limitations, we need to allow for some subjectivity in a

more sophisticated evaluation architecture.

An alternative corpus-driven method is proposed in [Brewster et al., 2004], with the

identification of key terms using probabilistic Latent Semantic Analysis [Hofmann, 1999],

term clustering, query expansion, and finally measuring a structural ontology fit, by mapping

the resulting term clusters to an ontology. Such a method however is largely dependent on

the principles used in term clustering. For instance, it may be useful to evaluate a concept

taxonomy, but there is no guarantee in general, that terms close in a corpus should also be

close in a well-designed ontology. In a more flexible approach, we follow the semi-automatic

evaluation technique proposed in [Raimond, 2008], where term clusters are mapped to an

ontology manually. In order for this to be feasible, we need to obtain a representative reduction

of the corpus.

6.3.1.6 Topic modelling

Observing the consistency of commonly occurring terms in our data set (see Table 6.3),

we hypothesise that topic modelling [Blei, 2011] would work well for extracting important

features (topics) from the articles. Topic modelling does not require prior annotations or

labelling of the documents. The features emerge from the analysis of the original texts. We

can then manually map these features to the ontologies, and measure the agreement between

the mapping and the reduced representation of the corpus.

The fundamental idea behind topic modelling is that a document collection covers a fixed

number of topics, and these topics contribute to documents in di↵erent proportions. For

example, an article describing a recording session may contain terms related to artists and

sound engineers, microphones, instruments and recording devices. Therefore terms related to

these topics are more likely to occur in such articles. The overall probability of a term will

depend on the topic distribution and the probability of a word within a particular topic. One

of the simplest topic models, Latent Dirichlet Allocation (LDA) [Blei et al., 2003] tries to

capture this intuition in a statistical modelling framework.

234

In LDA, each document is assumed to exhibit a distribution over a set of pre-defined

topics, where each topic is seen as a distribution over a fixed vocabulary of terms, i.e. each

term in a topic has an associated probability. Given this assumption, a document may be

generated by first picking a per-document topic distribution, which is a Dirichlet distribution,

and then for each word in the document randomly choosing a topic first, and then choosing

the word from that topic. This generative process is characterised by the joint probability

distribution shown in Equation 6.6.

The latent topic structure in LDA consists of the term distributions �1:K for K topics, as

well as the topic proportions ✓1:D and word to topic assignments z1:D for D documents, such

that zd,n corresponds to the assignment of the n-th word in document d to topic �k. Given

some observed words w1:D in D documents, (such that wd,n is the n-th word in document

d), the problem of LDA is computing the conditional (posterior) probability of the hidden

variables corresponding to the topic structure, see Equation 6.7. The probability of each word

in a document is then given by Equation 6.8, where the n-th word in document d is associated

with a probability that depends on the prevalence of the word in topic k, P (wd,n|zd,n = k),

and the probability of that topic within the document P (zd,n = k), summed over all K topics.

P (�1:K , ✓1:D, z1:D, w1:D) =
KY

k=1

P (�k)
DY

d=1

P (✓d)

NY

n=1

P (zd,n|✓d)P (wd,n|�1:K , zd,n)

!
(6.6)

P (�1:K , ✓1:D, z1:D|w1:D) =
P (�1:K , ✓1:D, z1:D, w1:D)

P (w1:D)
(6.7)

P (wd,n) =
KX

k=1

P (wd,n|zd,n = k)P (zd,n = k) (6.8)

To estimate the topic structure, it is necessary to compute the posterior probability (i.e.

the conditional distribution shown in Equation 6.7), given the sequence of words w1:D in D

documents. Unfortunately, computing P (w1:D) would require summing over all possible ways

of assigning each observed word to one of the topics (i.e. the marginal probability of seeing

the observed corpus under any topic model [Blei, 2011]), which is exponential in complexity.

To solve this problem, topic modelling algorithms either approximate this conditional dis-

tribution using, for instance, Gibbs sampling [Gri�ths and Steyvers, 2004], or use optimisa-

tion, and try to find the latent topic structure by minimising the Kullback-Leibler divergence

between the posterior and a member of an assumed family of parameterised distributions

over the hidden structure. In probabilistic modelling, this alternative method is called vari-

ational Bayesian inference [Wainwright and Jordan, 2008]. A comparison of these two main

techniques is available in [Asuncion et al., 2009]. Here, we will use the online variational

algorithm presented in [Ho↵man et al., 2010].

235

6.3.1.7 Evaluation against topic models

We now evaluate our ontology framework using a reduced representation of the text corpus

obtained by extracting dominant topics, and examine how well di↵erent groups of ontologies

can represent these topics. As in previous evaluations, we consider the Studio Ontology an

extension of the Music Ontology, and quantify its contribution in describing important topics

in music production. We use the corpus of 7757 Sound on Sound articles described in Section

6.3.1.3. Here, we consider the whole body of the corpus, without partitioning into di↵erent

columns and time periods, and use a topic modelling algorithm to infer the hidden topic

structure6. Topic modelling should automatically yield suitable structures, without taking

di↵erent columns of the magazine into account. We consider future work to check if the

partitioning as descried in Section 6.3.1.3 provides more accurate measures, since the manual

mapping of ontologies to a large number of topics is a considerable e↵ort.

The number of topics K is an important input parameter of topic modelling algorithms.

In a series of experiments using values K = 20, 30, 50, 100, 200, we found that we obtain

the most useful topics with K = 100, however some inconsistent topics remain. We use a

subjective and an objective criterion to verify the consistency of the inferred topics: i) check

if we can identify the topic using a simple topic name (e.g. recording), and ii), count the

number of articles where the 10 most likely words from a topic co-occur. Using these criteria,

we drop the topics that occur in less than 1% of the articles, and cannot be easily named at

the same time. This leaves us with 69 topics, exemplified in Table 6.5 and 6.6.

Instrument
Sampling

Audio
E↵ects

Studio
Production

Microphones Computer-
based
recording

term p term p term p term p term p

sample 0.073 e↵ect 0.031 record 0.018 microphone 0.041 firewire 0.012
sound 0.032 reverb 0.024 work 0.016 cardioid 0.028 pci 0.009
sampler 0.017 delay 0.023 studio 0.015 capsule 0.027 interface 0.009
e↵ect 0.009 set 0.014 song 0.011 mount 0.025 channel 0.008
envelope 0.009 audio 0.014 album 0.010 hypercardioid 0.017 motherboard 0.007
instrument 0.008 control 0.013 producer 0.010 polar 0.016 aux 0.007
cut 0.007 parameter 0.009 band 0.008 diaphragm 0.016 daw 0.006
loop 0.007 filter 0.009 engineer 0.008 pattern 0.013 compressor 0.006
play 0.006 chorus 0.008 mixed 0.007 shotgun 0.012 microphone 0.006
waveform 0.005 process 0.008 master 0.007 omni 0.012 cpu 0.005

Table 6.5: Some dominant topics in the Sound on Sound data set, showing the top 10 terms with
highest probability within the topic.

Ignoring the context of terms within the documents is a serious limitation of our previous

evaluation using a vector space model. The use of topic models to derive a more accurate

metrics solves this problem by introducing two levels of subjectivity in our evaluation method.

6Python implementation of online inference for LDA is available from:
http://www.cs.princeton.edu/~blei/topicmodeling.html

236

Electric
Organ

Drum
loops

Mixing Reverberation Equalisation

term p term p term p term p term p

organ 0.071 drum 0.069 sound 0.028 reverb 0.138 filter 0.063
hammond 0.056 loop 0.035 mix 0.017 convolution 0.038 equaliser 0.052
leslie 0.047 groove 0.019 drum 0.017 reflection 0.038 boost 0.033
keyboard 0.022 snare 0.016 vocal 0.016 early 0.021 frequency 0.027
drawbar 0.021 sound 0.015 track 0.013 room 0.018 shelve 0.022
tonewheel 0.019 beat 0.014 bass 0.010 di↵use 0.017 low 0.021
rotary 0.012 kit 0.014 pan 0.009 impulse 0.015 band 0.018
filter 0.012 pattern 0.013 instrument 0.008 time 0.014 parametric 0.018
play 0.011 tempo 0.012 record 0.008 wall 0.014 cut 0.018
speaker 0.011 sample 0.012 punch 0.007 response 0.013 high 0.013

Table 6.6: Dominant topics in the data set, showing more domain specific topics.

Firstly, the identification of the topics requires audio engineering knowledge. The topic

’Instrument Sampling’ for instance refers to creating a library of samples from an instru-

ment’s sound which can be used in wave-table synthesis. This task is relatively common in

audio engineering and sound design. The topic is easily recognised by observing the high

probability of terms like waveform, envelope, loop, cut. Secondly, given the identified topics,

the meaning of polysemous words becomes clearer, thus they can be mapped more precisely.

We know for example that the word chorus in the ’Audio E↵ects’ topic refers to an e↵ect as

opposed to a group of singers, and the term shotgun in the ’Microphones’ topic stands for a

common metaphor (jargon) referring to a highly directional sensitivity pattern (also called

polar pattern) of a microphone, as opposed to a rifle.

It is interesting to notice the emergence of some very domain specific ’micro’ topics. For

example, the topic about the ’Electric Organ’ contains terms related to playing the organ such

as tonewheel and drawbar, an instrument specific term for sliders controlling the timbre of

the instrument. Terms such as hammond, leslie, rotary, or speaker signifies the common use

of the Hammond organ7 and the Leslie speaker8 in 1960s and 1970s rock music, which shows

that topic modelling can discover interesting musical phenomena in a suitable text corpus.

Next, we map the topics to two sets of ontologies corresponding the Music Ontology and

the Studio Ontology frameworks, and derive an ontology fit measure, based on methodologies

proposed in [Brewster et al., 2004] and [Raimond, 2008].

We first use the ontology fit measure �m of [Raimond, 2008], where each topic is consid-

ered a feature, weighted according to its prevalence in the corpus. The ontology fit is then

computed by summing the normalised weights of features that can be expressed using the

ontology. This measure ranges from 0 to 1, where a result of 1 means that all features are

fully expressible by the ontology. Using this measure, we obtain �m = 0.3813, for the Mu-

sic Ontology, and �m = 0.6412 for the Music Ontology extended with the Studio Ontology.

7Electric organs made by the Hammond Organ Company using additive synthesis.
8A speaker cabinet with a rotating woofer that simulates the Doppler e↵ect.

237

This shows that roughly 40% and 60% of important topics of the corpus can be expressed

using the two ontology frameworks respectively. Although there is a significant improvement

when adding our ontology framework to the Music Ontology, it is in contrast with the value of

�m = 0.723 obtained by Raimond [2008] when mapping topics extracted from musical queries

(collected from Google Answers and Yahoo Questions, see [Raimond, 2008] for details) to the

Music Ontology framework. This di↵erence is at least partly due to the domain specificity of

our text corpus.

Since we found that many topics contain a few highly domain specific terms and/or jargon,

that may prevent the topic to be easily represented, we argue for a more accurate ontology

fit measure, and introduce the following refinement. Given a set of topics ⇥, and the set of

documents D (the corpus), we derive a weight wn = tfn ⇥ idfn for each term in each topic

⇥k, where tfn is the term count of the n-th term of topic in the joint corpus, and idfn is

the inverse document frequency given in Equation 6.4. For each topic, we normalise the term

weights, so that they sum is equal to 1, therefore the weights represent the general importance

of the term in the corpus and also depend on the topic composition. We then manually map

each term in each topic to the ontologies, and quantify how well it can be represented using

a score �o,k,t given by Equation 6.9, where m is a mapping of term t in topic ⇥k to a term T ,

and Vo is the vocabulary of ontology o.

�o,k,t =

8
><

>:

0 if m : t 2 ⇥k ! T /2 Vo, or T 2 {owl :Thing, owl :Nothing}
0.5 if m : t 2 ⇥k ! T /2 Vo, 9S 2 Vo : T ✓ S

1 if m : t 2 ⇥k ! T 2 Vo

(6.9)

Topic: Studio production Ontology Mapping Score (�
o,k

)

Term Weight (w
k

) MO STUDIO (MOS) MO STUDIO

record 0.1744 mo:Recording mo:Recording 1.0 1.0
work 0.0963 - - 0.0 0.0
studio 0.1076 - studio:RecordingStudio 0.0 1.0
song 0.1085 mo:MusicalWork mo:MusicalWork 1.0 1.0
album 0.0831 mo:Album mo:Album 1.0 1.0
producer 0.0816 foaf:Agent studio:Producer 0.5 1.0
band 0.0880 mo:MusicGroup mo:MusicGroup 1.0 1.0
engineer 0.0652 mo:SoundEngineer studio:SoundEngineer 1.0 1.0
mixed 0.0775 - studio:Mixing 0.0 1.0
master 0.1177 mo:SignalGroup studio:MasterSignal 0.5 1.0

Topic Score (�
k

): 0.6190 0.9037

Table 6.7: Mapping a topic to di↵erent ontologies

We perform the mapping by finding a concept, a property or an individual in the ontology

that can be used in a logical statement involving a representation of the term. The score

depends on the success of the mapping, such that it is zero if we cannot map a term within the

vocabulary of an ontology (or the mapping is only possible using the most general concepts),

238

0.5 if there is a broader term in the ontology that represents the word from the topic, but the

most specific term remains undefined, and one if mapping to a term within the vocabulary

of the ontology is successful. Table 6.7 shows an example of mapping a topic to two ontology

frameworks, and the resulting scores. For each topic, we may compute a topic score �k by

summing up the normalised weights multiplied by the mapping scores (see also Equation

6.11). A topic score of one means that the topic is fully representable in the ontology.

By computing the weights ↵k, we take the prevalence of each topic in the corpus into

account, when evaluating the ontologies against the full corpus. This is shown in Equation

6.10, where the numerator is the number of documents in D where every term in topic ⇥k

co-occurs. The ontology fit �o is then computed by Equation 6.11, where K = |⇥| is the

number of topics, w0
k,n are the normalised term weights, and �o,k,n are the mapping scores for

term n in topic k to ontology o.

↵k =
|{d 2 D|8t 2 ⇥k : t 2 d}|

|⇥| (6.10)

�o =
1

K

KX

k=1

10X

n=1

↵k ⇥ w0
k,n ⇥ �o,k,n (6.11)

This more fine grained measure is independent of the number of topics considered, takes

the relative importance of terms and topics into account, as well as the di↵erent precision of

term representations using a given ontology. If all topics are fully describable by an ontol-

ogy we get �o = 1, however, failure to represent less frequent topics diminishes the result

more gracefully. This is useful since, for instance, the topic ’Electric Organ’ (see Table 6.6)

contributes only to a handful of articles, while the ’Studio Production’ topic contributes to

over 400. Compared to vector space modelling, our method provides a better indication of

how well an ontology may cover a body of domain specific knowledge, since i) manual term

mappings take the topic specific semantics into account, and ii) assigning di↵erent scores to

di↵erent mappings allows to measure the precision of the logical statements resulting from

using a specific ontology framework.

We obtain �o = 0.49810, for the Music Ontology framework alone, using the refined

ontology fit, and �o = 0.7734 for the Music Ontology extended with the Studio Ontology. All

of the measures computed so far show a significant improvement in the representation of music

production specific information when using the Studio Ontology in conjunction with the Music

Ontology. However all measures indicate the lack of fine grained modelling of certain areas of

music production, for instance, the lack of detailed properties of electro-acoustic instruments,

tool specific characteristics and application of audio e↵ects and recording devices, computer

hardware for audio recording, or recording room characteristics.

239

6.3.1.8 Options for logical ontology structure evaluation

The methods discussed so far quantify the expressiveness of our ontologies, but not their

logical structure or the quality of knowledge representation within the ontologies. In this

section, we discuss some methods that can be used to overcome the limitations of previously

considered data-driven evaluation techniques.

A promising approach to evaluate various aspects of ontologies against a text corpus

is the use of ontology learning from text, or the use of automatic methods for populating a

knowledge base given an ontology. Both ontology learning and population are currently active

and challenging fields of research. While fully automatic knowledge acquisition techniques are

not yet feasible [Cimiano et al., 2009], ontology learning techniques have a high potential to

support the full ontology engineering process, discussed in Section 3.1.2, including evaluation.

For instance, one may measure the agreement between an automatically generated and a

manually created ontology, or attempt to quantify how information extracted from a text

corpus can be represented using di↵erent ontologies.

Figure 6.1: Parse tree of a Part-of-Speech tagged sentence from our evaluation corpus.

The first step in both ontology learning and information extraction is the analysis of text,

usually at the sentence or clause level. This involves annotating the words with ’Part-of-

Speech’ (POS) tags9, and then parsing sentences into a phrase structure (constituency) tree,

or a graph of syntactic dependencies. POS tagging involves the identification of linguistic

word categories such as noun, verb, adjective, adverb, which depend on both lexical defini-

tion and context. Statistical approaches have succeeded in yielding high quality parse-trees,

using, for instance, probabilistic context free grammars (PCFG), in which probabilities are

assigned to grammar rules learned from large manually created tree banks10. Natural lan-

9Automatic POS tagging tools include the TreeTagger available from: http://www.ims.uni-stuttgart.

de/projekte/corplex/TreeTagger/
10A text corpus in which each sentence has been annotated with syntactic structure, for instance, the British

English tree bank available from: http://www.ucl.ac.uk/english-usage/projects/ice-gb/

240

guage parsers using variants of PCFGs are described in [Carroll and Rooth, 1996] and [Klein

and Manning, 2003] in detail. Figure 6.1 shows an example of a tagged and parsed sen-

tence from our Sound-on-Sound text corpus, generated using the Stanford statistical parser11.

Collapsed grammatical dependencies [de Marne↵e et al., 2006] provide an alternative, more

easily interpreted representation of the syntactic structures, where all sentence relationships

are uniformly described as typed dependency relations. The analysis of the sentence ’Bell

makes electronic products.’ would yield for instance the relations subject(makes, Bell),

object(makes, products). These relations map straightforwardly onto a directed graph, in

which words correspond to nodes in the graph, and grammatical relations provide the edge

labels12.

In a simplistic approach, one could use certain types of grammatical dependencies, such

as the direct subjects and direct objects of verbs, to verify range and domain types of prop-

erties in ontology schemata. More complex techniques for automatic ontology construction

are also based on extracting typed dependencies from text corpora. For instance, Cimiano

et al [2005] use verb/prepositional phrase, verb/object and verb/subject dependencies, and

Formal Concept Analysis (FCA), an algebraic method for abstracting conceptual hierarchies

from a set of individuals and the set of their properties [Ganter and Wille, 1999], to learn

concept hierarchies automatically. This approach is extended in [Hacene et al., 2008] to learn

taxonomic as well as non-taxonomic relationships using Relational Concept Analysis (RCA).

These state of the art techniques however do not yet yield good ontologies from arbitrarily

complex text, that may be used to verify or evaluate manually created domain ontologies.

This is, at least in part, due to the di�culty in natural language parsing. Finding direct

relationships between words in complex sentences, and selecting the ontologically relevant

relations from a set of dependencies are both non-trivial problems. We found that our music

production specific corpus is written in a style that is too informal, and uses sentences that

are too complex for this type of analysis. The parse tree shown in Figure 6.1 is a good case

in point. The ontologically most relevant relation in this sentence is the one between a piece

of hardware and the accompanying manual, which is spread over di↵erent clauses, and do not

appear as direct dependencies in a dependency graph. Moreover, the exact information of

what hardware actually refers to is given in a preceding sentence.

Two approaches could be used to resolve these issues. One would require more sophisti-

cated natural language understanding methodologies, and extend the analyses to the para-

graph level, as opposed to parsing individual sentences. Alternatively, we could compile a

reduced representation of the text corpus using, for instance, automatic document summari-

sation. A summary then can be manually pruned, and split into more easily parsed sentences.

How then the resulting dependency graphs are best used to evaluate our ontologies is a future

research question.

11Available from http://nlp.stanford.edu/software/lex-parser.shtml
12See http://nlp.stanford.edu/software/stanford-dependencies.shtml for more complex examples.

241

Alternatively, the concept taxonomy within an ontology may be evaluated using topic

modelling, and various techniques to learn concept graphs directly from text. Building on

the foundations of Latent Dirichlet Allocation, Chambers et al [2010] use a probabilistic

framework to learn relationships between topics from text, which is then used to learn concept

graph structures. We consider future work to assess the concept hierarchies extracted this

way from our text corpus, and find a suitable method to evaluate ontologies against these

results.

6.3.2 Qualitative evaluation

So far we have discussed quantitative methods to evaluate the Studio Ontology framework,

and measure its contribution to the Music Ontology for describing music production in the

recording studio. However, we argue that quantitative methods are generally not su�cient

for judging the overall quality of an ontology. Therefore we propose evaluating our ontology

against a set of use cases appearing both in the previously described music production text

corpus, and additional Web resources.

One of the main challenges in qualitative evaluation is choosing the right users, equally

knowledgeable in the domain of the ontology, as well as the usage and underlying concepts

of Semantic Web ontologies. While it may be feasible for smaller and very specific ontologies

to train a large number of domain experts to use and evaluate an ontology, it becomes

problematic with ontology libraries such as the Studio Ontology, which cover many sub-

domains of the field. Therefore, we base this part of our evaluation on task-based self-

assessment. We first choose a number of topics, outline typical requirements, attempt to

represent the topic using our ontology, and finally examine how well this representation fulfils

the requirements.

6.3.2.1 Use Case: Describing recording studios

Considering the Semantic Web as a counterpart of the Web, we need to be able to represent

the information, one would normally find on the web site of a recording studio. This infor-

mation typically includes a list of recording spaces and their characteristics, post-production

facilities, lists of equipment available for the engineers, producers and artists, associations

between recording or mastering facilities, engineers and the clientele. Providing a machine

readable representation of this information is a contribution to the Semantic Web in itself,

since, for instance, user agents could find recording studios using complex queries based on

the equipment available, technical expertise, or the previous projects of the studio.

Requirements: Based on an informal summary of our music production text corpus, we

collected the following information needs in describing recording studios:

242

• describe recording and other facilities

• describe the characteristics of recording rooms

• describe available equipment

• associate agents with studios and facilities

• describe technical expertise

• describe previous recording projects

Examples and discussion: The Web pages of Abbey Road Studios13 contain informa-

tion in all of the above categories. In the following, we use this data to evaluate how it can be

represented using the Studio Ontology. First, we describe the studio and its facilities. Please

note that all RDF examples in each of the following sections should be seen as part of a single

knowledge base, data set or RDF file.

1 @base <http://example.org/resource/> .

2 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

3 @prefix mo: <http://purl.org/ontology/mo/> .

4 @prefix studio: <http://purl.org/ontology/studio/> .

5

6 # Description of Abbey Road Studios

7 :AbbeyRoadStudios a studio:CommertialStudio ;

8 studio:label [a mo:Label ; foaf:name "EMI"] ;

9 studio:facility :Studio1, :Studio2, :Studio3 ;

10 studio:facility :MasteringRoom5 ;

11 studio:homepage <http://www.abbeyroad.com> .

12

13 :Studio1 a studio:RecordingFacility .

14 :Studio3 a studio:RecordingFacility .

15 :Studio2 a studio:RecordingFacility ;

16 studio:facility :control_room, :recording_room,

17 [a studio:Lounge] .

Listing 6.1: RDF description of Abbey Road Studios and its facilities (partial).

In Listing 6.1, we associate a recording studio with a record label (which may be the owner

or main client of the studio), and its facilities. We identify Abbey Road as a commercial studio

13 Detailed information about Abbey Road Studios is available at: http://www.abbeyroad.com/

243

(the corresponding concept is a subclass of mo:CorporateBody and studio:RecordingStudio.)

The general purpose property studio:facility is used to link studios with self-contained

sub-units, such as Studio Two, which is useful to express the common organisational structure

of larger studios, but also used to subdivide facilities to smaller units such as a control room

or a recording room. This conceptualisation supports the easy formulation of the typical

query: List all facilities available in this studio.

Studio facilities may be associated with simple descriptions regarding the size (floor area,

width, depth, height) or volume of the space. We can also link recording rooms with sim-

ple textual or numerical descriptions for wall and floor materials, absorption coe�cients,

standard reverberation times, and impulse responses, which are identified as instances of

the mo:Signal concepts. Presently, 9 simple data properties are provided, which include,

for instance, studio:floor_area or studio:rt60_decay_time. More complex architectural

characteristics are not well aligned with the purpose of the studio ontology, therefore these

may only be expressed using a specialised extension or a suitable domain ontology. However,

at the time of writing, we are not aware of such an ontology. Studio facilities can be explicitly

identified as recording, control, or mastering spaces (among others), and linked with equip-

ment available in these spaces. This is exemplified in Listing 6.2.

1 @prefix device: <http://purl.org/ontology/studio/device/> .

2 @prefix mx: <http://purl.org/ontology/studio/audiomixer/> .

3 @prefix mic: <http://purl.org/ontology/studio/microphone/> .

4

5 # Organisations

6 :akg a foaf:Organization ;

7 foaf:name "AKG" .

8

9 # Recording room equipment

10 :recording_room a studio:RecordingRoom ;

11 rdfs:label "Recording space in Studio2 at Abbey Road"

12 studio:equipment :mic1, :mic2, :mic3 .

13

14 :control_room a studio:ControlRoom ;

15 studio:equipment :neve_console, :monitoring_system .

16

17 :neve_console a mx:AnalogConsole ;

18 device:vendor [a foaf:Organization ; foaf:name "Neve"] ;

19 device:model "VRP Legend" ;

20 mx:channel_count "60"^^xsd:int .

244

21

22 :monitoring_system a studio:MonitoringSystem ;

23 device:vendor [a foaf:Organization ;

24 foaf:name "Quested"] .

25

26 :mic1 a mic:CondenserMicrophone ;

27 device:vendor :akg ;

28 device:model "C 12" .

29

30 :mic2 a mic:CondenserMicrophone ;

31 device:vendor :akg ;

32 device:model "C 414 EB" .

33

34 :mic3 a mic:CondenserMicrophone ;

35 device:vendor :akg ;

36 device:model "C 414 EB" .

Listing 6.2: Partial description of recording spaces and equipment at Abbey Road Studios.

In the above example, we provide a partial equipment list of the recording room of Stu-

dio 2 at Abbey Road. The property studio:equipment and its sub properties are used to

link facilities to equipment, whose range is simply device:Device, which is used to identify

technological artefacts. This conceptualisation supports the common use case of querying for

a list of equipment, but also allows very simple queries to be written for such specific cases

as retrieving all condenser microphone models. These microphones are frequently used for

vocal recordings, and it is often the first question a recording artist may ask. In query 6.3,

for instance, we retrieve a list of recording spaces, where a model ”C 414 EB” condenser

microphone is available.

1 SELECT ?room WHERE {

2 ?room studio:equipment ?mic .

3 ?mic a mic:CondenserMicrophone ;

4 device:model "C 414 EB" . }

Listing 6.3: Finding the recording room featuring a specific type of microphone.

A limitation of referring to all equipment types using a generic studio:equipment prop-

erty is that we need to know the specific equipment sub-categories available in the ontology

to retrieve, for instance, all recording devices, or all types of microphones. This limita-

tion can be resolved by using sub-properties of studio:equipment, such as studio:daw or

245

studio:recording_device, whose range is restricted to specific device categories in the vo-

cabulary of audio engineering tools. This is exemplified in Listing 6.4, where we also show

how to associate a studio facility with the engineers working there.

1 :MasteringRoom5 a studio:MasteringRoom ;

2 studio:mastering_engineer [a studio:SoundEngineer ;

3 foaf:name "Geoff Pesche"] ;

4 studio:mastering_engineer [a studio:SoundEngineer ;

5 foaf:name "Christian Wright"] ;

6 studio:daw [a studio:DAW, mx:DigitalConsole ;

7 device:vendor [a foaf:Organization ;

8 foaf:name "SADiE"] ;

9 device:model "Series 5 PCM 8 Digital Audio Workstation" ;

10 device:firmware_version "5.6.1"] ;

11 studio:recording_device [a studio:AnalogTapeMachine ;

12 device:vendor [a foaf:Organization ;

13 foaf:name "Ampex"] ;

14 device:model "Ampex ATR 100"] ;

15 studio:monitor [a studio:NearFieldMonitor ;

16 device:vendor [a foaf:Organization ;

17 foaf:name "Yamaha"] ;

18 device:model "NS-10M"] .

Listing 6.4: Description of Abbey Road Mastering Room 5

Our ontology provides the necessary flexibility to represent and associate recording facil-

ities, engineers (and other sta↵), and tools, but it’s up to the user of the ontology to choose

the desired granularity of knowledge representation for an application. For instance, whether

to associate facilities and devises using the generic property studio:equipment, or its more

specific sub-properties, depends on the typical application of a recording studio database.

For instance, using studio:equipment supports the more general query ’List all available

equipment.’, even if an inferential component, such as a deductive query engine which takes

assertions of the ontology schema into account when evaluating a query is not available. Since

specific kinds of devices are used for di↵erent purposes in music production, this knowledge

can be assumed, therefore we believe that our conceptualisation makes the optimal compro-

mises from an audio engineering point of view. The best practice in general, is the use of

the most specific concepts and properties available in the ontology, and make more general

assertions if required by the system or the application.

246

We have shown that the first four requirements, i) describing studio facilities, ii) the

characteristics of recording rooms, iii) the available equipment, and iv) associate agents with

studios and facilities, are easily fulfilled using the Studio Ontology. Describing the technical

expertise of sta↵, and past projects are not currently supported by the ontology, or any of

its extensions. The Music Ontology however, supports linking music releases to engineers or

producers, therefore parts of these requirements can be, at least indirectly, expressed within

our framework, but this does not allow easy query formulation. For instance, the property

mo:engineered may be used to link an engineer to a performance, recording or recording

session event, which in turn can be localised in a recording studio, but this is a rather complex

way to express simple information like a list of albums produced in a studio. We consider

future work to fulfil these requirements in a more simple way.

6.3.2.2 Use Case: Describing recording scenarios

Another common information need in describing music production concerns the details of

recording, in particular, the placement and configuration of microphones, and the description

of microphone techniques.

Requirements: The main requirements when describing the details of recording are:

• describe microphones and their application (such as variable parameters)

• describe microphone placement and specific techniques

• describe the recording of individual instruments

• describe the recording of groups and orchestras

• describe spatial and ambient recording techniques

• describe pre and post processing of recorded sound and signals

Examples and discussion: The Microphone Ontology extension of the Studio Ontol-

ogy enables the description of recordings and recording techniques, as described in Section

4.2.5.1. This allows denoting the main characteristics of microphones used in a particular

recording. The studio:microphone property — whose domain includes recording events

(mo:Reocrding) and range is the top-level studio:Microphone concept with specific sub-

types defined in the Microphone Ontology — can be used to link recording events to micro-

phones.

247

1 :rec1 a mo:Recording ;

2 studio:microphone :mic1 .

3

4 :mic1 a mic:CondenserMicrophone ;

5 device:vendor [a foaf:Organisation ; foaf:name "Neumann"] ;

6 device:model "M 49" ;

7 rdfs:comment """The M 49 is a classic Neumann studio microphone of

the 1960s. It is a short-bodied design with a twin large-

diaphragm capsule and variable polar pattern...""" ;

8 mic:diaphgram_type "large" ;

9 mic:max_spl "125.0"^^xsd:float ;

10 mic:output_impedance "200"^^xsd:nonNegativeInteger ;

11 mic:output_sensitivity "6.0"^^xsd:float ;

12 mic:high_frequency_rolloff "16000"^^xsd:int ;

13 mic:connector_type con:Tuchel_8 ;

14 mic:polar_pattern mic:MultiPolar ;

15 mic:configuration :cfg1 .

16

17 :cfg1 a mic:Configuration ;

18 mic:polar_pattern mic:Omnidirectional ;

19 mic:distance "2"^^xdd:float ;

20 mic:azimuth "0"^^xdd:int ;

21 mic:elevation "0"^^xdd:int .

Listing 6.5: Application of a Neumann M49 vintage microphone in a recording event.

In Listing 6.5 we provide detailed information about a microphone14 and show how it

is applied in a recording event. The Microphone Ontology allows to describe both static

and variable parameters of the device, including physical and electrical characteristics. For

instance, the size of the diaphgram can be expressed using the literal values miniature, small

and large which are common designations in audio engineering. We may also specify the

exact size using mic:diaphgram_size. The maximum sound pressure level (SPL) the device

can process can be expressed using mic:max_spl. Various other electrical and frequency

characteristics can be included in these descriptions as shown in our RDF example.

Variable parameters of microphones are expressed using the mic:Configuration concept,

which is considered an abstraction of changeable states of devices modelled as events. This

is discussed in Section 4.2.3.6. The domain of variable microphone properties includes the
14Microphone data was obtained from the online catalogue: http://www.microphone-data.com/

microphones/m49/

248

mic:Configuration concept to satisfy this requirement. Without additional information

regarding the temporal extent of this event, it shall be interpreted as coinciding with the main

recording event. We currently do not require this event to be specifically timed, therefore

the interpretation of the data relies on a convention, which can be seen as a limitation of

the ontology. However, multiple configurations may be described and linked with specific

temporal objects.

Similarly, the measurement units of all parameter values are fixed to be the most con-

ventionally used ones, for instance, mic:max_spl has to be expressed in deci Bels (dB). The

ontology specification includes these designations. User agents may provide di↵erent views

on these data, and data entry interfaces may allow entering values in di↵erent units, but

implementations have to take care of necessary conversions. We believe that this is a sensible

compromise over alternative solutions, such as reified parameter values, allowing units to be

expressed together with values, or the use of di↵erent properties for di↵erent measurement

units.

1 :rec2 a mo:Recording ;

2 studio:microphone_technique :arr1 .

3

4 :arr1 a mic:SpacedPair ;

5 mic:left [a mic:CondenserMicrophone ;

6 device:vendor [a foaf:Organisation ;

7 foaf:name "Schoeps"] ;

8 device:model "CCM 41 VL/U" ;

9 mic:polar_pattern mic:Supercardioid

10] ;

11 mic:right [a mic:CondenserMicrophone ;

12 device:vendor [a foaf:Organisation ;

13 foaf:name "Schoeps"] ;

14 device:model "CCM 41 VL/U" ;

15 mic:polar_pattern mic:Supercardioid

16] ;

17 mic:element_distance "1"^^xdd:float ;

18 mic:distance "2"^^xdd:float ;

19 mic:azimuth "10"^^xdd:int ;

20 mic:elevation "0"^^xdd:int .

Listing 6.6: Describing a microphone technique: ambient recording using a spaced pair.

249

Microphone placement is described using the properties mic:distance, mic:azimuth and

mic:elevation, which express the (approximate) distance between the microphone pickup

and the sound source, as well as the vertical and horizontal angles between the main axis of

the microphone and the principal radiating direction of the instrument, (by convention, zero

means the microphone is placed perfectly on-axis). As we previously noted, this is somewhat

problematic, as the interpretation of these data may be instrument specific. The solution is to

consider the use cases of recording, and provide the grounding and reference points necessary

for the description of more precise microphone placement in a musical instrument ontology

corresponding to our ontology library (see Section 4.5).

1 :rec3 a mo:Recording ;

2 studio:microphone_technique :arr2 .

3

4 :arr2 a mic:DeccaTree ;

5 mic:left [a mic:CondenserMicrophone ;

6 device:vendor [a foaf:Organisation ;

7 foaf:name "Neumann"] ;

8 device:model "M 50" ;

9 mic:polar_pattern mic:Omnidirectional

10] ;

11 mic:right [a mic:CondenserMicrophone ;

12 device:vendor [a foaf:Organisation ;

13 foaf:name "Neumann"] ;

14 device:model "M 50" ;

15 mic:polar_pattern mic:Omnidirectional

16] ;

17 mic:center [a mic:CondenserMicrophone ;

18 device:vendor [a foaf:Organisation ;

19 foaf:name "Neumann"] ;

20 device:model "M 50" ;

21 mic:polar_pattern mic:Omnidirectional

22] .

Listing 6.7: Description of a Decca Tree

When describing microphone techniques or arrangements, we have the option of describing

each microphone individually, which is currently the only option for very complex arrange-

ments, such as the recording of a grand piano or a drum kit using several microphones.

Alternatively, we can use one of the microphone technique concepts available in the ontol-

250

ogy. This is exemplified in Listing 6.6, describing a technique commonly used for recording

ambient sound. This technique is called Spaced Pair. It consists of two identical micro-

phones, placed relatively far from the source. In case of microphone arrangements, the

placement predicates relate the centre and principal direction of sensitivity of the micro-

phone array to the sound source. Microphone arrangements are linked to recording events

using the studio:microphone_technique predicate, while any number of constituent micro-

phones can be linked to the arrangement using mic:constituent_microphone. For specific

arrangements where relative positioning of the microphones within an array are defined by the

applied technique itself, we provide sub-properties such as mic:left or mic:center to link

individual microphone descriptions to the array. For instance, the placement of microphones

in a standard Decca Tree — which is a stereo technique used for recording large ensembles

— is fixed, therefore it doesn’t have to be included in the description shown in Listing 6.7.

However, variations of this and similar stereo and spatial recording techniques exists, where

the individual spatial co-ordinates of each microphone may be specified relative to the centre

of the array.

Describing the recording of electric and electro-acoustic instruments with direct analogue

or digital signal output is more straightforward. The ontology provides means for describing

recording interfaces, such as sound cards, break-out boxes and direct injection (DI) boxes

frequently used to match the signal level and output impedance of the instrument to the

recording device in these recording scenarios. Currently, the ontology allows the inclusion of

these devices in a signal flow description, but only their basic characteristics can be described.

Although the ontology fulfils most requirements mentioned in this section, there is scope

for future improvement. Currently the ontology provides very limited knowledge represen-

tation when it comes to instrument specific recording techniques, such as the choice, config-

uration and placement of microphones given an instrument. For instance, we could restrict

certain microphone characteristics, or express the most suitable transducer technology to be

used, the desirable frequency response, or polar pattern for recording a certain instrument.

Given a recording situation, we could for instance describe whether to use a dynamic, a

condenser or another type of microphone. We could also include constraints on the type of

microphones used in stereo and spatial recording techniques, end express facts such as the

standard Decca Tree has to be constructed of identical omnidirectional microphones. This

embedded knowledge could then be used to aid the engineer in common recording situations.

Our ontology currently lacks this level of knowledge representation. Lastly, although pre and

post processing of recorded sound is can be seen as part of the recording process, we discuss

these issues in a wider context in the following sections.

251

6.3.2.3 Use Case: Describing Recording Sessions

Describing recording sessions primarily concerns the denotation of a workflow in the studio.

The Music Ontology provides a fundamental model of music production workflows discussed

in Section 4.1.3.2. This model focuses on broader, more general concepts, such as composi-

tion, musical works, performances, sounds, recordings, album releases and individual musical

items. In studio production, we need to be able to talk about studio sessions corresponding

to elements of this broader workflow. For instance, describing composition and song writing

sessions in the studio environment. However, we also need to be able to express a narrower,

more specific workflow discussed in Section 4.2.4.2, related to the production of individual

musical recordings, and the audio engineering workflow.

Requirements: The most important requirements in describing a recording session are:

• the ability to link individual recording events to a single session,

• the identification of the resulting signals,

• the description of a signal flow, for instance the ability to express how signals from a

microphone array are mixed together,

• the ability to denote the audio engineering workflow,

• liking parts of the recording session to participants, artists and engineers.

Examples and discussion: In the following, we show how the Music and Studio ontolo-

gies can be used to fulfil these requirements. In Listing 6.8, we first describe a performance

as part of a recording session.

1 :s1 a studio:RecordingSession ;

2 event:place <http://dbpedia.org/resource/Abbey_Road_Studios> ;

3 event:sub_event :perf1, :rec1 .

4

5 :perf1 a mo:Performance ;

6 rdfs:comment "A solo performance on guitar and vocals." ;

7 mo:performer [a mo:MusicArtist ; foaf:name "Les Paul"] ;

8 dc:title "How High the Moon" ;

9 mo:produced_sound :snd1, :snd2 .

Listing 6.8: Describing a performance during a recording session

252

We distinguish between di↵erent types of sessions in the studio, such as composition, ar-

rangement, rehearsal, recording, as well as post production, including mixing and mastering.

These sessions can all be interpreted as part of the wider mo:RecordingSession concept,

which encompasses all the diverse activities related to producing an album. In a studio spe-

cific ontology however, the above mentioned distinctions are also important. The concept

studio:RecordingSession can be used to designate a session strictly for the case of record-

ing new material. Our simple recording session example consists of a single performance

event, producing two distinct sounds.

1 :snd1 a mo:Sound ;

2 rdfs:comment "The sound of the voice." ;

3 mo:recorded_in :r1 .

4

5 :snd2 a mo:Sound ;

6 rdfs:comment "The sound of the guitar." ;

7 mo:recorded_in :r2 .

8

9 :rec1 a mo:Recording ;

10 rdfs:comment "Recording event corresponding to the song." ;

11 mo:produced_signal :sig_mix ;

12 event:sub_event r1, r2 .

13

14 :r1 a mo:Recording ;

15 rdfs:comment "Recording the vocal part" ;

16 mo:produced_signal :sig1 ;

17 studio:recording_engineer [a studio:SoundEngineer;

18 rdfs:comment "Our recording engineer" ;

19 foaf:name "John"] ;

20 studio:microphone :mic1 .

21

22 :r2 a mo:Recording ;

23 mo:produced_signal :sig2, :sig3 ;

24 rdfs:comment "Recording the guitar using a stereo technique" ;

25 studio:recording_engineer [a studio:SoundEngineer;

26 rdfs:comment "Our other recording engineer" ;

27 foaf:name "Mike"] ;

28 studio:microphone_arrangement :arr1 .

Listing 6.9: Describing the recording of a performance

253

The sound of the voice and the guitar are individually recorded, as described in Listing 6.9. A

complex recording event corresponding to the song is decomposed into two individual record-

ings, expressing the fact that two di↵erent engineers were involved in setting up the di↵erent

microphones. The configuration of the vocal microphone, and the stereo arrangement for

recording the guitar is described in listings 6.10 and 6.11 respectively.

1 :mic1 a mic:DynamicMicrophone ;

2 device:vendor [a foaf:Organisation ;

3 foaf:name "Electrovoice"] ;

4 device:model "RE 20" ;

5 mic:polar_pattern mic:Cardioid ;

6 mic:configuration :cfg1 ;

7 mic:output [a con:AnalogOutput ;

8 con:signal :sig1] .

9

10 :cfg1 a mic:Configuration ;

11 mic:distance "0.3"^^xdd:float ;

12 mic:azimuth "0"^^xdd:int ;

13 mic:elevation "0"^^xdd:int .

Listing 6.10: Describing the vocal microphone configuration

In these examples, we also show how the microphone outputs are linked to signals, which is

necessary to describe the signal flow. The details of how microphone placement and config-

urations are described was discussed in the previous section. The following example show

an X/Y stereo arrangement. This example highlights a current limitation of the ontology,

that is, microphone placement in some situation cannot be fully expressed in a machine read-

able way. We had to include an extra rdfs:comment predicate to express that we place the

microphone relative to a particular fret on the neck of the guitar as opposed to the sound hole.

1 :arr1 a mic:XY ;

2 mic:left [a mic:CondenserMicrophone ;

3 device:vendor [a foaf:Organisation ;

4 foaf:name "DPA"] ;

5 device:model "4011" ;

6 mic:polar_pattern mic:Cardioid ;

7 mic:output [a con:AnalogOutput ;

8 con:signal :sig2]

254

9] ;

10 mic:right [a mic:CondenserMicrophone ;

11 device:vendor [a foaf:Organisation ;

12 foaf:name "DPA"] ;

13 device:model "4011" ;

14 mic:polar_pattern mic:Cardioid ;

15 mic:output [a con:AnalogOutput ;

16 con:signal :sig3]

17] ;

18 mic:distance "0.6"^^xdd:float ;

19 mic:azimuth "20"^^xdd:int ;

20 mic:elevation "30"^^xdd:int ;

21 rdfs:comment "Placed relative to the 10th freat." .

Listing 6.11: Describing the stereo arrangement

Now that we have described the details of a performance and the recording, in the following

examples of Listing 6.12 and 6.13, we denote how the individual recordings are mixed together.

1 :sig1 a mo:AnalogSignal .

2 :sig2 a mo:AnalogSignal .

3 :sig3 a mo:AnalogSignal .

4

5 :m1 a studio:Mixing ; # a mixing event

6 studio:mixing_engineer [a studio:SoundEngineer;

7 foaf:name "Joe"] .

8 studio:consumed_signal :sig1, :sig2, sig3 ;

9 studio:produced_signal :sig_mix ;

10 studio:console :mixer1 .

11

12 :sig_mix a mo:DigitalSignal ;

13 rdfs:comment "The mixed signal" ;

14 mo:channels "2"^^xsd:int .

Listing 6.12: Describing the mixing of analogue signals

An additional event studio:Mixing, discussed in Section 4.2.4.2, is introduced in the work-

flow model. This event is linked to the audio signals produced by parallel recording events, as

well as agents and factors, such as the mixing console and the mixing engineer. The mixing

event produces a stereo digital signal, however, we are yet to describe the details about the

255

mixing console and its configuration. First we describe the signal connections which allow us

to associate input and output signals with the mixer channels and internal mixing buses.

1 :mixer1 a mx:DigitalConsole ;

2 device:vendor [a foaf:Organisation ;

3 foaf:name "Yamaha"] ;

4 device:model "MC3000" ;

5 mx:mixer_channels :ch1, :ch2, ch3 .

6

7 :in1 a con:AnalogueInput, con:BalancedTerminal ;

8 con:input_signal :sig1 ;

9 con:terminal_channels "1"^^xsd:int ;

10 con:connector con:XLR_3F .

11

12 :in2 a con:AnalogueInput, con:BalancedTerminal ;

13 con:input_signal :sig2 ;

14 con:terminal_channels "1"^^xsd:int ;

15 con:connector con:XLR_3F .

16

17 :in3 a con:AnalogueInput, con:BalancedTerminal ;

18 con:input_signal :sig3 ;

19 con:terminal_channels "1"^^xsd:int ;

20 con:connector con:XLR_3F .

21

22 :out1 a con:DigitalOutput, con:StereoTerminal ;

23 con:output_signal :sig_mix ;

24 con:terminal_channels "2"^^xsd:int ;

25 con:connector con:EBU .

26

27 # mixing and effect busses

28 :output_bus1 a mx:MixingBus ;

29 mx:output :out1 .

30

31 :send_bus1 a mx:SendBus ;

32 mx:output :send_output1 .

Listing 6.13: Describing the connections of the mixer

256

Finally, we can describe the channel settings and routing of the mixing console during the

mixing and corresponding recording event.

1 :ch1 a mx:Channel ;

2 rdfs:comment "The vocal channel" ;

3 mx:input :in1 ;

4 mx:bus :output_bus1 ;

5 mx:send_bus :send_bus1 ;

6 mx:pan "0"^^xsd:float ;

7 # equvalent property mx:left_right_position

8 mx:fader_level "0"^^xsd:float ;

9 mx:gain_level "10"^^xsd:float .

10

11 :ch2 a mx:Channel ;

12 rdfs:comment "The left channel of the stereo pair" ;

13 mx:input :in2 ;

14 mx:bus :output_bus1 ;

15 mx:pan "-70"^^xsd:float ;

16 mx:fader_level "-30"^^xsd:float ;

17 mx:gain_level "20"^^xsd:float .

18

19 :ch3 a mx:Channel ;

20 rdfs:comment "The right channel of the stereo pair" ;

21 mx:input :in3 ;

22 mx:bus :output_bus1 ;

23 mx:pan "70"^^xsd:float ;

24 mx:fader_level "-30"^^xsd:float ;

25 mx:gain_level "20"^^xsd:float .

Listing 6.14: Describing the configuration of the mixer

Using the mx:input and mx:output predicates we associate channels and buses with in-

put and output terminals receiving or emitting signals. The mx:pan predicates can be used

to describe standard stereo panning, with the units adopted from the AES-31-3-2008 stan-

dard, where a value of +100.0 means fully right, -100.0 means fully left and 0 means centre.

Similarly, surround spatial positioning can also be expressed using the equivalent property

mx:left_right_position and the corresponding mx:front_rear_position predicate. Fi-

nally, in the last example, we describe a tape recording device connected to the digital output

of the mixing console in Listing 6.15.

257

1 :rd1 a studio:DATMachine ;

2 device:input [a con:DigitalInput ;

3 con:terminal_channels "2"^^xsd:int ;

4 con:connector con:EBU

5 con:input_signal :sig_mix] ;

6 rdfs:comment "A recording device connected to the mixer."

Listing 6.15: Connecting a recording device

The above examples show that our ontology framework fulfils the requirements for describ-

ing recording sessions in details. We have extended the music production workflow model of

the Music Ontology for this purpose. Our model provides two levels of granularity in repre-

senting audio engineering workflows. Firstly, it has the ability to describe a set of parallel or

successive events (event flow) corresponding to performances, recordings and audio engineer-

ing tasks. Secondly, it also provides a way to describe the detailed signal flow and connection

of recording and audio engineering tools, and their configurations. A current limitation of the

ontology is the lack of predicates for a more detailed description of tools other than micro-

phones and consoles. Although many other tools may be included in the recording workflow,

using the generic terms of the device and connectivity ontologies, further work is required to

provide ontology extensions for other devices, based on the fundamental vocabulary of tools

present in the core Studio Ontology.

6.3.2.4 Use Case: Describing post-production

So far we have discussed how well our framework can be used to represent information about

recording studios, the specific details of recording, such as microphone placement, and ex-

amined how it can be used to describe whole recording sessions. We need to consider one

remaining area of audio engineering, the post production of recorded material, including au-

dio editing, audio e↵ects, or how recordings can be managed in digital audio workstations.

We note that the application of audio e↵ects is not only a post-production task.

Requirements: Notable requirements for describing post-production tools and tasks are:

• description of multitrack production tools (multitrack editors and workstations),

• the audio editing workflow,

• complex signal processing devices and their application,

• audio transformations (such as mastering).

258

Examples and discussion: Using the Multitrack Ontology discussed in Section 4.2.5.4

we can describe how recorded material is represented in multitrack music production tools.

In listings 6.16, we exemplify the use of this ontology, describing the outcome of a simple

recording session, and its representation in an multitrack audio editor.

1 :our_singer a mo:SoloMusicArtist ;

2 foaf:name "Superstar Singer" .

3

4 :chorus_take a mo:Performance ;

5 mo:performer :our_singer ;

6 mo:recorded_as project:chorus .

7 :intro_take a mo:Performance ;

8 mo:performer :our_singer ;

9 mo:recorded_as project:intro .

10 :verse_take a mo:Performance ;

11 mo:performer :our_singer ;

12 mo:recorded_as project:verse .

13

14 :chorus a mo:Signal .

15 :intro a mo:Signal .

16 :verse a mo:Signal .

17

18 :voclas_001 a mt:AudioClip ;

19 rdfs:label "The first take of the intro" ;

20 mt:signal :intro .

21 :voclas_002 a mt:AudioClip ;

22 rdfs:label "The first take of the verse" ;

23 mt:signal :verse .

24 :voclas_003 a mt:AudioClip ;

25 rdfs:label "The first take of the chorus" ;

26 mt:signal :chorus .

27

28 :vocals_001 a mt:AudioTrack ;

29 mt:clip :voclas_001 , :voclas_002 , :voclas_003 .

30

31 :myProject a mt:MultitrackProject ;

32 mt:track :bass_001 , :keyboard_001 , :vocals_001 .

Listing 6.16: Multitrack Ontology example (simplified)

259

The above listing shows how the recording of a set of performances may be represented

in a multitrack audio editor, that is, how the audio clip and audio track composition of a

multitrack project may be encoded, how these entities are related to each other, and how

they are linked to audio signals. However, this representation is only su�cient for encoding

a static project state, assuming that recordings of di↵erent instruments are synchronised. In

order to express an editing workflow in a multitrack workstation, first, we need to be able to

express the temporal relations of audio clips to signals, tracks, or the whole project. This is

exemplified in listings 6.17.

1 :voice_take1 a mo:Signal ;

2 mo:time [a tl:Interval ;

3 tl:onTimeLine :signal_timeline1] .

4

5 :signal_timeline a tl:TimeLine .

6 :track_timeline a tl:TimeLine .

7

8 :voice_clip1 a mt:AudioClip ;

9 mt:signal :voice_take1 ;

10 mt:signal_time [a tl:Interval ;

11 tl:at "PT01.000000000S"^^xsd:duration ;

12 tl:duration "PT30.00000000S"^^xsd:duration ;

13 tl:onTimeLine :signal_timeline] ;

14 mt:track_time [a tl:Interval ;

15 tl:at "PT20.500000000S"^^xsd:duration ;

16 tl:duration "PT30.000000000S"^^xsd:duration ;

17 tl:onTimeLine :track_timeline] .

Listing 6.17: Describing audio clips in a temporal context

Here, we define a timeline for a recorded audio signal, and a timeline for a track in an audio

editor. Multitrack audio editors often conceptualise clips as a ’window’ over an underlying

signal, that is, a clip may not necessarily contain the whole signal and its boundaries may

be variable. The temporal relation of a clip and a signal can be expressed in our ontology

using the property mt:signal_time which links the clip to an interval defined on the signal

timeline. The property mt:track_time describes the position and duration of the clip within

an audio track. This conceptualisation is flexible enough to represent even the most complex

cases, for instance, when both clips and tracks can be moved relative to a project timeline.

However, we do not require a full description in all circumstances. If an audio editor always

represents a complete signal in a clip, the mt:signal_time property does not need to be used,

260

and the duration of the clip is assumed to be equivalent to the duration of the signal. These

sort of assumptions may be seen as limitations of the ontology. They may be however resolved

using various OWL language features, for example, cardinality constraints on the various time

related predicates. Requiring all temporal associations to be present in all descriptions may

lead to significantly more verbose description when describing complex editing workflows.

Finding the best trade o↵ is not trivial, and we regard this future work.

Next, we consider how edit decisions within an audio editing workflow may be described

using the Multitrack and the Edit ontologies. In Section 4.2.5.4 we discussed some basic

audio editing operations. In listings 6.18 we exemplify how these can be used to describe the

manipulation of audio clips.

1 :ed1 a edit:Move ;

2 edit:consumed_clip :voice_clip1 ;

3 edit:produced_clip :voice_clip2 ;

4 edit:media_time [a tl:Interval ;

5 tl:at "PT0S"^^xsd:duration ;

6 tl:duration "PT10.000000000S"^^xsd:duration ;

7 tl:onTimeLine :track_timeline] .

8

9 :voice_clip2 a mt:Clip ;

10 mt:signal :voice_take1 ;

11 mt:signal_time [a tl:Interval ;

12 tl:at "PT01.000000000S"^^xsd:duration ;

13 tl:duration "PT30.000000000S"^^xsd:duration ;

14 tl:onTimeLine :signal_timeline] ;

15 mt:track_time [a tl:Interval ;

16 tl:at "PT30.500000000S"^^xsd:duration ;

17 tl:duration "PT30.000000000S"^^xsd:duration ;

18 tl:onTimeLine :track_timeline] .

Listing 6.18: Describing a move operation

Recall that all edit decisions are modelled as time based events. These events may be linked

to the universal timeline as well as the timeline of the track, clip or signal entities an event

operates on. Therefore both the order of execution and the edit decision’s relation to the

audio material are captured. In our example, we describe moving a clip, defined previously in

listings 6.17, relative to the timeline of a track. The time extent of the move is expressed using

the time interval linked to the event by the edit:media_time predicate. The description

above is perhaps the most trivial example, which shows the consequence of modelling all

261

transformations as events that change the identity of the entities they operate on. This

conceptualisation, although produces an excessive amount of data, enables us to describe

complex sound editing workflows. Similarly to edit decisions, audio transformations can

also be described using our ontology. It provides a rather generic term edit:Transform,

specialised to describe basic operations of an editor for instance, edit:Mute, edit:Gain.

Similarly to the studio:Transform concept, which is intended to be used when describing

real-time signal processing workflows discussed in Section 4.2.4.3, edit:Transform concept

may be linked to devices, such as audio processing plugins to describe o↵-line operations.

Having more than one way of encoding audio transformations seems somewhat prob-

lematic, and certainly, the ontology does not satisfy the principles of clarity and minimal

ontological commitment in this respect (see Section 3.1.4). It requires further refinements

and modelling experiments to create a simpler and more unified model which is able to fulfil

the description requirements for real-time signal transformations using hardware or software,

as well as transformations in an audio editor using either built in commands or plugins.

6.4 Summary and discussion

In this chapter a formal evaluation of the Studio Ontology framework was presented. We

first reviewed prominent techniques available for ontology evaluation and choose to perform

quantitative evaluation using data-driven automated testing, as well as qualitative evaluation

using self-assessment based on specific case studies.

Our data-driven evaluation measures the lexical coverage (see Section 6.3.1.4) and a more

subjective ontology fit (see Section 6.3.1.5) given a large domain specific text corpus obtained

from the internet archive of a domain-specific periodical. These measures demonstrated that

the Studio Ontology has a significant contribution to the set of ontologies comprising the

Music and Studio Ontology frameworks when describing relevant topics in this text corpus.

We also outlined a methodology to automatically test the quality of the logical model within

the ontologies given a text corpus. However, it remains future work to find specific techniques

and the algorithms most suitable to perform these tests. The di�culty lies in improving

information extraction techniques using natural language processing (see Section 6.3.1.8).

Our qualitative evaluation relies on objective self-assessment examining how our ontolo-

gies may be used to represent information in four music production related use cases; de-

scribing recording studios, concrete recording events, complete recording sessions, and post

production. Here, we showed that albeit the ontologies generally provide e↵ective knowledge

representation for describing these topics, there are also gaps in the knowledge representation

available. For instance, we cannot always describe microphone placement unambiguously.

We also identified the need for further extensions describing detailed parameters of music

production tools such as audio e↵ects.

262

Chapter 7

Conclusions and Future Work

This thesis outlines techniques, utilities and applications of semantic audio. We were partic-

ularly interested in two application areas: i) music production, and the development of an

intelligent audio editing environment, and ii) music informatics, in particular, the develop-

ment of Web-based tools that use audio analysis.

We developed a set of ontologies for describing music production, and a set of tools

for supporting the analysis of audio content on the Web, as well as to facilitate the use of

ontologies by MIR researchers. Furthermore, we built software tools for collecting metadata

in music production, prototyping audio analysis applications, and for indexing of music timbre

features. We believe that these ontologies and tools are significant contributions to several

areas, including audio engineering, the Semantic Web, MIR research, and music informatics.

In the rest of this chapter, we provide a quick summary of the novelties and achievements of

this work, and then outline future work.

7.1 Summary of this thesis

Several use cases were discussed throughout this text which lead to the hypothesis detailed in

Section 1.6, namely, that collecting data in the recording studio should lead to improvements

in the applications of semantic audio. This hypothesis guided the development of a set of

ontologies and applications.

We first reviewed semantic audio analysis techniques, and outlined a system that can

be used to improve the state of the art by representing audio content analysis results as

structured data, and by using a knowledge base in the analysis process.

One of the core ideas behind this work is the use of Semantic Web technologies in audio

analysis and audio processing. Therefore, we provided a general overview of Semantic Web

related technologies. The field of application for these technologies is novel in this work. As

a consequence, we found that the adaptation of these technologies with original requirements

that are di↵erent from ours presents a significant challenge. However, this is balanced by

263

the possibility of opening new areas for research and applications, including the potential

generalisation and facilitated applicability of audio analysis techniques. We believe, that this

is necessary for Web-based audio analysis tools as well as audio engineering applications using

semantic audio to be successful in professional settings.

In Chapter 2 we reviewed information management and knowledge representation issues,

including the state of the art of metadata management in musical applications, and discussed

how the Semantic Web data model can be used to improve the current state of the art.

We reviewed music information management technologies in Chapter 3, and the ontologies

we use, namely the Music Ontology and its extensions. Several new ontologies were introduced

for collecting detailed information about music production. This includes the Studio Ontology

(see Section 4.2) framework, a novel conceptualisation of the recording studio domain.

In Chapter 5, several software architectures were discussed including RDF-MOP, a spe-

cialised RDF library which can be used to manage content analysis results and user informa-

tion in an intelligent audio editing application. The SAWA framework discussed in Section

5.3 allows for developing Web-based applications involving semantic audio analysis. Several

applications of this framework were demonstrated, which show that a variety of applications

can be built using this system. We briefly discussed VamPy, which is used as an environ-

ment for prototyping music analysis algorithms, however it can also be used in production as

demonstrated in Section 5.4.3.

Finally, the Studio Ontology framework was evaluated by measuring its coverage of a

domain specific text corpus. We compared the domain coverage of di↵erent ontology frame-

works, and assessed the quality of knowledge representation in our framework when describing

music production specific use cases and recording scenarios.

7.2 Summary of contributions

The two major contributions of this work are as follows:

• A Semantic Web ontology for describing music production in the recording studio: the

Studio Ontology framework (see Section 4.2), as well as set of extensions to the Music

Ontology described in Chapter 4. The ontologies contribute towards a larger framework

of ontologies depicted in Figure 7.1 for describing music related information.

• A software framework for Web-based audio analysis: SAWA described in Chapter 5,

and a library that facilitates the use of evolving ontologies in music production tools.

In addition, the thesis has several minor contributions which extend previous works, or

represent collaborative research. Notably, the applications built using the SAWA framework

include SAWA-recommender, a system that utilises the audio similarity algorithm discussed in

[Levy and Sandler, 2006a] and an improved search technique presented in this work, TempEst,

264

Music Ontology

Event

Timeline FRBR

FOAF

Chords
Audio

Features

Symbolic
Notation

Vamp
plugins

Instrument

Temperament

Studio Ontology

Device

Multitrack

Edit

Audio
Mixer

Microphone

Audio
E!ects

Sig.Proc. extension

base

Figure 7.1: Overview of contributions towards a framework for describing music related information.
Our contributions include the Studio Ontology, the Temperament Ontology or collaborative work
towards an ontology of musical instruments.

a Web-based tool for the estimation of musical temperament of uploaded audio files [Tidhar

et al., 2010a], and Hotttabs, an interactive Web application for music learning [Barthet et al.,

2011]. VamPy (see Appendix B.2), a Python interface for the Vamp plugin API [Cannam,

2009], provides for writing Vamp plugins using Python, which is becoming a favoured language

for rapid development in signal processing and machine learning research. VamPy brings the

flexibility of a dynamic scripting language together with the robustness of the C++ API of

Vamp plugins, which is supported by many host applications including SAWA. It is a core

component in many of our applications.

The Temperament Ontology described in Section 4.6 is designed to describe both auto-

matic temperament classification [Tidhar et al., 2010a] results and standard temperament

profiles.

Other contributions include components which can be used to realise the idea of intelligent

audio editing using semantic audio and the Semantic Audio Desktop introduced in this work

(see Section 1.5 and 5.2), and the concept of a Knowledge Machine introduced in [Abdallah

et al., 2006]. These ideas provide important motivation for our work. They are mentioned

here to facilitate the interpretation of the major contributions in the right context. However,

detailed discussion of these components deemed outside the scope of this thesis.

265

A potential application of the software and ontologies frameworks developed here, and the

information captured and formalised using these frameworks is in the improvement of music

analysis and audio engineering workflows. We hypothesise that intelligent semantic audio

applications can take advantage of these frameworks to support engineering decisions. The

following section outlines a possible model.

7.3 Knowledge-based audio analysis and processing

When human beings make decisions (whether it is cognition or interpretation of a musical

event, or a resulting action) there are several types of di↵erent processes at work. These

processes rely on a multitude of percepts, coming through the senses from the physical world,

as well as innate or previously acquired knowledge. Although it is not yet known precisely how

primary or contextual information coming from separate sources are fused during cognitive

processes, we believe that significantly di↵erent methodologies are needed to approximate

how humans understand and react to sound and music.

We know for instance that the physical layer of auditory perception can be modelled

using straightforward signal processing techniques, such as a linear filter that approximates

the transfer function of the middle ear, or a bank of overlapping filters to model the behaviour

of the Basilar membrane, which has the strongest response for a particular frequency at each

di↵erent site (for a very recent and thorough overview see e.g.[Meddis et al., 2010]).

Higher-level processes such as the perception of harmony can be modelled within proba-

bilistic frameworks. These are able to incorporate learnt associations between percepts and

musical phenomena, which is demonstrated by the success of statistical models and super-

vised machine learning in areas like chord recognition and music transcription (see Section

1.4.2). Complex probabilistic models can also integrate expert knowledge (such as musicolog-

ical cues), and information related musical context (e.g. the dependency of chords on musical

key), as demonstrated in [Leistikov, 2006], and more recently in [Mauch, 2010].

Every day experience and common sense suggests, however, that some of our decisions are

heavily influenced by factual knowledge and strong associated rules. This is exemplified by the

revelation, for instance, when false perception is suddenly overridden and corrected by factual

knowledge (i.e. when we see or hear something and realise that it can not possibly be true),

or when we have justified belief of something (e.g. that we listen to a piece from the western

musical tradition, played on the harpsichord) and the search space of our interpretation

of the sound is limited accordingly. We therefore believe that any system with the aim of

modelling human interpretation of music, or designed to facilitate the process of working with

audio, has to incorporate all layers of sensation, perception and cognition, and all associated

methodologies that involve signal processing, as well as probabilistic and logical inferences.

The need for using di↵erent methodologies and di↵erent sources of information is perhaps

266

best explained by using Rasmussen’s model of human information processing [Rasmussen,

1983] shown in Figure 7.2. The arch of the diagram represents the information-flow through

an individual or a corresponding computational model. The left half of the figure corresponds

to the low-level processing of data collected from the environment, (such as sensory stimulus

processing) the right half corresponds to resulting actions or some other form of output.

Information processing can be divided into three main categories. These categories represent

activities at di↵erent levels of complexity.

INPUT OUTPUT
ENVIRONMENT

Knowledge-based processing
(e.g. handling of novel, complex situations)

Skill-based processing
(e.g. sensorimotor behaviour)

Rule-based processing
(e.g. execution of well-practiced procedures)

Increasing
level of
complexity
in
information
processing

Figure 7.2: Rasmussen’s hierarchy of human cognitive processing [Rasmussen, 1983]

The lowest level of the diagram corresponds to skill-based processing, such as the perception

of simple features of sound. Rule-based audio analysis algorithms and statistical models

resulting from supervised learning (inherently encoding association rules in a framework that

allows to deal with uncertainty) correspond to the second level of information processing in

the diagram: rule-based processing. The human analogy is the execution of well-practiced

procedural skills, such as the detection of significant events. This works if we accept a well-

defined set of assumptions, and expect a system’s abilities accordingly. In human cognition,

the ability to solve di�cult problems and reasoning about unfamiliar events represents the

most complex behaviour, knowledge-based processing.

A music analysis system which is able to choose the most appropriate algorithm, the

correct model or the right parameters given a musical context or some user input, may be seen

as a knowledge-based system. In Figure 7.2 we find this at the highest level. Using structural

segmentation of music as an example, we may create a set of timbre models independently,

using di↵erent musical data-sets corresponding to di↵erent musical styles. If the association of

models and musical styles is encoded in a knowledge-base, the system is able to use contextual

information to choose the correct model for a given audio signal. This represents simple factual

knowledge which may be obtained by interacting with the user, or as a result of fusing the

output of di↵erent, possibly probabilistic, inferences working at a lower level.

267

ENVIRONMENT (Working Context)

Music Analysis Workflow

Direct
Input

Measurement

UI Widgets

Rules

KB

Inference

Figure 7.3: Context adaptation in audio analysis (KB: knowledge base, UI: user interface)

Recognising the need for these di↵erent levels of processing, and that fact that most high-

level audio analysis techniques follow certain typical patterns or workflows, we motivate future

work by the information needs of a system outlined in Figure 7.3. We postulate that a system

that is able to collect information from the recording context is able to infer the most suitable

workflow for analysing a piece of music or a simple sound. This, however, requires a complex

information management framework, which facilitates the encoding of heterogeneous pieces

of information about recording and musical context. The systems described in this work to

encode and capture intricate information about recording in the music studio may facilitate

the creation of intelligent semantic audio tools using the principles described above.

7.4 Future work

We can divide our future work into di↵erent areas, focusing on ontologies, the Semantic Web

and Web-based tools, applications in music production and more general goals.

7.4.1 Ontologies

We identified a set of weaknesses and a further requirements in our ontology framework (see

Section 6.4). This guides our future work in this area:

• Extensions of the Studio Ontology, to provide detailed knowledge representation of the

particularities of a more extensive set of hardware and software audio engineering tools.

• Development of musical instrument ontologies that support the detailed description

268

of the recording of acoustic instruments, for instance, reference points for microphone

placement.

• Harmonisation of the core Device Ontology model with more specific domain ontologies,

such as an ontology of audio e↵ects currently in development.

• Better harmonisation of the Music and Studio Ontology frameworks.

• Empirical research and development of methodologies and tools that allow more rigorous

logical evaluation of engineering ontologies, lacking a gold-standard and trained domain

experts.

• Deployment of ontology based information management in music production tools.

7.4.2 Web-based tools

Our future work in the area of Web-based audio analysis includes extensions and improve-

ments to the SAWA framework:

• On-line deployment of the experimental SPARQL server, and its extension towards a

fully automated system.

• Development of clients, such as extensions to Sonic Visualiser or Audacity in order to

access SAWA using its SPARQL-endpoint.

• Completion of the SAWA-Experimenter module.

• Evaluation of SAWA-Recommender and the database indexing method on a large col-

lection of audio files.

• Extensions of SAWA-TempEst, providing an interactive graphical user interface, which

displays the properties of the recognised tuning systems.

• Deployment of an online ”Knowledge Machine” architecture.

7.4.3 General goals

In a broader prospective, we aim to develop tools that support the following goals:

• Improved communication and information sharing between MIR researchers.

• Improved reproducibility of MIR research.

• Generalisation of MIR techniques to facilitate their broader applications in music pro-

duction and audio engineering.

269

We aim to develop ontologies closely tied with digital signal processing and machine

learning methods to enable the supervision of these techniques in a logic-based environment.

The aim is to support the adaptation of MIR algorithms to contextual information such as

musical style, the analysed instrument, or the original recording conditions.

In the area of intelligent multitrack music production tools, we aim to further develop

the software architectures described in this work. While the architecture and the application

concepts will not change, the most significant future work is the extension of our system

such that we shall be able to separate the implementation of specific analysis steps, and the

workflow description of music analysis tools needed in an intelligent editor. This requires a

rule based approach. Extending our framework with an appropriate rule engine, for instance,

binding RDF-MOP to a reasoning engine like FactC++1, shall be completed before we will

proceed with further application development. Perhaps, what remains an important research

question is to find the most suitable evaluation methods for various systems outlined in this

work. This includes ontology evaluation using more sophisticated natural language processing

techniques.

7.5 Closing remarks

Opening new opportunities in semantic audio applications is the prime aspiration of this

research. I believe that the use of explicitly formalised knowledge about audio engineering

processes, capturing information about recording conditions, and the use of Semantic Web

technologies have the potential to create new opportunities for research and applications.

Aligned with the philosophical framework outlined in Section 1.6, this may indeed trigger

entirely new research programmes, or at least extend the hypothesis set of current ones.

A possible new area is in the intersection of recent developments in automatic mixing

[Gonzalez, 2010] and the use of high level semantics to create intelligent tools for creative

professionals (e.g. audio engineers and music produces). By making knowledge explicit and

shared, as opposed to hard coded in tools, we can facilitate the communication between

researchers, developers, and engineers, and create tools that can more easily cope with future

challenges, requirements, or changing needs. An ambitious idea from an artificial intelligence

perspective is the creation of personalised music production tools that learn from human

decisions, and use a harmonised framework of digital signal processing, machine learning,

knowledge representation and logical inference for decision support and the enhancement of

human computer interaction at large.

1http://owl.man.ac.uk/factplusplus/

270

Appendix A

Publications

This appendix includes a list of the author’s publications in peer-reviewed journals, confer-

ences, as well as workshops and other publications relevant in this work. Each publication is

presented with an outline followed by a statement about the author’s contribution.

Outline of publications

Journal Papers

• G. Fazekas, Y. Raimond, K. Jakobson, and M. Sandler. An overview of Semantic Web

activities in the OMRAS2 Project. Journal of New Music Research special issue on

Music Informatics and the OMRAS2 Project, Vol. 39. Issue 4, pp. 295–311, 2010.

Outline and author’s contribution: This paper provides an overview on the development

of Semantic Web Ontologies in the OMRAS2 project, and describes research tools data

sets and applications that utilise these ontologies. The author’s contribution focuses

on introducing Semantic Web concepts, providing examples of using Semantic Web

ontologies for describing content-based audio features, and discussing the SAWA system

(see Section 5.3). Finally the use of ontologies in creating intelligent tools for creative

music production and the idea of the Semantic Audio Desktop is introduced.

• D. Tidhar, G. Fazekas, M. Mauch, and S. Dixon. Tempest - harpsichord temperament

estimation in a Semantic Web environment. Journal of New Music Research special

issue on Music Informatics and the OMRAS2 Project, Vol. 39. Issue 4, pp. 327–336,

2010.

Outline and author’s contribution: This paper describes a Semantic Web application

for analysing audio in order to estimate the tuning system (temperament) used in

the recording. The author’s contributions include building the temperament estima-

tor Vamp plugin (TempEst) using VamPy (see Section B.2) and building the back-end

271

architecture utilising the SAWA system (see Section 5.3), as well as writing the relevant

sections of the paper.

Conference Papers

• G. Fazekas, T. Wilmering, and M. Sandler. A knowledge representation framework for

context-dependent audio processing. In proceedings of the 42th International Conference

of the Audio Engineering Society on Semantic Audio, Ilmenau, Germany, July 22–24,

2011.

Outline and author’s contribution: This paper presents a general framework for using

appropriately structured information about audio recordings in music processing, and

shows how this framework can be utilised in multitrack music production tools. The

author’s contributions include outlining the logical foundations of information manage-

ment in music production based on the principles discussed in Section 2.2, the develop-

ment of ontologies (see Section 4.2) and a back-end architecture for using ontologies in

audio software (see Section 5.1).

• T. Wimering, G. Fazekas, and M. Sandler. Towards ontological representation of digital

audio e↵ects. In proceedings of the 14th Int. Conference on Digital Audio E↵ects

(DAFx-11), Paris, France, September 19-23, 2011.

Outline and author’s contribution: This paper discusses the development of ontological

representations of digital audio e↵ects and provides a framework for the description of

digital audio e↵ects and audio e↵ect transformations. The author’s contributions include

the provision of motivating ideas for this work, contribution to the ontology design and

providing a general framework for an ontology library describing music studio related

concepts (see Section 4.2). Note that the audio e↵ects ontology harmonisation approach

discussed in Section 4.2.5.3 is not used in this paper.

• G. Fazekas and M. Sandler. The Studio Ontology Framework. In proceedings of the 12th

International Society for Music Information Retrieval (ISMIR-11) conference, Miami,

Florida, USA., Oct, 2011.

Outline and author’s contribution: This paper introduces the Studio Ontology Frame-

work for describing and sharing detailed information about music production. The

primary aim of this ontology is to capture the nuances of record production by provid-

ing an explicit, application and situation independent conceptualisation of the studio

environment. The author’s contribution is the design of the ontology library discussed

in Section 4.2.

• S. Kolozali, G. Fazekas, M. Barthet, and M. Sandler. Knowledge representation issues

in musical instrument ontology design. In proceedings of the 12th International Society

272

for Music Information Retrieval (ISMIR-11) conference, Miami, Florida, USA., Oct,

2011.

Outline and author’s contribution: This paper provides an analysis of existing musical

instrument classification systems following traditional taxonomic organisation, and ex-

amines how well these systems support complex queries related to musical instruments.

The author’s contributions include the provision of the main motivating ideas for this

work, supervising the process of creating ontologies based on existing taxonomies, writ-

ing and correcting SPARQL queries and contributing to the introductory and analysis

sections of the paper.

• T. Wilmering, G. Fazekas, and M. Sandler. The e↵ects of reverberation on onset

detection tasks. In proceedings of the 128th Convention of the Audio Engineering

Society, London, UK, 2010.

Outline and author’s contribution: This paper discusses the e↵ects of reverberation on

onset detection tasks. The author’s contributions include the provision of the main

motivating ideas for this work, participating in the selection of songs for the evaluation

dataset, contributing to the experiment design, and writing the introductory sections

of the paper.

• S. Kolozali, M. Barthet, G. Fazekas, and M. Sandler. Towards the automatic generation

of a Semantic Web ontology for musical instruments. In proceedings of the 5th Interna-

tional Conference on Semantic and Digital Media Technologies (SAMT-10) Saarbrcken,

Germany, 2010.

Outline and author’s contribution: This paper describes a novel hybrid system using a

formal method of automatic ontology generation for web-based audio signal processing

applications. The author’s contributions include the provision of the main motivating

ideas for this work, supervising the system and the experiment design and contributing

to sections on audio signal processing.

• G. Fazekas and M. Sandler. Novel methods in information management for advance

audio workflows. In proceedings of 12th International Conference on Digital Audio

E↵ects (DAFx-09), Como, Italy, 2009.

Outline and author’s contribution: This paper discusses architectural aspects of a soft-

ware library for unified metadata management in audio processing applications. The

author’s novel contribution is the idea of using Meta Object Protocols for building

Ontology-based tools in audio software (see Section 5.1).

• D. Tidhar and G. Fazekas and S. Kolozali and M. Sandler. Publising Music Similarity

Features on the Semantic Web. In proceedings of the 10th International Society for

Music Information Retrieval (ISMIR-09) conference, Kobe, Japan, Oct, 2009.

273

Outline and author’s contribution: This paper describes the process of collecting, organ-

ising and publishing a large set of music similarity features produced by the SoundBite

playlist generator tool, and a recommender application utilising this dataset. The au-

thor’s contributions include writing D2R mappings for creating a SPARQL end-point,

developing a method for indexing the dataset (see Section B.1), and building the rec-

ommender described in Section 5.4.2.

• G. Fazekas, C. Cannam, and M. Sandler. Reusable metadata and software compo-

nents for automatic audio analysis. In proceedings of the IEEE/ACM Joint Conference

on Digital Libraries (JCDL’09) Workshop on Integrating Digital Library Content with

Computational Tools and Services, Austin, Texas, USA, 2009.

Outline and author’s contribution: This paper argues for the need of modularity through

interoperable components and data publishing methods in MIR applications. The au-

thor’s contributions include fusing several software tools and ontologies developed in

the OMRAS2 project to demonstrate the utilities of these systems in a Semantic Web

application framework (see Section 5.3).

• G. Fazekas and M. Sandler. Ontology based information management in music produc-

tion. In proceedings of the 126th Convention of the Audio Engineering Society, Munich,

Germany, 2009.

Outline and author’s contribution: In this paper, we use ontologies to associate meta-

data, captured during music production, with explicit semantics. The collected data

is used for finding audio clips processed in a particular way, for instance, using engi-

neering procedures or acoustic signal features. The author’s contribution is in the novel

application of the Resource Description Framework and Semantic Web ontologies for

representing data about music production.

• G. Fazekas, Y. Raimond, and M. Sandler. A framework for producing rich musical

metadata in creative music production. In proceedings of the 125th Convention of the

Audio Engineering Society, San Francisco, USA, 2008.

Outline and author’s contribution: In this paper, we propose a framework for producing

and managing meta information about a recording session, a single take or a subsection

of a take. As basis for the necessary knowledge representation we use the Music Ontology

with domain specific extensions. We provide examples on how metadata can be used

creatively, and demonstrate the implementation of an extended metadata editor in a

multitrack audio editor application. The author’s main contribution is the design of

a data entry interface in the open source audio editor Audacity (see Section 5.2.2), to

capture metadata and structuring it using the Music Ontology (see Section 4.1).

• G. Fazekas and M. Sandler. Structural decomposition of recorded vocal performances

274

and its application to intelligent audio editing. In proceedings of the 123rd Convention

of the Audio Engineering Society, New York, USA, 2007.

Outline and author’s contribution: This paper describes a new approach to extract both

low and high level hierarchical structure from vocal tracks of multi-track master record-

ings. Contrary to most segmentation methods for polyphonic audio, we utilise extra

information available when analysing a single audio track. The author’s main contri-

bution is the novel approach of analysing individual instrument track in a multitrack

recording context, and the use of a reduces size similarity matrix based on comparing

quasi-stationary segments of audio content.

• G. Fazekas and M. Sandler. Intelligent editing of studio recordings with the help of

automatic music structure extraction. In proceedings of the 122nd Convention of the

Audio Engineering Society, Vienna, Austria, 2007.

Outline and author’s contribution: This paper describes the development of new tools

that allow an audio engineer to navigate multitrack recordings using a hierarchical mu-

sic segmentation algorithm. Segmentation of musical audio into intelligible sections like

chorus and verses is discussed and an overview of segmentation by timbre is provided.

The author’s main contribution is the implementation of the structural segmentation

algorithm in Audacity, and the development of a navigation interface that utilises au-

tomatic audio segmentation.

White Papers, Posters and Miscellaneous Publications

• M. Barthet, A. Anglade, G. Fazekas, S. Kolozali, R. Macrae. Music recommendation

for music learning: Hotttabs, a multimedia guitar tutor. In proceedings of the 2nd

Workshop on Music Recommendation and Discovery (WOMRAD’11) in conjunction

with ACM RecSys, Chicago, USA, Oct. 23, 2011.

Outline and author’s contribution: This paper presents Hotttabs, an online music rec-

ommendation system dedicated to guitar learning. The author’s main contribution is

developing the ontology based data fusion approach (see Section 5.4.5) that utilises the

Music Ontology to combine diverse data sources and building the back-end architecture

using the SAWA system (see Section 5.3).

• S. Kolozali and M. Barthet and G. Fazekas and D. Tidhar and M. Sandler The musical

instrument ontology. Presented at the Digital Music Research Network Workshop,

London, UK, Dec. 2010.

Outline and author’s contribution: This poster discusses progress in the design of a

musical instrument ontology. The author’s contributions include the provision of the

main motivating ideas for this work and supervising the process of creating the ontology.

275

• G. Fazekas and D. Tidhar TempEst - Temperament estimation Web service. Presented

at the Digital Music Research Network Workshop, London, UK, Dec. 2010.

Outline and author’s contribution: This poster discusses progress in the design of a

musical instrument ontology. The author’s contributions include the provision of the

main motivating ideas for this work and supervising the process of creating the ontology.

• D. Tidhar, G. Fazekas, M. Mauch, and S. Dixon. Temperament Estimation as an

MIR task. Presented at the 11th International Society for Music Information Retrieval

Conference (ISMIR-10), Late-breaking session, Utrecht, The Netherlands, Aug. 9–13,

2010.

Outline and author’s contribution: This demonstration showcases the TempEst Web

application discussed in Section 5.4.3. The author contribution is building the Web

application and the TempEst VamPy plugin used by this application.

• D. Tidhar and G. Fazekas and M. Sandler The Temperament Ontology. Presented at

the Digital Music Research Network Workshop, London, UK, Dec. 2009.

Outline and author’s contribution: This poster presents the Temperament Ontology

(see Section 4.6) designed collaboratively relying on musicological knowledge and use

cases provided by the first author. The author contribution is the implementation and

publishing of the ontology and its use in related software systems.

• C. Cannam and G. Fazekas and K. Noland A Demonstration of Sonic Visualiser. Pre-

sented at the Special SIGMUS Symposium, Tokyo, Japan, Nov. 2009.

Outline and author’s contribution: This poster presents Sonic Visualiser. The author

contribution is demonstrating the development of Vamp plugins using VamPy during

the demo session.

• G. Fazekas and C. Cannam and M. Sandler A Simple Guide to Automated Music

Analysis on the Semantic Web. Centre for Digital Music white paper, Apr, 2009.

Outline and author’s contribution: This paper describes the first prototype of SAWA

(see Section 5.3), a simple Web-based system for automated audio analysis. The au-

thor’s contributions include fusing several software tools and ontologies developed in

the OMRAS2 project to demonstrate the utilities of these systems in a Semantic Web

application framework.

• G. Fazekas and M. Sandler. Uncovering the details of music production using ontologies.

Presented at the Unlocking Audio 2 Conference, March 16-17 London, UK, 2009.

Outline and author’s contribution: This paper argues for the need for structured data

representations in music production applications and outlines the discrepancies in ex-

isting metadata management frameworks. The author’s contributions include a review

276

of metadata standards and the design of an ontology based systems to harmonise these

overlapping frameworks.

• G. Fazekas. Information Interaction in Context (conference review). Published in The

Informer – BCS Information Retrieval Specialist Group (IRSG), (30):4 pp. 2–4, 2009.

Outline and author’s contribution: This article provides a review of the IIiX’08 confer-

ence and discusses key concepts in related to the role of context in information seeking.

• G. Fazekas and M. Sandler. Ontology based information management in music produc-

tion. Presented at the Digital Music Research Network Workshop, Dec, 2008.

Outline and author’s contribution: In this poster, the use of ontologies is described to as-

sociate metadata captured during music production with clear semantics. The author’s

main contribution is in the novel application of the Resource Description Framework

and Semantic Web ontologies for representing data about music production.

277

Appendix B

Components of SAWA

This appendix describes two components of the SAWA system that are vital in several of its

applications and essential in understanding its operation. While SAWA is built mainly on

collaborative work (see Section 5.3), the following components are unique contributions by

the author that are not discussed elsewhere.

B.1 Similarity assessment in SAWA-Recommender

SAWA-Recommender (Section 5.4.2) uses a widely adopted method of modelling the overall

timbre of a recording by first extracting frame-wise Mel-Frequency Cepstral Coe�cients,

and then modelling the overall timbre of the recording by fitting a single Gaussian to the

resulting MFCC vectors [Logan and Salomon, 2001]. This method makes several simplifying

assumptions. For one, it ignores musical structure, and also the fact that the distribution of

timbre features is not necessarily Gaussian. A solution to these problems may be the use of

a mixture of Gaussians (MoG) or a sequence of Gaussians fitted on coherent segments (for

instance, a single Gussian representing each bar or each structural segment) of the music for

modelling a track. However, approaches to estimate similarity between these models such as

MonteCarlo sampling are computationally expensive. A more detailed discussion on timbre

models and the e↵ects of the above assumptions can be found, for instance, in [Aucouturier,

2006], [Casey and Slaney, 2006] and [Casey et al., 2008].

Albeit modelling timbre using a single Gaussian is a very simple approach, it was shown

in [Mandel et al., 2005] that it can perform comparably to mixture models when computing

similarity between tracks. It was also shown to be e↵ective and computationally e�cient

for finding similar songs in personal music collections in [Levy and Sandler, 2006a]. An

important advantage of using this model is that the similarity between two tracks can be

computed using closed form expressions, such as the Jensen-Shannon (JS) or Kullback-Leibler

(KL) divergences. Here, following [Levy and Sandler, 2006a], we use the symmetrised KL

distance given in Equation B.1, where p and q are Gaussian distributions, with µ mean and

278

⌃ covariance, and d is the dimensionality of the feature vectors. Besides modelling tracks

using a single Gaussian, a further simplifying assumption is introduced by using Gaussians

with diagonal covariance. This has the advantage of reducing the number of multiplications

and eliminating the need for matrix inversion for each distance computation.

KLs(pkq) = 2KL(pkq) + 2KL(qkp)
= tr(⌃�1

q ⌃p + ⌃�1
p ⌃q)

+(µp � µq)
T (⌃�1

q + ⌃�1
p)(µp � µq)� 2d (B.1)

Linear search was deemed su�cient for personal collection management, however the size

of our current database is over 150,000 tracks and it is expected to grow. Therefore, for

e�cient query evaluation in a recommender system, we need a method which avoids explicit

calculation of similarity between a query song and each entry in our feature database. This

requires indexing the database in such a way that a model representing a query can be com-

pared with index entries, as opposed to each element of the database. Creating such an index

table for a database of timbre models requires i) an unsupervised clustering algorithm, since

manual labelling required for supervised learning would not be feasible, and ii) a method that

can work with Gaussian models and the associated divergences, for instance, the symmetrised

KL divergence.

A possible way of creating an indexing method for our database is the use of the Self-

Organising Map (SOM) [Kohonen, 1995], commonly used in data visualisation, but also as a

method of Vector Quantisation (VQ) [Vignoli and Pauws, 2005]. The original Self-Organising

Map can be thought as a two dimensional array of nodes (neural-network cells), where each

node is associated with a model vector. These vectors are iteratively trained to recognise

(become close to) classes of input signal patterns in a competitive and unsupervised fashion.

Only one node is activated at a time corresponding to each input. Typically, the node that

is the closest to the input in Euclidean space, is called the best matching unit (BMU) or the

winner.

The locations of the responses in the array tend to become ordered in the learning process

as if some meaningful nonlinear coordinate system for the di↵erent input features were being

created over the network [Kohonen, 1995]. More generally, a SOM can be used to map between

data of di↵erent dimensionality, moreover the target space or the topology of the map does

not necessarily have to be in a Euclidean space [Ritter, 1999]. The basic training algorithm

for the SOM can be outlines as follows. Given a ordered set of map nodes i associated

with a location, and model vectors mi, the model vectors are initialised randomly, or using

more advanced techniques such as principal component analysis. During training, a randomly

selected input vector x(t) is compared with all model vectors at each iteration t. The best

279

matching unit is selected by choosing the node that is closest to the input. Then, the model

vectors are updated using the adaptation rules described in the following equation (B.2),

mi(t) =

(
mi(t� 1) + ↵(t)[x(t)�mi(t� 1)] if i 2 Nc(t)

mi(t� 1) otherwise,
(B.2)

where ↵(t) is a weight that depends on the distance from the BMU, and Nc(t) is a neighbour-

hood function that defines which nodes around the BMU are updated. Typically, the weight

↵(t) is decreased in every iteration given by a predefined learning rate. The initial weight may

be a linear function of distance, or computed using a Gaussian function, and Nc(t) may be

abandoned in favour of updating all nodes in each iteration. Training a SOM continues either

until some convergence criterion has been reached, or a fixed number of training iterations

are used. Finally, if we wish to use the map for indexing, each input vector in a data set must

be assigned to the closest node on the trained map.

Various applications of the SOM have been explored in natural language processing, in-

formation retrieval as well as music information retrieval and collection management. For

instance, Honkela [1997] uses a SOM to create word category maps, the use of the map has

also been shown to scale up to millions of documents in the organisation of large text archives

in [Kohonen, 1998]. Organisation and visualisation of music collections using a SOM is in-

troduced in [Rauber et al., 2003], while Pampalk et al [2004b] use a hierarchical SOM for

clustering and visualisation of sounds or samples, finally Vembu and Baumann [2005] applies

a SOM in music recommendation. These approaches however were training the SOM directly

on the features, as opposed to Gaussian models of features. It can easily be noticed, that

the SOM training algorithm is not limited to using feature vectors in a Euclidean space. The

model vectors associated with the nodes can be substituted with arbitrary models, as long as

the adaptation and distance calculation between these models can be substituted in Equation

B.2. Given our simple model of MFCCs represented by multivariate Gaussian mean and

variance vectors, the SOM can easily be extended by having each node linked with the two

parameter vectors separately. Finding the best matching unit is then performed by computing

the KL distance instead of Euclidean distance, while the model vectors are separately updated

during training using the update rules discussed previously. For the more general case, where

Gaussians with full covariance are used to model each track, the centroid of the symmetrised

KL distance [Veldhuis, 2002] has to be computed in order to update the model. However, we

need to deal with the issue that the KL divergence is asymmetric, therefore the symmetrised

centroid need to be found with respect to a left and right centroid of the KL divergence.

This can be well approximated by the arithmetic or normalised geometric mean of the left

and right centroid as empirically shown in [Veldhuis and Klabbers, 2003], or more precisely

solved as an optimisation problem. An e�cient algorithm for finding the symmetrised cen-

troid is presented in [Nielsen and Nock, 2009]. A similar model for data visualisation using

280

centroid approximation was later presented in [Schnitzer et al., 2010], while the information

geometry framework of [Cont et al., 2011] provides an even more general extension of this

idea using generic families of Bregman divergences (such as the KL divergence) and extends

the approach to many machine learning problems related to audio similarity analysis.

An important property of the SOM is that it can easily accommodate the need for adding

new elements to the modelled data set, i.e. the set of songs in our database. The idea

of growing and hierarchically organised (multilayer) SOM is discussed in [Dittenbach et al.,

2001] and [Pampalk et al., 2004b]. There is no reason why this cannot be applied in our case.

The SOM training algorithm itself can be used in an online fashion. However, it is a more

common case that a large database is used as a starting point, to which new elements are

added later in batch. Therefore we use batch training, which avoids the need for reassigning

the song models to map units after each training iteration. We set the number of nodes to a

fixed initial value (100 in case of our current database). For inserting new elements, we adopt

the criterion described in [Pampalk et al., 2004b], where the mean quantisation error across

the map is used to decide whether new nodes need to be added to the map. The error in our

case is computed by Equation B.3 for each node, while the mean of these values with regard

to the whole map describes how well all units together represent the data.

MEi =
1

|Ui|
⇥
X

k2U
i

KLs(pkkqi) (B.3)

where Ui = {k|ck = i} is the set of song models (p) assigned to node i, and q represents the

parameter vectors assigned to the node.

Since the one dimensional topology is su�cient in a database indexing use case, we further

simplify the map by using a set of nodes arranged in one dimensions, while keeping an the

important property of the map which ensures that neighbouring nodes are associated with

features that are also close in the original feature space. To create a continuous space,

avoiding the problem of nodes on the edges having less neighbours then other nodes, we use a

circular topology. New nodes then can be inserted any point, where the error above exceeds

a suitable threshold. This model, although it is yet to be tested on a database of larger size,

can potentially scale up to millions of songs, and with the introduction of multiple layers, a

balanced performance can be maintained.

Given a database of Gaussian timbre models, we partition the data space by similarity

to form self-similar groups of songs. These groups or clusters can then be used to index

the database using the model described above. Query processing and database search is

performed in three steps. First, we extract features from the audio files representing a query,

and compute the Gaussian model parameters for these features. Next, for optimised search,

the models are matched against the above self-organising model trained on the whole database.

We can limit the search space by first choosing the best matching unit based on its proximity

281

to the query song, and then calculate the distance between the query and all entries assigned

to the selected node. Hence, the number of direct similarity calculations is greatly reduced.

To avoid the problem of query songs only marginally closer to one node than another, we

extend the search space to nodes in the direct neighbourhood of the best matching unit.

Finally, the results a ranked based on proximity to the query, and these results are returned.

B.2 VamPy: A rapid prototyping tool for SAWA

VamPy provides Python bindings for the Vamp plugin API [Cannam, 2009] and plays a crucial

role in the audio analysis functionalities of the SAWA framework. For example, it provides for

the implementation of the analysis engine in the SAWA-TempEst system (see Section 5.4.3)

and enables the use of Python’s numerical as well as Semantic Web libraries that are vital in

this system. It also provides for prototyping algorithms in a high-level dynamic programming

language, which is important for instance in SAWA-Experimenter (see Section 5.4.4).

Vamp plugins and VamPy The Vamp plugin system consists of separate host and

plugin APIs. This facilitates the development of audio analysis plugins and host applica-

tions independently. The Vamp plugin API is provided in C/C++ requiring the developer

to write plugins in a statically typed and compiled language, which is not always the best

choice for experimental and research applications or complex semantic audio applications.

VamPy bridges the Vamp plugin API with a dynamically typed and interpreted language:

Python, which was chosen for its support for numerical analysis and scientific computation,

the availability of numerous Semantic Web libraries, and its growing use in the audio research

community. In order to run Python scripts in a Vamp host execution context, VamPy embeds

the Python interpreter. It also extends the interpreter with data structures defined by the

Vamp C++ API within a single shared library. The software architecture of VamPy and its

use in semantic audio tools is illustrated in Figure B.1.

Function call translation using meta-programming Vamp plugins consists of a set

of callbacks, for instance, a process()method called by a host iteratively passing small blocks

of audio. This method may return the results of analysis available at the end that processing

block, however a plugin may accumulate samples to execute non-causal algorithms and return

the results when the host calls its getRemainingFeatures() method. Other callbacks include

methods for querying plugin metadata and initialisation.

VamPy uses function call translation with meta-programming to redirect calls from a

C++ host application to an appropriate Python class realising a VamPy plugin. This is

implemented generically using a set of overloaded C++ templates wrapping Python’s em-

bedding C API. These methods first check if a VamPy plugin instance realises the requested

282

Host Application

Python Interpreter

Function call
translation

Embedding API Extension API

Custom Data type
implementations

(C++ with C interface)

Dynamic type
inference and

matching

Library of Audio Analysis Algorithms

Vamp plugin API

Vamp host API

Vampy:
Single
Shared
Binary
Object

Figure B.1: Audio Analysis Software Architecture Using VamPy

Vamp plugin method, prepare the arguments to be interpreted by the VamPy plugin, and

convert any returned Python data structures to C++ data structures.

Dynamic type inference Python is a dynamically typed language, that is, the program-

mer is not forced to declare variable types strictly and specifically. The Vamp API however

is defined in C++ using static data types, which forces the Python programmer to have de-

tailed knowledge of the C++ API. VamPy relaxes this requirement by using a runtime type

inference mechanism. VamPy can convert any suitable Python data object to the appropriate

C++ data type expected by a Vamp plugin host, including arrays used by the NumPy scien-

tific library. This type conversion is dynamic, and it is decided based on the plugin context

and the expected data type defined by the Vamp plugin API in that context. The mechanism

also takes advantage of the high-level Python number sequence and mapping protocols and

the taxonomical relations of numerical types defined by the interpreter. For instance, any re-

turned value will be converted to a vector of the appropriate element type when the expected

return type is a sequence of values. This allows the programmer to omit type conversions in

Python code, even when for instance a single element list (vector) would be returned, and

just return the value instead of a single element list. VamPy also extends Python with the

283

data types defined by the Vamp plugin API. This extension module is included in the VamPy

shared library which is loaded by the embedded Python interpreter, therefore it doesn’t need

to be installed separately. Type conversion can be controlled specifically for each plugin using

a flag. VamPy supports the use case of prototyping C++ Vamp plugins in Python by using

a strict type conversion mechanism. In this mode, an error message is issued if the Python

object does not correspond to a C++ type according to a strict one-to-one mapping. This

mapping can be briefly outlined as follows:

• Numerical types require direct correspondence between Python and C++ types where

available (e.g. a C++ float is mapped to a Python float),

• Data structures defined in the Vamp Plugin API require a type exported by the VamPy

extension module, for instance:

Vamp::FeatureSet() -> vampy.FeatureSet()

Vamp::RealTime() -> vampy.RealTime()

Vamp uses RealTime time stamps to indicate the position of a processing block passed

to the plugin or the position of any returned features relative to the start of the audio. The

RealTime data type consists of two integers to represent time to nanosecond precision. VamPy

provides a Python compatible representation of this type which can be imported and used in

any VamPy plugin.

The use of these mechanism as well as the use of generic functions allow for writing a thin

generic wrapper around the Vamp API itself such that the specific translation code required to

make use of the Vamp API in Python is automatically generated by the C++ compiler. The

Vamp plugin initialiser function for instance is implemented in VamPy as shown in Figure B.1.

1 bool PyPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize)

2 {

3 return genericMethodCallArgs<bool>("initialise",channels,stepSize,blockSize);

4 }

Listing B.1: Example of a Vamp function call implementation

Interfaces and application VamPy supports three interfaces for passing audio data to

the process() function. This includes a legacy interface which passes a list of list of values

(the native Python representation of a matrix) to the plugin corresponding to the time or

frequency domain samples for each channel. Using the bu↵er interface, both time and fre-

quency domain plugins are passed a list of objects describing shared memory bu↵ers where

each bu↵er corresponds to an audio channel. Finally when using the array interface, VamPy

passes a list of Numpy arrays to the process corresponding to each audio channel. In this case,

time Domain plugins are passed an array of numpy.float32 values where the array size is

284

equal to the block size, while frequency domain plugins are passed an array of blockSize/2+1

numpy.complex64 values. The execution of VamPy plugins, for instance the selection of in-

terfaces and the behaviour of the type inference mechanism is controlled using a set of flags

described in the VamPy documentation. The following example shows the declaration of a

VamPy plugin for computing Mel-Frequency Cepstral Coe�cients using the Numpy array

process interface1.

1 class PyMFCC(melScaling):

2 def __init__(self,inputSampleRate):

3 self.vampy_flags = vf_DEBUG | vf_ARRAY | vf_REALTIME

Listing B.2: Using run-time flags to control VamPy plugins

The described architectures supports the use of audio analysis algorithms implemented as

monolithic processing blocks such as a plugin or a complex function with well defined inputs,

outputs and ontological relations. However, in order to implement adaptive components in

intelligent semantic audio tools, we need finer granularity and more specific control over how

feature extraction may be performed. For instance, by decomposing plugins into smaller DSP

components which could be selected for each particular application. This constitutes future

work. An example VamPy plugin for note onset detection using high-frequency content can

be found in Section C.1.

1The full plugin implementation is available online
http://vamp.svn.sourceforge.net/viewvc/vamp/vamp-vampy/trunk/ExampleVamPyplugins/PyMFCC.py

285

Appendix C

Code listings

C.1 A simple onset detector plugin using VamPy

0 from numpy import *

1 from vampy import *

2

3 class VamPyOnsetExample:

4

5 def __init__(self,inputSampleRate):

6 self.vampy_flags = vf_DEBUG | vf_ARRAY | vf_REALTIME

7 self.m_inputSampleRate = inputSampleRate

8 self.m_stepSize = 0

9 self.m_blockSize = 0

10 self.m_channels = 0

11 self.threshold = 0.05

12 return None

13

14 def initialise(self,channels,stepSize,blockSize):

15 self.m_channels = channels

16 self.m_stepSize = stepSize

17 self.m_blockSize = blockSize

18 self.wasGreater = False

19 self.prevTime = 0

20 self.prev=0.0

21 return True

22

23 def reset(self):

24 return None

25

26 def getMaker(self):

27 return ’George Fazekas’

28

29 def getName(self):

30 return ’Onset plugin’

31

32 def getIdentifier(self):

33 return ’vampy-onset’

34

286

35 def getDescription(self):

36 return ’An onset detector using high frequency content’

37

38 def getMaxChannelCount(self):

39 return 1

40

41 def getInputDomain(self):

42 # TimeDomain or FrequencyDomain

43 return FrequencyDomain

44

45

46 def getOutputDescriptors(self):

47 # describe what the plugin’s output will be like

48 Generic = OutputDescriptor()

49 Generic.identifier = ’vampy-onset-output’

50 Generic.name = ’vampy onset’

51 Generic.description =’Onset locations’

52 Generic.hasFixedBinCount=True

53 Generic.binCount=0

54 Generic.hasKnownExtents=False

55 Generic.isQuantized=False

56 Generic.sampleType = VariableSampleRate

57 Generic.unit = ’’

58 return OutputList(Generic)

59

60 def getParameterDescriptors(self):

61 # describe the parameters of the algorithm

62 threshold = ParameterDescriptor()

63 threshold.identifier=’threshold’

64 threshold.name=’Energy threshold’

65 threshold.description=’Energy threshold’

66 threshold.unit=’v’

67 threshold.minValue=0

68 threshold.maxValue=1

69 threshold.defaultValue=0.05

70 threshold.isQuantized=False

71 return ParameterList(threshold)

72

73 def setParameter(self,paramid,newval):

74 if paramid == ’threshold’ :

75 self.threshold = newval

76 return

77

78 def getParameter(self,paramid):

79 if paramid == ’threshold’ :

80 return self.threshold

81 else:

82 return 0.0

83

84 def process(self,inputbuffers,timestamp):

85 # features are computed in this function

86 length = self.m_blockSize * 0.5 + 1

87 sampleRate = self.m_inputSampleRate

88 w = array(xrange(length)) / length

89

287

90 complexSpectrum = inputbuffers[0]

91 magnitudeSpectrum = abs(complexSpectrum) / length

92 weightedSpectrum = w * magnitudeSpectrum

93

94 tpower = sum(weightedSpectrum)

95 peak = False

96 greater = False

97

98 if tpower > self.prev :

99 greater = True

100

101 if tpower > self.threshold :

102 if self.wasGreater and not greater :

103 peak = True

104

105 # return features in a FeatureSet()

106 output_featureSet = FeatureSet()

107 if peak :

108 output_featureSet[0] = Feature()

109 output_featureSet[0].timestamp = self.prevTime

110 output_featureSet[0].hasTimestamp = True

111

112 self.wasGreater = greater

113 self.prevTime = timestamp

114 self.prev=tpower

115

116 return output_featureSet

Listing C.1: A simple onset detector using VamPy

C.2 A representation of typed RDF literals using a Meta-

Object Protocol

0 #ifndef __TYPEDLITERAL__

1 #define __TYPEDLITERAL__

2

3 #include "HashTypes.h"

4 #include "ontObject.h"

5 #include "typedLiteralBase.h"

6 #include "ObjectHandlers.h"

7

8 /* generic typed literal class that knows its type */

9 template<typename W,eMappedTypes D>

10 class typedLiteral : public typedLiteralBase

11 {

12 public:

13

14 /* construct from pointer to value W */

15 typedLiteral(W* newValue = NULL, bool proxy = false,

16 objectHandler* h = ontObject::defaultHandler) :

17 typedLiteralBase(h), mValueProxy(proxy)

288

18 {

19 reset();

20 if (!newValue) pValue = new W();

21 else

22 {

23 if (!mValueProxy) pValue = new W(*newValue);

24 else pValue = newValue;

25 }

26 flagValueChange();

27 }

28

29 /* construct from reference of value W */

30 typedLiteral(W& newValue,bool proxy = false, objectHandler* h = ontObject::defaultHandler) :

31 typedLiteralBase(h), mValueProxy(proxy)

32 {

33 reset();

34 if (!restrictValue(&newValue))

35 {

36 if (!mValueProxy) pValue = new W(newValue);

37 else pValue = &newValue;

38 }

39 else { pValue = new W(); }

40 flagValueChange();

41 }

42

43 /* construct from string literal through the interface */

44 typedLiteral(literalInterface& lit,objectHandler* h = ontObject::defaultHandler) :

45 typedLiteralBase(h,lit), mValueProxy(false)

46 {

47 reset();

48 mXML = (lit.XML == 1) ? true:false;

49 mInterface.set(NULL,NULL,mXML,D);

50 flagLiteralChange();

51 }

52

53 /* construct from wxString */

54 typedLiteral(const wxString& lit, bool validate = true, objectHandler* h = ontObject::

defaultHandler) :

55 typedLiteralBase(h,lit), mValueProxy(false)

56 {

57 reset();

58 if (!validate) flagLiteralChange();

59 else

60 {

61 W* tempValue = new W();

62 convertString(tempValue,pLiteralString);

63

64 if (!restrictValue(tempValue))

65 {

66 pValue = tempValue;

67 flagUpdated();

68 }

69 else

70 {

71 pValue = new W();

289

72 delete tempValue;

73 }

74 }

75 }

76

77 /* destructor: delete owned value object */

78 ~typedLiteral()

79 { if (pValue and !mValueProxy) delete pValue; }

80

81 /* interface: */

82

83 /* return the mapped type ID */

84 const eMappedTypes getMappedTypeID() { return D; }

85

86 /* return a constant reference to the cached value */

87 const W& getValue()

88 { updateByGetFunctor(); updateValue(); return *pValue; }

89

90 /* return an reference that may be used for changing the value */

91 /* use flagValueChange whenever the value is changed externally*/

92 W& getValue(bool edit)

93 {

94 updateByGetFunctor();

95 updateValue();

96 if (edit) flagValueChange(); // the value may be changed externally

97 return *pValue;

98 }

99

100 /* return a reference to the owned literal string */

101 const wxString& getLiteral()

102 { updateByGetFunctor(); updateLiteral(); return *pLiteralString; }

103

104 /* set the cached value as proxy, the object becomes a wrapper */

105 void proxyValue(W& newValue) { setValue(newValue,true); }

106

107 /* modify the cached value */

108 void setValue(W& newValue, bool proxy = false)

109 {

110

111 if (!restrictValue(&newValue))

112 {

113 if (proxy)

114 {

115 if (pValue and !mValueProxy) delete pValue;

116 pValue = &newValue;

117 mValueProxy = true;

118 }

119 else

120 {

121 if (pValue and !mValueProxy) delete pValue;

122 pValue = new W(newValue); //*pValue = newValue;

123 mValueProxy = false;

124 }

125

126 flagValueChange();

290

127 updateBySetFunctor();

128

129 }

130 else

131 {

132 throw typeException("met restriction on value");

133 }

134 }

135

136 /* modify the literal string owned by the object */

137 void setLiteral(const wxString& newLit, bool validate = true)

138 {

139 if (validate)

140 {

141 W* tempValue = new W();

142 convertString(tempValue,&newLit);

143

144 if (!restrictValue(tempValue))

145 {

146 *pLiteralString = newLit;

147 if (pValue) delete pValue;

148 pValue = tempValue;

149 flagUpdated();

150 updateBySetFunctor();

151 }

152 }

153 else

154 {

155 *pLiteralString = newLit;

156 flagLiteralChange();

157 updateBySetFunctor();

158 }

159 }

160

161 /* update interface : this is called when we access the interface through the object handler */

162 void updateInterface()

163 {

164 updateByGetFunctor();

165 updateLiteral();

166 if (mUpdateInterface) mInterface.set(pLiteralString,NULL,mXML,D);

167 mUpdateInterface = false;

168 }

169

170 /* update and return const pointer to the RDF interface */

171 const literalInterface* getInterface()

172 {

173 updateInterface();

174 return &mInterface;

175 }

176

177 /* foreign method bindings */

178 void bindGet(FunctorBase<W>* functor) { mGetFunctor = functor; }

179 void bindSet(FunctorBase<void,W>* functor) { mSetFunctor = functor; }

180 void unbind() { mGetFunctor = 0; mSetFunctor = 0; }

181

291

182 /* state modifiers */

183 void flagLiteralChange() {

184 mUpdateLiteral = false; mUpdateValue = true; mUpdateInterface = true; }

185 void flagValueChange() {

186 mUpdateLiteral = true; mUpdateValue = false; mUpdateInterface = true; }

187 void flagUpdated() {

188 mUpdateLiteral = false; mUpdateValue = false; mUpdateInterface = true; }

189

190 private:

191

192 /* state variables */

193 bool mValueProxy;

194 bool mUpdateLiteral;

195 bool mUpdateValue;

196 bool mUpdateInterface;

197 bool mXML;

198

199 FunctorBase<W>* mGetFunctor;

200 FunctorBase<void,W>* mSetFunctor;

201

202 W* pValue;

203

204 /* implement type specific conversions using template spec. */

205 void convertString(W* val, const wxString* lit);

206 void convertValue(wxString* lit, W* val);

207

208 /* update the cached value with new literal: called when accessing the value */

209 void updateValue()

210 {

211 if (!pValue) pValue = new W();

212 if (mUpdateValue) {

213 convertString(pValue,pLiteralString);

214 mUpdateValue = false;

215 }

216 }

217

218 /* update the literal string with the cached value */

219 void updateLiteral()

220 {

221 if (!pValue) return;

222 if (mUpdateLiteral) {

223 convertValue(pLiteralString,pValue);

224 flagUpdated();

225 }

226 }

227

228 /* call a bounded get function and caches the returned value */

229 void updateByGetFunctor()

230 {

231 if (!mGetFunctor) return;

232 W temp = (*mGetFunctor) ();

233 // the bounded object shouldn’t accept incorrect values

234 if (*pValue != temp)

235 {

236 *pValue = temp;

292

237 // invoke string conversion on demand

238 flagValueChange();

239 }

240 }

241

242 /* call a bounded set function using the cached value as argument */

243 void updateBySetFunctor()

244 {

245 if (!mSetFunctor) return;

246 updateValue();

247 (*mSetFunctor) (*pValue);

248 }

249

250 /* return true if a new value violates an OWL restriction */

251 /* implementation is type specific, default is below */

252 bool restrictValue(W* Value) { return false; }

253

254 /* reset */

255 void reset()

256 {

257 mGetFunctor = NULL;

258 mSetFunctor = NULL;

259 mUpdateLiteral = false;

260 mUpdateValue = false;

261 mUpdateInterface = true;

262 mXML = false;

263 }

264 };

265

266 /* Declare Some Template Specializations */

267 template<> void typedLiteral<int,intID>::convertValue(wxString*,int*);

268 template<> void typedLiteral<int,intID>::convertString(int*,const wxString*);

269 template<> bool typedLiteral<int,dayID>::restrictValue(W& Value);

270

271 #endif

Listing C.2: Representing typed RDF literals in RDF-MOP

293

Appendix D

Namespaces

Namespace prefix Ontology, Schema or Vocabulary

af Audio Features Ontology
con Connectivity Ontology
dc Dublin Core Metadata Terms
device Device Ontology
edit Edit Ontology
event Event Ontology
foaf Friend of a Friend Vocabulary
frbr Functional Requirements of Bibliographic Records
fx Audio E↵ects Ontology
mic Microphone (and microphone techniques) Ontology
mo Music Ontology
mt Multitrack Ontology
mx Audio Mixer Ontology
owl Ontology Web Language
rdf Resource Description Framework syntax
rdfs RDF Schema Language
studio Studio Ontology
spd Signal Processing Device Ontology
tl Timeline Ontology
xsd XML schema data types

Table D.1: Namespace prefixes used in RDF listings and First Order Logic sentences

294

Bibliography

Aamodta, A. and Nygardb, M. (1995). Di↵erent roles and mutual dependencies of data,

information, and knowledge an AI perspective on their integration. Data Knowledge

Engineering, 16:191–222.

Abdallah, S. A., Raimond, Y., and Sandler, M. (2006). An ontology-based approach to

information management for music analysis systems. in proc. AES 120th Convention,

2006. May, Paris, France.

Acko↵, R. L. (1989). From data to wisdom. Journal of Applied System Analysis, 16:3–9.

Allen, J. (1983). Maintaining knowledge about temporal intervals. Communications of the

ACM, 26:832–843.

Amatriain, X. (2007). CLAM: A framework for audio and music application development.

IEEE Software, 24(1):82–85.

Amatriain, X., Bonada, J., Loscos, À., Arcos, J. L., and Verfaille, V. (2003). Content-based

transformations. Journal of New Music Research, 32(1):95–114.

Arndt, R., Troncy, R., Staab, S., Hardman, L., and Vacura, M. (2007). COMM: Designing

a well-founded multimedia ontology for the web. In Proceedings of the 6th International

Semantic Web Conference (ISWC’2007), Busan, Korea, pages 11–15.

Asuncion, A., Welling, M., Smyth, P., and Teh., Y. (2009). On smoothing and inference

for topic models. Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial

Intelligence, Montreal, Canada.

Aubert, O., Champin, P.-A., and Prie, Y. (2006). Integration of semantic web technology in

an annotation-based hypervideo system. In Workshop on Semantic Web Annotations for

Multimedia (SWAMM’06).

Aucouturier, J. J. (2006). Ten experiments on the modelling of polyphonic timbre. PhD

Thesis, University of Paris 6.

295

Aucouturier, J. J. and Pachet, F. (2002). Music similarity measures: What’s the use? In Pro-

ceedings of the 3rd International Conference on Music Information Retrieval (ISMIR’02),

October 13-17, IRCAM, Centre Pompidou, Paris, France.

Aucouturier, J. J., Pachet, F., and Sandler, M. (2005). The way it sounds: Timbre models

for analysis and retrieval of polyphonic music signals. IEEE Transactions of Multimedia,

7:1028–1035.

Auer, S., Bizer, C., Lehmann, J., Kobilarov, G., Cyganiak, R., and Ives, Z. (2007). DBpedia:

A nucleus for a web of open data. In Proceedings of the International Semantic Web

Conference, Busan, Korea.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider, P. F., edi-

tors (2003). The Description Logic Handbook: Theory, Implementation and Application.

Cambridge University Press, Cambridge, UK.

Balaban, M. (1999). The music structures approach to knowledge representation for music

processing. Computer Music Journal, 20(2):96–111.

Balaban, M. and Elhadad, M. (1999). On the need for visual formalisms in music processing.

Leonardo, 32(2):127–134.

Bandara, A., Payne, T. R., De Roure, D., and Clemo, G. (2004). An ontological framework for

semantic description of devices. in Proc. International Semantic Web Conference (ISWC),

Hiroshima, Japan.

Barga, R. S., Fay, D., Guo, D., Newhouse, S., Simmhan, Y., and Szalay, A. (2008). E�cient

scheduling of scientific workflows in a high performance computing cluster. In Proceed-

ings of the 6th international workshop on Challenges of large applications in distributed

environments, CLADE ’08, pages 63–68, New York, NY, USA. ACM.

Barthet, M., Anglade, A., Fazekas, G., Kolozali, S., and Macrae, R. (2011). Music recommen-

dation for music learning: Hotttabs, a multimedia guitar tutor. 2nd Workshop on Music

Recommendation and Discovery (WOMRAD’11) in conjunction with ACM RecSys, Chcago

USA, Oct. 23.

Bartsch, M. and Wakefield, G. (2005). Audio thumbnailing of popular music using chroma-

based representations. IEEE Transactions on Multimedia, 7(1):96–104.

Beckett, D. (2008). The Redland RDF libraries. Availble online: http://librdf.org/.

Beenham, D., Schmidt, P., and Sylvester-Bradley, G. (2000). XML based dictionaries for

MXF/AAF applications. Technical report, Sony Broadcast and Professional Research Lab-

oratories, UK.

296

Bello, J., Daudet, L., Abdallah, S., Duxbury, C., Davies, M., and Sandler, M. (2005). A

tutorial on onset detection in music signals. IEEE Transactions on Speech and Audio

Processing, 13(5):1035–1047.

Berners-Lee, T. (2006). Linked data. Availble online: http://www.w3.org/DesignIssues/

LinkedData.html, Retrieved: Jan. 2010.

Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., and Hendler, J. (2008). N3logic : A

logical framework for the world wide web. Theory and Practice of Logic Programming,

8:249–269.

Berners-Lee, T., Handler, J., and Lassila, O. (2001). The semantic web. Scientific American,

pages 34–43.

Berners-Lee, T., Kolovski, V., Connolly, D., Hendler, J., Kolovski, V., and Scharf, Y. (2006).

A resoner for the web. Under consideration for publication in Theory and Practice of Logic

Programming (TPLP) special issue on Logic Programming and the Web, Available online:

http://www.w3.org/2000/10/swap/doc/paper/, Retrieved: Jan. 2010.

Bizer, C., Heath, T., Ayers, D., and Raimond, Y. (2007). Interlinking open data on the web.

In Demonstrations Track, 4th European Semantic Web Conference, Innsbruck, Austria.

Blei, D., Ng, A., and Jordan, M. (2003). Latent Dirichlet Allocation. Journal of Machine

Learning Research, 3:993–1022.

Blei, D. M. (2011). Introduction to probabilistic topic models. Communications of the ACM

(in press).

Bod, R. (2001). A memory-based model for music analysis: Challenging the Gestalt principles.

Journal of New Music Research (JNMR), 30(3).

Boersma, P. (1993). Accurate short-term analysis of the fundamental frequency and the

harmonics-to-noise ratio of a sampled sound. in proc. Institute of Phonetic Sciences 1993,

17(97-110).

Bonner, A. and Kifer, M. (1996). Concurrency and communication in transaction logic. in

proc. Joint International Conference and Symposium on Logic Programming, pages 142–

156.

Boolos, G. S., Burges, J. P., and Je↵rey, R. C. (2007). Computability and Logic. Cambridge

University Press, 5th edition.

Borgida, A. (1995). Description logics in data management. IEEE Transactions on Knowledge

and Data Engineering, Vol. 7(5).

297

Borst, W. (1997). Construction of Engineering Ontologies. PhD thesis, Institute for Telem-

atica and Information Technology, University of Twente, Enschede, The Netherlands.

Bray, S. and Tzanetakis, G. (2005). Distributed audio feature extraction for music. Proceed-

ings of the International Conference on Music Information Retrieval, pages 434–437.

Bregman, A. S. (1990). Auditory Scene Analysis: The Perceptual Organization of Sound. The

MIT Press.

Brewster, C., Alani, H., Dasmahapatra, S., and Wilks, Y. (2004). Data driven ontology

evaluation. Proceedings of Language Resources and Evaluation, pages 164–168.

Brickley, D. and Guha, R. (2004). Rdf vocabulary description language. W3C Recommenda-

tion, Available online: http://www.w3.org/TR/rdf-schema/, Retrieved: March 2011.

Brickley, D., Hunter, J., and C., L. (1999). A logical model for metadata interoperability.

Harmony Project Working Document. Available online: http://www.ilrt.bris.ac.uk/

discovery/harmony/docs/abc/abc_draft.html, Retrieved: March 2011.

Brown, J. C. (1991). Calculation of a constant Q spectral transform. Journal of the Acoustical

Society of America, 89(1):425–434.

Bullock, J. and Frisk, H. (2007). libintegra: A system for software-independent multime-

dia module description and storage. in Proceedings of the International Computer Music

Conference, Copenhagen, Denmark.

Bulterman et al. (2008). Synchronized multimedia integration language (SMIL 3.0). Available

online: http://www.w3.org/TR/SMIL/, Retrieved: March 2011.

Buneman, P. (1997). Semistructured data. Proceedings of the Sixteenth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, May 12-14, 1997, Tuc-

son, Arizona, USA.

Camacho, A. (2007). SWIPE: A Sawtooth Waveform Inspired Pitch Estimator for Speech and

Music. PhD thesis, Graduate School of the University of Florida.

Cannam, C. (2009). The vamp audio analysis plugin api: A programmer’s guide. Availble

online: http://vamp-plugins.org/guide.pdf, Retrieved: Dec. 2010.

Cannam, C., Jewell, M. O., and Rhodes, C. (2010a). Linked data and you: Bringing music

research software into the semantic web. Journal of New Music Research special issue on

Music Informatics and the OMRAS2 Project.

Cannam, C., Landone, C., and Sandler, M. (2010b). An open source application for viewing,

analysing, and annotating music audio files. in Proceedings of the ACM Multimedia 2010

International Conference.

298

Carroll, G. and Rooth, M. (1996). Valence induction with a head-lexicalized pcfg. In Proceed-

ings of the 3rd Conference on Empirical Methods in Natural Language Processing (EMNLP

3), pages 36–45.

Carrolla, J. J., Bizerb, C., Hayesc, P., and Sticklerd, P. (2005). Named Graphs. Journal of

Web Semantics, 3(4):247–267.

Casey, M. (2002). Musical applications of mpeg-7 audio. Organised Sound, Campbridge

University Press., 6(2).

Casey, M. and Slaney, M. (2006). The importance of sequences in musical similarity. Pro-

ceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing,

(ICASSP 2006).

Casey, M., Veltcamp, R., Goto, M., Leman, M., Rhodes, C., and Slaney, M. (2008). Content-

based music information retrieval: Current directions and future challenges. Proceedings of

the IEEE, 96(4):668–696.

Chalmers, A. F. (1999). What is this thing called Science? Open University Press, Bucking-

ham, United Kingdom.

Chambers, A., Smyth, P., and Steyvers, M. (2010). Learning concept graphs from text with

stick-breaking priors. In La↵erty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R.,

and Culotta, A., editors, Advances in Neural Information Processing Systems 23, pages

334–342.

Chen, H., Wu, Z., and Mao, Y. (2005). RDF-Based ontology view for relational schema me-

diation in semantic web. Lecture Notes in Computer Science: Knowledge-Based Intelligent

Information and Engineering Systems, Vol. 3682(169):873–879.

Cheveigné, A. d. and Kawahara, H. (2002). Yin, a fundamental frequency estimator for speech

and music. The Journal of the Acoustical Society of America, Vol. 111:1927.

Chiba, S. (1995). Metaobject protocol for C++. in Proc. Object-Oriented Programming,

Systems, Languages Applications (OOPSLA’95), pages 285–299.

Church, A. (1936). An unsolvable problem of elementary number theory. American Journal

of Mathematics, 58:345–363.

Cimiano, P., Hotho, A., and Staab, S. (2005). Learning concept hierarchies from textusing

formal concept analysis. Journal of Artificial Intelligence Research, 24(1):305–339.

Cimiano, P., Mädche, A., Staab, S., and Völker, J. (2009). Ontology learning. In S. Staab

and R. Studer (eds.), Handbook on Ontologies, International Handbooks on Information

Systems, 2nd Edition, Springer-Verlag Berlin Heidelberg.

299

Clarke, E. F. (1999). Rhythm and timing in music. in Diana Deutsch (ed.), The Psychology

of Music, 2nd edition, pp. 473-500.

Codd, E. F. (1970). A relational model of data for large shared data banks. Communications

of the ACM, 13(6).

Collins, N. (2005). Using a pitch detector for onset detection. in proc. 6th International

Conference on Music Information Retrieval 11-15. Sept, 2005. London, UK in proc. 6th

International Conference on Music Information Retrieval 11-15. Sept, 2005. London, UK.

Collins, N. (2010). Computational analysis of musical influence: A musicological case study

using mir tools. In Proceedings of the 11th International Society of Music Information

Retrieval Conference (ISMIR’10), August 9-13, 2010, Utrecht, Netherlands.

Cont, A., Dubnov, S., and Assayag, G. (2011). On the information geometry of audio streams

with applications to similarity computing. IEEE Transactions on Audio, Speech, and Lan-

guage Processing, 19(4):837–846.

Cope, D. (1997). Techniques of the Contemporary Composer. Schirmer Books, New York,

USA.

Corcho, O., Gómez-Pérez, A., González-Cabero, R., and Suárez-Figueroa, M. (2004). ODEval:

a Tool for Evaluating RDF(S), DAML+OIL, and OWL Concept Taxonomies. First IFIP

Conference on Artificial Intelligence Applications and Innovations (AIAI’04) Toulouse,

France, pages 369–382.

Crofts, N., Doerr, M., Gill, T., Stead, S., and Sti↵, M., editors (2010). Definition of the

CIDOC Conceptual Reference Model (Version 5.0.2). First published by the ICOM/CIDOC

Documentation Standards Group in 2003, continued by the CIDOC CRM Special Interest

Group.

Cross, I. (1998). Music analysis and music perception. Music Analysis, 1(17).

da Silva, P. P., McGuinness, D. L., and Fikes, R. (2006). A proof markup language for

semantic web services. Information Systems Journal, 31(4-5):381–395.

da Silva, P. P., Salayandia, L., and Gates, A. (2007). Wdo-it! a tool for building scientific

workflows from ontologies. Technical Report. University of Texas at El Paso.

Dahlhaus, C. D. C. and Gjerdingen, R. O. (1990). Studies in the Origin of Harmonic Tonality.

Princeton University Press.

Dannenberg, R. (1993). Music representation: Issues, techniques and systems. Computer

Music Journal, 17(3):20–30.

300

Davies, M. E. P. and Plumbley, M. D. (2007). Context-dependent beat tracking of musical

audio. IEEE Transactions on Audio, Speech, and Language Processing, 15(3):1009–1020.

de Lavieter L. (Ed.) (1995). Multilingual environmental thesaurus. Nederlandse Bureau voor

Onderzoek Informatie / EEA-TF - European Environment Agency - Task Force, Amster-

dam.

de Marne↵e, M.-C., MacCartney, B., and Manning, C. D. (2006). Generating typed depen-

dency parses from phrase structure parses. Language Resources and Evaluation Conference

(LREC’06).

De Roure, D., Goble, C., and Stevens, R. (2009). The design and realisation of the virtual

research environment for social sharing of workflows. Future Generation Computer Systems,

25(5):561 – 567.

Decker, S. and Frank, M. (2004). The social semantic desktop. DERI Technology Report,

Available online: http://www.deri.ie/fileadmin/documents/DERI-TR-2004-05-02.

pdf, Retrieved: May, 2011.

Degara-Quintela, N., Pena, A., and Torres-Guijarro, S. (2009). A comparison of score-level

fusion rules for onsed detection in music signals. in Proc. 10th International Society for

Music Information Retrieval Conference (ISMIR’09), Kobe, Japan.

Dijkstra, E. W. (1982). On the role of scientific thought. Selected Writings on Computing:

A Personal Perspective, pages 60–66.

Ding, L., Bao, J., Michaelis, J., Zhao, J., and McGuinness, D. L. (2010). Reflections on prove-

nance ontology encodings. Proceedings of the 3rd International Provenance and Annotation

Workshop (IPAW), Troy, New York, USA.

Dittenbach, M., Merkl, D., and Rauber, A. (2001). The growing hierarchical self-organizing

map. Proceedings of the International Joint Conference on Neural Networks, IJCNN’01,

Como, Italy, 6:15–19.

Dixon, S. (2001). Automatic extraction of tempo and beat from expressive performances.

Journal of New Music Research (JNMR), 30(1):39–58.

Dixon, S. (2006). Onset detection revisited. in Proc, Int Conference on Digital Audio E↵ects

(DAFX-06) Sept. 18-20. 2006. Montreal, Canada.

Dixon, S., Goebl, W., and Widmer, G. (2002). The performance worm: Real time visual-

ization of expression based on langneŕıs tempo-loudness animation. in Proc. International

Computer Music Conference, ICMC2002.

301

Dixon, S., Sandler, M., d’Invoerno, M., and Rhodes, C. (2010). Towards a distributed research

environment for music informatics and computational musicology. Journal of New Music

Research special issue on Music Informatics and the OMRAS2 Project, 39(4):291–294.

Dixon, S. and Widmer, G. (2005). Match: A music alignment tool chest. in proc. 6th

International Conference on Music Information Retrieval (ISMIR), London, UK.

Dolog, P. (2005). Model-Driven Navigation Design For Semantic Web Applications with the

UML-Guide. in Maristella Matera and Sara Comai (Eds.) Engineering Advanced Web

Applications, Rinton Press.

Downie, S. J., Ehmann, A., and Tcheng, D. (2005). Music-to-knowledge (m2k): a prototyping

and evaluation environment for music information retrieval research. in Proceedings of

the 28th annual international ACM SIGIR conference on Research and development in

information retrieval, page 676.

Duhem, P. (1954). The Aim and Structure of Physical Theory. Princeton University Press,

Oxford, United Kingdom.

Duignan, M. (2008). Computer mediated music production: A study of abstraction and

activity. PhD thesis, Department of Computer Science, Victoria University of Welling-

ton, New Zeland. Available Online: http://researcharchive.vuw.ac.nz/bitstream/

handle/10063/590/thesis.pdf, Retrieved: March 2011.

Dumbill, E. (2002). Support online communities with FOAF. XML Watch, IBM Developer-

Works.

Duxbury, C., Sandler, M., and Davis, M. (2002). A hybrid approach to musical note onset

detection. in proc. 5th International Conference on Digita Audio E↵ects.

Elschek, O. (1969). System of graphical and symbolic signs for the typology of aerophones.

Bratislava:VydatelstvS lovenskej Academi Vied.

Evans, E. (2003). Domain-Driven Design: Tackling Complexity in the Heart of Software.

Addison-Wesley Professional.

Fazekas, G. (2009). Information interaction in context (conference review). Informer (BCS,

IRSG Information Retrieval Specialist Group), (30):2–4.

Fazekas, G., Cannam, C., and Sandler, M. (2009). Reusable metadata and software com-

ponents for automatic audio analysis. in Proc. IEEE/ACM Joint Conference on Digital

Libraries (JCDL’09) Workshop on Integrating Digital Library Content with Computational

Tools and Services, Austin, Texas, USA, 2009.

302

Fazekas, G., Raimond, Y., Jakobson, K., and Sandler, M. (2010). An overview of Semantic

Web activities in the OMRAS2 Project. Journal of New Music Research special issue on

Music Informatics and the OMRAS2 Project, 39(4):295–311.

Fazekas, G. and Sandler, M. (2007a). Intelligent editing of studio recordings with the help

of automatic music structure extraction. Presented at the 122nd Convention of the Audio

Engineering Society, Vienna, Austria.

Fazekas, G. and Sandler, M. (2007b). Structural decomposition of recorded vocal perfor-

mances and its application to intelligent audio editing. Presented at the 123rd Convention

of the Audio Engineering Society, New York, USA.

Fazekas, G. and Sandler, M. (2009). Ontology based information management in music

production. Presented at the 126th Convention of the Audio Engineering Society, Munich,

Germany, 2009.

Fazekas, G., Wilmering, T., and Sandler, M. (2011). A knowledge representation framework

for context-dependent audio processing. In Proc. of the 42th International Conference of

the Audio Engineering Society on Semantic Audio, Ilmenau, Germany, July 22–24.

Fensel, D. (2001). Ontologies: Dynamic networks of formally represented meaning. In Pro-

ceedings of the 1st Semantic web working symposium, Stanford, CA, USA.

Fielding, R. T. and Taylor, R. N. (2002). Principled design of the modern Web architecture.

ACM Transactions on Internet Technology, 2(2):115–150.

FIPA (2002). Fipa device ontology specification. Available online: http://www.fipa.org/

specs/fipa00091/PC00091A.html, Retrieved: May 2010.

Floridi, L. (2004). The Blackwell Guide to the Philosophy of Computing and Information.

Wiley-Blackwell.

Foote, J. (2000). Automatic audio segmentation using a measure of audio novelty. In Pro-

ceedings of IEEE International Conference on Multimedia and Expo, 1:452–455.

Franconi, E. (2002). Description Logics. Lecture Notes, Department of Computer Science,

University of Manchester.

Fujishima, T. (1999). Realtime chord recognition of musical sound: A system using com-

mon lisp music. Proceedings of the International Computer Music Conference, Beijing,

International Computer Music Association.

Furini, M. (2007). Mcdl: a reduced but extensible multimedia contents description language.

Int. J. Comput. Appl., 29:204–210.

303

Gangemi, A., Catenacci, C., Ciaramita, M., and Lehmann, J. (2006). Modelling ontology eval-

uation and validation. In proc. of the 2006 European Semantic Web Conference (ESWC’06).

Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., and Schneider, L. (2002). Sweetening

ontologies with dolce. Knowledge Engineering and Knowledge Management, A. Gómez-

Pérez, V.R. Benjamins (eds.), Ontologies and the Semantic Web, 13th International Con-

ference, EKAW 2002, Siguenza, Spain, October 1-4, 2002, Springer Verlag,, pages 166–181.

Gangemi, A. and Presutti, V. (2009). Ontology design patterns. in S. Staab and R.

Studer (eds.), Handbook on Ontologies, International Handbooks on Information Systems,

Springer-Verlag Berlin Heidelberg.

Ganter, B. and Wille, R. (1999). Formal Concept Analysis Mathematical Foundations.

Springer Verlag.

Garćıa, R. and Celma, O. (2005). Semantic integration and retrieval of multimedia meta-

data. Proceedings of the 5th International Workshop on Knowledge Markup and Semantic

Annotation.

Gaver, W. W. (1993). What in the world do we hear? explorations in ecological acoustics.

Ecological Psychology, Vol. 5.(No. 1.):pp. 1–29.

Genesereth, M. R. and Nilsson, N. J. (1987). Logical Foundations of Artificial Intelligence.

Morgan Kaufmann Publishers, San Mateo, CA, USA.

Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C., Livny, M.,

Moreau, L., and Myers, J. (2007). Examining the challenges of scientific workflows. IEEE

Computer, 40(12):24–32.

Goble, C., Wroe, C., and Stevens, R. (2003). The mygrid project: Services, architecture and

demonstrator. Proceedings of UK e-Science All Hands Meeting, pages 595–603.

Gold, B. and Morgan, N. (2000). Speech and Audio Signal Processing. John Wiley and Sons.

Goldberger, J., Gordon, S., and Greenspan, H. (2003). An e�cient image similarity measure

based on approximations of KL divergence between two Gaussian mixtures. ICCV’03, Nice,

France, pages 487–493.

Goldfarb, C. F. (1991). HyTime: A standard for structured hypermedia interchange. IEEE

Computer Magazine, 24:81–84.

Golub, G. H. and Kahan, W. (1965). Calculating the singular values and pseudo-inverse of a

matrix. Journal of the Society for Industrial and Applied Mathematics, B(2):205–224.

304

Gomez, E., Peterschmitt, G., Amatriain, X., and Herrera, P. (2003). Content-based melodic

transformations of audio material for a music processing application. in Proc. of the 6th

Int. Conference on Digital Audio E↵ects (DAFx-03), London, UK, September 8-11, 2003.

Gómez-Pérez, A. (2004). Ontology evaluation. in S. Staab and R. Studer (eds.), Handbook

on Ontologies, International Handbooks on Information Systems, First Edition, Springer-

Verlag Berlin Heidelberg.

Gonzalez, E. P. (2010). Advanced Automatic Mixing Tools for Music. PhD Thesis, School of

Electronic Engineering and Computer Science, Queen Mary University, London, UK.

Goto, M. (2003). A chorus section detection method for music audio signals. in Proc. IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP’03), pages

437–440.

Gouyon, F. and Dixon, S. (2005). A review of automatic rhythm description systems. Com-

puter Music Journal, 29(1):34–54.

Gri�ths, T. L. and Steyvers, M. (2004). Finding scientific topics. Proceedings of the National

Academy of Sciences of the United States of America, 101(1):5228–5235.

Gruber, T. R. (1993a). Toward principles for the design of ontologies used for knowledge

sharing. International Journal of Human-Computer Studies, 43:907–928.

Gruber, T. R. (1993b). A translation approach to portable ontology specification. Knowledge

Acquisition, 5(2).

Guarino, N. and Welty, C. (2002). Evaluating ontological decisions with ontoclean. Commu-

nications of the ACM, 45(2):61–65.

Guha, R., McCool, R., and Fikes, R. (2004). Contexts for the semantic web. in Proceedings

of the 3rd International Semantic Web Conference (ISWC’04), Hiroshima, Japan.

Haase, P., Haase, P., and Stojanovic, L. (2005a). Consistent evolution of owl ontologies. pages

182–197. Springer.

Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., and Sure, Y. (2005b). A

framework for handling inconsistency in changing ontologies. in Proc. 4th International

Semantic Web Conference (ISWC’05), Galway, Ireland.

Hacene, M. R., Napoli, A., Valtchev, P., Toussaint, Y., and Bendaoud, R. (2008). Ontology

learning from text using relational concept analysis. In Proceedings of the 2008 International

MCETECH Conference on e-Technologies, pages 154–163, Washington, DC, USA. IEEE

Computer Society.

305

Hainsworth, S. (2004). Techniques for the Automated Analysis of Musical Audio. Ph.D. thesis,

Deptartment Engineering, Cambridge University, Cambridge, UK.

Hargreaves, S. (2010). Structural Segmentation of Multitrack Audio. PhD progress report,

Queen Mary University of London (unpublished).

Harte, C., Sandler, M., Abdallah, S., and Gomez, E. (2005). Symbolic representation of

musical chords: A proposed syntax for text annotations. In in Proc. of the 6th International

Conference on Music Information Retrieval.

Harte, C. A. and Sandler, M. (2005). Automatic chord identification using a quantised

chromagram. in Proc. of the 118th Convention of the Audio Engineering Society.

Hartig, O. and Zhao, J. (2009). Using web data provenance for quality assessment. Pro-

ceedings of the First International Workshop on the role of Semantic Web in Provenance

Management (SWPM 2009), collocated with the 8th International Semantic Web Confer-

ence (ISWC09), Washington DC, USA, October 25.

Hattaingadi, J. (1987). How is Language Possible? Open Court Publishing Company La

Salle, Illinois, USA.

Hayes, P. (2002). RDF model therory. W3C Working Draft, Available Online: http://www.

w3.org/TR/2002/WD-rdf-mt-20020429/, Retrieved: March, 2011.

Hayes, P. (2004). RDF semantics. W3C Working Draft, Available Online: http://www.w3.

org/TR/rdf-mt/, Retrieved: March, 2011.

Hayes, P. J. (1996). A Catalog of Temporal Theories. Artificial Intelligence Technical Report

UIUC-BI-AI-96-01, University of Illinois at Urbana-Champaign.

Hepp, M. and de Bruijn, J. (2007). Gentax: A generic methodology for deriving OWL

and RDF-S ontologies from hierarchical classifications, thesauri, and inconsistent tax-

onomies. The Semantic Web: Research and Applications, Lecture Notes in Computer

Science, 4519:129–144.

Hoadley, C. (2003). Design-based research: An emerging paradigm for educational inquiry

by the design-based research collective. Educational Researcher, 32(1):5–8.

Hobbs, J. R. and Pan, F. (2006). Time Ontology in OWL. W3C Working Draft. Available

online: http://www.w3.org/TR/owl-time/, Retrieved: March 2011.

Hodges, W. (1993). Model Theory. Cambridge University Press.

Ho↵man, M., Blei, D., and Bach., F. (2010). On-line learning for latent Dirichlet allocation.

Advances in Neural Information Processing Systems (NIPS), 23:856–864.

306

Hofmann, T. (1999). Probabilistic latent semantic analysis. In Proceedings of 22nd Inter-

national ACM SIGIR Conference on Research and Development in Information Retrieval,,

pages 50–57.

Hofmann-Engl, L. J. (2003). Melodic Similarity and Transformations: A theoretical and

empirical approach. PhD thesis, Dep. Of Psychology, Keele University, UK.

Honkela, T. (1997). Self-organizing maps in natural language processing. PhD Thesis, Helsinki

University of Technology, Neural Networks Research Centre, Espoo Finland.

Horrocks, I. (2008). Ontologies and the Semantic Web. Communications of the ACM,

51(12):58–67.

Horrocks, I., Patel-Schneider, P. F., and van Harmelen, F. (2003). From SHIQ and RDF to

OWL: The making of a Web Ontology Language. Journal of Web Semantics, 1(1):7–26.

Howe, B., Tanna, K., Turner, P., and Maier, D. (2004). Emergent semantics: Towards self-

organising scientific metadata. Lecture Notes in Computer Science, 3226:177–198.

Huber, D. M. and Runstein, R. E. (2005). Modern Recording Techniques. Focal Press.

Hunter, J. (2001). Adding multimedia to the Semantic Web - Building an MPEG-7 Ontology.

The first Semantic Web Working Symposium, Stanford University, July 30 - August 1,

2001, California, USA.

Hunter, J. (2003). Enhancing the semantic interoperability of multimedia through a core

ontology. IEEE Transactions on Circuits and Systems for Video Technology, 13(1):49–58.

Hunter, J. and James, D. (2000). Application of an event-aware metadata model to an online

oral history archive. presented at ECDL2000, Lisbon.

Jacobson, K. (2011). Connections in Music. PhD Thesis, School of Electronic Engineering

and Computer Science, Queen Mary University, London, UK.

Jacobson, K., Raimond, Y., and Sandler, M. (2009). An ecosystem for transparent music

similarity in an open world. in Proc. 10th International Society for Music Information

Retrieval Conference (ISMIR’09), Kobe, Japan.

Jewell, M. O., Lawrence, F., and Tu�eld, M. M. (2005). Ontomedia: An ontology for the

representation of heterogeneous media. ACM SIGIR Multimedia Information Retrieval

Workshop (MMIR 2005).

Kabal, P. and Ramachandran, R. (1986). The computation of line spectral frequencies using

chebyshev polynomials. IEEE Transactions on Acoustics, Speech and Signal Processing

(ASSP), 34(6).

307

Kania, A. (2008). The methodology of musical ontology: Descriptivism and its implications.

British Journal of Aesthetics, 48(4):426–444.

Kanzaki, M. (2007). Music Vocabulary in OWL DL. Available online: http://www.kanzaki.

com/ns/music, Retrieved: May 2011.

Kapanci, E. and Pfe↵er, A. (2006). A hierarchical approach to onset detection. In Interna-

tional Computer Music Conference (ICMC’06), pages 438–441.

Kaplan, A. M. and Haenlein, M. (2009). Users of the world, unite! the challenges and

opportunities of social media. Business Horizons, Volume 53(Issue 1).

Kiczales, G., Rivieres, J. D., and Bobrow, D. G. (1991). The Art of the Metaobject Protocol.

The MIT Press.

Kim, H.-G., Moreau, N., and Sikora, T. (2005). MPEG-7 Audio and Beyond: Audio Content

Indexing and Retrieval. John Wiley & Sons.

Klapuri, A. P. (2004). Automatic music transcription as we know it today. Journal of New

Music Research (JNMR), 33(3):269–282.

Klein, D. and Manning, C. D. (2003). Accurate unlexicalized parsing. Proceedings of the 41st

Meeting of the Association for Computational Linguistics, pages 423–430.

Klein, M., Fensel, D., van Harmelen, F., and Horrocks, I. (2001). The relation between

ontologies and XML schemas. Linköping Electronic Articles in Computer and Information

Science.

Ko, R. K., Lee, S. S., and Lee, E. W. (2009). Business Process Management (BPM) standards:

A survey. Business Process Management Journal, 15(5).

Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst, M., Bizer, C., and

Lee, R. (2009). Media meets semantic web - how the BBC uses DBpedia and linked data to

make connections. In Proceedings of the European Semantic Web Conference In-Use track.

Koestler, A. (1964). The Act of Creation. (pp. 513-544), The Macmillan Company, New York.

Kohonen (1998). Self-organzation of very large document collections: the state of the art.

Proceedings of the International Conference on Artificial Neural Networks, pages 65–74.

Kohonen, T. (1995). Self Organising Maps. Springer Verlag, Berlin.

Kolozali, S., Barthet, M., Fazekas, G., and Sandler., M. (2010). Towards the automatic

generation of a Semantic Web ontology for musical instruments. in proc. 5th International

Conference on Semantic and Digital Media Technologies (SAMT).

308

Kolozali, S., Fazekas, G., Barthet, M., and Sandler., M. (2011). Knowledge representation

issues in musical instrument ontology design. in Proc. International Society for Music

Information Retrieval (ISMIR’11), Miami, Florida, USA.

Kruskal, J. and Wish, M. (1986). Multidimensional Scaling. Sage.

Kuhn, T. S. (1962). The Structure of Scientific Revolutions. University of Chicago Press,

Chicago, USA.

Lagoze, C. and Hunter, J. (2002). The ABC Ontology and Model. Journal of Digital Infor-

mation - Special Issue - selected papers from Dublin Core 2001 Conference, 2(2).

Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. Crit-

icism and the Growth of Knowledge: Proceedings of the International Colloquium in the

Philosophy of Science, 4:95–196.

Lassila, O. and Swick, R. (1998). Resource Description Framework (RDF)

model and syntax specification. Available online: http://www.w3.org/TR/1999/

REC-rdf-syntax-19990222/, Retrieved: May 2009.

Lee, J.-S., Kim, T.-H., Yoon, G. S., Hong, J.-E., Cha, S. D., and Bae, D.-H. (1999). Developing

distributed software systems by incorporation meta-object protocol with unified modelling

language.

Lee, K. and Slaney, M. (2008). Acoustic chord transcription and key extraction from audio

using key-dependent hmms trained on synthesized audio. IEEE Transactions on Audio,

Speech, and Language Processing, 16(2):291–301.

Leistikov, R. J. (2006). Bayesian Modeling of Musical Expectations via Maximum Entropy

Stochastic Grammars. PhD thesis, Department of Music, Stanford University, USA.

Lerdahl, F. and Jackendo↵, R. (1983). A Generative Theory of Tonal Music. The MIT Press.

Levine, N. (2003). The fundamentals of clos. International Lisp Conference ILC-03, New

York, 2003.

Levy, M. and Sandler, M. (2006a). Lightweight measures for timbral similarity of musical au-

dio. In Proceedings of the 1st ACM Workshop on Audio and Music Computing Multimedia

(Santa Barbara, California, USA, October 27, 2006). AMCMM ’06. ACM, New York, NY,

27-36.

Levy, M. and Sandler, M. (2006b). New methods in structural segmentation of musical audio.

in Proc. 14th European Signal Processing Conference, September 4 - 8, 2006, Florence,

Italy.

309

Levy, M. and Sandler, M. (2008). Structural segmentation of musical audio by constrained

clustering. IEEE Transactions on Audio, Speech, and Language Processing, 16(2):318–326.

Llorà, X., Ács, B., Auvil, L. S., Capitanu, B., Welge, M. E., and Goldberg, D. E. (2008).

Meandre: Semantic-Driven Data-Intensive flows in the clouds. IlliGAL Report 2008013,

Illinois Genetic Algorithms Laboratory University of Illinois at Urbana-Champaign, IL,

USA.

Logan, B. and Salomon, A. (2001). A music similarity function based on signal analysis. In

proc. Multimedia and Expo ICME, pages 745–748.

London, J. (2012). Musical Meter, Musical Expression, and Social Cognition: An Inquiry in

Cognitive Aesthetics. In Studies in Honor of Eugene Narmour, A. Rozin L. Bernstein, eds.

Hillsdale: Pendragon Press.

Lozano-Tello, A. and Gómez-Pérez, A. (2004). ONTOMETRIC: A Method to Choose the

Appropriate Ontology. Journal of Database Management. Special Issue on Ontological

analysis, Evaluation, and Engineering of Business Systems Analysis Methods, 15(2).

Lyslo↵, R. T. A. and Matson, J. (1985). A new approach to the classification of sound-

producing instruments. Ethnomusicology, 29:213–236.

Macrae, R. and Dixon, S. (2011). Guitar tab mining, analysis and ranking. In Proceedings of

the International Symposium on Music Information Retrieval, Miami, Florida.

Mandel, M., Poliner, G., and Ellis, D. (2005). Support vector machine active learning for

music retrieval. in Proc. of the 6th International Conference on Music Information Retrieval

(ISMIR’05), London, UK.

Mart́ınez, J. M. (2004). Mpeg-7 overview. International Standard, ISO/IEC

JTC1/SC29/WG11, Available online: http://mpeg.chiariglione.org/standards/

mpeg-7/mpeg-7.htm, Retrieved: March 2011.

Masolo, C., Borgo, S., Gangemi, A., Guarino, N., and Oltramari, A. (2003a). Wonderweb

deliverable d18: Ontology library. WonderWeb, Ontology Infrastructure for the Semantic

Web, Available online: http://wonderweb.semanticweb.org/deliverables/D18.shtml.

Masolo, C., Borgo, S., Gangemi, A., Guarino, N., and Oltramari, A. (2003b). Wonderweb

deliverable d18: Ontology library. Technical report, Laboratory For Applied Ontology -

ISTC-CNR.

Mauch, M. (2010). Automatic Chord Transcription from Audio Using Computational Models

of Musical Context. PhD Thesis, School of Electronic Engineering and Computer Science,

Queen Mary University, London, UK.

310

Mauch, M. and Dixon, S. (2010a). Approximate note transcription for the improved iden-

tification of di�cult chords. In Proceedings of the 11th International Society for Music

Information Retrieval Conference (ISMIR’10), Utrecht, Netherlands.

Mauch, M. and Dixon, S. (2010b). Simultaneous estimation of chords and musical context

from audio. IEEE Transactions on Audio, Speech, and Language Processing, 18(6):1280–

1289.

Mauch, M., Noland, K., and Dixon, S. (2009). Using musical structure to enhance automatic

chord transcription. in Proc. 10th International Conference on Music Information Retrieval

(ISMIR’09), Kobe, Japan.

Mayo, D. G. (1996). The growth of experimental knowledge. University of Chicago Press,

Chicago, London.

McEnnis, D., McKay, C., and Fujinaga, I. (2006). Overview of OMEN. Proceedings of the

7th International Conference on Music Information Retrieval. Victoria, BC, Canada.

McEnnis, D., McKay, C., Fujinaga, I., and Depalle, P. (2005). jaudio: A feature extraction

library. in Proc. of the International Conference on Music Information Retrieval, London,

UK.

McKay, C., Burgoyne, J. A., and Fujinaga, I. (2009a). jMIR and ACE XML: Tools for per-

forming and sharing research in automatic music classification. Presented at the ACM/IEEE

Joint Conference on Digital Libraries Workshop on Integrating Digital Library Content with

Computational Tools and Services, University of Texas, Austin, USA.

McKay, C., Burgoyne, J. A., Thompson, J., and Fujinaga, I. (2009b). Using ACE XML 2.0

to store and share feature, instance and class data for musical classification. Proceedings of

the International Society for Music Information Retrieval Conference, (303-8).

McKay, C., Fiebrink, R., McEnnis, D., Li, B., and Fujinaga, I. (2005). Ace: A framework for

optimizing music classification. in proc. 6th International Conference on Music Information

Retrieval (ISMIR’05), London, UK.

Meddis, R., Lopez-Poveda, E., Fay, R., and Popper, A., editors (2010). Computational Models

of the Auditory System. (1st Edition), Neuroscience series, Springer Verlag, 2010, XII.

Miller, L. (2000). Statement/statings: A summary of the threads a triple is not unique

and statements/reified statements from the rdf interest discussion list. Available Online:

http://www.ilrt.bristol.ac.uk/discovery/2000/11/statements/, Retrieved: March

2011.

311

Missier, P. and Goble, C. A. (2011). Workflows to open provenance graphs, round-trip. Future

Generation Comp. Syst., 27(6):812–819.

Mitrović, D., Zeppelzauer, M., and Breitender, C. (2010). Features for content-based audio

retrieval. Advances in Computers, 78:71–150.

Monti, G. and Sandler, M. (2000). Monophonic transcription with autocorrelation. in Proc,

DAFX-00 Dec. 7-9. 2000. Verona, Italy.

Moore, B. C. J. (2003). An Introduction to the Psychology of Hearing (General Principles of

Perceptual Organization). Academic Press.

Moorer, J. A. (1979). About this reverberation business. Computer Music Journal, 3(2):13–

28.

Moreau, L., Cli↵ord, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska, N., Miles,

S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., and den Bussche, J. V.

(2010). The open provenance model core specification (v1.1). Future Generation Computer

Systems, Preprint.

Motik, B., Horrocks, I., and Sattler, U. (2007). Bridging the gap between OWL and relational

databases. In Proc. of the Sixteenth International World Wide Web Conference.

Murphy, K. P. (2002). Dynamic Bayesian Networks: Representation, Inference and Learning.

PhD thesis, University of California at Berkeley,.

Nack, F., van Ossenbruggen, J., and Hardman, L. (2005). That obscure object of desire:

multimedia metadata on the web, part 2. IEEE Multimedia, 12(1):54–63.

Naik, R. (2006). Introduction to logic programming in C++. Available online: http://www.

mpprogramming.com/Cpp/, Retrieved: May 2010.

Newton-Smith, W. (1984). The Russellian construction of instants. Routledge, London and

New York.

Nielsen, F. and Nock, R. (2009). Sided and symmetrized Bregman centroids. IEEE Transac-

tions on Information Theory, 55(6):2882–2904.

Noland, K. and Sandler, M. (2009). Influences of signal processing, tone profiles, and chord

progressions on a model for estimating the musical key from audio. Computer Music

Journal, 33(1).

Obrst, L., Ashpole, B., Ceusters, W., Mani, I., Ray, S., and Smith, B. (2007). The evalua-

tion of ontologies. In Christopher J.O. Baker and Kei-Hoi Cheung (eds.), Revolutionizing

Knowledge Discovery in the Life Sciences, Springer, Berlin, 2007, pages 139–158.

312

Oinn, T., Addis, M., Ferris, J., Marvin, D., Greenwood, M., Carver, T., Wipat, A., and Li,

P. (2004). Taverna, lessons in creating a workflow environment for the life sciences. In

Proceedings of GGF10, Berlin, Germany.

Olson, H. F. (1952). Musical Engineering. McGraw-Hill Book Co. Inc., 242-265 edition.

Ong, B. S. and Herrera, P. (2005). Semantic segmentation of music audio contents. in Proc.

International Computer Music Conference 2005, Barcelona, Spain.

Ossenbruggen, J. V., Nack, F., and Hardman, L. (2004). That obscure object of desire:

Multimedia metadata on the web (part i). IEEE Multimedia, 12:54–63.

Pachet, F. (2005). Knowledge management and musical metadata. Swartz D. (Ed.) Encyclo-

pedia of Knowledge Management, Idea Group.

Pampalk, E., Hlavac, P., and Herrera, P. (2004a). Hierarchical organization and visualization

of drum sample libraries. in Proc. of the 7th Int. Conference on Digital Audio E↵ects

(DAFx-04), Naples, Italy, October 5-8, 2004.

Pampalk, E., Widmer, G., and Chan, A. (2004b). A new approach to hierarchical clustering

and structuring of data with self-organizing maps. Intell. Data Anal., 8:131–149.

Pap, J. (2002). Hang - ember - hang Rendhagyó hangantropológia (in Hungarian). Vince

Kiadó Kft. pp. 136-143.

Papadopoulos, H. and Peeters, G. (2007). Large-scale study of chord estimation algorithms

based on chroma representation and hmm. International Workshop on Content-Based

Multimedia Indexing, 2007. CBMI ’07.

Paslaru, E., Simperl, B., Tempich, C., and Sure, Y. (2006). Ontocom: A cost estimation

model for ontology engineering. Proceedings of fifth International Semantic Web Conference

(ISWC 2006), Athens, GA, USA.

Passant, A. (2010). dbrec - music recommendations using dbpedia. 9th International Semantic

Web Conference (ISWC2010), Nov. 7-11. Shanghai, China.

Patel, A. D. and Peretz, I. (1997). Is music autonomous from language? A neuropsychological

appraisal. in Perception and Cognition of Music, Irene Deliege, John Sloboda (eds.) pp.

191-215.

Patel-Schneider, P. F., Hayes, P., and (Eds.), I. H. (2004). OWL web ontology language

semantics and abstract syntax. W3C Recommendation, 10 February 2004, Available online:

http://www.w3.org/TR/2004/REC-owl-semantics-20040210/, Retrieved: Jan. 2010.

313

Paulus, J. and Klapuri, A. (2009). Music structure analysis using a probabilistic fitness mea-

sure and a greedy search algorithm. IEEE Trans. Audio, Speech, and Language Processing,

17(6):1159–1170.

Peeters, G. (2004). A large set of audio features for sound description. Technical report,

IRCAM, Paris, France.

Peeters, G. (2006). Chroma-based estimation of musical key from audio-signal analysis.

in Proceedings of the 7th International Conference on Music Information Retrieval (IS-

MIR’06), Victoria, Canada.

Peeters, G., Burthe, A. L., and Rodet, X. (2002). Toward automatic music audio summary

generation from signal analysis. In Proceedings of the 3rd International Conference on

Music Information Retrieval (ISMIR’02), Paris, France.

Philip, R. (2004). Performing Music in the Age of Recording. Yale University Press.

Pike, A. (1971). The perceptual aspects of motivic structure in music. The Journal of

Aesthetics and Art Criticism, Vol. 30.(No. 1.):pp. 56–58.

Plassard, M.-F., editor (1998). Functional Requirements for Bibliographic Records, Final Re-

port. International Federation of Library Associations and Institutions Study Group on the

Functional Requirements for Bibliographic Records. Approved by the Standing Committee

of the IFLA Section on Cataloguing K . G. Saur München.

Pope, S. T. (1996). Object-orientated music representation. Organized Sound, 1(1):56–58.

Popper, K. (1959). The Logic of Scientific Discovery. English translation of the original work

Logic der Forschung published in 1934. Hutchinson & Co., London, England.

Prud’hommeaux, E. and Seaborne, A. (2008). SPARQL query language for RDF. W3C

Recommendation, Available online: http://www.w3.org/TR/rdf-sparql-query/.

Puckette, M. S. (1997). Pure data: another integrated computer music environment. in

Proceedings, Second Intercollege Computer Music Concerts, Tachikawa, pages 37–41.

Purwins, H. (2005). Profiles of Pitch Classes Circularity of Relative Pitch and Key Experi-

ments, Models, Computational Music Analysis, and Perspectives. PhD thesis, Elektrotech-

nik und Informatik der Technischen Universiat, Berlin.

Quine, W. V. O. (1951). Two dogmas of Empiricism. The Philosophical Review, 60:20–43.

Quine, W. V. O. (1995). From Stimulus to Science. Harward University Press, Cambridge,

Massachusetts, London, England.

314

Rabiner, L. and Juang, B. (1993). Fundamentals of speech recognition. Prentice-Hall, New

Jersey.

Raimond, Y. (2007). Audio features ontology specification. Available online: http:

//motools.sourceforge.net/doc/audio_features.html, Retrieved: March 2011.

Raimond, Y. (2008). A Distributed Music Information System. PhD Thesis, School of Elec-

tronic Engineering and Computer Science, Queen Mary University, London, UK.

Raimond, Y. and Abdallah, S. (2006). The event ontology. Available online: http:

//motools.sourceforge.net/event/event.html, Retrieved: March 2011.

Raimond, Y. and Abdallah, S. (2007). The timeline ontology. Available online: http:

//motools.sourceforge.net/timeline/timeline.html, Retrieved: March 2011.

Raimond, Y., Abdallah, S., Sandler, M., and Frederick, G. (2007). The Music Ontology. in

Proc. 7th International Conference on Music Information Retrieval (ISMIR 2007), Vienna,

Austria.

Raimond, Y. and Sutton, C. (2007). A distributed data space for music-related information.

Workshop on multimedia information retrieval on The many faces of multimedia semantics,

Emerging applications, Augsburg, Bavaria, Germany.

Rasmussen, J. (1983). Skills, rules and knowledge: Signs and symbolism and other distinctions

in human performance models. IEEE Transactions on Systems, Man, and Cybernetics, Vol.

12.:pp. 257–266.

Rauber, A., Pampalk, E., and Merkl, D. (2003). The som-enhanced jukebox: Organization

and visualization of music collections based on perceptual models. Journal of New Music

Research, 32(2):193 — 210.

Rezinko↵, I. (2004). On primitive elements of musical meaning. Journal of Music And

Meaning (JMM), Volume 3. Fall 2004 / Winter 2005.

Ritter, H. (1999). Self-organizing maps on non-euclidean spaces. In Kohonen Maps, pages

97–108. Elsevier.

Robertson, S. (2008). The study of information retrieval – a long view. IIiX’08, Information

Interaction in Context, 2008, London, UK.

Russell, B. (1948). Human Knowledge Its Scope and Limits, volume Chapter 5, pp. 51. George

Allen and Unwin Ltd.

Sahoo, S. S. and Sheth, A. (2009). Provenir ontology: Towards a framework for escience

provenance management. Microsoft eScience Workshop, Pittsburgh, PA Oct 15-17.

315

Salton, G., Wong, A., and Yang, C. S. (1975). A vector space model for automatic indexing.

Communications of the ACM, 18(11):613–620.

Sandler, M. and Levy, M. (2007). Signal-based music searching and browsing. International

Conference on Consumer Electronics, ICCE 2007, Jan. 10-17.

Sauermann, L., Bernardi, A., and Dengel, A. (2005). Overview and outlook on the semantic

desktop. In Proceedings of the 1st Workshop on The Semantic Desktop at the ISWC 2005

Conference.

Schleusing, O., Zhang, B., and Wang, Y. (2008). Onset detection in pitched non-percussive

music using warping compenstaed correlation. in Proc. 33rd International Conference on

Acoustics, Speech, and Signal Processing (ICASSP’08) Las Vegas, USA.

Schnitzer, D., Flexer, A., Widmer, G., and Gasser, M. (2010). Island of Gaussians: The self

organizing map and Gaussian music similarity features. in Proc. of the 11th International

Conference on Music Information Retrieval (ISMIR’10), Utrecht, Netherlands.

Schomaker, L., Nijtmans, J., Camurri, A., Lavagetto, F., Morasso, P., Benôıt, C., Guiard-

Marigny, T., Go↵, B. L., Robert-Ribes, J., Adjoudani, A., Defée, I., Münch, S., Hartung,

K., and Blauert, J. (1995). A taxonomy of multimodal interaction in the human information

processing system. A Report of the ESPRIT PROJECT Available online: http://www.ai.

rug.nl/~lambert/projects/miami/taxonomy/taxonomy.html, Retrieved: March 2012.

Schroeder, M. R. (1961). Improved quasi-stereophony and colorless artificial reverberation.

Journal of the Acoustical Society of America, 33(8):1061–1064.

Schroeder, M. R. (1962). Natural sounding artificial reverberation. Journal of the Audio

Engineering Society, 10(3):219–223.

Sheh, A. and Ellis, D. (2003). Chord segmentation and recognition using EM-trained hid-

den Markov models. in Proc. of the 4th International Conference on Music Information

Retrieval, (ISMIR’03), Baltimore, USA.

Smith, B. (1995). Formal ontology, commonsense and cognitive science. International Journal

of HumanComputer Studies, 43.

Smith, J. R. and Schirling, P. (2006). Metadata standards roundup. IEEE Multimedia,

April-June 2006, 13(2):84–88.

Smits, J. O. (2009). Physical audio signal processing for virtual musical instruments and

audio e↵ects. Available online: https://ccrma.stanford.edu/~jos/waveguide/.

Sowa, J. F. (2000). Knowledge Representation: Logical, Philosophical, and Computational

Foundations. Brooks Cole Publishing Co., Pacific Grove, CA, USA.

316

Sowa, J. F. and Borgida, A. (1991). Principles of Semantic Networks: Explorations in the

Representation of Knowledge. Morgan Kaufmann Series in Representation and Reasoning.

Morgan Kaufmann.

Steup, M. (2010). Epistemology. In Zalta, E. N., editor, The Stanford Encyclopedia of

Philosophy. Spring 2010 edition.

Strawson, P. F. (1959). Individuals. An Essay in Descriptive Metaphysics. Routledge, London

and New York.

Stroud, R. J. and Wu, Z. (1995). Using metaobject protocols to implement atomic datatypes.

Lecture Notes in Computer Science, 952.

Sure, Y., Staab, S., and Studer, R. (2009). Ontology engineering methodology. in S. Staab

and R. Studer (eds.), Handbook on Ontologies, International Handbooks on Information

Systems, Springer-Verlag Berlin Heidelberg.

Taiani, F., Fabre, J.-C., and Killijian, M.-O. (2005). A multi-level meta-object protocol for

fault-tolerance in complex architectures. International Conferece on Dependable Systems

and Networks (DSN’2005), June 28 - July 1, Yokohama, Japan.

Tartir, S., Arpinar, I. B., Moore, M., Sheth, A. P., and Aleman-meza, B. (2005). OntoQA:

Metric-based ontology quality analysis. In IEEE Workshop on Knowledge Acquisition from

Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources.

Taylor, I., Deelman, E., Gannon, D., and Shields, M., editors (2006). Workflows for e-Science:

Scientific Workflows for Grids. Springer Verlag.

Temperley, D. (2001). The Cognition of Basic Musical Structures. The MIT Press, ISBN

0-262-20134-8.

Tenney, J. and Polansky, L. (1980). Temporal gestalt perception in music. Journal of Music

Theory, 24(2):205–241.

Tidhar, D., Fazekas, G., Kolozali, S., and Sandler, M. (2009). Publishing music similarity

features on the semantic web. Proceedings of the 10th International Conference on Music

Information Retrieval (ISMIR’09), Kobe, Japan.

Tidhar, D., Fazekas, G., Mauch, M., and Dixon, S. (2010a). Tempest - harpsichord tempera-

ment estimation in a semantic-web environment. Submitted to the JNMR special issue on

OMRAS2.

Tidhar, D., Mauch, M., and Dixon, S. (2010b). High precision frequency estimation for

harpsichord tuning classification. In IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP2010).

317

Tillett, B. (2004). FRBR: A conceptual model for the bibliographic universe. Library of

Congress Cataloging Distribution Service.

Tolonen, T. and Karjalainen, M. (2000). A computationally e�cient multipitch analysis

model. IEEE Trans. on Speech and Audio Processing, 8(1):708–716.

Troncy, R., Bailer, W., Hö↵ernig, M., and Hausenblas, M. (2010). Vamp: a service for

validating mpeg-7 descriptions w.r.t. to formal profile definitions. Multimedia Tools Appl.,

46:307–329.

Troncy, R., Carrive, J., Lalande, S., and Poli, J.-P. (2004). A motivating scenario for de-

signing an extensible audio-visual description language. International Workshop on Multi-

disciplinary Image, Video, and Audio Retrieval and Mining (CoRIMedia), October 25-26,

2004, Universite de Sherbrooke, Quebec, Canada.

Troncy, R., Celma, Ò., Little, S., Garćıa, R., and Tsinaraki, C. (2007). Mpeg-7 based mul-

timedia ontologies: Interoperability support or interoperability issue? 1st Workshop on

Multimedia Annotation and Retrieval enabled by Shared Ontologies, Genova, Italy. Decem-

ber 5, 2007.

Truemper, K. (2004). Design of Logic-based Intelligent Systems. Wiley-Interscience John

Wiley and Sons.

Tsinaraki, C., Polydoros, P., and Christodoulakis, S. (2004). Integration of OWL ontologies

in MPEG-7 and TVAnytime compliant Semantic Indexing. In Proceedings of the 16th

International Conference on Advanced Information Systems Engineering, pages 398–413.

Turhan, A. Y., Springer, T., and Berger, M. (2006). Pushing doors for modeling contexts

with OWL-DL – A Case Study. Proceedings of the Fourth Annual IEEE International

Conference on Pervasive Computing and Communications Workshops.

Turney, P. (1996). The identification of context-sensitive features: A formal definition of con-

text for concept learning. M. Kubat and G. Widmer, (Eds.), Proceedings of the Workshop

on Learning in Context-Sensitive Domains.

Tversky, B. (1989). Parts, partonomies, and taxonomies. Developmental Psychology, 25:983–

995.

Tzanetakis, G. (2002). Manipulation, analysis and retrieval systems for audio signals. PhD

Thesis, Computer Science Department, Princeton University, USA.

Tzanetakis, G. and Cook, P. (2000). Marsyas: a framework for audio analysis. In Organised

Sound, volume 4, pages 169–175.

318

Varzi, A. C. (2003). Mereology. The Stanford Encyclopedia of Philosophy (Spring 2003 Edi-

tion), Edward N. Zalta (ed.), Available Online: http://plato.stanford.edu/entries/

mereology/, Retrieved: March 2011.

Varzi, A. C. (2006). A note on the transitivity of parthood. Applied Ontology, 1:141–146.

Veldhuis, R. (2002). The centroid of the symmetrical Kullback-Leibler distance. IEEE Signal

Procesing Letters, 9(3):96–99.

Veldhuis, R. and Klabbers, E. (2003). On the computation of the Kullback-Leibler measure

for spectral distances. IEEE Trans. on Speech and Audio Processing, 11(1):100–103.

Vembu, S. and Baumann, S. (2005). A self-organizing map based knowledge discovery for

music recommendation systems. Lecture Notes in Computer Science, 3310.

Vemuri, B. and Jian, B. (2005). A robust algorithm for point set registration using mixture

of Gaussians. in Proc. of the 10th IEEE International Conference on Computer Vision

(ICCV’05).

Verfaille, V., Guastavino, C., and Traube, C. (2006a). An interdisciplinary approach to

audio e↵ect classification. Proceedings of the 9th International Conference on Digital Audio

E↵ects (DAFx-06), Montreal, Canada.

Verfaille, V., Zölzer, U., and Arfib, D. (2006b). Adaptive digital audio e↵ects (a-dafx): A

new class of sound transformations. IEEE transactions on audio, speech, and language

processing, 14(5):1817–1831.

Vignoli, F. and Pauws, S. (2005). A music retrieval system based on user-driven similarity

and its evaluation. in Proc. of the 6th International Conference on Music Information

Retrieval, (ISMIR’05), London, UK.

Viitaniemi, Klapuri, E. (2003). A probabilistic model for the transcription of single-voice

melodies. Finnish Signal Processing Symposium, FINSIG, Tampere University of Technol-

ogy, May 2003.

Vila, L. and Reichgelt, H. (1996). The token reification approach to temporal reasoning.

Artificial Intelligence, 83(1):59–74.

von Hornbostel, E. M. and Sachs, C. (1914). Systematik der Musikinstrumente: EinVersuch.

Zeitschrift�r Ethnologie, Translated by A. Baines and K. Wachsmann as A Classification

of Musical Instruments. Galpin Society Journal.

Vrandečić, D. (2009). Ontology evaluation. in S. Staab and R. Studer (eds.), Handbook

on Ontologies, International Handbooks on Information Systems, Springer-Verlag Berlin

Heidelberg.

319

Vrandečić, D. and Gangemi, A. (2006). Unit tests for ontologies. In Mustafa Jarrar, Claude

Ostyn, Werner Ceusters, and Andreas Persidis (editors), Proceedings of the 1st Interna-

tional Workshop on Ontology Content and Evaluation in Enterprise Montpellier, France.

Wainwright, M. and Jordan, M. (2008). Graphical models, exponential families, and varia-

tional inference. Foundations and Trends in Machine Learning, 1(1-2):1–305.

Wang, J., Chen, X., Hu, Y., and Feng, T. (2010). Predicting high-level music semantics using

social tags via ontology-based reasoning. In In Proc. of the 11th International Society of

Music Information Retrieval Conference, August 9-13, 2010, Utrecht, Netherlands.

Weinstein, E. and Pedro, M. (2007). Music identification with weighted finite-state transduc-

ers. in Proc. ICASSP 2007.

Welch, I. and Stroud, R. J. (2001). Kava - using byte code rewriting to add behavioural

reflection to java. Proceedings of the in Proc. 6th USENIX Conference on Object-Oriented

Technologies and Systems (COOTS ’01), Jan. 29 - Feb. 2, San Antonio, Texas, USA.

Wen, X. and Sandler, M. (2008). Analysis and synthesis of audio vibrato using harmonic si-

nusoids. Presented at the 124nd Convention of the Audio Engineering Society, Amsterdam,

The Netherlands.

West, K., Kumar, A., Shirk, A., Zhu, G., Downie, J. S., Ehmann, A. F., and Bay, M. (2010).

The Networked Environment for Music Analysis (NEMA). In 6th World Congress on

Services, Miami, Florida, USA, July 5-10, pages 314–317.

Widmer, G. and Goebl, W. (2004). Computational models of expressive music performance:

The state of the art. Journal of New Music Research (JNMR), 33(3):203–216.

Wilmering, T., Fazekas, G., and Sandler, M. (2010). The e↵ects of reverberation on onset

detection tastks. in Proc. of the 128th Convention of the AES, London, UK.

Wilms, T., Harris, S., and Robillard, D. (2007). Lv2 audio plugin standard. Available online:

http://lv2plug.in/spec/, Retrieved: Nov. 2011.

Wimering, T., Fazekas, G., and Sandler, M. (2011). Towards ontological representaiton of

digital audio e↵ects. In Proc. of the 14th Int. Conference on Digital Audio E↵ects (DAFx-

11), Paris, France, September 19-23.

Wright, M., Chaudhary, A., Freed, A., Khoury, S., and Wessel, D. (1999). Audio applications

of the sound description interchange format standard. in Proceedings of the International

Computer Music Conference (ICMC), Ann Arbor, Michigan, USA.

Zentz, D. M. (1992). Music learning: Greater the sum of its parts. Music Educators Journal,

78(8):33–36.

320

