
Music Metadata Capture in the Studio from Audio and Symbolic Data
Hargreaves, Steven

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/8816

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/8816

Music Metadata Capture in

the Studio from Audio and

Symbolic Data

Thesis submitted in partial fulfilment

of the requirements of the University of London

for the Degree of Doctor of Philosophy

Steven Hargreaves

September 2014

School of Electronic Engineering and Computer Science,

Queen Mary, University of London

I, Steven Hargreaves, confirm that the research included within this thesis

is my own work or that where it has been carried out in collaboration

with, or supported by others, that this is duly acknowledged below and

my contribution indicated. Previously published material is also acknowl-

edged below.

I attest that I have exercised reasonable care to ensure that the work

is original, and does not to the best of my knowledge break any UK law,

infringe any third partys copyright or other Intellectual Property Right,

or contain any confidential material.

I accept that the College has the right to use plagiarism detection software

to check the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award

of a degree by this or any other university.

The copyright of this thesis rests with the author and no quotation from it

or information derived from it may be published without the prior written

consent of the author.

Signature:

Date: 28th September 2014

2

Details of collaborations and publications:

Journal Article

S. Hargreaves, A. Klapuri, and M. Sandler. Structural segmentation of

multitrack audio. Audio, Speech, and Language Processing, IEEE Trans-

actions on, 20(10):2637 –2647, dec. 2012. ISSN 1558-7916

Conference Paper

Steven Hargreaves, Geraint Wiggins, and Mark Sandler. A semantic web

approach to pattern discovery in data and music. In Audio Engineering

Society Conference: 53rd International Conference: Semantic Audio. Au-

dio Engineering Society, 2014

The following research papers, published during the timeframe of this PhD

research, are not included in this thesis:

Conference Paper

Steven Hargreaves, Chris Landone, Mark Sandler, and Panos Kudumakis.

Segmentation and discovery of podcast content. In Audio Engineering

Society Conference 128. Audio Engineering Society, 2010

Post Symposium Proceedings (as co-author)

Mathieu Barthet, Steven Hargreaves, and Mark Sandler. Speech/music

discrimination in audio podcast using structural segmentation and tim-

bre recognition. In Sølvi Ystad, Mitsuko Aramaki, Richard Kronland-

Martinet, and Kristoffer Jensen, editors, Exploring Music Contents, vol-

ume 6684 of Lecture Notes in Computer Science, pages 138–162. Springer

Berlin Heidelberg, 2011. ISBN 978-3-642-23125-4

3

Abstract

Music Information Retrieval (MIR) tasks, in the main, are concerned with

the accurate generation of one of a number of different types of music meta-

data – beat onsets, or melody extraction, for example. Almost always,

they operate on fully mixed digital audio recordings. Commonly, this

means that a large amount of signal processing effort is directed towards

the isolation, and then identification, of certain highly relevant aspects of

the audio mix. In some cases, results of one MIR algorithm are useful, if

not essential, to the operation of another – a chord detection algorithm

for example, is highly dependent upon accurate pitch detection. Although

not clearly defined in all cases, certain rules exist which we may take from

music theory in order to assist the task – the particular note intervals

which make up a specific chord, for example.

On the question of generating accurate, low level music metadata (e.g.

chromatic pitch and score onset time), a potentially huge advantage lies

in the use of multitrack, rather than mixed, audio recordings, in which

the separate instrument recordings may be analysed in isolation.

Additionally, in MIR, as in many other research areas currently, there

is an increasing push towards the use of the Semantic Web for publish-

ing metadata using the Resource Description Framework (RDF). Seman-

tic Web technologies, though, also facilitate the querying of data via the

SPARQL query language, as well as logical inferencing via the careful

creation and use of web ontology language (OWL) ontologies. This, in

turn, opens up the intriguing possibility of deferring our decision regard-

ing which particular type of MIR query to ask of our low-level music

metadata until some point later down the line, long after all the heavy

signal processing has been carried out.

In this thesis, we describe an over-arching vision for an alternative

4

MIR paradigm, built around the principles of early, studio-based meta-

data capture, and exploitation of open, machine-readable Semantic Web

data. Using the specific example of structural segmentation, we demon-

strate that by analysing multitrack rather than mixed audio, we are able

to achieve a significant and quantifiable increase in the accuracy of our

segmentation algorithm. We also provide details of a new multitrack au-

dio dataset with structural segmentation annotations, created as part of

this research, and available for public use.

Furthermore, we show that it is possible to fully implement a pair of

pattern discovery algorithms (the SIA and SIATEC algorithms – highly

applicable, but not restricted to, symbolic music data analysis) using only

Semantic Web technologies – the SPARQL query language, acting on RDF

data, in tandem with a small OWL ontology. We describe the challenges

encountered by taking this approach, the particular solution we’ve arrived

at, and we evaluate the implementation both in terms of its execution time,

and also within the wider context of our vision for a new MIR paradigm.

5

In memory of Ian Hargreaves

6

Acknowledgements

Firstly, thanks go to my supervisors – Mark Sandler, Anssi Klapuri, and

Geraint Wiggins, for invaluable guidance, support and advice over the

duration of my research studies. Thanks also to everyone in the Centre

for Digital Music, and in particular, to Dan Stowell, Holger Kirchoff, and

Ken O’Hanlon for feedback on early thesis drafts, and to Matthias Mauch,

Sebastian Ewert, György Fazekas, Mathieu Barthet, Luis Figuéıra, Mag-

dalena Chudy, Alice Clifford, Peter Foster, Jordan Smith, Robert Tubb,

Thomas Wilmering, Katy Noland, Emmanouil Benetos, Chunyang Song,

Christopher Harte, Wen Xue, Yading Song and Chris Cannam for a variety

of technical, practical and social services.

For having the foresight to buy me a computer, in the days before that

was commonplace, for affording me the opportunity to explore music, and

for too many other things to mention – thanks to my parents. Last but

not least, thanks to my flatmate Alison for her long-term moral support.

This work has been supported by EPSRC studentship no. EP/505054/1.

7

License

This work is c© 2014 Steven Hargreaves, and is licensed under the Creative

Commons Attribution-Share Alike 3.0 Unported Licence.

To view a copy of this licence, visit http://creativecommons.org/licenses/

by-sa/3.0/ or send a letter to Creative Commons, 171 Second Street,

Suite 300, San Francisco, California, 94105, USA.

8

Contents

Abstract . 4

Acknowledgements . 7

License . 8

1 Introduction . 16

1.1 Motivation . 18

1.2 Scope . 19

1.3 Specific Contributions . 20

1.4 Thesis Structure . 20

2 Background . 22

2.1 Single versus Multi-Instrument Music Information Retrieval 23

2.2 Structural Segmentation of Audio 28

2.2.1 Audio Features . 29

2.2.2 Self-Distance Matrices 33

2.2.3 Beat-Aligned Frames 34

2.2.4 Homogeneity Detection 35

2.2.5 Repetition Detection 36

2.2.6 Hidden Markov Models 37

2.3 The Semantic Web . 38

2.3.1 Resource Description Framework (RDF) Data . . . 39

2.3.2 The SPARQL Query Language 42

2.3.3 The Web Ontology Language (OWL) 44

2.3.4 The Proliferation of the Semantic Web 47

2.3.5 The Proliferation of Semantic Audio 48

2.3.6 Software . 51

2.4 Symbolic Music Data Analysis 52

2.4.1 String Processing Algorithms 54

9

2.4.2 Pattern Discovery in Symbolic Music Data 55

2.5 Summary . 56

3 A Vision of a New MIR Paradigm 58

3.1 The Current Paradigm . 58

3.2 A New Paradigm . 60

3.3 Use Cases . 62

3.3.1 Semantic Navigation Around a Multitrack Audio

Project . 62

3.3.2 Custom End-User Audio Content 63

3.3.3 Advanced Online Music Search 63

3.3.4 Semantic Web Pattern Discovery 64

3.4 Summary . 65

4 Structural Segmentation of Multitrack Audio 66

4.1 Introduction . 66

4.2 Hypothesis . 69

4.3 Multitrack Audio Dataset with Structural Segment Anno-

tations . 69

4.3.1 Selecting and Obtaining Audio 70

4.3.2 Annotation . 70

4.4 Combined and Weighted Audio Feaures 80

4.4.1 Experimental Method 80

4.4.2 Evaluation . 85

4.4.3 Results . 86

4.4.4 Discussion . 88

4.5 Instrument-Specific Audio Features 90

4.5.1 Feature Selection 90

4.5.2 Experimental Method 94

4.5.3 Evaluation . 96

4.5.4 Results . 96

4.5.5 Discussion . 97

4.6 Conclusion . 97

5 A Semantic Web Approach to Pattern Discovery in Data

and Music . 100

5.1 The SIA and SIATEC Algorithms 103

10

5.1.1 Overview . 103

5.1.2 Algorithm Definitions 105

5.2 Requirements . 112

5.3 A Semantic Web Implementation of the SIA and SIATEC

Algorithms . 113

5.3.1 Requirement 1 . 113

5.3.2 Requirement 2 . 116

5.3.3 Requirement 3 . 117

5.3.4 Requirements 4 and 5 123

5.3.5 Requirement 6 . 124

5.3.6 Requirement 7 . 125

5.3.7 Requirement 8 . 125

5.3.8 Requirement 9 . 126

5.3.9 Informative Queries 127

5.3.10 MIDI to RDF . 128

5.4 Performance Evaluation 129

5.5 Evaluation with Respect to the New MIR

Paradigm . 134

5.6 Discussion . 138

6 Conclusions and Further Work 141

6.1 Summary . 141

6.2 Specific Contributions . 144

6.3 Future Work . 144

6.3.1 Instrument-Specific Audio Features for Structural

Segmentation . 145

6.3.2 Audio Feature Selection for Structural Segmenta-

tion According to Musical Function 145

6.3.3 Minimum Dataset Requirements 146

6.3.4 Lower-Level Segmentation 146

6.3.5 Additional Multitrack-Based MIR Experiments . . 146

6.3.6 Semantic Web Technique Optimisations 147

6.3.7 SIATEC as a Segmentation Method 148

6.3.8 A Musical Affect Ontology 148

6.4 Applications . 151

6.4.1 Improved Navigation within Digital Audio Worksta-

tions for Recording Studio Engineers 151

11

6.4.2 Guidance Regarding the Applicability of Semantic

Web Technologies to Algorithmic MIR 151

6.4.3 Automatic Transcription 151

6.4.4 Audio Thumbnailing 152

6.5 Final Thoughts . 152

A Novelty Curve Peak Picking 154

B SIATEC SPARQL Queries 156

B.1 Requirement 3 Queries . 156

B.2 Requirements 4 and 5 Queries 158

B.3 Requirement 6 Queries . 160

B.4 Requirement 7 Query . 163

B.5 Requirement 8 Query . 164

B.6 Requirement 9 Queries . 165

B.7 Informative Queries . 171

12

List of Figures

2.1 Historical MIREX multiple F0 detection accuracy results . 25

2.2 Historical MIREX chord detection average overlap score re-

sults . 26

2.3 Historical MIREX structural segmentation boundary re-

trieval f-measure results for 1s and 6s tolerances 27

2.4 Ground truth segments (top) and visualisation of a self dis-

tance matrix for a musical audio signal (bottom) 34

2.5 Ground truth segments (top) and normalised novelty score

for a musical audio signal (bottom) 37

2.6 A simple RDF (linked data) directed graph 42

2.7 The terms used in the Music Ontology (reproduced from

the music ontology website) 50

3.1 Typical MIR metadata generation paradigm 59

3.2 Semantic Audio Paradigm 61

4.1 Two alternative segmentations of the song ‘Armistice’ by

Phoenix. The top pane shows the audio waveform of the

song, the middle pane shows the segmentation chosen by

annotator A, and the bottom pane shows the segmentation

chosen by annotator B. 76

4.2 Two alternative segmentations of the song ‘1901’ by Phoenix.

The top pane shows the audio waveform of the song, the

middle pane shows the segmentation chosen by annotator

A, and the bottom pane shows the segmentation chosen by

annotator B. 79

4.3 Extracting beats from a simple mix of multitrack audio . . 81

4.4 Self-distance matrix images for “Sunrise” by Shannon Hurley 82

4.5 Self-distance matrix images for “Hyperpower” by Nine Inch

Nails . 83

13

4.6 Stacking the feature vectors obtained from multiple audio

source tracks . 84

4.7 Optimum feature weights for multitrack and mixed audio

sources, using 1 second and 3 second tolerances 88

4.8 Number of source audio tracks per instrument category . . 92

4.9 Chroma and MFCC audio feature spectrograms for oboe . 94

4.10 Chroma and MFCC audio feature spectrograms for electric

overdriven rhythm guitar 95

5.1 Simple score . 103

5.2 Simple score midi note onsets 104

5.3 Simple score with TEC A 105

5.4 Simple score with TEC B 106

5.5 Conceptual representation of the vector [0, 72], using triples 115

5.6 Datapoints labelled A to F 116

5.7 Execution time for both the Java and SPARQL implemen-

tations of SIATEC, for (k = 2) dimensions 130

5.8 Execution time for both the Java and SPARQL implemen-

tations of SIATEC, for (k = 3) dimensions 131

5.9 Execution time for the SPARQL implementation of SIATEC,

for (k = 2 & k = 3) dimensions 132

5.10 Relative execution times for SPARQL queries 133

5.11 Semantic Audio Paradigm 135

14

List of Tables

2.1 Single-pitch detection results from (Benetos and Dixon, 2011)

for three different single instruments 23

2.2 Multi-pitch detection results from (Benetos and Dixon, 2012)

for three different polyphonic datasets – RWC (Goto et al.,

2003), Disklavier (Poliner and Ellis, 2007), and the wood-

wind quintet recording from the MIREX multi-F0 develop-

ment set . 24

2.3 Some example namespaces and their prefixes 41

4.1 Segment boundary retrieval comparisons with ground truth

data, using combined and weighted features 87

4.2 Audio source track filename keyword to musical instrument

category mappings . 93

4.3 Musical instrument category to audio feature type mappings 96

4.4 Segment boundary retrieval comparisons with ground truth

data, using instrument-specific features 96

5.1 Set D, the ordered set of datapoints 107

5.2 Vector table V . 108

5.3 Vector table W . 108

5.4 The ordered elements of setV 109

5.5 SPARQL query execution times and complexity 133

15

Chapter 1

Introduction

Much commercially recorded music follows a typical path from perfor-

mance to release. Although there are exceptions, such as live recordings

of jazz and classical music, the path is frequently:

1. Instruments are recorded separately, and digitally.

2. Recordings are mixed by an engineer or producer.

3. The stereo mix is released.

At some later date, researchers, musicologists or industry might at-

tempt, computationally, to extract various types of semantic metadata

from the released version of the recording – this is commonly referred to

as Music Information Retrieval (MIR). Whether attempting to automat-

ically transcribe the audio, find the onsets of percussive beats, perform

instrument classification or any other MIR task, a significant amount of

theoretical and computational effort will be devoted to the isolation of

certain musical phenomena of interest from the complete ensemble mix.

Given the prevalence of studios employing digital recording techniques,

a question arises – why not perform MIR tasks earlier in the production

chain, prior to mixing, when we still have access to individual instrument

recordings?

Depending on the degree to which we are able to increase the accuracy

of MIR algorithms by using multitrack data, this should, in principle,

result in a symbolic, or close to symbolic, representation of recorded music.

Furthermore, as we shall see in Sections 2.3.4 and 2.3.5 of Chapter 2, there

16

CHAPTER 1. INTRODUCTION 17

is an increasing trend, both generally and within the MIR community,

towards utilising the Semantic Web as a means of publishing metadata in

a machine-readable format. The technologies that constitute the Semantic

Web though are not solely concerned with metadata publishing – they also

provide mechanisms for both querying, and making new inferences from,

existing data.

We hypothesise that a rich set of symbolic music metadata expressed

using the Resource Description Framework (RDF), and containing a sim-

ilar level of detail to that commonly found in Musical Instrument Digital

Interface (MIDI) data, would be of great value. Additionally, in combi-

nation with the use of carefully engineered ontologies and/or SPARQL

queries (see Section 2.3), such a set of metadata would facilitate valuable

further musicological insights into the original recording later down the

line. As new questions arise concerning the content of a piece of music,

instead of embarking upon further, potentially complex, audio analysis, we

may instead formulate new queries for our RDF symbolic music metadata.

Consequently, after setting out our vision of a new MIR paradigm based

upon early, accurate, signal processing-based metadata generation in the

studio, and the subsequent querying of lightweight symbolic Semantic Web

metadata, this thesis explores two main themes:

1. The question of whether or not there is a quantifiable advantage to

be gained by performing an MIR task using multitrack, rather than

mixed, audio.

2. The viability of deriving new, perceptually significant insights from

symbolic music data, using Semantic Web technologies alone.

When researching the first of these two themes, there are a number of

potential MIR tasks we could choose. In many cases, when the metadata

we seek to extract is an attribute of a distinct subset of the total set of

recorded instruments (such as automatic transcription or beat tracking),

the case for using multitrack audio seems fairly clear. In the case of one

common MIR task though, that of structural segmentation, the benefits

are not quite as clear cut. Imagine attempting to locate the chorus and

CHAPTER 1. INTRODUCTION 18

verse segments of a pop song from the bass or keyboard recordings alone

– depending on the particular song in question, this could either be trivial

or impossible. Consequently, we choose structural segmentation as our

test MIR task, and in Chapter 4 we present the results of our multitrack

structural segmentation experiment. An additional outcome of this part

of our research is a new publicly available dataset1, containing structural

segmentation annotations of 104 multitrack audio recordings.

Following on from this, rather than conducting additional multitrack

audio MIR tasks in a similar vein, we take something of a leap of faith.

Moving to the symbolic data domain, under the assumption that at some

point in the future the ability to derive a sufficiently rich and accurate sym-

bolic representation of recorded audio will be feasible, we implement and

evaluate the performance of a pair of pattern discovery algorithms, SIA

and SIATEC (Meredith et al., 2002), using Semantic Web technologies.

These algorithms are particularly pertinent in that they are inherently

applicable to multidimensional data, and, therefore, given that channel

number or instrument type could be mapped to one particular dimension,

whilst other attributes such as score time and chromatic pitch could be

mapped to others, they are ideally suited to the analysis of multichannel

symbolic data.

1.1 Motivation

Our primary motivation for conducting this research is the wealth of seem-

ingly fertile ground to be exploited where multitrack audio is concerned.

So much popular music is recorded digitally, and so much effort is made

within the MIR community to ‘reverse engineer’ the work done during the

mixing phase, that we believe it is imperative to at least begin re-focusing

the target of MIR algorithms. This argument, as we shall see in Section

2.1 of Chapter 2, is only strengthened by the apparent ‘glass ceiling’ cur-

rently being witnessed when attempting to increase the accuracy of many

MIR algorithms.

1http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/36

CHAPTER 1. INTRODUCTION 19

Secondly, we feel strongly that it is important to conduct research

which evaluates the computational capabilities of Semantic Web technolo-

gies, given the current level of interest in their adoption. Although many

authors have described methods for sharing linked metadata and the use of

Semantic Web ontologies within MIR (we provide details in Section 2.3.5),

to the author’s knowledge, no attempts have been made to actually per-

form algorithmic analysis of symbolic music data using only the Semantic

Web technologies themselves. An exception is the use of a ‘Harmony’ on-

tology (Ibbotson, 2009) from which one may infer the temporal precedence

of given combinations of chords and/or keys. The SIA and SIATEC algo-

rithms belong to a commonly encountered class of 3SUM-hard (Clifford

et al., 2006), cross-product type algorithms (other examples are given in

Chapter 5), and furthermore, no empirical data exists regarding the com-

putational complexity of SPARQL 1.1 (which, as we shall see in Chapter

5, forms the backbone of our implementation) when applied to this type

of algorithm.

1.2 Scope

This thesis is not an attempt to describe a fully comprehensive, end-to-

end, audio to symbolic data representation of music. Rather, it is an

exploration of the gains to be made by utilising multitrack rather than

mixed audio when performing structural segmentation, as well as an in-

vestigation into the viability of applying the Semantic Web technologies

RDF, SPARQL 1.1, and OWL 2, to the task of deriving new, perceptually

relevant information from a symbolic representation of music data. Dur-

ing our structural segmentation experiments, we limit ourselves to rock

and pop music.

CHAPTER 1. INTRODUCTION 20

1.3 Specific Contributions

• Empirical evidence that structural segmentation accuracy may be

significantly improved by using multitrack rather than mixed audio

recordings. This result was published in the IEEE Transactions on

Audio, Speech and Language Processing journal (Hargreaves et al.,

2012).

• A human-annotated structural segmentation ground-truth dataset of

multitrack audio, containing 104 songs2, publicly accessible for re-use

by other researchers.

• Proof-of-concept evidence that a pattern discovery algorithm involv-

ing complex, compound data structures, can successfully be fully

implemented using only Semantic Web technologies, together with

performance evaluation metrics (Hargreaves et al., 2014, in print)

and full implementation details.

1.4 Thesis Structure

The rest of this thesis is set out as follows:

Chapter 2 – Background

This chapter provides the core background material upon which the main

body of research is based. We show evidence of a reduction in accuracy for

some important MIR tasks when they are applied to mixed, rather than

single, instrument recordings, and we present a brief overview of some of

the techniques commonly used to locate the structural segments of music.

We introduce pattern discovery in symbolic music data, and provide a

general overview of the Semantic Web.

2http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/36

CHAPTER 1. INTRODUCTION 21

Chapter 3 – A Vision of a New MIR Paradigm

Expanding on the material presented in the Background chapter, we present

an over-arching vision for an alternative MIR paradigm, built around the

principles of early, studio-based metadata capture, and exploitation of

open, machine-readable Semantic Web data.

Chapter 4 – Structural Segmentation of Multitrack Audio

In this chapter we describe, and present the results of, two experiments

designed to evaluate the effect of using multitrack, rather than mixed,

audio when attempting to locate the structural segment boundaries of

rock and pop music recordings. We also present details of a new structural

segmentation ground-truth dataset of multitrack audio.

Chapter 5 – A Semantic Web Approach to Pattern Discovery in Data

and Music

In Chapter 5 we explore the viability of using only Semantic Web tech-

nologies in order to derive new, perceptually relevant data from multidi-

mensional symbolic music score data. We describe the particular method

used, evaluate its performance when compared to a more conventional

approach, and discuss the difficulties and challenges involved.

Chapter 6 – Conclusions

Finally in Chapter 6 we present our overall conclusions, suggestions for

further work, and describe some potential applications of the results of

this thesis.

Chapter 2

Background

In this chapter we make the case for performing certain MIR tasks earlier

in the production chain; that is, whilst we still have access to the indi-

vidual instrument, multitrack recordings. We provide evidence that some

MIR tasks produce less accurate results from mixed multi-instrument au-

dio recordings than from single-instrument recordings, and observe that

accuracy levels over recent years from techniques based upon mixed audio

are not increasing significantly. Later, in Chapter 4, we will demonstrate

improved structural segmentation accuracy via the use of multitrack au-

dio; consequently we provide some more in-depth background here on the

subject of structural segmentation. Based then upon the assumption that

multitrack audio-based MIR brings us closer to the possibility of being

able to produce accurate symbolic representations of multi-channel music,

we also describe some methods for performing further analysis of symbolic

music data, both single and multi-channel. Additionally, we discuss the

growing trend towards the use of RDF data as a means of sharing meta-

data. Together, these two themes of symbolic music data analysis and

RDF metadata form the basis for Chapter 5, in which we demonstrate

how we may perform multi-channel symbolic data pattern discovery using

purely Semantic Web technologies.

22

CHAPTER 2. BACKGROUND 23

2.1 Single versus Multi-Instrument Music Informa-

tion Retrieval

Pitch detection for monophonic sources, often referred to as single F0

estimation, is a well-established and still very active area of research, par-

ticularly within the speech analysis domain. In a real music audio signal

though, it is far more common that multiple sources will be present simul-

taneously. The problem of multiple F0 estimation is much harder, and

has received comparatively less attention. As an example, one approach,

taken by Klapuri (2004), involves repeatedly cancelling out each detected

pitch from a signal until we are satisfied that we have detected all F0s.

Clearly the execution time alone of such an algorithm will be worse than

one which assumes only a single F0 is present.

A useful illustration of the relative accuracies of single and multiple

pitch detection algorithms can be found by comparing the results of two

closely related and recent pitch-detection algorithms by the same authors.

Benetos and Dixon (2011) use shift-invariant probabilistic latent compo-

nent analysis, constrained by a Hidden Markov Model (HMM) to detect

pitches in monophonic music excerpts. They extend the model in Benetos

and Dixon (2012) with multiple HMMs providing temporal constraints,

and multiple-instrument spectral templates. Although the test datasets

are necessarily different, it is reasonably clear from the results shown in

Tables 2.1 and 2.2 that both accuracy and error rates are significantly

worse in the multi-pitch case.

Method Instrument Acc Etot Esubs Efn Efp

Left to Right HMM
Piano 81.5% 17.8% 2.2% 9.8% 5.8%
Cello 80.3% 22.1% 8.3% 5.6% 15.7%
Oboe 55.0% 39.1% 13.3% 22.6% 3.2%

Table 2.1: Single-pitch detection results from (Benetos and Dixon, 2011) for
three different single instruments

Despite the fact that the results for solo oboe are relatively poor, in

the cases of solo piano and cello, accuracy is at least 20% higher and

the various error percentage metrics are significantly lower compared to

CHAPTER 2. BACKGROUND 24

Dataset Acc1 Etot Esubs Efn Efp
RWC 61.6% 37.2% 9.1% 18.3% 9.8%

Disklavier 58.6% 42.7% 9.9% 16.3% 16.5%
MIREX 41.0% 53.0% 25.4% 20.1% 7.5%

Table 2.2: Multi-pitch detection results from (Benetos and Dixon, 2012) for
three different polyphonic datasets – RWC (Goto et al., 2003), Disklavier (Po-
liner and Ellis, 2007), and the woodwind quintet recording from the MIREX
multi-F0 development set

the multi-pitch detection algorithm. The definitions of the metrics used

(which come from Poliner and Ellis, 2007) follow. Overall accuracy is

defined as:

ACC =
TP

(FP + FN + TP)
(2.1)

where TP (“true positives”) is the number of correctly transcribed voiced

frames (over all notes), FP (“false positives”) is the number of unvoiced

note-frames transcribed as voiced, and FN (“false negatives”) is the num-

ber of voiced note-frames transcribed as unvoiced. This measure is bounded

by 0 and 1, with 1 corresponding to perfect transcription. There are four

different types of error measure, in each of which the intersection of Nsys

reported pitches and Nref ground-truth pitches counts as the number of

correct pitches Ncorr. The total error score, integrated across all time

frames t, is:

Etot =

∑T
t=1max(Nref (t), Nsys(t))−Ncorr(t)∑T

t=1Nref (t)
(2.2)

Substitution error is defined as:

Esubs =

∑T
t=1min(Nref (t), Nsys(t))−Ncorr(t)∑T

t=1Nref (t)
(2.3)

The “false negative” error is:

Efn =

∑T
t=1max(0, Nref (t)−Nsys(t))∑T

t=1Nref (t)
(2.4)

and the “false positive” error is:

Efp =

∑T
t=1max(0, Nsys(t)−Nref (t))∑T

t=1Nref (t)
(2.5)

CHAPTER 2. BACKGROUND 25

This is just one example; in order to see the more general picture

it is instructive to examine the results of the annual Music Information

Retrieval Evaluation eXchange (MIREX1) evaluation tasks. Figure 2.1

shows the trajectory of multiple F0 accuracy (as defined in 2.1) from 2007

to 2012 – after an initial rise between 2007 and 2008, there follows a

noticeable plateau, and even a slight degradation in 2012.

2007 2008 2009 2010 2011 2012
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Year

Ac
cu
ra
cy

Figure 2.1: Historical MIREX multiple F0 detection accuracy results

Similar trends are evident in the chord-detection (Figure 2.2 – unfor-

tunately no easily locatable definition of the metric used here is to be

found on the MIREX website) and structural segmentation (Figure 2.3 –

see Equation 4.6 in Section 4.4.2 for the definition of boundary retrieval

f-measure) tasks. The evaluation dataset used for the chord-detection task

has changed over the years – before 2009 it was only the Beatles dataset

provided by Harte et al. (2005). From 2009, 38 more songs by Queen and

1http://www.music-ir.org/mirex

CHAPTER 2. BACKGROUND 26

2008 2009 2010 2011 2012
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Year

Av
er

ag
e

O
ve

rla
p

Sc
or

e

Figure 2.2: Historical MIREX chord detection average overlap score results

Zweieck were added, and approximately 200 songs from Burgoyne et al.

(2011) were incorporated in 2012. It is perhaps reasonable to speculate

that perceived algorithmic advances are being kept in check by more rep-

resentative datasets.

Another vibrant area of MIR research is audio source separation – the

difficult task of ‘un-mixing’ a mixed audio recording into its constituent in-

struments (sources), or sometimes the perhaps slightly less daunting task

of separation into harmonic and percussive components. Ono et al. (2008),

motivated by their assertion that percussive tones interfere with multi-

pitch analysis, whilst suppression of harmonic components aids rhythm

analysis, present a real-time algorithm which separates the harmonic and

percussive components of an audio signal – the Harmonic-Percussion Sig-

nal Separation (HPSS) algorithm. In a similar vein, but using a different

method, Fitzgerald (2010) tries to achieve the same kind of separation,

proposing that this will be a useful pre-processing stage for “automatic

CHAPTER 2. BACKGROUND 27

2009 2010 2011 2012
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Year

F−
M

ea
su

re

1s tolerance
6s tolerance

Figure 2.3: Historical MIREX structural segmentation boundary retrieval f-
measure results for 1s and 6s tolerances

transcription of pitched instruments, key signature detection and chord

detection”. Ueda et al. (2010) employ an HMM-enhanced version of (Ono

et al., 2008) to perform automatic chord detection, achieving the highest

rank in the Audio Chord Detection task of MIREX 2008,2 whilst Rump

et al. (2010) also use the HPSS algorithm, this time in order to achieve

improved Mel Frequency Cepstral Coefficient (MFCC) based genre clas-

sification accuracy. Tsunoo et al. (2010) extend the technique from (Ono

et al., 2008) in order to extract the percussive and bass components of

audio signals with a view to achieving improved mood classification. As

impressive as some of the results in this area are, the question remains –

given that in many cases it is possible to access the multitrack sources, is

this a sensible direction of effort?

Some authors (Pachet and Aucouturier, 2004; Downie, 2008; Benetos

et al., 2012) in the MIR community speculate upon the existence of a ‘glass

2http://www.music-ir.org/mirex/2008

CHAPTER 2. BACKGROUND 28

ceiling’, an apparent limit to the accuracy we might realistically hope to

achieve using common algorithmic techniques and evaluation datasets. It

is with this in mind that we apply our focus in this thesis to the exploita-

tion of alternative source data types rather than the pursuit of small per-

centage accuracy gains via modest algorithmic parameter and/or method

adjustments.

2.2 Structural Segmentation of Audio

The preceding argument motivates us in Chapter 4 to demonstrate a sig-

nificant improvement in the accuracy of a structural segmentation algo-

rithm utilising multitrack audio. In preparation for that, in this section we

provide some segmentation background material and discussion of related

works.

Structural segmentation of audio is the task of locating the temporal

locations of the boundaries between the perceptually distinct, medium to

long time-frame sections of a piece of music (i.e. in the order of at least one

musical bar, although in some cases we may be interested in sub-bar-level

segments too). For example, in western rock and pop music, it is common

to refer to the chorus, verse and bridge segment of a song. All occurrences

of segments to which one would apply the same label (e.g. verse) are

regarded as perceptually similar, whilst segments having different labels

are not.

An immediate difficulty inherent in this task is that we only have a

fuzzy definition of what constitutes these high-level segments. For exam-

ple, whilst the notion of identifying the verses in a pop song is something

that many people are familiar with, specifying a precise description of

what a verse is, is not easy. If two identical chord progressions, lasting

eight bars, occur twice within a song, we would probably apply the same

label to them. However, if a pitch-transposed, or 12 bar long, version of

the chord progression occurs somewhere else, we would probably apply to

the same label to that too. More subtle differences, such as changes in

instrumentation, or the presence or absence of individual cymbal crashes,

would probably not cause a human listener to perceive these segments as

CHAPTER 2. BACKGROUND 29

significantly different to each other. Depending upon the method of anal-

ysis undertaken though, a segmentation algorithm may well regard these

segments as being unrelated. At best, we can say that at least one per-

ceptually significant aspect of two similarly perceived segments must be

shared between the two – be that the underlying chord progression, tim-

bre, melody, or rhythm. Any attempt to identify the structural segments

of music is usually evaluated on the basis of comparing machine generated

segment boundaries with those identified by one or more human listeners

(the ‘ground truth’).

Despite these difficulties, several researchers have nevertheless described

methods of carrying out structural segmentation of music. Abdallah et al.

(2005) employ an unsupervised Bayesian clustering model to classify signal

frames according to their audio properties. In their case, audio proper-

ties are obtained by calculating a constant-Q log-power spectrum, the di-

mensionality of which is then reduced using principal component analysis.

Aucouturier et al. (2005) use MFCCs as the audio feature, and a Gaussian

mixture model to estimate the distribution of these features, Mauch et al.

(2009) search for repetition of chroma sequences, whilst Barrington et al.

(2010) describe a dynamic texture model based upon both timbral and

rhythmical features. We concentrate here on the common themes of au-

dio features, self-distance (alternatively known as self-similarity) matrices,

homogeneity detection, and repetition detection. The reader is referred

to Paulus et al. (2010) for a comprehensive overview of music structure

analysis techniques.

2.2.1 Audio Features

In order to start making meaningful inferences about the music repre-

sented by an audio signal, it is common to first transform it into quan-

tifiable measures which are more closely aligned with human perception

of music than simple amplitude variations (although amplitude does play

an important role in music perception). This is the process of converting

the audio signal into a sequence of audio feature vectors v1,v2, ... vT , and

there are numerous types of audio features which may be of interest to us.

CHAPTER 2. BACKGROUND 30

Root Mean Square Energy

Perhaps the easiest feature to extract is root mean square (RMS) energy.

Tzanetakis and Cook (1999) identify the relevance of the RMS energy

audio feature to segmentation by noting that it is related to loudness, and

changes in loudness are important cues for new sound events. The RMS

energy of one audio frame is given by

e(i) =

√∑t=n
t=1 y(t)2

n
(2.6)

where i is the audio frame index, y(t) is the amplitude of the signal at

sample t within the frame i, and n is the number of discrete time sampled

signal amplitude values in frame i. Unlike the following audio features,

RMS energy is in fact a scalar. For the purposes of comparison to other

audio features, we treat it as a one-element vector.

Chroma

The chroma representation of pitch, proposed by Shepard (1964) indicates

the relative levels of each of the 12 notes of the equal-tempered chromatic

scale present in an audio sample, without indicating the octave to which

each note belongs (an alternative explanation is also given by Bartsch and

Wakefield, 2005). Clearly this has direct relevance to analysis of west-

ern music; the ability to determine the relative strengths of each note

as time varies offers us the potential to identify both melody and har-

mony as well as the repetition and variation of sequences of notes, phrases

and chord progressions. Chroma audio features have been successfully

utilised in applications such as chorus identification (Bartsch and Wake-

field, 2005; Goto, 2006), music thumbnailing (Bartsch and Wakefield, 2005;

Chai and Vercoe, 2003), and cover song identification (Ellis and Poliner,

2007; Ravuri and Ellis, 2010). For the single, ith, frame of audio, the

twelve elements of the chroma feature vector are given by

ck(i) =
∑
f∈Sk

Xi(f)

Nk

, k ∈ {1...12} (2.7)

where Xi(f) is the logarithmic magnitude of the discrete Fourier transform

(DFT) of the audio frame, every Sk ∈ Z defines, for every pitch class k, a

CHAPTER 2. BACKGROUND 31

subset of the discrete frequency space, and Nk is the number of elements

belonging to Sk.

Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients (MFCCs) are audio features which

are commonly used to quantify the “timbre” of a sample of audio. Timbre

itself is not clearly defined, but is typically taken to be an indication of the

“quality” of a sound. The American National Standards Institute provide

this definition: “Timbre is that attribute of auditory sensation in terms

of which a listener can judge that two sounds similarly presented and

having the same loudness and pitch are dissimilar” (ANSI, 1960). In the

context of solo instruments we use the term to describe the unique sound

of a particular instrument (for example the sound of a clarinet compared

to that of a saxophone), and beyond that, we would also talk about the

difference in timbre of different instruments of the same class, in order to

distinguish (for example) one clarinet from another, or the playing styles

of different musicians. In a more general sense we use the term ‘polyphonic

timbre’ to describe the overall sound or texture of mixed, polyphonic audio

(Aucouturier et al., 2005); for example we might say that each bar of a

verse in a pop song has similar timbre, whilst the timbres of the verse and

the chorus differ. From a technical point of view, MFCCs are calculated

by, firstly, determining the log-power in a series frequency bands. These

bands are chosen to relate closely to the critical bands of the human ear.

As an aid to achieving this, the centre frequencies of these bands are picked

from the Mel, rather than the linear, frequency scale. The linear frequency

scale may be mapped to the Mel scale as follows:

mel = 2595 log10

(
1 +

f

700

)
(2.8)

where f is the frequency in Hertz and mel is the Mel frequency. The

MFCC feature vector coefficients are then calculated by discrete cosine

transforming the log-power spectrum

mk(i) =
B−1∑
b=0

Ei(b) cos
π(2b+ 1)k

2B
(2.9)

CHAPTER 2. BACKGROUND 32

where i is the frame index, k is the coefficient index, b is the band number,

B is the total number of bands, and Ei(b) is the log energy of band b

for frame i. Timbre modeling is the key feature used by Aucouturier

et al. (2005) to perform segmentation via long-term similarity and pattern

identification.

Rhythmogram

Jensen et al. (2005) describe an audio feature, the rhythmogram, which

quantifies the degree of rhythmic change within a piece of audio. First,

we calculate the Perceptual Spectral Flux as

δ(i) =

N/2∑
k=1

W (fk){(aik)1/3 − (ai−1k)1/3} (2.10)

where i is the frame index, ak and fk are the magnitude and frequency

of the bin k of the short-time Fourier transform (STFT) obtained using a

Hanning window, andN is the STFT length. W is the frequency weighting

used to represent an equal loudness contour. The rhythmogram itself is

then calculated using autocorrelation over a short time window (e.g. 2

seconds) from

rk(i) =
i+l∑
j=i

δ(j)δ(j + k) (2.11)

where l is the length of the summing window, i is the frame index, and k

is the feature vector coefficient index for frame i.

Other features which may be of interest include those suggested by

Tzanetakis and Cook (1999) for multi-feature segmentation (namely spec-

tral centroid, spectral roll-off, spectral flux, and zero crossings), and nor-

malised constant Q spectra subjected to Principal Component Analysis

(used by Levy et al. 2006 and Abdallah et al. 2005 for high-level music

structure analysis).

Careful selection of either a single type of audio feature, or, as sug-

gested by Tzanetakis and Cook (1999), a combination of features, allows

us to proceed to a study of the higher levels of music information contained

within the audio signal; for example the variations and repetitions of pitch,

melody, dynamics, chords, harmony and so forth. Segment boundaries

CHAPTER 2. BACKGROUND 33

themselves are often indicated by significant changes of multiple features

(Bregman, 1994). More evidence of the usefulness of multiple features is

given by Bruderer (2008), who finds that important cues are harmonic

progressions, change in timbre, change in tempo and change in rhythm.

2.2.2 Self-Distance Matrices

Audio features alone do not present us with a structural segmentation of

musical audio – we must perform further processing of these features in

order to deduce the locations of regions of similarity or repetition. One

possible step in this process is to employ a widely used technique known

as self-distance (or alternatively self-similarity) matrix calculation, as pro-

posed by Foote (2000). Using a suitable distance measure such as the

cosine angle between two audio feature vectors, we define the self-distance

between frame i and frame j as

D(i, j) = 0.5

(
1− vi · vj
||vi|| ||vj||

)
(2.12)

where vi is the feature vector associated with frame i, and i and j are

frame indexes, the signal is compared with itself in terms of one or more

audio features.

The result of calculating these distance measures across all feature

vectors is a two-dimensional matrix. By assigning different colours to the

values in this matrix we are able to produce an informative visualisation

of the self-similarity in the audio signal. An example derived from the

chroma features of the song “People let’s stop the war” by Brad Stanfield

(a pop/rock song with clear chorus, verse and bridge sections) is shown in

Figure 2.4. The temporal locations of the ground truth segment bound-

aries are shown above the self-distance matrix; a clear correlation can be

seen between the ground truth locations and the vertical lines dividing

regions of homogeneous colour in the matrix image.

CHAPTER 2. BACKGROUND 34

������ ��	
�������� �����

������ ����� ����������������

����������

�
��
��
��

��
�

��� ��� ��� ��� �� !��

���

���

���

���

 ��

!��

�

�"�

�"�

�"�

�"�

�"

�"!

�"#

�"$

Figure 2.4: Ground truth segments (top) and visualisation of a self distance
matrix for a musical audio signal (bottom)

2.2.3 Beat-Aligned Frames

When we later come to pick out segment boundaries from this self-distance

matrix, the temporal accuracy at which we are able to operate will in-

evitably be limited by the length of the audio frames we use to calculate

each audio feature vector. As long as these frames correspond to suffi-

ciently short periods of time we will be able to pinpoint temporal loca-

tions to a desirable level of accuracy. Intuitively we might expect that

boundaries are more likely to fall on strong beats (as opposed to either

weak or no beats), and research into boundary perception by Bruderer

(2008) supports this hypothesis. Consequently it would be helpful if we

CHAPTER 2. BACKGROUND 35

were to choose the length of the audio frames such that they correspond

to beat intervals present in the audio. By first analysing the audio using

a beat tracking algorithm, we are then able to choose lengths such that

any frame we select as a boundary is guaranteed to coincide with a beat

(assuming the results of the beat analysis are sufficiently accurate). This

enables us to cope with changes in tempo by varying the frame lengths in

accordance with variations in the distances in time between beats. Fur-

thermore, the number of elements present in self-distance matrix, and also

therefore execution time, is significantly reduced.

2.2.4 Homogeneity Detection

Visualisations of self-distance matrices offer a valuable insight into the

structure of a piece of music. We still need, however, to perform further

analysis of the data in order to derive a set of segment boundaries. Noting

that areas of homogeneity are represented as square or rectangular blocks

in the visualisations, Foote (2000) proposes a method wherein we deter-

mine the variation in the level of correlation (the ‘novelty score’) between a

simple binary checkerboard pattern (a kernel) and the self-distance matrix

as we slide the kernel along the main diagonal of the self-distance matrix.

Explicitly, we first create an n× n kernel matrix C (the two-by-two case

is shown in Equation 2.13).

C =

[
1 −1

−1 1

]
(2.13)

The time scale upon which variations can be detected is proportional

to the size of the kernel, and so if we require larger kernels, they are formed

by taking the Kronecker product of C and a matrix of ones, e.g. (again,

using the two-by-two example)

[
1 −1

−1 1

]⊗[
1 1

1 1

]
=

1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1

 (2.14)

CHAPTER 2. BACKGROUND 36

The novelty score s(i) is then calculated as:

s(i) =

L/2∑
m=−L/2+1

L/2∑
n=−L/2+1

C(m,n)D(i+m, i+ n) (2.15)

where i is the frame number, L is the width (lag) of the kernel C centered

on (0,0) and D is the self-distance matrix. Peaks in the novelty score

correspond to significant position changes in our multidimensional feature

space. Consequently, locating segment boundaries becomes a matter of

determining which of the peaks represent a sufficiently large change in

feature space position as to constitute a segment boundary. The novelty

score derived from the same chroma features used for Figure 2.4 is shown

in Figure 2.5, along with the same ground truth segment data. Again,

good, although not perfect, agreement between the ground truth segments

and the peaks in the novelty score can be seen. Segment boundaries are

therefore found by employing some method of selecting the peaks in the

novelty score; in our case we try two different methods for comparison

purposes (see Section 4.4.1).

2.2.5 Repetition Detection

As an alternative to searching self-distance matrices for regions of homo-

geneity, we may also look for repeat sequences, which manifest themselves

as stripes (diagonal lines off the main diagonal). This is the technique

employed by Mauch et al. (2009) in the algorithm used as a benchmark

later in this thesis. After constructing a self-distance matrix from beat-

synchronous chroma features, candidate segments are identified by search-

ing for stripes. Computation time is reduced by assuming a minimum seg-

ment length of 12 beats, and a maximum of 128. Only beats exhibiting a

correlation above an empirically derived threshold value are considered as

segment beginnings, and further refinement is achieved via the calculation

of “likely bar beginnings”; local maxima in the convolution of a function

representing likelihood of harmonic change with a kernel of spikes every 2

beats. Finally a greedy algorithm is used to decide which of the candidate

CHAPTER 2. BACKGROUND 37

20 40 60 80 100 120 140 160 180 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

N
o
v
e

lt
y
 S

c
o

re

Chroma Novelty Score

Ground Truth Segment Boundaries

Figure 2.5: Ground truth segments (top) and normalised novelty score for a
musical audio signal (bottom)

segments are true segments.

2.2.6 Hidden Markov Models

Hidden Markov Models (HMMs) enable us to determine the probability

that a system is in a particular state qt at time t, given that we have ob-

served some other variable xt, know the transition probabilities from qt−1

to qt, and know the emission probability for xt given qt. They have been

successfully applied to pattern recognition applications such as speech

CHAPTER 2. BACKGROUND 38

recognition (Rabiner 1989 provides a good tutorial and a comprehensive

list of further references in this field), whilst some authors have also used

them as an alternative (or in some cases, such as Peeters et al. 2002, in

addition) to using self-distance matrices, to reveal the structure of music.

Aucouturier and Sandler (2001) show that using HMMs can be beneficial

when attempting to segment complex music such as classical, however in

the simpler case of rock/pop their use is unnecessary. Raphael (1999) also

uses HMMs to segment classical music, but at the lower level of individual

notes and rests. The scope of the structural segmentation experiments

described in Chapter 4 is limited to rock and pop music, and so we choose

not to employ HMMs in our segmentation technique.

2.3 The Semantic Web

So far we have presented some evidence of the limitations of using mixed

audio when conducting certain MIR experiments (Section 2.1), as well as

some of the common methods used in order to structurally segment au-

dio (Section 2.2). This serves as a precursor to then utilising multitrack

audio in Chapter 4 in order to obtain one aspect (structural segments) of

a more accurate, over-arching symbolic representation of recorded music.

We may then ask: assuming we are able to extract a more ‘complete’

symbolic representation of music from multitrack audio (e.g. one with

a comparable level of detail to MIDI), is it possible to not only perform

further analysis of this symbolic data, but to share both the results and

our algorithmic methods on the web too, along with (importantly) the se-

mantics of the data, according to a commonly agreed specification? Doing

so would allow other agents, be they client applications or other web ser-

vices, to consume, analyse, and contribute to our data without recourse to

any specific Application Programming Interface (API), vendor implemen-

tation or machine architecture. Consequently, in the following sections we

provide, firstly, an overview of what we mean by ‘The Semantic Web’, and

what its capabilities are (Sections 2.3.1, 2.3.2, and 2.3.3), followed by some

examples of scientific and engineering disciplines currently using Semantic

Web technologies (Sections 2.3.4 and 2.3.5), which forms our motivation

CHAPTER 2. BACKGROUND 39

for applying Semantic Web technologies to the task of pattern discovery

in symbolic music data (Chapter 5).

In this thesis, when we refer to ‘Semantic Web Technologies’, we are

referring collectively to the Resource Description Framework (RDF), the

SPARQL query language (“SPARQL” is a recursive acronym for SPARQL

Protocol and RDF Query Language), and the Web Ontology Language

(OWL). These technologies are beginning to mature (the original RDF

specification was published in 2004), and as such, alongside the speci-

fications3,4,5, a wealth of tutorial material exists (Segaran et al., 2009;

Passin, 2004; Davies et al., 2006; Leuf, 2006; Antoniou, 2004; Allemang

and Hendler, 2011). Particularly useful are the online RDF and OWL

‘primers’6,7. Nevertheless, in the interests of completeness and readability,

a brief overview of the theory and workings of Semantic Web technologies

follows.

2.3.1 Resource Description Framework (RDF) Data

The Resource Description Framework (RDF) is a language in which we

may represent knowledge about resources in the World Wide Web in the

form of a collection of triples . There are three components to each triple:

the subject, predicate, and object. The subject refers to the thing which

we are describing, the predicate is some property of the subject, and the

object identifies the value of the predicate. Importantly, the object of one

triple may also be the subject of another, allowing us to link data.

3http://www.w3.org/standards/techs/rdf
4http://www.w3.org/TR/sparql11-query/
5http://www.w3.org/TR/owl2-syntax/
6http://www.w3.org/TR/rdf-primer/
7http://www.w3.org/TR/owl2-primer/

CHAPTER 2. BACKGROUND 40

Given that we are representing knowledge about resources on the web,

each of the three components of a triple takes the form of a Uniform

Resource Identifier (URI). As an example, we could represent the assertion

that something on the web has the name “John Smith” using the following

three URIs, where the first represents the subject of the triple, the second

the predicate, and the third the object:

Subject: http://www.person.com/id#abc123

Predicate: http://www.hr.com/name

Object: "John Smith"^^<http://www.w3.org/2001/XMLSchema#string>

The subject and predicate here are standard URIs. In many cases the object

may also be a standard URI, however, in this case, because our object is some

raw data, we use a general URI which represents the raw string datatype (the

^^<http://www.w3.org/2001/XMLSchema#string> part of the URI) in combi-

nation with some characters enclosed by quotes. An RDF parser will interpret

this syntax as representing the raw string “John Smith” – a typed literal 8.

Although not strictly necessary, it is common practice and extremely useful

to use the same subsection of a URI to group conceptually equivalent resources.

For example, if our triple above were part of a human resources database, we

would also want to store the names of many other people, and it makes sense to

use a common URI stub or (formally) namespace to which we append a unique

suffix for each person. We would also want to store more than just the name

of each person. By defining the three namespaces shown in Table 2.3, we may

then use a shortened notation to represent our triple:

Subject: person:abc123

Predicate: hr:name

Object: "John Smith"^^xsd:string

8http://www.w3.org/TR/2004/REC-rdf-primer-20040210/#typedliterals

CHAPTER 2. BACKGROUND 41

Namespace Prefix Namespace URI

person http://www.person.com/id#

hr http://www.hr.com/

xsd http://www.w3.org/2001/XMLSchema#

Table 2.3: Some example namespaces and their prefixes

Further triples may then be added easily using these same namespaces, for

example, another person, this time “Mary Jones”:

Subject: person:def321

Predicate: hr:name

Object: "Mary Jones"^^xsd:string

It might be the case that Mary Jones is John Smith’s line manager, and we

could represent this fact with another triple:

Subject: person:def321

Predicate: hr:manages

Object: person:abc123

Note that in this triple the object is a standard URI rather than a typed literal.

Moreover, the object of this triple (our web resource representing the person

whose name is “John Smith”) is also the subject of our first triple. This is what

is mean by linked data – we are now starting to build a directed graph of data.

In an RDF graph, both subjects and objects are considered to be nodes, whilst

predicates are directed arcs connecting subject nodes to object nodes. We have

also made use of a new predicate, ‘manages’, belonging to the same namespace

as our ‘name’ predicate, which we use to assert that the thing represented by a

given subject ‘manages’ the thing represented by the given object. Figure 2.6

illustrates this more clearly.

In contrast to a relational database, in which the types of data we may store

and the relationships between the data are dictated by a database schema, this

model allows complete flexibility regarding which ‘facts’ we may assert, even to

the point of permitting us to assert contradictory information. The motivation

behind this approach is driven by a recognition that information represented by

existing resources on the world wide web, such as HyperText Markup Language

CHAPTER 2. BACKGROUND 42

Figure 2.6: A simple RDF (linked data) directed graph

(HTML) documents, cannot be guaranteed to be accurate or non-contradictory,

but nevertheless do clearly contain a wealth of useful information. Equally, no

database schema can ever possibly be declared to be perfectly designed and

future-proof. Instead, in the RDF model, it is accepted that anything can be

said about anything, and extensive use is made of ontologies (see Section 2.3.3)

in order that we may make sense of at least some subset of the asserted facts

available to us.

2.3.2 The SPARQL Query Language

SPARQL, much like the Structured Query Language (SQL) for relational data-

bases, allows us to query a collection of triples (a triple store). We may select

variables from one or more graphs, where certain conditions (which we must

specify) hold. The language allows us to conditionally filter out certain results,

to perform aggregation over variables, to perform the union of two or more sets

of query results, and to bind the results of arithmetic operations to variables.

As an example, acting upon the small collection of triples we have so far (Figure

2.6), if we wished to find out which ‘things’ are managed by other ‘things’, we

CHAPTER 2. BACKGROUND 43

could run the following query:

PREFIX hr: <http://www.hr.com/>

SELECT ?employee
WHERE
{

?manager hr:manages ?employee
}

The first line of this query declares the hr namespace we wish to use, whilst

elsewhere, tokens preceded by ? are variables. The where clause of the query

specifies that we are searching the triple store for any triples in which the

predicate is hr:manages. The presence of variables (?manager and ?employee)

in the subject and object positions indicate that we don’t mind what values

appear there. Once we have a list of triples matching these conditions, we

select all values of ?employee from that list (i.e. all the object parts of the

matched list of triples). In our case, this yields a single result (shown here in

its fully expanded form):

http://www.person.com/id#abc123

We might also wish to know the names of these managed people – this can

be achieved by adding another condition to the ‘where’ clause and selecting a

different variable:

PREFIX hr: <http://www.hr.com/>

SELECT ?name
WHERE
{

?manager hr:manages ?employee .
?employee hr:name ?name .

}

We are now selecting all the objects ?name such that some subject ?manager has

a predicate hr:manages and an object ?employee, and that same ?employee

appears as the subject in at least one other triple, which itself has a predicate

CHAPTER 2. BACKGROUND 44

hr:name and object ?name. This time the result is a single object:

"John Smith"^^<http://www.w3.org/2001/XMLSchema#string>

Finally, if we wished to know the names of all the ‘things’ in our triple store,

regardless of whether they are managers or managed, we could relax the con-

straints in our query a little:

PREFIX hr: <http://www.hr.com/>

SELECT ?name
WHERE
{

?person hr:name ?name .
}

We are now simply searching for all the object parts of any triples in which the

predicate is hr:name, which yields two results:

"Mary Jones"^^<http://www.w3.org/2001/XMLSchema#string>
"John Smith"^^<http://www.w3.org/2001/XMLSchema#string>

These are some very simple SPARQL query examples – as we mentioned at

the start of this section there are many other more complex operations we

may perform. The reader is referred to the SPARQL specification9 or any of

the many Semantic Web tutorial textbooks available (e.g. Segaran et al., 2009;

Allemang and Hendler, 2011) for a more comprehensive overview.

2.3.3 The Web Ontology Language (OWL)

Whereas RDF allows us to represent simple facts as triples, OWL goes further

and allows us to express the meaning of information. It enables this by pro-

viding mechanisms by which we may express relationships between facts such

as class membership, class equivalence, property domain and property range.

The OWL relationships themselves are also expressed as RDF, and it is left to

an OWL implementation (or reasoner) to process the knowledge represented

in a triple store (basic RDF facts as well as OWL relationships) according to

the OWL semantics and rules. Depending on the level of OWL conformity for

a particular implementation, this will include a certain level of inference capa-

bility; inferring new facts from the combination of basic RDF statements and

9http://www.w3.org/TR/sparql11-query/

CHAPTER 2. BACKGROUND 45

the relationships we describe using OWL RDF statements. As with RDF and

SPARQL, we do not present a comprehensive description of OWL here, instead

referring the reader to the specification10, primer11, and tutorial textbooks (e.g.

Segaran et al., 2009; Passin, 2004; Davies et al., 2006; Leuf, 2006; Antoniou,

2004; Allemang and Hendler, 2011). It is instructive however to demonstrate

some of the main concepts with worked examples.

So far we’ve been able to assert facts in the form of triples, link data (triples),

and perform queries on our set of triples. Without making some assumptions

based upon any recognisable english words used in our RDF data though, we

cannot draw any conclusions about the intended meaning of our data. For ex-

ample, we have two separate subjects which both have the ‘hr:name’ predicate,

but does that mean these two subjects, conceptually speaking, are the same

kind of ‘thing’? At present there is no way to tell, and a machine parsing

our RDF wouldn’t even be able to make any kind of english language-based

assumptions. OWL, in combination with RDF Schema12 (RDFS), allows us

to make the relationships between our triples explicit. As an example, in our

human resources triple store, we might have a mixture of permanent employees

and contractors, and we might want to know which ‘things’ can be classed as

‘Contractor Managers’ – i.e. something which manages a contractor. First we’ll

add some more triples to our triple store:

person:abc456 hr:name "David Thompson"^^xsd:string .
person:def456 hr:name "Helen Rogers"^^xsd:string .

person:abc456 hr:manages person:def456 .
person:abc123 rdf:type hr:Contractor .

We now have have two more subjects, with names “David Thompson” and

“Helen Rogers”. We’ve also asserted that one of these subjects manages the

other, and, that one of our original subjects, person:abc123 (who has the

hr:name “John Smith”), has a predicate rdf:type and corresponding object

hr:Contractor. A human reader might be able to deduce from all of these

triples that we have two managers now, but only one of them (Mary Jones)

manages any contractors. Indeed, we could write a SPARQL query which would

10http://www.w3.org/TR/owl2-syntax/
11http://www.w3.org/TR/owl2-primer/
12http://www.w3.org/TR/rdf-schema/

CHAPTER 2. BACKGROUND 46

appear to answer the question of ‘which managers manage contractors’:

PREFIX hr: <http://www.hr.com/>

SELECT ?name
WHERE
{

?person hr:name ?name .
?person hr:manages ?employee .
?employee rdf:type hr:Contractor

}

The result of this query is “Mary Jones”, as we would hope. The reality at this

point though is that we’ve only defined the specification of a contractor manager

in our SPARQL query – there’s nothing in the RDF data itself which would

allow a machine to infer that Mary Jones belongs to a Class of “Contractor

Managers”. Amongst other things, OWL allows us to define Restrictions, which

we may use to define class membership according to certain restrictions on the

values of predicates. Let us add the following triples to our triple store, where

owl represents the namespace http://www.w3.org/2002/07/owl#:

hr:ContractorManager owl:equivalentClass
[rdf:type owl:Restriction;
owl:onProperty hr:manages;
owl:someValuesFrom hr:Contractor] .

This is a more complex expression of triples than those we’ve used so far –

we have a subject hr:ContractorManager, a predicate owl:equivalentClass,

and then an object, the definition of which is contained within square brackets

and spread across the next three lines. The first part of the contents of the

square brackets is a space character, which denotes a blank node, or bnode.

A bnode can be used when we don’t actually need to refer to a permanent

URI – we just need to allocate a dynamically generated node for use within

the current scope of our semantic definitions or queries. We then assert three

triples, all of which have this bnode as their common subject. Taken as a whole,

the expression above states that if any triples exist which have a predicate

hr:manages, and at least one corresponding object which itself has an rdf:type

of hr:Contractor, then we may infer that the subject of that triple belongs to

CHAPTER 2. BACKGROUND 47

the class hr:ContractorManager. Now we may perform a different query:

PREFIX hr: <http://www.hr.com/>

SELECT ?name
WHERE
{

?person rdf:type hr:ContractorManager .
?person hr:name ?name

}

The result is the same (“Mary Jones”) – significantly though, this time the

fact that Mary Jones belongs to the class hr:ContractorManager (and also

that another manager, David Thompson, does not) has been inferred from the

collection of triples in our triple store, some of which are simple assertions,

and some of which define more complex semantics using OWL. Again, we refer

the reader to the OWL specification13, primer14, or textbooks (Segaran et al.,

2009; Passin, 2004; Davies et al., 2006; Leuf, 2006; Antoniou, 2004; Allemang

and Hendler, 2011) for a more comprehensive overview of the full capabilities

of OWL.

2.3.4 The Proliferation of the Semantic Web

In the preceding sections we described what the Semantic Web is, and gave an

overview of its capabilities. In this section we present some real-world examples

of its use.

The British Broadcasting Corporation (BBC) is increasingly making use

of Semantic Web technologies in order to produce a larger amount of news

and media-related web content from smaller levels of journalistic input15. By

making extensive use of ontologies for concept categorisation, together with

appropriately annotated media content, web pages centred around a particular

topic may be generated with little or no input from a journalist. For example,

an event such as the London Olympics involves a large number of athletes from

all around the world, many of whom are not well known outside of their own

country. Additionally, large amounts of performance results and news items

will be generated as the games progress. Detailed coverage of all individuals in

13http://www.w3.org/TR/owl2-syntax/
14http://www.w3.org/TR/owl2-primer/
15http://www.bbc.co.uk/academy/technology/software-engineering/semantic-web

CHAPTER 2. BACKGROUND 48

all competitions would require journalistic resources beyond the BBC’s usual

capacity, but with well designed ontologies and careful use of linked metadata,

web pages composed of multiple, related items concerning (for example) one

specific athlete, may be either completely auto-generated or at the very least

presented to a journalist in a semi-complete state for rapid editing and approval.

In the field of bioinformatics, scientists employed by different companies of-

ten work on similar research projects, using different equipment and techniques,

across different parts of the world. Experiments, for example in gene expres-

sion and microarray data, are continually leading to new insights regarding the

biological function of genes. The need to use and maintain controlled vocabu-

laries in this context is crucial but also hard to guarantee. Elements of OWL

such as the owl:sameAs predicate facilitate the use of synonyms when search-

ing multiple datasets. The ongoing production of high volume data also means

that the accepted relationships between genes and their biological functions

is continually in a state of flux. Consequently a number of publicly available

ontologies are under constant development, for example the National Cancer

Institute Thesaurus16 and the gene ontology17 (strictly speaking, the full gene

ontology is not a Semantic Web ontology, although a filtered version is available

in the OWL format).

In the interests of transparency, the United Kingdom government (along

with governments of other countries) is making much of its non-personal, non-

sensitive data publicly available18, much of which can be downloaded in RDF

format. Consequently the potential exists for otherwise disparate datasets, such

as coastal bathing water quality from the environment agency and road traffic

flow rates from the department for transport, to be queried as one integrated

dataset, possibly leading to new insights into phenomena such as the causes

and effects of population behaviour, or geographical variations in health.

2.3.5 The Proliferation of Semantic Audio

Closer to the research area of this thesis, the recently published “Roadmap for

Music Information Research” (Serra et al., 2013) lists “Extend the scope of

16http://ncit.nci.nih.gov/
17http://www.geneontology.org/
18http://data.gov.uk/

CHAPTER 2. BACKGROUND 49

existing ontologies” as one of the specific challenges of music representation.

Several ontologies have already been produced, and some researchers advocate

the use of the Semantic Web in applications such as artist metadata (Raimond

et al., 2007), studio production workflow (Fazekas and Sandler, 2011; Fazekas,

2012), audio effects control and use (Wilmering et al., 2011), chord annota-

tion19, and audio feature annotation20.

The first of these ontologies to appear was the music ontology (Raimond

et al., 2007). The name is too broad – music, fundamentally, is a human,

psychological phenomenon, in which we make cognitive perceptions in response

to certain types of auditory signals (Wiggins et al., 2010). The music ontology

does not deal with these phenomena at all – rather, it is concerned with the

cataloguing of complete musical works, be they recorded or live performances,

or symbolic scores. Figure 2.7 shows the terms used in the music ontology.

The audio features ontology20 facilitates annotation of lower-level (i.e. smaller

time-frame) features of an audio signal. Building upon the timeline21 and event

ontologies22 (amongst others), it allows us to represent the characteristics of an

audio signal within a particular time interval, such as chromagram features,

pitch, onsets, speech segments and amplitude.

As the name suggests, the chord ontology23 provides terms for representa-

tion of the notes, and intervals between notes, that go to make up particular

chords. The question of whether or not any particular ontology sufficiently and

accurately reflects the domain it is intended to represent is a difficult one to

answer – all of these ontologies have been constructed manually by authors

who believe they will be of value to other potential users within the intended

domain. As a side note, in an effort to reduce or remove human error or bias

during ontology design, some authors describe methods of automatic or semi-

automatic ontology generation (Kolozali et al., 2011; Kolozali, 2013; Jordanous,

2010).

Leaving aside the question of utility for the moment, taken in combina-

tion, these ontologies provide us with the means to create extremely rich sets

19http://purl.org/ontology/chord/
20http://purl.org/ontology/af/
21http://purl.org/NET/c4dm/timeline.owl#
22http://purl.org/NET/c4dm/event.owl#
23http://purl.org/ontology/chord/

CHAPTER 2. BACKGROUND 50

Music Ontology At A Glance

An alphabetical index of Music Ontology terms, by class (categories or types), by property and by
individuals. All the terms are hyperlinked to their detailed description for quick reference.

Classes: | AnalogSignal | Arrangement | AudioFile | CD | Composition | CorporateBody | DAT | DCC |
DVDA | DigitalSignal | ED2K | Festival | Genre | Instrument | Instrumentation | Label | Libretto | Lyrics |
MD | MagneticTape | Medium | Membership | Movement | MusicArtist | MusicGroup | MusicalExpression |
MusicalItem | MusicalManifestation | MusicalWork | Orchestration | Performance | PublishedLibretto |
PublishedLyrics | PublishedScore | Record | Recording | RecordingSession | Release | ReleaseEvent |
ReleaseStatus | ReleaseType | SACD | Score | Show | Signal | SignalGroup | SoloMusicArtist | Sound | Stream
| Torrent | Track | Transcription | Vinyl |

Properties: | activity_end | activity_start | amazon_asin | arranged_in | arrangement_of | available_as |
biography | bitsPerSample | bpm | catalogue_number | channels | collaborated_with | compilation_of |
compiled | compiler | composed_in | composer | conducted | conductor | contains_sample_from |
derived_from | discography | discogs | djmix_of | djmixed | djmixed_by | download | ean | encodes |
encoding | engineer | engineered | event_homepage | exchange_item | fanpage | free_download | genre |
grid | group | gtin | headliner | homepage | image | imdb | instrument | interpreter | ipi | ismn | isrc | iswc |
item | key | label | lc | licence | listened | listener | lyrics | mailorder | mashup_of | media_type | medley_of |
member | member_of | membership | meter | movement | movement_number | musicbrainz |
musicbrainz_guid | musicmoz | myspace | olga | onlinecommunity | opus | origin | other_release_of |
paid_download | performance_of | performed | performed_in | performer | possess_item | preview |
preview_download | primary_instrument | produced | produced_score | produced_signal |
produced_signal_group | produced_sound | produced_work | producer | publication_of | published |
published_as | publisher | publishing_location | puid | record | record_count | record_number |
record_side | recorded_as | recorded_in | recording_of | records | release | release_status | release_type
| remaster_of | remix_of | remixed | remixer | review | sample_rate | sampled | sampled_version |
sampled_version_of | sampler | sell_item | signal | similar_to | singer | supporting_musician | tempo | text |
time | track | track_count | track_number | translation_of | tribute_to | trmid | upc | want_item | wikipedia
|

Individuals: | album | audiobook | bootleg | compilation | ep | interview | live | official | promotion | remix |
single | soundtrack | spokenword |

Figure 2.7: The terms used in the Music Ontology (reproduced from the music
ontology website)

of music metadata, from high-level information such as artist name and record

label, through to background information such as recording studio equipment

settings, and down to low-level information such as temporal pitch and audio

feature values. Making such rich metadata publicly available has enormous

potential benefits in terms of building sophisticated music search applications

and cross-discipline data searches (e.g. ‘show me all the artists signed to label

x based in country y’). What they do not provide us with though, at least

not without further processing of the metadata, are any new insights into the

nature of the music itself which has been annotated. For example, although we

may represent the temporal onsets of all of the pitches present within a certain

piece of music, we cannot infer from that set of metadata and the associated

ontologies alone that the song in question follows the sonata form, or that it

CHAPTER 2. BACKGROUND 51

contains four repetitions of a certain musical motif. The great promise of Se-

mantic Web technologies is that we may infer new information for our existing

dataset, because we have carefully and accurately defined the relationships that

exist between the concepts we are modelling. In Chapter 5 we describe how

we have put this promise to the test by locating repeats of perceptually signifi-

cant patterns within an RDF representation of symbolic music data, using only

Semantic Web technologies.

2.3.6 Software

The various components of Semantic Web technologies exist as specifications24,25,26.

In this section we list some of the software implementations available which al-

low us to make practical use of the language specifications.

Core RDF APIs

Several software library families exist which implement core RDF functionality

such as parsing, graph creation and navigation, serialisation and query. In many

cases, these libraries also provide skeleton APIs for extended functionality such

as OWL reasoning, the implementations of which are provided by additional

libraries. Jena27 and Sesame28 are two such core libraries, both implemented

in Java, providing core functionality such as the creation and manipulation

of RDF graphs, RDF file parsing, and serialisation to multiple RDF formats

Both provide abstract ontology and reasoning APIs, with Sesame also providing

limited inferencing capabilities (RDF Schema, and RDF Schema and direct type

hierarchy inferencing). Similar APIs implemented in other languages exist, for

example rdflib29 (Python) and librdf30 (C).

24http://www.w3.org/standards/techs/rdf
25http://www.w3.org/TR/sparql11-query/
26http://www.w3.org/TR/owl2-syntax/
27http://jena.apache.org/
28http://www.openrdf.org/
29https://github.com/RDFLib
30http://librdf.org/

CHAPTER 2. BACKGROUND 52

Triple Stores

Triple stores can be thought of as databases specifically designed only to store

RDF triples. TDB31 is a triple store provided with the core Jena library, provid-

ing persistent file-based triple storage and transaction capability. OWLIM32 is

another Java triple store, which works as an addition to either Jena or Sesame.

OpenLink Virtuoso33, another Java implementation, works as a standalone web

server.

OWL Reasoners

Some of the RDF triples within a triple store (or graph), may make use of the

OWL semantics and rules to express logic (class membership, or set operations,

for example). An OWL reasoner is a software component which, given a set

of RDF triples, will infer new facts (triples) by applying the specific logic ex-

pressed within the current set of triples according to the semantics and rules

of the OWL specification. Any resulting new triples are added to the existing

graph. Furthermore, multiple OWL profiles exist34, which specify particular

restrictions on the semantics and rules – any particular OWL reasoner should

specify its level of conformance with each OWL profile. Inference engines pro-

viding various levels of knowledge representation formalism include OWLIM32,

Pellet35, and Protégé36 plus the FACT++ or HermiT plugins. A more complete

and detailed list is maintained at the W3C Semantic Web website37.

2.4 Symbolic Music Data Analysis

Given our stated desire to evaluate the utility of Semantic Web technologies

with respect to music content analysis (see Chapter 5), we present in the re-

maining sections of this chapter brief descriptions of some existing methods for

discovering perceptually significant components of symbolic music data. We

31http://jena.apache.org/documentation/tdb
32http://www.ontotext.com/owlim
33http://virtuoso.openlinksw.com/
34http://www.w3.org/TR/owl2-profiles/
35http://clarkparsia.com/pellet/
36http://protege.stanford.edu/
37http://www.w3.org/2001/sw/wiki/OWL/Implementations

CHAPTER 2. BACKGROUND 53

choose symbolic data because, given that RDF data easily lends itself to knowl-

edge representation, and, especially in conjunction with OWL, inferencing, we

suggest that the implementation of an algorithm which operates on clean (i.e.

score time and pitch) symbolic data will be far more tractable than one which

operates on recorded audio (e.g. the signal processing-based segmentation al-

gorithm described by Hargreaves, Klapuri, and Sandler, 2012).

Computational analysis of symbolic music data can be traced back as far as

1949, with Bronson (1949) proposing a method in which IBM punched cards

are used to perform queries on a database of British-American folk-tunes. The

method involves a considerable amount of initial manual effort, as a punched

card must be created for each folk-tune. Bronson considers the most significant

elements of a folk-tune to be:

• Range (authentic, plagal, or mixed)

• Modal characteristics

• Time signature

• Number of phrases

• Nature or pattern of the refrain

• Phrasal Scheme (e.g. ABCD, ABBA, ABAD etc.)

• The final – being identical to the tonic or not

• Initial interval between the upbeat and the first strong accent

• Cadential notes of the other phrases of the tune (i.e. other than the first

phrase)

These features are tabulated on each card, along with folk-tune identity and

a skeletal outline of the first phrase (main stresses, not a full transcription).

The final collection of cards then forms a database, which may be queried by

sorting according to some desired characteristic, and “picked out and counted

with inhuman speed and accuracy”. Interestingly, the ability to study racial

and national characteristics is considered too, with the proposal that cards be

stained in a colour representing a particular national or racial tradition.

CHAPTER 2. BACKGROUND 54

An obvious problem when querying symbolic representations of music is

that unless the musical key of a pattern is abstracted away from the pitch in-

tervals, then identical patterns which have been transposed in pitch will not

be matched. Dillon and Hunter (1982) overcome this by using a representation

system wherein the notes from the main octave of the melody are represented

by the numbers 1 to 7, and any below or above this are preceded by L or

U respectively (denoting either Lower or Upper). Similar melodies are found

by matching boolean combinations of necessary numerical sequences and op-

tional variations (e.g. certain notes are permitted to be missing or different

from the search pattern). Lemström et al. (1999) combine pitch and duration

information from consecutive notes in order to derive relative pitch and dura-

tion changes between successive notes (“Relative Interval Slope”), which makes

their representation both tempo and transposition invariant. The method is

only applicable to monophonic music.

2.4.1 String Processing Algorithms

A common method of representing music as symbolic data is to use strings

(Stech, 1981; Mongeau and Sankoff, 1990; Ghias et al., 1995; Lemström, 2000;

Conklin and Anagnostopoulou, 2001) (a good overview is given in Meredith,

Lemström, and Wiggins, 2002), and then to apply string matching algorithms

to the task of pattern recognition and discovery. In a string representation, the

aspects of each music event considered to be most relevant (typically pitch, onset

time and duration) are represented as a triple (or tuple, quad etc., depending

on the number of attributes under consideration), e.g.

{pitch, onset time, duration}

Each unique triple is then assigned a character from some character set or

alphabet, and general string matching techniques from computer science may

be applied. The similarity of two passages of music (represented, for example,

by string A and string B) is sometimes measured as the ‘edit distance’ between

the two strings – that is, the number of single-character inserts and deletes

(and sometimes replacements) necessary to transform string A into string B.

Common to all of these methods though is the fact that they are primarily

targeted at monophonic data only. Lemström (2000) presents a method which

is able to search polyphonic music databases, although only for a monophonic

CHAPTER 2. BACKGROUND 55

pattern. Conklin and Anagnostopoulou (2001) utilise multiple ‘viewpoints’ –

i.e. not just (for example) pitch and onset time, but melodic contour, intervals

and duration. Two or more viewpoints may be linked to form a composite

viewpoint, which does offer the potential of linking multiple channels, however

the focus of their technique and results is still very much monophonic.

2.4.2 Pattern Discovery in Symbolic Music Data

The techniques described so far in this section have been concerned with query-

ing symbolic music data – that is, searching a symbolic music corpus for occur-

rences of a specific sequence of notes (or, in some cases, for a similar sequence).

A related research area is that of pattern discovery – i.e., setting out to discover

all occurrences within a corpus of perceptually significant, but initially unspeci-

fied, patterns. One method of achieving this (Conklin, 2010) is to examine both

a corpus and an anticorpus; looking for patterns which are overrepresented in

the corpus as compared to the anticorpus. A likelihood ratio is then used to

evaluate the distinctiveness or interest level of each discovered pattern.

The pair of pattern discovery algorithms SIA (‘Structure Induction Algo-

rithm’) and SIATEC (‘Structure Induction Algorithm Translational Equiva-

lence Class’) by Meredith et al. (2002) represent music (as well as other types

of) data as a multidimensional dataset, and take a geometrical approach to

analysis. The use of multidimensional data allows the authors to analyse poly-

phonic music (i.e. instrument or channel number may be one of our dimensions)

as well as multiple facets of music data, for example onset time, offset time,

pitch or timbre. Taking a geometrical approach to pattern discovery also al-

lows the detection of repeat patterns of notes which have been shifted in (for

example) pitch. Aside from their applicability to musicology, the authors pro-

pose that the algorithms could be used for data compression, given that they

describe each pattern only once, and then specify the locations of their trans-

lated repetitions, rather than the more data-hungry case of repeatedly recording

equivalent patterns.

Collins et al. (2010) apply the SIA algorithms and further variations of

them to the task of discovering translational patterns in baroque keyboard

works, highlighting in the process a problem they refer to as the “problem of

isolated membership” – that is, the SIATEC algorithms tend in some cases

CHAPTER 2. BACKGROUND 56

to identify patterns containing ‘one-off’ occurrences of notes as fundamental

patterns, when in fact the pattern minus the one-off note would be more ap-

propriate. Accordingly, in Collins and Meredith (2013), the algorithm is refined

further, such that this time a pattern may only be regarded as fundamental if

it is the intersection of more of more super-patterns. In his PhD thesis, Collins

(2011) develops the SIA algorithms further and applies them to the task of

automated stylistic composition. Other possible applications of symbolic pat-

tern discovery algorithms include the indexing of symbolic music corpora to aid

rapid searches, the analysis of grouping and metrical structure, and as an aid

to music composition.

We stated in Chapter 1 that one of the purposes of this research is to investi-

gate how amenable Semantic Web technologies are to algorithmic music content

analysis, and in Section 2.4 we also made the decision to work with symbolic

data for reasons of tractability. The transposition invariance aspect of SIA

and SIATEC is extremely useful, given the perceptual significance of chromatic

pitch transposition. Consequently, in Chapter 5, we describe the SIA algo-

rithms in greater depth, and present a Semantic Web implementation of them.

Additionally, in order that they may be fairly evaluated, many researchers de-

vising symbolic music data analysis algorithms (Collins and Meredith, 2013;

Typke et al., 2003; Lemström and Tarhio, 2003; Lubiw and Tanur, 2004; Clif-

ford et al., 2006) state the computational complexity of their algorithms. With

this in mind, we also provide performance evaluation metrics and a discussion

of the strengths and weaknesses of such an approach.

2.5 Summary

In this chapter we presented evidence that the accuracy of mixed audio-based

MIR techniques has reached a plateau over the last few years, and that sin-

gle instrument-based MIR is almost always superior to multi instrument. We

provided more in-depth background on one particular MIR task – that of struc-

tural segmentation, in preparation for our multitrack audio-based segmentation

experiment in Chapter 4. Given that the results of all MIR tasks are a form

of metadata, we discussed the increasing prominence of the Semantic Web as

a metadata sharing methodology, and presented examples of its use both gen-

erally and within the MIR community. Finally, building upon the assumption

CHAPTER 2. BACKGROUND 57

that multitrack audio-based metadata generation leads us closer to the goal

of accurate symbolic representations of recorded music, we introduced general

symbolic music data analysis techniques as well as the SIA and SIATEC pat-

tern discovery algorithms, operating on multidimensional (and therefore, in the

context of music, potentially multichannel) data. Chapter 5 builds upon these

foundations with a detailed description and evaluation of a Semantic Web tech-

nology implementation of the SIA and SIATEC algorithms.

Prior to that, collecting together the themes discussed so far, we describe

in the following chapter a vision for a new MIR paradigm. This provides the

wider context for the research presented in subsequent chapters.

Chapter 3

A Vision of a New MIR Paradigm

In this Chapter we describe an over-arching vision for an alternative MIR

paradigm, built around the principles of early, studio-based metadata capture,

and exploitation of open, machine-readable Semantic Web data.

3.1 The Current Paradigm

Currently, MIR tasks typically belong to a paradigm wherein every specific type

of metadata (e.g. beat onsets, note onsets and pitch, structural segments) is

generated by performing one particular set of signal processing tasks on a full

audio mix. Inevitably, each of these sets of signal processing tasks will entail a

large degree of effort directed towards the isolation of the salient parts of the

audio from the full mix. Furthermore, there is no consensus on a community-

wide metadata format. Under this paradigm then, if we wanted to generate

a comprehensive set of multiple different types of metadata for one song, we

would run, in isolation from each other, multiple different signal processing

algorithms on the same audio mix, many of them potentially repeating similar

‘source-separation’ type tasks, and our result would be a set of metadata in

(potentially) multiple different data formats. The situation is exemplified in

Figure 3.1.

58

CHAPTER 3. A VISION OF A NEW MIR PARADIGM 59

S
tu

d
io

C
o

m
m

er
ci

al
A

u
d

io
 F

ile
M

u
si

c
In

fo
rm

at
io

n
 R

et
ri

ev
al

S
o

u
rc

e
A

u
d

io
Tr

ac
ks

D
S

P
 P

h
as

es
F

in
al

 O
u

tp
u

t:
S

ym
b

o
lic

 M
et

ad
at

a

C
om

po
ne

nt
Is

ol
at

io
n

F
ur

th
er

 S
ig

na
l

P
ro

ce
ss

in
g

P
ro

d
u

ct
io

n

F
ul

l A
ud

io
 M

ix

lo
ss

 o
f a

cc
ur

ac
y

D
is

tin
ct

 O
ut

pu
t

E
xa

m
pl

es
O

ut
pu

t F
or

m
at

E
xa

m
pl

es

B
ea

t O
ns

et
s

C
S

V

M
ul

tip
le

 F
un

da
m

en
ta

l
F

re
qu

en
cy

 E
st

im
at

io
n

S
tr

uc
tu

ra
l S

eg
m

en
ts

C
ho

rd
s

A
ud

io
 M

el
od

y
E

xt
ra

ct
io

n

R
D

F

X
M

L

P
la

in
 T

ex
t

M
ID

I

D
ru

m
s

K
ey

bo
ar

d

G
ui

ta
r

F
ig

u
re

3.
1:

T
y
p

ic
al

M
IR

m
et

ad
at

a
ge

n
er

at
io

n
p

ar
ad

ig
m

CHAPTER 3. A VISION OF A NEW MIR PARADIGM 60

3.2 A New Paradigm

In Chapter 2 we discussed the so-called ‘glass ceiling’ for MIR algorithm accu-

racy, the proliferation of the Semantic Web both generally and within the MIR

community, and some of the different types of analysis we may perform using

symbolic music data. Together, these observations and results point towards a

fundamentally different approach to MIR, in which we:

• Exploit the processing power available to us in the recording studio

• Simplify the complexity and/or increase the accuracy of MIR algorithms

by targeting source audio tracks rather than the full mix

• Are able to use the results of one MIR algorithm within the execution of

another

• Produce a rich set of symbolic, or close to symbolic, metadata for a piece

of recorded music

• Exploit the potential of the Semantic Web by publishing our metadata in

a common, machine-readable, format

• Infer new musical information at a later date via less computationally

expensive processing of our symbolic metadata (e.g. via the use of onto-

logical inferencing or SPARQL queries)

Collectively this forms a larger, over-arching vision, which we will refer to

as “Semantic Audio”, and which is exemplified in Figure 3.2.

CHAPTER 3. A VISION OF A NEW MIR PARADIGM 61

S
tu

d
io

S
em

an
ti

c
W

eb
S

o
u

rc
e

A
u

d
io

Tr
ac

ks
D

S
P

 P
h

as
e

S
ym

b
o

lic
 (

R
D

F
)

M
et

ad
at

a

B
ea

t O
ns

et
s

M
ul

tip
le

 F
0

E
st

im
at

io
n

S
tr

uc
tu

ra
l

S
eg

m
en

ts

C
ho

rd
s

M
ul

tip
le

 F
0

E
st

im
at

io
n

C
ho

rd
s

P
at

te
rn

s

P
ro

du
ct

io
n

M
et

ad
at

aP
at

te
rn

s

O
W

L
in

fe
re

nc
e

an
d/

or
S

P
A

R
Q

L
qu

er
y

N
o

te

de
no

te
s

D
ru

m
s

K
ey

bo
ar

d

G
ui

ta
r

C
ho

rd

O
nt

ol
og

y

S
eg

m
en

t
O

nt
ol

og
y

S
tu

di
o

O
nt

ol
og

y

F
ig

u
re

3.
2:

S
em

an
ti

c
A

u
d

io
P

ar
ad

ig
m

CHAPTER 3. A VISION OF A NEW MIR PARADIGM 62

An initial set of accurate symbolic RDF data is generated in the studio – in

this example we derive beat onsets from the drum track, multiple F0 data from

the keyboard track, chords from the guitar track, studio production metadata

directly from the mixing desk and other studio equipment, and another set of

multiple F0 data - this time from a combination of the guitar audio track and

the studio production metadata. All of this meta and symbolic data can be

made available immediately as RDF data on the Semantic Web.

Later, either again in the studio or entirely separately from it, further meta-

data may be generated via the use of SPARQL queries and/or OWL inferencing

– in this example we see the keyboard’s chords derived from a combination of

the beat onsets and multiple F0 RDF datasets in conjunction with the chord

ontology, two separate pattern datasets derived from (a) the keyboard and (b)

the guitar multiple F0 datasets, and structural segments derived from these two

pattern datasets and the studio production metadata.

As well as raw metadata, Figure 3.2 contains several existing ontologies,

for example the chord1, segment (Fields et al., 2011), and studio (Fazekas and

Sandler, 2011; Fazekas, 2012) ontologies. Other, related but not shown ontolo-

gies include the music (Raimond et al., 2007), similarity (Jacobson, 2011), and

audio features2 ontologies. In conjunction with one another, these ontologies

are the key to enriching our RDF metadata, allowing us to create links between

high-level metadata such as artist / track name, through to mid-level data such

as structural segments, and down to fine-grained, low-level data such as audio

features.

3.3 Use Cases

In this section we present some example use-cases facilitated by this new se-

mantic audio-based MIR paradigm.

3.3.1 Semantic Navigation Around a Multitrack Audio Project

Navigation functionality in present-day Digital Audio Workstations (DAWs) is

limited to two forms – manual ‘tape recorder’ style fast forward and rewind

1http://purl.org/ontology/chord/
2http://purl.org/ontology/af/

CHAPTER 3. A VISION OF A NEW MIR PARADIGM 63

(wherein the user scrolls backwards or forwards through a visualisation of au-

dio waveforms), and jumps to manually entered labels or intrinsically present

boundaries of midi or audio clips. These types of navigation are limited by the

extent to which the engineer has labelled pertinent sections, and the degree to

which midi and/or audio clips are present. In the case of a multitrack recording

of live musicians playing non-digital instruments, the only labels likely to be

present will be those entered manually by the studio engineer.

Contrast this to the case of a word processed document, in which para-

graphs, sentences, spelling and grammar are automatically highlighted and (if

enabled) auto-corrected as the user types the document, or modern digital cam-

eras containing built-in facial recognition software.

By performing structural segmentation in the recording studio (as described

in Chapter 4), together with other MIR tasks such as beat tracking and pattern

discovery, the DAW’s navigation capabilities may be significantly enhanced via

the auto-generation of structure, pattern, note and beat annotations. The stu-

dio engineer may jump directly to sections such as ‘second chorus start’ or ‘3rd

beat, 2nd bar of electric guitar verse 2’. Furthermore, as with all the metadata

created in the studio, this structure data may be published on the Semantic Web

along with artist and track name, which in turn facilitates enhanced navigation

for consumers listening to the commercially released full mix.

3.3.2 Custom End-User Audio Content

Besides general music lovers, a subset of consumers exist who welcome the

opportunity to be more creative with commercially released music. DJs and

remixers for example create new musical works and/or performances from exist-

ing ones. By making some or all of the source audio tracks available along with

our rich set of symbolic metadata, the end user becomes able to customize their

own listening experience, with commands such as ‘play chorus minus drums’,

or ‘attenuate keyboard 6dB and repeat verse 3’.

3.3.3 Advanced Online Music Search

Many online music retailers and streaming services provide music recommenda-

tions. Regardless of the technique used to generate these recommendations, the

search mechanism is firmly in the hands of the service provider – the consumer

CHAPTER 3. A VISION OF A NEW MIR PARADIGM 64

has no control over the process.

By making our rich set of studio-generated symbolic data available on the

Semantic Web, we facilitate much more sophisticated, user-driven, music search

engines. The combination of studio production and melody pattern metatdata,

for example, enables a search such as ‘Find all Chicago-based quartets with at

least one occurrence of the following chord progression’. Possible search criteria

include:

• Rhythmic pattern

• Melodic pattern

• Chord progression

• Musician

• Presence/absence of specific instruments

• Era

• Production personal details

• Musical Idiom

Some of these criteria might be difficult to specify, either in terms of the

user interface or the typical level of musical expertise of consumers, however

the possibility still exists to perform simple queries which compare songs, such

as ‘Find songs with a similar rhythm pattern to song X’.

3.3.4 Semantic Web Pattern Discovery

Repetition, and therefore pattern discovery, is a key element of music analysis.

In the highly cited work “A Generative Theory of Tonal Music” (Lerdahl and

Jackendoff, 1996), the authors list “grouping structure”, which itself “expresses

a hierarchical segmentation of the piece into motives, phrases, and sections”, as

one of the four fundamental components of their overall theory. Narmour (1992)

provides a formal theory of music based heavily upon melodic structure anal-

ysis and cognition, whilst Cambouropoulos (1998) considers pattern-matching

prior to presenting his String Pattern Induction Algorithm (SPIA) as a key

component of his General Computational Theory of Musical Structure.

CHAPTER 3. A VISION OF A NEW MIR PARADIGM 65

It follows then that the ability, perhaps retrospectively (i.e. when a mu-

sicologist takes an interest in a recorded work some time after the work has

left the studio) to discover patterns within the symbolic RDF data originally

produced in the studio using our new paradigm (and therefore available on the

Semantic Web) would be of great value. The SIA family of pattern discovery

algorithms first described in 2002 (Meredith et al., 2002) have spawned much

research within the field – see Clifford et al. (2006); Collins et al. (2010); Collins

(2011); Collins and Meredith (2013); Collins et al. (2011). In the spirit of open

data and our proposed new MIR paradigm, it would be preferable if we could

harness the inferencing power of OWL and/or the querying ability of SPARQL

in order to implement the SIA algorithms, rather than having to parse our

symbolic RDF data for consumption by some programming language that sits

outside of the Semantic Web.

3.4 Summary

In this chapter we have described a new paradigm for MIR, in which we perform

computationally expensive signal-processing tasks on individual audio tracks

in the studio, and publish a rich set of symbolic (or close to symbolic) RDF

metadata on the Semantic Web, from which new insights and value may be

gained via query and/or inference.

There are many facets to this paradigm, and consequently this is a vast

area of research, much of which is beyond the scope of a single thesis. In the

following two chapters we start the process by delving more deeply into two of

the key themes. In Chapter 4, we explore the question of whether or not there is

indeed a quantifiable increase in accuracy when an MIR task is carried out with

access to the multitrack audio. In Chapter 5, we show how a pattern discovery

algorithm, operating on the type of symbolic data we might hope to be able

to generate in the studio, may be fully implemented using only Semantic Web

technologies.

Chapter 4

Structural Segmentation of

Multitrack Audio

As a first step in our exploration of the new paradigm for MIR outlined in

the previous chapter, we describe in this chapter two experiments which apply

some of the techniques described in Section 2.2 to the task of identifying the

temporal locations of structural boundaries in multitrack audio. We extend the

audio feature extraction phase such that features are extracted separately from

all of the source tracks present in a multitrack project, rather than the usual

case of from a single mono or stereo mixdown audio track.

4.1 Introduction

The manner in which humans listen to, interpret and describe music implies

that it must contain an identifiable structure. The terms used to describe that

structure will vary according to musical genre, but commonly it is easy for hu-

mans to agree upon musical concepts such as chorus, verse, melody, beat, bass,

movement, solo, noise and so forth. The fact that humans are able to distin-

guish between these features implies that the same might also be achieved via

signal processing; indeed, over the last few years increases in computing power

and advances in MIR have resulted in algorithms which can extract features

such as timbre (Aucouturier et al., 2005; Wellhausen and Hoeynck, 2003; Levy

and Sandler, 2008), tempo and beats (McKinney et al., 2007), note pitches

(Klapuri and Davy, 2006) and chords (Mauch et al., 2009) from polyphonic,

mixed source digital music files (e.g. mp3 files, as well as other formats).

A significant problem when attempting to extract features from mixed

66

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 67

source signals is that some complex time or frequency domain signal decom-

position must usually be performed in order that the salient parts of a signal

may be analysed in isolation; for example a beat tracker will probably need

to disregard long term orchestral swells, whilst an algorithm designed to ex-

tract melodic information must ignore percussive transients. One related area

of research (Fazekas and Sandler, 2007b,a; Fazekas et al., 2008) which avoids

this issue, is that of applying the techniques outlined above to the collection of

individual source audio tracks available during the recording and/or production

stage in the studio.

Sophisticated Digital Audio Workstations (DAWs) are now commonplace,

not only in professional recording studios but also in the amateur musician’s

home studio, enabling consumers to exploit the kind of music recording and pro-

duction techniques previously only available to a minority who were fortunate

enough either to have the budget or opportunity to gain access to expensive stu-

dio time. A facility still lacking though is the ability to quickly navigate around

the structure of recorded audio. We now take it for granted that we are able

to navigate around a word-processed document by character, word, sentence,

paragraph, section or chapter, whilst being limited within a DAW to either a

fast-forward (or backward) search, a jump to manually entered temporal label,

or a manual scroll through the audio. When describing an audio browser for

annotation purposes, Tzanetakis and Cook (1999) point out that “The typical

‘tape-recorder’ paradigm for audio user interfaces is time-consuming and inflex-

ible”. The user must rely on audio or visual cues (in the case of examining a

waveform display) and his or her own ability to interpret those cues in order to

locate a section of interest.

Having access to the original multitrack source audio files theoretically en-

ables us to obtain both a more accurate segmentation, and a richer set of

metadata in general, since salient audio features which might otherwise have

been occluded to some extent in the mixed version of a song are now able to

exert greater influence in our analysis.

It is already possible, using various methods (described in Section 2.2) to

structurally segment mixed polyphonic music to a certain extent. The aim of

the experiments described in this chapter is to demonstrate an improvement in

segmentation accuracy when multitrack rather than mixed audio data is anal-

ysed. In the first experiment (Section 4.4), we achieve this by applying one

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 68

particular segmentation technique to multitrack audio and comparing the re-

sults against (a) results obtained from the same technique applied to mixed

versions of the same songs, and (b) results obtained using a state-of-the-art

segmentation algorithm (Mauch et al., 2009), again applied to the mixed ver-

sions. In the second experiment (Section 4.5), we modify our method such that

the instrument type of each individual source track is taken into account. The

potential applications of such techniques are manifold, and include improved

synchronisation of audio clips across multiple tracks, segment-specific appli-

cation of audio effects, improved comparison of recording takes, and general

editing and navigation tools.

The particular way in which one would structurally segment music is closely

tied to the musical genre under consideration. Intuitively, rock and pop music

seems like one of the more unambiguous types of music for humans to segment

(compared to classical or improvisational jazz, for example) due to the com-

mon repetition of melodic phrases, chord progressions and beats. These musical

entities are typically repeated every few bars, and sequences of these bars them-

selves form verses or choruses. In reality though, whatever the genre, it is in

the very nature of music that rules exist to be broken, and so we should never

rely too rigidly upon assumptions about metrical structure, chord progressions,

time signatures or anything else. Consequently, these experiments will focus

mainly on rock and pop music (we include in this definition genres such as soul,

R ‘n’ B, blues, dance, latin pop, easy listening, folk and electronica). Classical

music and jazz will not be considered.

The rest of this chapter is set out as follows; in Section 4.2 we present a

hypothesis, followed by a description of a new multitrack audio dataset in Sec-

tion 4.3. Our first method of segmenting multitrack audio, based on combined,

weighted audio features, is described in detail in Sections 4.4 and 4.4.1, and the

corresponding evaluation technique is described in Section 4.4.2. Results are

stated in Section 4.4.3, followed by a discussion in Section 4.4.4. In Section 4.5

we describe our second segmentation method, this time, one which selects audio

features based upon the instrument type present in each individual source au-

dio track. The results of this second experiment are presented in Section 4.5.4,

with a discusscussion in Section 4.5.5. Finally, we present our intermediate

conclusions in Section 4.6.

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 69

4.2 Hypothesis

Commercially recorded music usually starts life in the studio as a multitrack

recording before being mixed down to stereo during the production phase.

There are exceptions; live performances, especially of classical or jazz music,

might be recorded using ‘ambient’ rather than close miking techniques for ex-

ample. We concern ourselves here with the former type of recording (see Huber

and Runstein, 2005, for a general overview of recording techniques). Typi-

cally, multitrack recordings will have somewhere between eight and 24 tracks,

although there is no hard upper limit. Each track is usually a recording of a sin-

gle instrument or voice, although in some cases (for example drum kits, string

sections or choirs), there might intentionally be multiple sound sources recorded

on to a single track, or unintentionally in other cases due to microphone ‘bleed’.

For the duration of a recorded piece of music, some of these individual sources

might be producing little or no sound. The temporal changes in activity of

individual instruments is potentially lost to a certain degree in the final mix,

and our hypothesis is that having access to the multitrack version of a record-

ing enables us to avoid this loss of relevant information by calculating features

from all of the individual source tracks, rather than just the final mixdown as

is usually the case.

4.3 Multitrack Audio Dataset with Structural Seg-

ment Annotations

In order to evaluate any music segmentation technique, a test set of human-

annotated musical audio is required. Several already exist1,2 for fully mixed

audio, but no ground truth annotations for multitrack audio projects exist. To

that end, we have created a new, publicly accessible3 multitrack audio dataset

consisting of 104 pop and rock songs.

1http://www.cs.tut.fi/sgn/arg/paulus/beatles_sections_TUT.zip
2http://www.ifs.tuwien.ac.at/mir/audiosegmentation/dl/ep_groundtruth_excl_

Paulus.zip
3http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/36

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 70

4.3.1 Selecting and Obtaining Audio

When compiling a ground truth annotated audio dataset, it is important to

ensure that the material is both suitable for its intended purpose, and also

not subject to copyright restrictions. We stated in Chapter 1 that we are

limiting the scope of our segmentation experiments to rock and pop music only,

so we require multitrack versions of songs from those genres. The multitrack

audio projects which form our test set for Chapter 4 come from a number of

sources; the Creative Commons ‘ccMixter’ website4, artist websites, donations

from friends and colleagues, and a commercial karaoke song website5, providing

individual audio tracks including vocals from cover versions of popular western

songs. The audio from the karaoke song website unfortunately is not free of

copyright restrictions, however, at the time of writing, the cost of each song

was very small. All other audio material obtained is sharable according to the

terms of any applicable license, details of which are provided with the dataset.

4.3.2 Annotation

Annotation of our dataset was carried out by two musically trained undergrad-

uates according to the guidelines set out in the Structural Analysis of Large

Amounts of Music Information6 (SALAMI) project. In brief, these guidelines

describe conventions for annotating high-level musical structures such as intro,

chorus and verse, as well as mid-level structures such as a melodic phrases or

chord progressions spread over a small number of bars.

Our dataset annotations include segment labels as well as temporal bound-

aries, although for the purposes of our own segmentation experiments we only

make use of the temporal boundaries.

Ambiguities

Before setting out the instructions given to our annotators, it is worth discussing

some of the ambiguities inherent in such a task. When describing structural

segmentation, we frequently use terms such as chorus, verse, and bridge. Some

4http://ccmixter.org/
5http://www.karaoke-version.co.uk/
6http://ddmal.music.mcgill.ca/research/salami/annotations

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 71

dictionary definitions of these terms follow:

verse

noun

“a group of lines that form a unit in a poem or song; a stanza: the second verse.”

chorus

noun

“a part of a song that is repeated after each verse, typically by more than one

singer.”

bridge passage

noun

“a transitional section in a musical composition leading to a new section or

theme.”

Whilst making a reference to a song, the definition of ‘verse’ above is primarily

defined in terms of ‘lines’, i.e. from a poem. The definition of ‘chorus’ tells us

that it is “a part” of a song, but does not define ‘part’ in any more detail, such

as time in seconds, or length in number of beats or bars. It is repeated after a

verse, however we do not have a solid definition of what a verse is. A ‘bridge

passage’ is “a transitional section... leading to a new section or theme” – does

this mean that all sections preceding a new section or theme are bridges, or

only some? If only some, how do we make the distinction?

Despite this, these terms are in such common use that it would seem perverse

to claim that they are too ill-defined for us to ask anyone to identify where

they occur within a song. Ultimately these ambiguities mean that this task

is unavoidably subjective, however that is also the reason why we need human

generated annotations – in the absence of a precise definition of what constitutes

a structural segmental, the best reference we have is human judgement, and

that judgement is what we would like our algorithm to replicate. Peeters and

Deruty (2009) offer a good discussion regarding the robustness of segmentation

evaluation techniques, whilst Bruderer et al. (2006) demonstrate that despite

the subjective nature of music segmentation, there is a correlation between the

number of subjects identifying a particular boundary and the level of salience

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 72

attached to it.

Instructions to Annotators

Annotators are asked to identify large-scale, musically similar segments, where

similarity may be rhythmic, melodic, or harmonic. The temporal boundary, in

seconds, between each of these segments must be identified, and a label applied

to each segment, with similar segments receiving the same label. The label

must be an uppercase letter, e.g. A, B, C etc., with Z being used for ‘special’

sections, such as speech or applause. The prime symbol may be applied to a

segment label if the annotator judges it to be a significant variation of some

other segment, such a transposed melody.

Lowercase letters should be applied to smaller scale, similar segments, but

not at the level of individual notes. Every segment labelled with an uppercase

letter must also be labelled with a lowercase letter, but the converse is not true.

Lowercase labelled segments must share similarity across larger segments – i.e.

a small segment labelled Aa must be similar to Ba (even though on the larger

scale, A is not similar to B). No segment should be unlabelled (silence counts

as a segment).

Optionally, musical function labels from a controlled vocabulary may be ap-

plied to segments. The words in the vocabulary (see the SALAMI guidelines7

for more details regarding the choice of these words) are:

bridge chorus coda end
fadeout instrumental interlude intro
main theme outro pre-chorus pre-verse
silence solo (secondary) theme transition
verse

Finally, and again optionally, the name of the lead instrument may be applied to

any segment. There is no controlled vocabulary for this. Each boundary time,

uppercase label, lowercase label, musical function label and leading instrument

name must be separated by a comma. Parentheses may be used to show that

7http://ddmal.music.mcgill.ca/research/salami/annotations

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 73

a leading instrument persists across several segments. An example annotation,

for the song ‘Dreams’ by ‘Another Dreamer’ is shown below:

0.000000000,silence

0.938775510,A, a’, pre-verse, (vocal

17.729886621,B,b, pre-chorus

26.092108843,b

34.432653061,c, chorus

42.811700680,c’

51.118367346,C, d, verse

59.481632653,d

67.567346938,e, bridge

69.915283446,A, a, pre-verse

78.251247165,a

86.599931972,B, b, pre-chorus

94.950702947,b

103.302040816,c, chorus

111.654081632,c’

119.977505668,C, d, verse

128.360997732,d

136.434648526,e, bridge

138.792562358,A, a, pre-verse

147.117278911,a

155.465170068,B, b’, pre-chorus

163.829478458,b’

172.189206349,c’, chorus

180.538412698,c’

188.852290249,C, d, verse

197.221950113,d, vocal)

205.313015873,e’, outro

209.983287981,silence

210.786213151,end

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 74

Dataset Statistics

The structural segment annotated multitrack audio dataset consists of 104

songs, with a total of 3119 ground truth structural segmentation boundaries, an

average of 9 tracks per song (minimum 4, maximum 17), and an average song

duration of 3 minutes 56 seconds (minimum 1 minute 36 seconds, maximum

10 minutes 3 seconds). The ground truth annotations which accompany them

took approximately 280 man-hours to create.

Dataset Contents and File Format

The files available in the Research Data Repository8 provide ground truth struc-

tural segmentation annotations and corresponding mutltitrack audio recordings.

The multitrack audio recordings are provided in one of two forms:

1. Actual audio files, contained in three zip archives

2. Hyperlinks to commercially available multitrack audio

The ground truth structural segmentation annotations are provided as comma-

separated value (csv) files. The format of these csv files complies with the ’Struc-

tural Analysis of Large Amounts of Music Information (SALAMI)’ guidelines,

which are described in the file SALAMI Annotator Guide9. These guidleines

were produced by McGill University.

In the wider context of this thesis, and in particular the use of RDF data

outlined in Chapter 3 and used in Chapter 5, it could be argued that this dataset

should be made available as RDF data. However, the overriding purpose of the

dataset is to serve as test data for the multitrack versus mixed audio segmenta-

tion experiments described in this chapter, and also for other researchers to use.

For the sake of simplicity and because of the existence of other similar datasets

also using the SALAMI guidelines, we have elected to publish the annotations

as csv files only at the present time, although we may augment them with RDF

versions in the future.

8http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/36
9http://ddmal.music.mcgill.ca/research/salami/annotations

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 75

Files in the Repository

• multitrack audio 1.zip, multitrack audio 2.zip, and

multitrack audio 3.zip – archived multitrack audio files, where the first

part of each folder name reflects the artist and song names. Audio files

are either in mp3 or wav format.

• commercial audio files.txt – a text file containing hyperlinks to com-

mercially available multitrack audio files.

• structural segments.zip – ground truth structural segmentation anno-

tations, where the first part of each filename reflects the artist and song

names, and ends with ‘ gt’ denoting ground truth.

• licenses.txt - a text file stating which type of license applies to which

song.

• SALAMI-Annotator-Guide.pdf - a description of the format of the struc-

tural segmentation annotations in the csv files

Availability

All of the annotations and audio files, apart from the commercial karaoke ma-

terial (which may instead be purchased), are available for download10, and the

author would like to encourage other researchers to make use of them.

Comparison of Annotation Styles

Unintentionally, in two instances, our two human annotators both annotated the

same song. Usefully though, this provides us with an opportunity to compare

and contrast (at least in two cases) the segments chosen by the two annotators.

Figure 4.1 shows the two alternative segmentations for the song ‘Armistice’ by

Phoenix, which is a pop song in 4/4 time (the alternate colour shades used in

the images are purely to aid visualisation of consecutive segments – they do not

imply anything about the nature of the segments).

10http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/36

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 76

F
ig

u
re

4
.1

:
T

w
o

al
te

rn
a
ti

ve
se

gm
en

ta
ti

o
n

s
of

th
e

so
n

g
‘A

rm
is

ti
ce

’
b
y

P
h

o
en

ix
.

T
h
e

to
p

p
a
n

e
sh

ow
s

th
e

a
u

d
io

w
av

ef
o
rm

of
th

e
so

n
g,

th
e

m
id

d
le

p
an

e
sh

ow
s

th
e

se
gm

en
ta

ti
on

ch
os

en
b
y

an
n

ot
at

or
A

,
an

d
th

e
b

ot
to

m
p

an
e

sh
ow

s
th

e
se

gm
en

ta
ti

o
n

ch
os

en
b
y

a
n

n
ot

at
o
r

B
.

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 77

Boundary retrieval F-values, as described by Levy and Sandler (2008), pro-

vide us with a quantitative measure of the similarity of the two annotations.

More commonly used to compare experimentally derived boundaries with hu-

man ‘ground truth’ boundaries, we use them instead here to compare two human

annotations, one of which we must arbitrarily nominate as the ‘reference’. The

metrics are defined as follows:

P =
|Pr ∩ Ph|
|Pr|

(4.1)

R =
|Pr ∩ Ph|
|Ph|

(4.2)

F =
2PR

P +R
(4.3)

where P is boundary retrieval precision, R is boundary retrieval recall, F is

boundary retrieval F-value, Pr is the reference set of segment boundaries identi-

fied by one human annotator, and Ph is the set of segment boundaries identified

by the second human annotator. Picking (arbitrarily) annotator B’s annota-

tion as the reference, we calculate the boundary retrieval F-values for a +/-

0.5s tolerance as:

P = 1

R = 0.61

F = 0.76

Annotator A has chosen five high-level (indicated by upper-case letters) seg-

ments, whilst annotator B has chosen seven. On three of these occasions, both

annotators are in exact agreement. Ignoring the particular labels applied, an-

notator B has chosen all the boundaries that annotator A has, plus some addi-

tional ones of their own. The mappings between the uppercase labels used by

the two annotators are consistent, albeit in one case annotator B has judged

the high level segment to start one low-level segment earlier than annotator A.

Ignoring the identical intro and outro segments (labelled ‘g’ and ‘f’ respectively

in the middle pane), annotator A consistently subdivides their high-level seg-

ments into two lower-level segments of either eight or twelve bars. In each of

these cases, annotator B elects to subdivide the segments twice as often, i.e.

into four segments of either four or six bars. This explains the perfect precision

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 78

score, along with the lower (but still good) recall score. It is hard to say which

annotator is right or wrong in this respect – these are (arguably) just differ-

ent levels of a hierarchical segmentation (indeed, it is the annotator’s lowercase

labels which are in disagreement here, not, generally, the uppercase ones).

The two segmentations for the song ‘1901’, also by Phoenix, are displayed

in Figure 4.2. Picking annotator B’s annotation as the reference again, the

boundary retrieval F-values for this example (using a +/- 0.5s tolerance) are:

P = 0.90

R = 0.66

F = 0.76

This time annotator A has chosen seven high-level (upper-case labelled) seg-

ments, whilst annotator B has chosen eight. On seven of these occasions, both

annotators are in exact agreement. The mappings between the uppercase letters

used on these seven occasions are consistent. A similar trend to the previous

example can be seen – in the majority of cases annotator B again subdivides

high-level segments twice as often as annotator A, although there are occa-

sions here when both annotators choose identical low-level segments, and one

occasion when it is annotator A who subdivides a high-level segment twice as

much as annotator B. There are also occasions in both examples when the two

annotators disagree on the location of a high-level boundary, although this is

rare.

It is clear from these observations that given the same instructions, differ-

ent people group the same metrical structures slightly differently. This will

inevitably place an upper limit on the level of accuracy possible from algorith-

mically generated segment boundaries, although we have already acknowledged

the intrinsic ambiguities of such a task. We might mitigate these ambiguities by

insisting upon multiple human annotations of every song, and then deriving a

single human annotation via some form of boundary vote count, however there

are practical difficulties in obtaining so many human annotations for a large

dataset.

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 79

F
ig

u
re

4.
2:

T
w

o
a
lt

er
n

a
ti

ve
se

g
m

en
ta

ti
on

s
of

th
e

so
n
g

‘1
90

1’
b
y

P
h

o
en

ix
.

T
h

e
to

p
p

an
e

sh
ow

s
th

e
au

d
io

w
av

ef
or

m
of

th
e

so
n

g,
th

e
m

id
d

le
p

a
n

e
sh

ow
s

th
e

se
gm

en
ta

ti
on

ch
os

en
b
y

an
n

ot
at

or
A

,
an

d
th

e
b

ot
to

m
p

an
e

sh
ow

s
th

e
se

gm
en

ta
ti

on
ch

os
en

b
y

an
n

ot
at

or
B

.

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 80

It is important to bear in mind that a comparison of two human annotations

for each of two songs is not statistically significant, hence we must not draw

any solid conclusions from these comparisons. Any attempt to further dictate

the rules given to the annotators runs the risk of placing undue bias on the

dataset. Rather, we accept that our dataset inherently reflects the ambiguities

of structural segmentation, and we take this into account when using the dataset

to evaluate any experimental results.

4.4 Combined and Weighted Audio Feaures

If we are to use some of the segmentation techniques described in Section 2.2,

we must determine which audio features to extract from our audio files, and in

what proportions to use them when calculating self-distance matrices. Hence,

our first experiment extracts four common but disparate types of audio feature

from every audio track, and performs repeat segmentation calculations using

different weightings of all four features, in order to find the optimum feature

weights. We employ n-fold cross-validation of our dataset in order to ensure a

distinction between training and test data, and therefore avoid over-fitting.

4.4.1 Experimental Method

Our method starts, as is common in segmentation tasks, by calculating audio

features for frames of audio which are time-aligned to beats. Beat tracking

algorithms are capable of analysing single channel (or stereo) audio files and

producing lists of predicted temporal beat locations; in our case though we

have multiple audio channels, so we perform a simple mixdown step first. In

the absence of an “official” version of the final mix we simply sum the individual

source tracks and normalise. We then use the beat tracking method described

by Ellis (2007) to find the beat locations within this simple mixdown audio

file (Figure 4.3). The mixdown file is used purely for finding beats, we now

disregard it and return to consider the multitrack audio files.

As described in Section 2.2, there are several different types of audio features

we could choose to extract and analyse. At this stage we do not know which will

produce the most effective results, although in the case of final mix audio several

authors have carried out investigations in order to determine the relative merits

of the different types of audio features with regard to segmentation. Paulus and

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 81

Multitracks Simple Mix

Beat Analysis

Beat Locations

Figure 4.3: Extracting beats from a simple mix of multitrack audio

Klapuri (2008) conclude that either MFCC or chroma features alone work well,

however, they worked with final mix audio.

Bruderer et al. (2006) conclude that changes in timbre, changes in level,

repetition, and breaks/pauses provide strong cues for the perception of struc-

tural boundaries in music. Timbre has been successfully modelled by Aucou-

turier et al. (2005) using MFCCs in conjunction with Gaussian Mixture Models,

whilst a simple measure of RMS energy will provide a measure of signal level,

including breaks and pauses. Jensen et al. (2005) reported good results when

using the rhythmogram to segment popular chinese music.

It is instructive to examine some example self-distance matrices derived us-

ing these features, in order to gain an intuitive grasp of how well each one

is able to model the structural changes in some example songs. Figure 4.4

shows the self-distance matrix images obtained using MFCCs (left), and chroma

(right) features, both for the same song, “Sunrise” by Shannon Hurley. Mu-

sically, the song is a fairly traditional sounding pop ballad, containing a typi-

cal verse/chorus/bridge structure, with strong melodic content and percussion.

The MFCC-derived image shows both a very clear block structure at an ap-

propriately large timescale, as well as very definite stripes (e.g. in the region

between approximately 140s and 180s on both axes) indicating repetition of a

sequence of timbral changes. It seems likely in this case that further analysis

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 82

���� �����	
����� ���
�

������ ����� �������������
��

����� �����	
����� ���
�

������ ����� �������������
��

���������

�
�
��
��

��
�

�� ��� ��� ��� ��� �� �� !�� !�� ���

��

���

���

���

���

 ��

 ��

!��

!��

���

�

�"�

�"�

�"

�"!

�"�

�"#

�"$

���������

�
�
��
��

��
�

�� ��� ��� ��� ��� �� �� !�� !�� ���

��

���

���

���

���

 ��

 ��

!��

!��

���

�

�"�

�"�

�"

�"!

�"�

�"#

�"$

�"%

Figure 4.4: Self-distance matrix images for “Sunrise” by Shannon Hurley

could provide us with plausible segment boundaries. Conversely, whilst the

same block structure is again evident to a certain degree in the chroma-derived

image, the detail is less well-defined; the image has an overall fuzziness, possibly

implying that further analysis will be less likely to reveal the structure we’re

seeking (albeit the stripes are still strongly evident). By way of comparison,

Figure 4.5 shows the RMS energy-derived (left) and chroma-derived (right) self-

distance matrix images for the song “Hyperpower” by Nine Inch Nails. This

song is overwhelmingly defined by changes in timbre and dynamics, on both

small and large timescales, with little to no harmonic variation. Accordingly,

the RMS energy-derived image exhibits a particularly clear block structure on

a large timescale (∼20s), reflecting the obvious level differences between each

structural segment, whilst the chroma-derived image is slightly less well defined

on the larger timescale, but does show good definition over smaller time periods

(∼1s).

We surmise from the similarities (and dissimilarities) evident in Figures 4.4

and 4.5 that all three of these audio features provide relevant, yet different, in-

sights into the structure of a piece of music. For completeness, we also add the

rhythmogram feature to this list. We will run multiple experiments using dif-

ferent weightings of these four features in order to determine the most effective

combination.

These audio features are calculated for each (beat-aligned) frame of audio

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 83

��� ������	
���� ����	�

����� ����� ������ ������	�

������ ������	
���� ����	�

����� ����� ������ ������	�

���� �����

�
��

�
��

��
�

�� ��� ��� ��� ���

��

���

���

���

���

�

� �

� �

� !

� "

� �

� #

� $

� %

� &

���� �����

�
��

�
��

��
�

�� ��� ��� ��� ���

��

���

���

���

���

�

� �

� �

� !

� "

� �

� #

� $

� %

� &

Figure 4.5: Self-distance matrix images for “Hyperpower” by Nine Inch Nails

from each individual track. In each case the RMS energy feature is a single

number, MFCC is a thirteen element vector (each frame is characterised by 13

cepstral coefficients), the chroma feature is a twelve element vector (each ele-

ment indicating a measure of the level of one of the 12 chromatic pitches present

in that audio frame), and the rhythmogram feature is a two hundred element

vector, representing the rhythmic change at 10ms steps over a 2s window.

For MFCC feature calculation, we use Ellis’11 Matlab function with a 25ms

window length, 10ms hop time, Mel filter band edges at 0Hz and 20000Hz, 40

warped spectral bands, type 2 discrete cosine transform type, and no liftering,

preemphasis filter, or dither. For chromagram feature calculation, we use the

LabROSA-coversongID12 Matlab code with 4096 Fast Fourier Transform (FFT)

length.

The perceptual spectral flux component of the rhythmogram feature is cal-

culated using a step size of 10 ms and a block size of 46 ms. An equal loudness

contour with a phon value of 60 was found empirically to work best for the fre-

quency weighting W (where W is the frequency weighting used to represent an

equal loudness contour – see Equation 2.10). The rhythmogram itself is then

calculated using a 10ms step size and summing window length of 50 frames,

before being beat-synchronised.

11http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/mfccs.html
12http://labrosa.ee.columbia.edu/matlab/chroma-ansyn/chromagram_IF.m

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 84

Frame n

Track 1

Track 2

Track 3

Feature Vector

Feature Vector

Feature Vector

Stacked Features Vector

Figure 4.6: Stacking the feature vectors obtained from multiple audio source
tracks

For each frame, we stack all of these features into a single vector. For an

8 track case this vector would be 1808 elements long; 13 MFCC values, 12

chroma values, 200 rhythmogram values and one RMS energy value for each

of the eight tracks. In the case where we are analysing the final mix only, the

feature vector would be 226 elements long. We then apply one of the feature

weighting combinations under investigation to these vectors; an example would

be to multiply the MFCC features by 100, the rhythmogram features by 10,

the RMS feature by 10 and leave the chroma feature untouched. The full set

of weightings under consideration is formed by varying the relative weights of

each feature by 1, 10, and 100 with respect to every other feature, resulting in

65 different configurations, and these weightings are applied after the individual

features have been normalised using z-score.

The resulting collections of vectors calculated for all audio frames then form

the sets of input data for our self-distance matrix calculations. Figure 4.6 illus-

trates the technique for a hypothetical situation in which there are three audio

tracks, each producing a four element feature vector, and for one particular

weighting combination.

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 85

The self-distance matrix is calculated from these feature vectors using Equa-

tion 2.12, and we then calculate the standard novelty score (an example is shown

in Figure 2.5) using Equation 2.15, with a kernel size of 32. As stated in Sec-

tion 2.2.4, we evaluate two different methods of picking peaks from the novelty

score. In the first method, our segment boundary locations are simply selected

as the locations of all those peaks in the novelty score whose height exceeds

some scaled factor of the average peak height for each song; the precise value of

this scaling factor must be learnt, and we try factors of 0.5, 0.75, 1, 1.25, 1.5,

1.75 and 2 times the average peak height. Hence, using this method, we ob-

tain seven different candidate sets of segment boundaries for every song. There

is certainly scope to improve on this simple method though, and consequently

our second method (Brennan, 2010, described in Appendix A) is more complex,

utilising low-pass filtering in order to remove the presumably irrelevant small-

scale peaks from the novelty score. This method produces three candidate sets

of segments boundaries. We present the results of both methods in order to

demonstrate the potential advantage of fine-tuning the peak-picking method,

however we do not claim that either method is optimal. Rather, we concentrate

on demonstrating that in either case, there is an advantage to be gained from

using multitrack rather than mixed audio.

As a final step, given the knowledge that the SALAMI annotation guidelines

(see Section 4.4.2) dictate that the very start and end of the song are marked

as boundaries (even if they consist of periods of silence), we check whether or

not the algorithm has picked out these locations and if not, we add boundaries

there.

4.4.2 Evaluation

Our experimental results consist of either seven (in the case of the simple novelty

score peak picking method) or three (when using the Brennan, 2010, method)

alternative segmentations for every feature weight configuration applied to every

song. We employ n-fold (where n=4 in our case) cross-validation to determine

the boundary retrieval F-value, precision and recall of every set of n training

songs, and for each feature weighting and segmentation level configuration.

Boundary retrieval F-values are calculated as described by Levy and Sandler

(2008), by comparing our experimentally derived segment boundaries against

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 86

the ground truth data using

P =
|Pm ∩ Ph|
|Pm|

(4.4)

R =
|Pm ∩ Ph|
|Ph|

(4.5)

F =
2PR

P +R
(4.6)

where P is boundary retrieval precision, R is boundary retrieval recall, F is

boundary retrieval F-value, Pm is the set of segment boundaries identified ex-

perimentally and Ph is the set of segment boundaries identified by a human

annotator.

This allows us to select an optimum feature weight and segmentation level

configuration for each training song set. We then take the test song segments de-

rived using the optimum parameter configurations for the corresponding train-

ing group set, group them into one collection of segments (i.e. as if all 104

songs formed one long song), and calculate the final F-value, precision and re-

call values by comparison with the ground truth data. The optimum weight

and segmentation level configurations are deduced by taking the average of the

n optimum training set configurations. This process is applied to:

1. Segments derived using our method applied to the multitrack data

2. Segments derived using our method applied to the single-channel mixed

data

F-values are also calculated from the segments derived using Mauch et al.’s

state-of-the-art13 method (Mauch et al., 2009) applied to the single-channel

mixed data. When comparing segment boundaries against ground truth bound-

aries, tolerances ranges of 1s (+/- 0.5s) and 3s (+/- 1.5s) were used.

4.4.3 Results

The boundary retrieval F-values for the complete set of segments obtained from

the 104 song test set, obtained using the three different methods (Mauch applied

13Ranked first in the 2009 MIREX Music Structure Segmentation Task

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 87

Experimental
Method

1 second tolerance 3 second tolerance
F-value Precision Recall F-value Precision Recall

Mauch, applied to mix-
downs

0.29 0.44 0.22 0.43 0.65 0.32

Hargreaves, applied to
mixdowns (simple peak
pick)

0.29 0.29 0.30 0.51 0.43 0.63

Hargreaves, applied
to multitracks (simple
peak pick)

0.35 0.33 0.38 0.56 0.50 0.64

Hargreaves, applied to
mixdowns (Brennan’s
peak pick)

0.30 0.29 0.31 0.53 0.51 0.55

Hargreaves, applied to
multitracks (Brennan’s
peak pick)

0.38 0.37 0.39 0.60 0.57 0.62

Table 4.1: Segment boundary retrieval comparisons with ground truth data,
using combined and weighted features

to mixdowns, Hargreaves applied to mixdowns, and Hargreaves applied to multi

tracks), and for both peak-picking methods (simple and Brennan’s), are shown

in Table 4.1.

The F-value figures achieved when analysing full multitrack data show sig-

nificant improvement when compared to the results for mixed data, regardless

of whether our own or Mauch’s algorithm is used. The greatest improvement

is achieved using our method together with Brennan’s peak-picking algorithm.

Figure 4.7 shows the corresponding optimum feature weight configurations used

to generate the F-values in Table 4.1 (these values are obtained by averaging the

four different optimum configurations found during four-fold cross-validation).

For clarity, we omit the configurations derived when using the simple peak-

picking method from this Figure. In all cases, the rhythmogram feature offers

very little benefit to the segmentation; this result is consistent with earlier find-

ings by Paulus and Klapuri (2008). When full use of the multitrack data is being

made (the 2 leftmost sets of results), an equal weighting of chroma, RMS energy

and MFCCs is found to be optimal, whilst when fully mixed data is used (the

2 rightmost sets of results) the importance of the RMS energy and chroma fea-

tures declines to certain extents depending upon which tolerance level is under

examination. It is important to note though that for reasons of tractability, we

limited ourselves to relative weightings of 1, 10 and 100 – if more combinations

had been tested it is less likely that any optimum weightings would have been

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 88

multitrack 1s multitrack 3s mix 1s mix 3s
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
lis

e
d
 F

e
a

tu
re

 W
e

ig
h

ti
n

g
s

chroma

RMS energy

MFCC

rhythmogram

Figure 4.7: Optimum feature weights for multitrack and mixed audio sources,
using 1 second and 3 second tolerances

exactly equal. Additionally, when using Brennan’s peak-picking algorithm, the

second, or mid, level of segmentation produced was found universally to be

optimum. In the cases where we used the simple peak-picking method, the

optimum peak height threshold ranged from 1 to 1.5 times the average peak

height.

4.4.4 Discussion

The most important results in Table 4.1 demonstrate the significant improve-

ment in F-value, precision and recall achieved when we make full use of the

multitrack data as opposed to just the final mix (the F-value rises from 0.30 for

full mix data at a 1s tolerance, to 0.38 for multitrack data when we use Bren-

nan’s peak-picking algorithm, and likewise from 0.53 to 0.6 at a 3s tolerance).

This result strongly supports our hypothesis; that having access to multitrack

data enables an increase in segmentation accuracy.

A slightly surprising result is that Mauch’s algorithm only achieves similar

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 89

or worse F-values to our own, relatively simple, algorithm when it too is applied

to the full mixes. It is worth noting though that Mauch’s algorithm has both the

highest precision and the lowest recall values of all the methods, indicating that

although a lot of true segment boundaries were missed altogether, those that

were produced were relatively accurate compared when to the other algorithms.

This, together with the fact that our algorithm achieved the best results when

we used the second (mid) level of segmentation, perhaps implies that typically

there are higher numbers of segment boundaries present in our ground truth

data than in that used for the MIREX 2009 segmentation task. Indeed, closer

inspection of both sets of ground truths reveals that, on average, each MIREX

ground truth song contains 11.2 segment boundaries whilst our SALAMI style

ground truths contain 30. The MIREX ground truth data was not, as far as we

can ascertain, produced according to the SALAMI guidelines. This goes some

way to explain the lower F-values achieved using Mauch’s algorithm, whilst not

invalidating the improvement observed when applying our own algorithm to

multitrack rather than mixed audio.

Our algorithm produced optimum results when analysing full multitrack

data by using equal weightings of chroma, RMS energy and MFCC features

(compared to the dominance of MFCCs when analysing fully mixed songs);

this result demonstrates that given a large collection of recordings of different

instruments, no one particular feature stands out as universally appropriate.

Accordingly we investigate this result further in Section 4.5. Additionally,

the particular method of segment boundary picking used here is designed to

search for regions of homogeneity, however repetition is also an important cue

in structural segmentation. A further refinement of the experiment would be to

incorporate a repetition-based method; several possibilities are listed by Paulus

et al. (2010).

It was not entirely surprising that the rhythmogram feature scored so poorly

in the optimum feature weight configurations. This feature is calculated over a

relatively large time window (2s), resulting in poor temporal accuracy, whereas

all other features are calculated on a frame-by-frame basis.

As an aside, an interesting observation was made during some early tests

when our dataset was much smaller (approximately 20 songs). One song, the

nature of which happened to be a contemporary, relatively experimental piece

based mainly upon the presence or absence of subtle layers of instruments and

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 90

loops, had to be taken out of the test dataset for copyright reasons. It was

replaced by a far more traditional pop/rock song from the late sixties, and the

effect was a degradation of the F-values achieved using the multitrack data, and

concurrently an improvement in those obtained from the final mixes. Whilst

this is certainly not a robust result, it is interesting in that it suggests that

certain genres of music which don’t follow the traditional verse/chorus pattern

are more easily segmented when we have access to the multitrack recordings,

in which subtle changes in instrumentation are more amenable to analysis.

4.5 Instrument-Specific Audio Features

The experiment described in Sections 4.4.1 to 4.4.3 results in more accurate

segmentations of our test dataset by analysing equally weighted chroma, RMS

energy and MFCC features from multitrack rather than mixed audio data (the

optimum weighting of the rhythmogram audio feature was found to be as low

as possible – i.e., it was not beneficial to use it). It achieves this whilst paying

no attention to the specific nature of each source audio track – that is, all tracks

are treated identically, regardless of musical instrument type. When alterna-

tive feature weights are tested, they are applied uniformly to all audio tracks.

Intuitively though, one might expect certain types of audio feature to be more

appropriate for certain types of audio track. Chroma features, for example, are

theoretically more applicable to detecting changes in the melodic or harmonic

properties of an audio track, whereas MFCC features are better suited to iden-

tifying the timbrel qualities of audio. We might therefore expect to be able to

improve our segmentation results further by using specific audio features for

source tracks containing specific types of musical instrument – consequently we

perform an additional experiment to test this hypothesis.

4.5.1 Feature Selection

We need to decide which audio feature to analyse for each audio track, but first,

a pre-requisite to feature selection is the ability to classify our source audio

tracks as belonging to one of a discrete number of specific musical instrument

types. Of the 936 source audio tracks in our dataset, 859 (92%) have filenames

easily recognisable as common instrument names. The remaining 77 tracks

(8%) have uninformative or ambiguous names, such as ‘track1’, or ‘Kanonaki

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 91

RODE-04’. Using heuristics, we extract the following main instrument types

from our collection of audio source track filenames:

• Brass

• Keys

• Percussion

• Plucked strings

• Bowed strings

• Vocal

• Woodwind

• Fx

• Bass

Figure 4.8 shows a histogram of the numbers of audio tracks falling into each

category (with the additional category ‘unclassified’ for the 77 ambiguously

named files), whilst Table 4.2 shows the mappings between instrument category

and source audio track filename keywords.

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 92

0

50

100

150

200

250

N
um

be
r o

f c
at

eg
or

y
in

st
an

ce
s

bra
ss

ke
ys

pe
rcu

ssi
on

plu
cke

d s
trin

gs

bo
wed

 st
rin

gs
vo

ca
l

woo
dw

ind fx
ba

ss

un
cla

ssi
fie

d

Figure 4.8: Number of source audio tracks per instrument category

In order to determine which audio feature to use for each instrument category,

we could take a similar approach to the one taken in our previous experiment

– for example we could run repeat experiments for every possible configuration

of audio feature / instrument category mappings. The amount of computations

involved though for a dataset of this size make this approach impractical, and

so instead we select our own audio feature / instrument category mapping

according to our intuitions regarding the nature of each musical instrument

category. To illustrate, Figures 4.9 and 4.10 show the chroma and MFCC

audio feature spectrograms of, respectively, a solo oboe recording and a solo

electric, over-driven, rhythm guitar recording. At the top of both figures we

have manually annotated what appear to be distinct segments within the songs

– the letters A, B, C and D represent distinct segment types.

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 93

Instrument Category Filename Keywords

Brass brass, horn, saxophone, trombone, trumpet,
tuba

Keys piano, pad, keyboard, synth, korg, rhodes, key,
organ, wurlitzer, casio

Percussion drum, beat, bell, bongo, conga, cowbell, glock-
enspiel, clap, vibes, roll, kick, snare, percussion,
bang, hat, tamb, shaker

Plucked strings guitar, rhythm, wah, banjo, koto, sitar, pizzi-
cato, gtr, harp, mandolin, harpsichord, nylon,
acousticg, electricg

Bowed strings strings, cello, violin, viola

Vocal vocal, accapela, accapella, speech, voice, vox

Woodwind bassoon, clarinet, flute, oboe, piccolo, picollo,
wind

Fx effect

Bass bass

Table 4.2: Audio source track filename keyword to musical instrument category
mappings

In the case of the oboe (Figure 4.9), both the chroma and MFCC features ex-

hibit clear block structure. Of the two, chroma seems to perform particularly

well, with a very clear distinction between prominent notes, displayed in red,

and the unsounded notes, displayed in green Although the same repeat struc-

ture is visible for the MFCC features, the contrasts both within and between

segments, at least to the human eye, are less pronounced. In Figure 4.10, the

chroma features spectrogram shows far less contrast between note values than

the corresponding image for oboe. This is possibly due the the large number

of harmonic overtones typical of an overdriven electric guitar. In contrast, the

MFCC features spectrogram looks almost entirely uniform during the non-silent

portions of the song.

We speculate that chroma audio features are most suitable for musical in-

struments exhibiting clear fundamental frequencies, MFCC audio features to in-

struments having more complex harmonics, and RMS energy to more transient

instruments with high dynamic range and broad frequency spectrum. Where

audio tracks have ambiguous filenames, we default, given its prevalence in pre-

vious segmentation algorithms (Paulus and Klapuri, 2008; Bruderer et al., 2006;

Aucouturier et al., 2005), to the MFCC feature. Consequently we select audio

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 94

C
hr

om
a

bi
n

C

C#

D

E

F

D#

F#

G

G#

A

A#

B

Silence Silence

Time (seconds)

M
F

C
C

 c
oe

ffi
ci

en
t n

um
be

r

1

2

3

5

6

4

7

8

9

10

11

12

0 60 120

13

A B A C AD

Figure 4.9: Chroma and MFCC audio feature spectrograms for oboe

features for each instrument category as shown in Table 4.3.

4.5.2 Experimental Method

Our experimental method is the same as for the segmentation experiment de-

scribed in Section 4.4.1 of Chapter 4, except for two differences – we only

calculate one type of audio feature per track (determined using the track name

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 95

C
hr

om
a

bi
n

C

C#

D

E

F

D#

F#

G

G#

A

A#

B

Silence SilenceSilence

Time (seconds)
0 60 180120

A B A C

Figure 4.10: Chroma and MFCC audio feature spectrograms for electric over-
driven rhythm guitar

to feature mappings of Table 4.3), and only calculate self-distance matrices

(and therefore also segment boundary locations) using equally weighted fea-

tures, rather than attempting to find an optimum feature weight set. We then

calculate self-distance matrices, novelty curves and finally segment boundary

locations as before.

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 96

Instrument Category Audio Feature

Brass MFCC

Keys chroma

Percussion RMS energy

Plucked strings MFCC

Bowed strings chroma

Vocal MFCC

Woodwind chroma

Fx MFCC

Bass chroma

Unclassified MFCC

Table 4.3: Musical instrument category to audio feature type mappings

4.5.3 Evaluation

Our method of evaluation is exactly the same as that described in Section 4.4.2.

4.5.4 Results

Table 4.4 shows the results (on the bottom row) of this new experiment when

we use a 1s tolerance for matching segment boundaries, along with the results

we obtained previously in Section 4.4.3 for comparison.

Experimental Method
1 second tolerance

F-value Precision Recall

Mauch, applied to mixdowns 0.29 0.44 0.22

Hargreaves, applied to mixdowns
(Brennan’s peak pick)

0.30 0.29 0.31

Hargreaves, applied to multitracks
(Brennan’s peak pick)

0.38 0.37 0.39

Hargreaves (instrument-specific fea-
tures and Brennan’s peak pick), ap-
plied to multitracks

0.32 0.31 0.33

Table 4.4: Segment boundary retrieval comparisons with ground truth data,
using instrument-specific features

Our new F-value, 0.32 (highlighted in bold), is a slight improvement com-

pared to either of the previous techniques applied to mixed audio. However it

is inferior to the result obtained previously from multitrack data (0.38), when

all tracks were treated identically.

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 97

4.5.5 Discussion

This particular configuration of instrument categories and instrument category

to audio feature mappings does not improve upon the results from the combined

and weighted audio features experiment of Section 4.4. This fact though does

not preclude the possibility that there may be other instrument grouping and

feature mapping permutations which would perform better. However the levels

of computing resources necessary to find such a permutation renders an opti-

misation experiment impractical. To illustrate, some example execution times

and results file sizes for specific computer hardware are given below:

• Hardware Specification: 12 x 2GHz CPU cores (with two threads/core

hyperthreading), 128GB of memory, 64-bit Linux

• Full combined and weighted features experiment (as described in Section

4.4) execution time: 5.5 days

• Example results datafile size (audio features and self-distance matrices for

one permutation of audio features and 104 songs): 6 GB

• Calculating the self-distance matrices for just one permutation of instru-

ment category to audio feature mappings (as necessary for the instrument-

specific audio features experiment), for all 104 songs, execution time: 30

minutes

We have nine instrument categories and three audio feature types, which

gives us 39 = 19683 permutations of instrument category to audio feature map-

pings. To calculate the self-distance matrices for all those permutations would

take approximately 410 days. We could however assign a feature type to each

instrument independently of the others and adopt a hill climbing search strategy

– this would reduce the humber of permutations to 1 + (3− 1) ∗ 9 = 19, giving

an execution time of around 9.5 hours. Additionally though we would also need

to experiment with different instrument groupings, increasing execution time

into days rather than hours.

4.6 Conclusion

Many methods exist for determining the high-level structure of fully mixed mu-

sical audio. Inevitably, all of these methods need to extract relevant musical

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 98

cues from the ensemble of instruments present in most recordings. We have

shown that there is a quantifiable and significant advantage to be gained, when

segmenting music, by exploiting the source-separate versions of audio recordings

if they are available as multitrack projects. We have used a relatively simple al-

gorithm based upon four audio features, self-distance matrices and homogeneity

detection, which pays no attention to the particular type of instrument present

in each source track, and we predict that even greater segmentation accuracy

and/or reduced computational complexity could be achieved by selecting audio

features according to the instrumentation or musical function of each track.

It has been implicitly assumed so far that at the point of analysis, all the

source audio tracks required prior to producing the final mixdown are present.

However, at intermediate stages of the recording process, only a subset of these

tracks will exist. An interesting direction for future work would therefore be to

determine how accurately we are able to segment incomplete subsets of multi-

track projects. Answering this question will also enable us to establish whether

or not either a single or a minimal number of tracks of certain instrument com-

binations are sufficient for the derivation of an accurate segmentation, without

needing to perform analysis of tracks which offer little or no new information.

Given that DAW multitrack projects frequently contain around 8, 16 or 24

tracks, this would have the added benefit of greatly reducing the computational

complexity of our segmentation algorithm.

In addition to high-level verse/chorus type segmentations, we should also

expect to be able to achieve lower (i.e. bar and beat) level segmentations. Possi-

ble ways to achieve this might be by analysis of the sub-structure of self-distance

matrices (i.e. recursively analyse a self-distance matrix after first identifying

high-level boundaries) or by using existing beat tracking or transcription algo-

rithms, for example.

In this chapter we have only discussed methods of locating segment bound-

aries, however we do not have to limit ourselves to this narrow goal. To date,

and to the authors’ knowledge, all MIR research – be that structural segmenta-

tion, genre/artist/mood classification, music similarity measurement, onset/key

detection, cover song identification, or chord/melody extraction, has been un-

dertaken using either fully mixed music or single instrument recordings. The

potential advantages offered by early capture of a more accurate and rich set

of metadata from multitrack sources in the studio are vast, and, because the

CHAPTER 4. SEGMENTATION OF MULTITRACK AUDIO 99

metadata need not stay tightly bound to the commercial audio recording, are

not limited to the improvement of studio editing tools. Technologies such as

the World Wide Web Consortium (W3C) RDF metadata model are already

being used to enhance on-line artist information websites such as that provided

by the BBC14, and the publication of enhanced metadata alongside commercial

audio recordings would only increase their versatility. Instead of concentrating

on complex signal processing forms of ‘reverse engineering’ fully mixed audio,

the MIR community may instead concentrate on exploiting an already present,

easy to query and potentially vast amount of metadata via logical inferencing.

On this basis, the next chapter is devoted to exploring the viability of perform-

ing the type of algorithmic data analysis commonly encountered within sym-

bolic music data MIR, using multidimensional symbolic music data expressed

in RDF.

14http://www.bbc.co.uk/music

Chapter 5

A Semantic Web Approach to

Pattern Discovery in Data and

Music

In the previous chapter we described some experiments in which we exploited

the multitrack versions of music recordings in order to achieve significantly more

accurate structural segmentations of the songs, compared to the more typical

case of using the final mixed recordings. Together with the discussion of single

versus multi-instrument MIR we provided in Section 2.1 of Chapter 2, we spec-

ulate that similar improvements in accuracy could be achieved by performing

other MIR tasks similarly early in the music recording and production process.

Although of course we are still a considerable distance from being able

to generate a high-accuracy, MIDI-like score from audio recordings, it seems

appropriate to look ahead now and start to investigate not only what kind of

musicological insights we might derive from such a symbolic score, but also, how

we might best share this type of metadata in order that the MIR community

or, for example, the wider music industry, may extract maximum benefit from

it.

We have seen in Section 2.3.4 that the Semantic Web is being widely es-

poused as a beneficial way to share and make sense of data on the internet, and

we briefly introduced the SIA and SIATEC symbolic data pattern discovery

algorithms in Section 2.4.2. We know that it is possible to link (Section 2.3.1)

and query (Section 2.3.2) RDF data, and to create Semantic Web ontologies in

order to make the meaning of our data explicit (Section 2.3.3). What is less

clear though is whether or not it is either possible or practical to make use

of Semantic Web technologies in order to perform the type of music analysis

100

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 101

usually carried out by more conventional programming languages.

Accordingly, in this chapter, we continue our exploration of the vision set out

in Chapter 3 by describing in detail a new, Semantic Web implementation of the

SIA and SIATEC algorithms (Meredith et al., 2002), alongside mathematical

definitions of the algorithms’ functions. We present important performance

evaluation metrics, which, to the author’s knowledge, are unique within the

field of MIR in shedding light upon the viability of current Semantic Web

technology implementations applied to this type of content-analysis task.

There is a great deal of interest in, and a general drive towards, using the

Semantic Web as a means of sharing machine-readable music metadata in a non-

proprietary format. The far-reaching Online Music Recognition and Searching

(OMRAS 1 and 2) projects,1 for example, set out to promote and enable such

activities, and resulted in the development of the Music (Raimond et al., 2007),

Audio Features2, VAMP Plugin (Cannam et al., 2010), and Chord3 ontologies,

as well as 103 related research publications. As take up of Semantic Web

data publishing increases, we find ourselves with an ever increasing amount of

publicly accessible linked data, and ever more ontologies describing the data

relationships. The question remains, though, what else can we do with such an

abundance of metadata?

For example, the audio features ontology allows us to describe low-level,

signal-processing-derived audio data (frame-level note onsets or Mel Frequency

Cepstral Coefficients, for instance) using RDF. This raw data though, on its

own, is of little value – inevitably we will want to perform further data process-

ing in order to find whatever it is we’re looking for (identification of the musical

instrument used to play the piece, or whether or not the original piece was in

a twelve bar blues form, for example). At this stage the next step is usually to

break out of the Semantic Web domain and back into some conventional pro-

gramming language, which unfortunately means our processing algorithm and

data format is not necessarily any longer in a machine-readable, programming

language-independent form, thus, to some extent, we’ve defeated the object of

using the Semantic Web in the first place. Alternatively, it is also common to

perform extensive signal or data processing in a more conventional programming

1http://omras2.org/
2http://motools.sourceforge.net/doc/audio_features.html
3http://purl.org/ontology/chord/

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 102

language first, and then to publish the resulting high-level metadata as RDF.

Whilst it is possible to provide sufficient metadata about an algorithm and its

parameters such that all aspects of the processing workflow remain open and

accessible (the VAMP Plugin ontology, for example, goes some way to achieving

this by providing a mechanism for stating the output feature type of a VAMP

audio plugin4 – see Cannam et al., 2010), and even to trigger an external signal

processing computation from SPARQL (for example, Henry5 is an attempt to

implement a “DSP-driving SPARQL end point, based on transaction logic”),

we still face the inevitable complications of combining multiple technologies in

order to achieve our goals. To date (at least not to the authors’ knowledge),

Semantic Web technologies have rarely been used to actually perform any kind

of algorithmic content analysis of the music itself – one exception being the use

of a ‘Harmony’ ontology (Ibbotson, 2009). This ontology is intended to provide

a “harmonic structural model of music”, and, accordingly, contains ontologi-

cal definitions of notes, chords and keys. In terms of inferencing capabilities

though, it simply defines a chordFollows predicate as the owl:inverseOf a

chordPrecedes predicate, thus allowing us to infer (for example) that chord

‘b’ follows chord ‘a’ if we had previously asserted that chord ‘a’ precedes chord

‘b’. We would like to perform significantly more complex content analysis than

this.

The SIA family of pattern discovery algorithms (Meredith et al., 2002) are

examples of commonly-encountered, 3SUM-hard (Clifford et al., 2006), cross-

product type algorithms (other examples include the many audio-based music

structure analysis algorithms dependant upon self-distance matrix calculations,

first described by Foote, 2000). Given the commonality of such algorithms

within MIR, and the growing interest in the use of Semantic Web technologies

as practical knowledge engineering tools, we present here an investigation into

the viability of applying Semantic Web technologies (RDF, SPARQL 1.1, and

OWL 2) to the task of algorithmic content analysis (specifically, pattern dis-

covery in symbolic data). We address the question, therefore, of whether or

not it is possible to replicate the kind of programmatic functionality and flex-

ibility offered to us by more conventional programming languages, with only

4http://vamp-plugins.org
5http://code.google.com/p/km-rdf/

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 103

RDF, SPARQL and OWL (together with an appropriate OWL reasoner) as

our toolkit. We describe the challenges presented by using this approach, the

particular solution we arrived at, and an evaluation of the performance of our

method when compared to a purely Java implementation of the same algorithm.

5.1 The SIA and SIATEC Algorithms

5.1.1 Overview

The Structure Induction Algorithm (SIA) and Structure Induction Algorithm

Translational Equivalence Class (SIATEC) algorithms are pattern discovery

algorithms acting upon symbolic data. Fundamental to both algorithms are

Datapoints and Vectors. SIA and SIATEC datapoints are k-dimensional points

in Euclidean space, whose coordinates are the values of each of the attributes of

a single musical artefact (most commonly a musical note or beat) which we have

assigned to that particular dimension. A simple two-dimensional example would

be note onset time in one dimension and chromatic pitch in the other. A full

musical score, such as the one shown in Figure 5.1, would then be represented

by a collection of these datapoints, as illustrated in Figure 5.2.

Figure 5.1: Simple score

The purpose of the SIA algorithm is to find all of the distinct collections of

m datapoints, referred to as Maximal Translatable Patterns (MTPs), each of

which may be translated by some k-dimensional vector v onto another set of m

datapoints within the same dataset, wherem is the largest number of datapoints

which may be translated by v. This identifies all of the (theoretically) most

perceptually significant patterns within our dataset, but does not show all the

locations of all of the repeats. The SIATEC algorithm does precisely that –

identifying the collection of vectors by which each MTP may be mapped onto

other datapoints within the same dataset. After removing duplicates (e.g., if

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 104

0 0.5 1 1.5 2
66

68

70

72

74

76

Time (secs)

M
id
in
ot
e
nu
m
be
r

Figure 5.2: Simple score midi note onsets

we can move MTP A to MTP B by the vector 〈2, 1〉, then we can also move

MTP B to MTP A by the vector 〈−2,−1〉 – we only need record one of this

pair of results), we refer to each MTP and its associated collection of vectors

as a Translational Equivalence Class (TEC). Figure 5.3 shows that the pair

of datapoints 〈0.5, 74〉, 〈1.5, 69〉 from Figure 5.2 can be translated onto other

datapoints in our set by either of the two vectors 〈0.25, 2〉, and 〈−0.5,−2〉,
hence we have the TEC:

< {〈0.5, 74〉, 〈1.5, 69〉}, {〈0.25, 2〉, 〈−0.5,−2〉} >

Figure 5.4 shows another example TEC from the same score; this time a col-

lection of three datapoints can be translated by just one vector.

Our aim in this chapter is not to evaluate or discuss the suitability of the

SIA and SIATEC algorithms for discovering patterns in music. For that, many

SIATEC-based algorithm evaluations and comparisons exist – see for example

Clifford et al. (2006); Collins et al. (2010); Collins (2011); Collins and Mered-

ith (2013). Instead, we focus purely on the viability of implementing such an

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 105

0 0.5 1 1.5 2
66

68

70

72

74

76

Time (secs)

M
id
in
ot
e
nu
m
be
r

<-0.5, -2>

<0.25, 2>

Figure 5.3: Simple score with TEC A

algorithm using Semantic Web technologies, and evaluating how well the im-

plementation at which we have arrived performs compared to a non-Semantic

Web version.

5.1.2 Algorithm Definitions

The complete mathematical definitions of the functions computed by the SIA

and SIATEC algorithms, together with proofs where appropriate and specific

function implementation details, are given by Meredith et al. (2002). For clarity

we provide mathematical definitions here too, although we omit the proofs and

the particular function implementations specific to that paper.

Datapoints Dataset

Our musical score will have a finite number of notes, each of which can be rep-

resented by a k-dimensional vector. We therefore have a dataset D containing n

datapoints, and we denote a single datapoint by the vector d. For our example

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 106

0 0.5 1 1.5 2
66

68

70

72

74

76

Time (secs)

M
id
in
ot
e
nu
m
be
r

<1, -5>

Figure 5.4: Simple score with TEC B

MIDI score shown in Figure 5.2, we have k = 2 dimensions, with note onset

time in dimension 1, and MIDI pitch in dimension 2. In no particular order,

the datapoints are represented by the following vectors:

〈1, 67〉

〈1.5, 69〉

〈1.75, 71〉

〈0, 72〉

〈0.5, 74〉

〈0.75, 76〉

Vectors

Subtracting any datapoint d1 from any other datapoint d2 gives us the vector

v

v = d2 − d1 (5.1)

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 107

which also implies,

d2 = v + d1 (5.2)

This means that the datapoint d1 is translatable onto d2 by the vector v. Using

one pair of datapoints from our example dataset, we can say that the vector

〈1,−5〉 translates the datapoint 〈0.5, 74〉 onto the datapoint 〈1.5, 69〉.

Vector Order Relation

We denote the ith element of vector a by a[i]. For two k-dimensional vectors

u and v, where k ≥ 1, we define the less than relationship as

u < v ⇐⇒ (u[1] < v[1])

∨

(∃i : (1 < i ≤ k) ∧ (u[i] < v[i]) ∧ (∀j ∈ {1 ≤ j < i} : u[j] = v[j]))

(5.3)

In simpler terms, starting at the lowest dimension (i = 1), compare the values of

u[i] and v[i]. If u[i] < v[i], then u < v. If however u[i] = v[i], then increment

the value of i and compare values again. If the values are found to be equal in

all dimensions, then u ≥ v (in fact, in that case, although it is not made explicit

in Equation 5.3, we can say u = v). So for example, 〈3, 2〉 < 〈3, 3〉 < 〈4, 1〉.
Determining the ordered set D of datapoints in our dataset D is a necessary

step of both the SIA and SIATEC algorithms, and for our example dataset, the

ordered datapoints together with their ordered indices are shown in Table 5.1.

Datapoint Ordered Index

〈0, 72〉 1

〈0.5, 74〉 2

〈0.75, 76〉 3

〈1, 67〉 4

〈1.5, 69〉 5

〈1.75, 71〉 6

Table 5.1: Set D, the ordered set of datapoints

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 108

Vector Tables

For both the SIA and the SIATEC algorithms, using the notation |A| to denote

the cardinality of the set or vector A, we calculate the set

V = {〈D[j]−D[i], i〉|1 ≤ i < j ≤ |D|} (5.4)

that is, the set of ordered pairs consisting of all the vectors v between all pairs of

datapoints d1 and d2, as well as the ordered index of the originating datapoint

d1, subject to the condition that the ordered index of d1 is less than the ordered

index of d2. We record these vectors in a vector table, as shown in Table 5.2

for our example dataset. We call this vector table V .

From Datapoint
〈0, 72〉 〈0.5, 74〉 〈0.75, 76〉 〈1, 67〉 〈1.5, 69〉 〈1.75, 71〉

To Datapoint

〈0, 72〉
〈0.5, 74〉 〈〈0.5, 2〉, 1〉
〈0.75, 76〉 〈〈0.75, 4〉, 1〉 〈〈0.25, 2〉, 2〉
〈1, 67〉 〈〈1,−5〉, 1〉 〈〈0.5,−7〉, 2〉 〈〈0.25,−9〉, 3〉
〈1.5, 69〉 〈〈1.5,−3〉, 1〉 〈〈1,−5〉, 2〉 〈〈0.75,−7〉, 3〉 〈〈0.5, 2〉, 4〉
〈1.75, 71〉 〈〈1.75,−1〉, 1〉 〈〈1.25,−3〉, 2〉 〈〈1,−5〉, 3〉 〈〈0.75, 4〉, 4〉 〈〈0.25, 2〉, 5〉

Table 5.2: Vector table V

Additionally, for the SIATEC algorithm only, we calculate the set

W = {〈D[j]−D[i], i〉|(1 ≤ i ≤ |D|) ∧ (1 ≤ j ≤ |D|)} (5.5)

recording the results in vector table W , as shown in Table 5.3. Note that vector

table W is simply vector table V , but with the ‘missing’ elements now present.

From Datapoint
〈0, 72〉 〈0.5, 74〉 〈0.75, 76〉 〈1, 67〉 〈1.5, 69〉 〈1.75, 71〉

To Datapoint

〈0, 72〉 〈〈0, 0〉, 1〉 〈〈−0.5,−2〉, 2〉 〈〈−0.75,−4〉, 3〉 〈〈−1, 5〉, 4〉 〈〈−1.5, 3〉, 5〉 〈〈−1.75, 1〉, 6〉
〈0.5, 74〉 〈〈0.5, 2〉, 1〉 〈〈0, 0〉, 2〉 〈〈−0.25,−2〉, 3〉 〈〈−0.5, 7〉, 4〉 〈〈−1, 5〉, 5〉 〈〈−1.25, 3〉, 6〉
〈0.75, 76〉 〈〈0.75, 4〉, 1〉 〈〈0.25, 2〉, 2〉 〈〈0, 0〉, 3〉 〈〈−0.25, 9〉, 4〉 〈〈−0.75, 7〉, 5〉 〈〈−1, 5〉, 6〉
〈1, 67〉 〈〈1,−5〉, 1〉 〈〈0.5,−7〉, 2〉 〈〈0.25,−9〉, 3〉 〈〈0, 0〉, 4〉 〈〈−0.5,−2〉, 5〉 〈〈−0.75,−4〉, 6〉
〈1.5, 69〉 〈〈1.5,−3〉, 1〉 〈〈1,−5〉, 2〉 〈〈0.75,−7〉, 3〉 〈〈0.5, 2〉, 4〉 〈〈0, 0〉, 5〉 〈〈−0.25,−2〉, 6〉
〈1.75, 71〉 〈〈1.75,−1〉, 1〉 〈〈1.25,−3〉, 2〉 〈〈1,−5〉, 3〉 〈〈0.75, 4〉, 4〉 〈〈0.25, 2〉, 5〉 〈〈0, 0〉, 6〉

Table 5.3: Vector table W

Vector Table Element Order Relation

The elements of set V (vector table elements), may be ordered as follows. For

two vector table elements 〈u, i〉 and 〈v, j〉, we define the less than relationship

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 109

as

〈u, i〉 < 〈v, j〉 ⇐⇒ (u < v) ∨ (u = v ∧ i < j) (5.6)

So for example, 〈〈3, 2〉, 4〉 < 〈〈3, 3〉, 1〉 < 〈〈3, 3〉 2〉. Table 5.4 shows the elements

of set V in order.

Set V Element Ordered Index

〈〈0.25,−9〉, 3〉 1

〈〈0.25, 2〉, 2〉 2

〈〈0.25, 2〉, 5〉 3

〈〈0.5,−7〉, 2〉 4

〈〈0.5, 2〉, 1〉 5

〈〈0.5, 2〉, 4〉 6

〈〈0.75,−7〉, 3〉 7

〈〈0.75, 4〉, 1〉 8

〈〈0.75, 4〉, 4〉 9

〈〈1,−5〉, 1〉 10

〈〈1,−5〉, 2〉 11

〈〈1,−5〉, 3〉 12

〈〈1.25,−3〉, 2〉 13

〈〈1.5,−3〉, 1〉 14

〈〈1.75,−1〉, 1〉 15

Table 5.4: The ordered elements of setV

Maximal Translatable Patterns

For every vector v in a dataset D, there will be at least one pattern P (a

set of datapoints), which is translatable by v onto another pattern within our

dataset (this includes the trivial case where the pattern contains just a single

datapoint). We define the maximal translatable pattern (MTP) for v as the

largest translatable pattern for v (where in this case, by largest, we mean the

one having the most datapoints), i.e.

MTP (v, D) = {d|d ∈ D ∧ d + v ∈ D} (5.7)

One such MTP from our example dataset, illustrated in Figure 5.4, is:

MTP (〈1,−5〉, D) = {〈0, 72〉, 〈0.5, 74〉, 〈0.75, 76〉}

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 110

The MTPs for a dataset can be found by grouping the elements of vector table V

into those elements having the same vector v, but distinct i values (remember,

all vector table elements are of the form 〈v, i〉). The datapoints having ordered

indices i make up the MTP for vector v. For example, referring to Table 5.4, we

can see that the first entry, 〈〈0.25,−9〉, 3〉, is the only entry having the vector

〈0.25,−9〉. The single corresponding value of i is 3, and so, referring now

to Table 5.1, we see that the datapoint having ordered index 3 is 〈0.75, 76〉.
Therefore the MTP for vector 〈0.25,−9〉 is the single datapoint 〈0.75, 76〉.

Similarly, we can see from the next two entries in Table 5.4 that there are

two vector table elements having the vector 〈0.25, 2〉. The two corresponding

values of i are 2 and 5, so, referring to Table 5.1, we find the datapoints 〈0.5, 74〉
and 〈1.5, 69〉 which have ordered indices 2 and 5 respectively. Therefore, the

MTP for the vector 〈0.25, 2〉 is the pair of datapoints 〈0.5, 74〉 and 〈1.5, 69〉.
Using ordered pairs of vectors v and their corresponding MTPs (which are

themselves sets of datapoints), we list the full set of ten MTPs for our example

dataset:

{ 〈 〈0.25,−9〉, {〈0.75, 76〉} 〉,

〈 〈0.25, 2〉, {〈0.5, 74〉, 〈1.5, 69〉} 〉,

〈 〈0.5,−7〉, {〈0.5, 74〉} 〉,

〈 〈0.5, 2〉, {〈0, 72〉, 〈1, 67〉} 〉,

〈 〈0.75,−7〉, {〈0.75, 76〉} 〉,

〈 〈0.75, 4〉, {〈0, 72〉, 〈1, 67〉} 〉,

〈 〈1,−5〉, {〈0, 72〉, 〈0.5, 74〉, 〈0.75, 76〉} 〉,

〈 〈1.25,−3〉, {〈0.5, 74〉} 〉,

〈 〈1.5,−3〉, {〈0, 72〉} 〉,

〈 〈1.75,−1〉, {〈0, 72〉} 〉 }

Translational Equivalence Classes

The pattern we arrive at when translating the pattern P by the vector v, is

denoted by τ(P,v). We denote translational equivalence between two patterns

P1 and P2 by

P1 ≡τ P2 (5.8)

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 111

and we define translational equivalence as follows:

P1 ≡τ P2 ⇐⇒ ∃v : τ(P1,v) = P2 (5.9)

The TEC of a pattern P within dataset D is the set of patterns Q which are

translationally equivalent to P and members of dataset D, i.e.:

TEC(P,D) = {Q|Q ≡τ P ∧Q ⊆ D} (5.10)

Alternatively, a more compact way to express a TEC is as an ordered pair,

where the first member of the ordered pair is a pattern P , and the second is

the set of vectors v by which P is translatable within D, i.e.

TEC(P,D) = 〈P, {v|τ(P,v) ⊆ D}〉 (5.11)

Finding the complete set of TECs for our dataset D, without redundancy (i.e.

If TEC A maps onto MTP B, we don’t need another TEC containing the dat-

apoints of MTP B), is the ultimate purpose of the SIATEC algorithm. To find

these TECs, we begin by grouping the MTPs of set D into sets of translationally

equivalent MTPs, denoted by MEQl, where l is the index of each equivalent

set. For our example dataset, we have:

MEQ1 = { 〈 〈0.25,−9〉, {〈0.75, 76〉} 〉,

〈 〈0.5,−7〉, {〈0.5, 74〉} 〉,

〈 〈0.75,−7〉, {〈0.75, 76〉} 〉,

〈 〈1.25,−3〉, {〈0.5, 74〉} 〉,

〈 〈1.5,−3〉, {〈0, 72〉} 〉,

〈 〈1.75,−1〉, {〈0, 72〉} 〉 }

MEQ2 = { 〈 〈0.25, 2〉, {〈0.5, 74〉, 〈1.5, 69〉} 〉,

〈 〈0.5, 2〉, {〈0, 72〉, 〈1, 67〉} 〉,

〈 〈0.75, 4〉, {〈0, 72〉, 〈1, 67〉} 〉 }

MEQ3 = { 〈 〈1,−5〉, {〈0, 72〉, 〈0.5, 74〉, 〈0.75, 76〉} 〉 }

Now, from each set MEQl, we extract only the MTP for which the translating

vector has the smallest ordered index. These are the patterns Pl for each of our

TECs – for our example datatset, these are:

P1 = {〈0.75, 76〉}

P2 = {〈0.5, 74〉, 〈1.5, 69〉}

P3 = {〈0, 72〉, 〈0.5, 74〉, 〈0.75, 76〉}

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 112

Finally, we determine the set of vectors from set W (see Equation 5.5) which

will translate each pattern P within dataset D. This completes the SIATEC

algorithm, and for our example dataset, the solution is:

TEC1 = 〈{〈0.75, 76〉},

{〈0, 0〉, 〈1,−5〉, 〈−0.75,−4〉, 〈0.75,−7〉, 〈0.25,−9〉, 〈−0.25,−2〉}〉

TEC2 = 〈{〈0.5, 74〉, 〈1.5, 69〉},

{〈0, 0〉, 〈−0.5,−2〉, 〈0.25, 2〉}〉

TEC3 = 〈{〈0, 72〉, 〈0.5, 74〉, 〈0.75, 76〉}

{〈0, 0〉, 〈1,−5〉}〉

5.2 Requirements

In this section, we translate the mathematical definitions of the SIA and SIATEC

algorithm functions into a list of requirements which must be fulfilled by our Se-

mantic Web implementation. Both algorithms share many common steps, and

consequently our Semantic Web implementation takes the form of one complete

procedure which produces the required output from both algorithms.

It is clear from Section 5.1.2 that we need to be able to represent multi-

dimensional datapoints and vectors as RDF triples. We also need the ability to

determine equality between vectors (and also therefore datapoints, which can be

considered as a subclass of vectors), as well as implement greater than and less

than vector comparisons. Furthermore, we need methods for representing and

comparing members of sets V and W (see Equations 5.4 and 5.5 respectively),

alternatively referred to as Vector Table Elements (VTEs), and of representing

MTPs and TECs as RDF triples, as well as determining equivalence between

those entities. The challenge here is in finding general solutions which can be

applied to vectors of any number of dimensions, as well as MTPs and TECs

consisting of any number of datapoints (which will in turn have some unknown

number of dimensions themselves). Thus, our complete requirements are:

1. Represent multidimensional datapoints and vectors as RDF triples.

2. Determine greater than and less than relationships between the RDF rep-

resentations of any two k-dimensional datapoints d1 and d2.

3. Order, using the relations defined in 2, a set of n (RDF) datapoints.

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 113

4. Calculate the vector v = d2−d1 where d1 and d2 are RDF representations

of datapoints and v is an RDF representation of a vector.

5. Compute the vector tables V and W , and represent them using RDF.

6. Order the elements of the vector tables V and W .

7. Determine equality between the RDF representations of any two k-dimensional

vectors v1 and v2.

8. Compute MTPs and represent them as RDF.

9. Compute TECs and represent them as RDF.

5.3 A Semantic Web Implementation of the SIA and

SIATEC Algorithms

In this section we describe our solutions to the requirements listed in Section

5.2, cross-referencing with the code listed in Appendix B. The code is also

available online6.

5.3.1 Requirement 1

Represent Multidimensional Datapoints and Vectors as RDF Triples

In order to satisfy requirement 1, we begin by defining some OWL classes and

properties in a namespace sia:

sia:Vector rdf:type owl:Class .
sia:dimVal rdf:type rdf:Property .
sia:DimensionValue rdf:type owl:Class .
sia:dimension rdf:type rdf:Property .
sia:value rdf:type rdf:Property .

With these simple entities we may associate one or more sia:DimensionValue

nodes with a single sia:Vector node. Each sia:DimensionValue node must

have exactly one sia:dimension property and one sia:value property. Figure

5.5 illustrates how we would express the two-dimensional vector [0, 72] using this

ontology (notice that we have two sia:DimensionValue nodes – one to denote

that the value of dimension 1 is 0, and another one to denote that dimension

6https://code.soundsoftware.ac.uk/projects/siasesame/repository/entry/

queries/sample.sparql

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 114

2 has a value of 72). The full SIA ontology, including relevant property range

assertions, is:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix sia: <http://example.org/sia#> .

sia:Dataset a owl:Class.

sia:DimensionValue a owl:Class;
owl:intersectionOf (
[a owl:Restriction;
owl:onProperty sia:dimension;
owl:cardinality 1]

[a owl:Restriction;
owl:onProperty sia:value;
owl:cardinality 1]) .

sia:VectorTableElement a owl:Class .
sia:Vector a owl:Class .
sia:Datapoint rdfs:subClassOf sia:Vector.
sia:SetW a owl:Class .
sia:SetV rdfs:subClassOf sia:SetW .
sia:OrderedSet rdfs:subClassOf sia:Dataset .

sia:dimVal a rdf:Property .
sia:dimVal rdfs:range sia:DimensionValue .
sia:dimension a rdf:Property .
sia:value a rdf:Property .
sia:fromDatapoint a rdf:Property .
sia:toDatapoint a rdf:Property .
sia:memberOfOrderedSet a rdf:Property .
sia:memberOfOrderedSet rdfs:range sia:OrderedSet .
sia:vector a rdf:Property .
sia:vector rdfs:range sia:Vector .
sia:canBeTranslatedBy a rdf:Property .

Note though that our initial dataset will consist of datapoints, not vectors. We

consider a sia:Datapoint to be a sub-class of a sia:Vector (a datapoint is

simply a vector whose starting point is the origin O).

If we label the datapoints from the example score shown in Figure 5.2 using

the letters A to F, as shown in Figure 5.6, then datapoint A could be represented

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 115

Figure 5.5: Conceptual representation of the vector [0, 72], using triples

in RDF, using N3 notation,7 as follows:

sia:A a sia:Datapoint;
sia:vector _:vectorA;
sia:memberOfDataset _:dataset1 .

_:vectorA sia:dimVal _:dva;
sia:dimVal _:dvb .

_:dva sia:dimension "1"^^xsd:integer;
sia:value "0.0"^^xsd:double .

_:dvb sia:dimension "2"^^xsd:integer;
sia:value "72.0"^^xsd:double .

Everything preceded by sia: in this RDF data belongs to the namespace

sia, whilst everything preceded by : is a blank node. We have a node sia:A,

which is a sia:Datapoint. Additionally, node sia:A has a sia:vector prop-

erty, the object of which is the blank node :vectorA, and a sia:memberOfDataset

7http://www.w3.org/2000/10/swap/Primer.html

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 116

property, the object of which is the blank node :dataset1.

The blank node :vectorA has two sia:dimVal properties – the object of

one of them is the blank node :dva, and the object of the other is the blank

node :dvb.

Blank node :dva has a sia:dimension property, the object of which is

the the integer value 1, and a sia:value property, the object of which is the

double value 0.0. Blank node :dvb has a sia:dimension property, the object

of which is the the integer value 2, and a sia:value property, the object of

which is the double value 72.0. Hence, datapoint A has the value 0 in dimension

1, and 72 in dimension 2.

0 0.5 1 1.5 2
66

68

70

72

74

76

Time (secs)

M
id
in
ot
e
nu
m
be
r

A

B

C

D

E

F

Figure 5.6: Datapoints labelled A to F

5.3.2 Requirement 2

Datapoint Relational Operation

We have already seen how, using Equation 5.3, to determine whether or not

one datapoint is less than another. We now re-write Equation 5.3 in terms

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 117

of our SIA ontology. For a k-dimensional dataset, with datapoints d1 and d2

represented in RDF as

d1 rdf:type sia:Datapoint

d2 rdf:type sia:Datapoint

we say d1 < d2 iff all of the following RDF triples exist ∀j ∈ {1, ..., k} and

∀i ∈ {1, 2}:

d1 sia:vector v1

d2 sia:vector v2

v1 sia:dimVal dv1,j

v2 sia:dimVal dv2,j

dvi,j sia:dimension j

dvi,j sia:value xi,j

AND the following statement is true when ∃j ∈ {2, ..., k} and ∀m ∈ {1, ..., j − 1}:

(x1,1 < x2,1) ∨ ((x1,j < x2,j) ∧ (x1,m = x2,m))

5.3.3 Requirement 3

Order a set of n (RDF) datapoints

Beyond determining that d1 < d2, we also want to satisfy requirement 3, i.e.

order a set of n datapoints. To implement such an ordering algorithm in a proce-

dural programming language is trivial, but we’re deliberately limiting ourselves

here to the Semantic Web technologies; namely, RDF, OWL 2 and SPARQL

1.1. The key operations we need to perform are ordering (of dimensions) and

relational comparison (between values). Furthermore, due to our objective of

being able to handle datasets of any dimensionality k, the number of RDF triples

across which these operations must be performed varies according to both n and

k. RDF is merely a data format, and offers no mechanism for numerical com-

parison. Similarly, OWL, whilst offering various set (union, intersection etc.)

and logic (owl:equivalentClass etc.) operations, has no numerical comparison

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 118

mechanism either.

SPARQL, on the other hand, does provide these operations, and conse-

quently our Semantic Web technology implementation of the SIA and SIATEC

algorithms takes the form of a collection of SPARQL queries, to be used in

sequence, operating on an RDF dataset expressed in terms of the SIA ontology.

The two SPARQL queries we use to perform datapoint ordering are listed in

Section B.1 of Appendix B. Query 1, labelled ‘InsertDatapointOrderBarOne’,

is a nested query, two levels deep. The innermost query is duplicated here, with

line numbers:

1 SELECT ?datapoint1 ?datapoint2
2 (MIN(?dimension) AS ?smallestDimensionMin)
3 WHERE
4 {
5 ?datapoint1 sia:vector ?vector1 .
6 ?vector1 a sia:Vector .
7 ?datapoint1 a sia:Datapoint .
8 ?datapoint1 sia:memberOfDataset ?dataset .
9 ?vector1 sia:dimVal ?dimVal1 .
10 ?dimVal1 sia:dimension ?dimension .
11 ?dimVal1 sia:value ?value1 .
12
13 ?datapoint2 sia:vector ?vector2 .
14 ?vector2 a sia:Vector .
15 ?datapoint2 a sia:Datapoint .
16 ?datapoint2 sia:memberOfDataset ?dataset .
17 ?vector2 sia:dimVal ?dimVal2 .
18 ?dimVal2 sia:dimension ?dimension .
19 ?dimVal2 sia:value ?value2 .
20
21 FILTER (?value1 != ?value2) .
22 }
23 GROUP BY ?datapoint1 ?datapoint2

This sub-query selects all possible values of the variable ?datapoint1 (line 1),

such that there exists at least one RDF triple having subject ?datapoint1 and

property sia:vector (line 5). The objects of any triples matching this con-

dition can be anything – and whatever objects are found, are stored in the

variable ?vector1. Furthermore, there must exist at least one triple having

subject ?vector1, property rdf:type (‘a’ is a frequently used abbreviation of

rdf:type), and object sia:Vector (line 6). Line 7 stipulates that any values

of the variable ?datapoint1 must also have an rdf:type of sia:Datapoint.

So far then, have have ensured that any values of the variable ?datapoint1 do

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 119

indeed represent datapoints, and in ?vector1, we hopefully have a link to fur-

ther triples which will provide us with the actual values of our multidimensional

datapoint.

Line 9 adds the condition that for any values of the variable ?vector1, there

must exist at least one triple having property sia:dimVal. We would expect

the number of triples matching this condition to be equal to the dimensionality

of our dataset. Accordingly, all objects of any triples found to match this

condition are stored in another variable, ?dimVal1. For each specific value of

?dimVal1, lines 10 and 11 pick out for us the dimension (variable ?dimension)

and the value (variable ?value1).

Looking again at line 1, we see that it also selects all possible values of

another variable, ?datapoint2. The conditions associated with ?datapoint2

mirror those of ?datapoint1, and are defined in lines 13 to 19. A key point to

note though is that together, lines 10 and 18, by stipulating the same variable

name ?dimension as their objects, ensure that the values ?value1 and ?value2

we obtain from the two datapoints ?datapoint1 and ?datapoint2, are from the

same dimension. Similarly, lines 8 and 16 ensure that both datapoints belong

to the same ?dataset.

Line 21 adds a SPARQL FILTER to the set of conditions. This filter stip-

ulates that for every set of results returned by the query, the values of the

variables ?value1 and ?value2 must not be equal. The consequence of this

is that our result set currently consists of all possible pairs of datapoints, and

the dimensions in which each pair of datapoints have unequal values. Line 2

(which is a continuation of the SELECT part of this SPARQL query), is known

as an aggregate function, and works in conjunction with the GROUP BY clause

in line 23. For each distinct pair of datapoints ?datapoint1 and ?datapoint2

(as specified within the GROUP BY clause) in the resultset, it determines the

MIN (minimum) value of all the values of ?dimension, and stores this minimum

value in a new variable ?smallestDimensionMin. Consequently, this query re-

turns a resultset containing three columns of variable values, ?datapoint1,

?datapoint2, and ?smallestDimensionMin. Each row of the resultset there-

fore shows us the smallest dimension in which the two datapoints differ in value.

The output of this query, acting upon our example dataset, is shown below (for

brevity we display the variable values in abbreviated form, rather than full

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 120

URIs):

datapoint1 | datapoint2 | smallestDimensionMin |
--
sia#F | sia#B | 1 |
sia#F | sia#C | 1 |
sia#F | sia#D | 1 |
sia#F | sia#E | 1 |
sia#F | sia#A | 1 |
sia#B | sia#F | 1 |
sia#B | sia#C | 1 |
sia#B | sia#D | 1 |
sia#B | sia#E | 1 |
sia#B | sia#A | 1 |
sia#C | sia#F | 1 |
sia#C | sia#B | 1 |
sia#C | sia#D | 1 |
sia#C | sia#E | 1 |
sia#C | sia#A | 1 |
sia#D | sia#F | 1 |
sia#D | sia#B | 1 |
sia#D | sia#C | 1 |
sia#D | sia#E | 1 |
sia#D | sia#A | 1 |
sia#E | sia#F | 1 |
sia#E | sia#B | 1 |
sia#E | sia#C | 1 |
sia#E | sia#D | 1 |
sia#E | sia#A | 1 |
sia#A | sia#F | 1 |
sia#A | sia#B | 1 |
sia#A | sia#C | 1 |
sia#A | sia#D | 1 |
sia#A | sia#E | 1 |

In this instance, all unequal datapoints differ in dimension 1, but that wouldn’t

always necessarily be the case. These results are then used by an outer query,

shown here (we abbreviate the body of the innermost sub-query from above

with ‘...’):

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 121

1 SELECT ?datapoint1 (COUNT (?datapoint2) AS ?numSmallerDatapoints)
2 ?dataset
3 WHERE
4 {
5 ?datapoint1 sia:vector ?vector1 .
6 ?vector1 a sia:Vector .
7 ?vector1 sia:dimVal ?dimVal1x .
8 ?datapoint1 sia:memberOfDataset ?dataset .
9 ?dimVal1x sia:dimension ?smallestDimensionMin .
10 ?dimVal1x sia:value ?value1x .
11
12 ?datapoint2 sia:vector ?vector2 .
13 ?vector2 a sia:Vector .
14 ?vector2 sia:dimVal ?dimVal2x .
15 ?datapoint2 sia:memberOfDataset ?dataset .
16 ?dimVal2x sia:dimension ?smallestDimensionMin .
17 ?dimVal2x sia:value ?value2x .
18
19 FILTER (?value1x > ?value2x) .
20
21 {
22 SELECT ?datapoint1 ?datapoint2
23 (MIN(?dimension) AS ?smallestDimensionMin)
24 WHERE
25 {
26 ...
27 }
28 GROUP BY ?datapoint1 ?datapoint2
29 }
30 }
31 GROUP BY ?datapoint1 ?dataset

This query imposes much the same conditions upon ?datapoint1 and ?data-

point2 as before, with the exceptions that this time, we use the value of

?smallestDimensionMin from the sub-query to specify in which dimension

we want to query values ?value1x and ?value2x (lines 9, 10, 16 and 17),

and we use a different FILTER condition – this time, we stipulate that the

value of ?value1x must be greater than that of ?value2x. We also use the

COUNT aggregate function, in conjunction with the GROUP BY clause of line

31, to count the number of ?datapoint2 datapoints for which ?value1x (from

?datapoint1) is greater than that of ?value2x (from ?datapoint2). We store

this COUNT value in a new variable, ?numSmallerDatapoints. The results

now are as follows:

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 122

datapoint1 | numSmallerDatapoints | dataset |

sia#F | 5 | _:node1 |
sia#B | 1 | _:node1 |
sia#C | 2 | _:node1 |
sia#D | 3 | _:node1 |
sia#E | 4 | _:node1 |

The outermost part of the full query then uses a SPARQL BIND operation to

increment the value of ?numSmallerDatapoints. The result of this BIND op-

eration is stored in a new variable ?orderedIndex, and we are now able to use

a SPARQL INSERT query to insert new triples into the triple store, indicating

that each value of ?datapoint1 has a certain ?orderedIndex, and is also a

member of the ordered set ?dataset. The outermost part of the query follows

(again, we abbreviate the sub-queries listed above for brevity).

INSERT { ?datapoint1 sia:orderedIndex ?orderedIndex;
sia:memberOfOrderedSet ?dataset }

WHERE
{
{
SELECT ?datapoint1 (COUNT (?datapoint2) AS ?numSmallerDatapoints)

?dataset
WHERE
{
...

}
GROUP BY ?datapoint1 ?dataset

}

BIND (?numSmallerDatapoints + 1 AS ?orderedIndex)
}

Given n datapoints, this will assert the sia:orderedIndex of datapoints for

indices 2 to n. Query 2 (Appendix B), ‘InsertDatapointOrderLastOne’, uses

a FILTER NOT EXISTS condition to search for the sole remaining data-

point for which no sia:orderedIndex has been assigned, and assigns it a

sia:orderedIndex of 1 accordingly. For our example dataset, the ascending

order of the datapoints is A, B, C, D, E, F.

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 123

5.3.4 Requirements 4 and 5

Calculate the vector v = d2− d1 where d1 and d2 are RDF representa-

tions of datapoints and v is an RDF representation of a vector

Compute the vector tables V and W , and represent them using RDF

The next step is to calculate the two vector tables, V and W . The elements

of vector table W are all the vectors which connect every datapoint to every

other datapoint in our dataset. We also retain a record of the pair of datapoints

used to produce each vector – the ‘from’ datapoint and the ‘to’ datapoint. For

our example datapoints A to F, vector table W is shown in Table 5.3. Vector

table V is the subset of vector table W for which each ‘from’ datapoint is less

than (in the sense defined in Section 5.3.2) the ‘to’ datapoint. For our example

dataset, this gives us the vector table V shown in Table 5.2. Computing and

asserting this vector table data in our RDF triple store is accomplished via five

sequential SPARQL queries (see also Appendix B):

1. Query 3 ‘InsertSiatecVectorTableBnodes’ – Creates skeleton entries for

both vector tables (V and W), by selecting all possible pairs of data-

points ?datapoint1 and ?datapoint2 belonging to the same dataset,

and creating one blank node of type sia:VectorTableElement for each

pair. Asserts that this blank node has a sia:fromDatapoint which is

?datapoint1 and a sia:toDatapoint which is ?datapoint2, and that

it is associated with the same dataset as these datapoints. Note that we

haven’t yet determined the numerical values of the vectors themselves.

2. Query 4 ‘InsertSetVClassification’ – Make use of the sia:orderedIndex

property of the ‘from’ and ‘to’ datapoints associated with each sia:Vector-

TableElement, created in the previous step, in order to determine whether

or not to assert that a particular sia:VectorTableElement has rdf:type

sia:SetV.

3. Query 5 ‘InsertSetWClassification’ – Assert that all sia:VectorTable-

Element subjects belonging to the same dataset have rdf:type sia:SetW.

4. Query 6 ‘InsertNewDimValsForVectorTable’ – Determine which, if any, of

the sia:DimensionValue nodes we will need to represent the numerical

values in our vector tables, do not already exist in our triple store, and

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 124

create them. This simplifies future queries by avoiding duplicate RDF

blank nodes which in fact represent the same thing.

5. Query 7 ‘InsertVectorTableDetails’ – Now that all the necessary sia:-

DimensionValue nodes exist, make the correct associations between sia:-

VectorTableElement and sia:DimensionValue nodes.

5.3.5 Requirement 6

Order the Elements of the Vector Tables V and W

As with the datapoint ordering solution to Requirement 3, we employ two

queries here – one (Query 8) which determines the sia:orderedIndex of sia:-

VectorTableElement nodes for indices 2 to n, and another (Query 9) for the

remaining sia:VectorTableElement node. The larger part of the work is per-

formed in Query 8, ‘InsertVteOrderBarOne’. In order to determine whether

one vector table element is greater than, equal to, or less than another, we first

compare the two vectors (i.e. the vector values shown in Table 5.3) in the same

way that we would compare two datapoints (see Section 5.3.2). In the cases

where the two vectors are equal, we then perform the same relational operation

on the ‘from’ datapoints of the two vector table elements.

Consequently, Query 8 is the UNION of two subqueries – one searches for

all pairs of sia:VectorTableElement nodes, ?vte1 and ?vte2, for which we

are able to determine a greater than or less than relationship from the vector

values alone, whilst the other searches for all pairs of sia:VectorTableElement

nodes whose vector values are equal in all dimensions, and then compares the

sia:orderedIndex value of the two corresponding ‘from’ datapoints. We now

have a set of results showing us all the possible pairs of vector table elements

where ?vte1 > ?vte2. As with the datapoint ordering solution, we then de-

termine the sia:orderedIndex of each sia:VectorTableElement by counting

how many other sia:VectorTableElement nodes are ‘less than’ it.

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 125

5.3.6 Requirement 7

Determine equality between the RDF representations of any two k-

dimensional vectors v1 and v2

Critical to later steps of the SIA and SIATEC algorithms is the ability to

determine equality between vector table elements. In the context of vector table

elements, by equality, we mean the same vector values, regardless of the ‘from’

and ‘to’ datapoints associated with the vector table element. So, for example, in

our vector table V , shown in Table 5.2, the vector values of both the entries from

A to D and B to E, are both (1, -5), hence we deem these vector table elements

to be equivalent. As with several of the other requirements, the challenge is

in finding a way to compare an unknown number of RDF object node values.

Query 10 achieves this by selecting pairs of vector table elements having equal

values in at least one dimension, counting the number of dimensions in which

the vector table elements match, and filtering out any results for which this

number is less than the dimensionality of the dataset. We then employ the

OWL property owl:equivalentClass to assert that one vector table element

?vte1 is equivalent to another, ?vte2. Because we are using an OWL-enabled

reasoning engine, a consequence of this assertion is that triples of the form

?vte1 rdfs:subClassOf ?vte2 (as well as ?vte2 rdfs:subClassOf ?vte1)

will be added to our triple store, enabling us to easily locate equivalent vectors

in future queries.

5.3.7 Requirement 8

Compute MTPs and represent them as RDF

The final step of the SIA algorithm (and also essential for the SIATEC algo-

rithm) is to find all the MTPs for our dataset. We know from Section 5.1.2 that

there is one MTP for each set of ‘equivalent’ vector table elements, and that the

particular vector table element we want to select from each equivalent group

is the ‘smallest’ one – i.e. the one having the smallest ordered index (calcu-

lated previously by Queries 8 and 9). Consequently, query 10 makes use of the

rdfs:subClassOf relationship between equivalent vector table elements which

we may now infer from the previous step, selecting only the vector table ele-

ment ?vte having the smallest sia:orderedIndex value from each equivalent

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 126

group, in order to assert that a new blank node ?mtp has rdf:type sia:Mtp

and sia:vector ?vte. We also select all the ‘from’ datapoints from the whole

group of equivalent VTEs, and associate these with our new MTP – this is the

group of datapoints which may be mapped onto another set of datapoints in

our dataset via the vector values of the corresponding VTE. This completes the

SIA algorithm.

5.3.8 Requirement 9

Compute TECs and represent them as RDF

Finally, completing the SIATEC algorithm, we find all the TECs for our dataset;

that is, the unique set of datapoint patterns which are repeated at least once

somewhere in our dataset, and the set of vectors which map each TEC to a new

set of datapoints. We achieve this using two quite complex queries – Query 12

identifies the sets of MTPs which are in fact geometrically translated versions of

each other, and selects from each group the one having the ‘smallest’ associated

vector table element, which we now call a TEC. Query 13 then selects the set

of vectors by which each TEC may be geometrically translated onto another

MTP.

Both of these are non-trivial operations – Query 12 contains 8 levels of

nested sub-queries. Beginning at the most deeply nested query and working

outwards, we select the unique set of vectors from our vector table W . We then

find all combinations of these vectors and all of our MTPs (also selecting all

the datapoints belonging to each MTP), in order that we may test whether or

not each MTP may be successfully mapped via every vector onto another MTP.

We use a SPARQL BIND operation to project the value of one datapoint from

each MTP, in one dimension, via the value of each vector, in the correspond-

ing dimension, searching for matching datapoint values in other MTPs. Next,

for each vector, MTP datapoint and projected MTP datapoint, we count the

number of dimensions in which the two data points match, filtering out any

cases in which the number of matching dimensions is not equal to the dimen-

sionality of our dataset. From this set of data, we are able to count the number

of datapoints that each MTP and each projected MTP have in common, be-

fore filtering out any results in which the number of matched datapoints is not

equal to the total number of datapoints belonging to the MTP in question. The

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 127

results at this stage may still contain entries in which one vector was used to

map between some pairs of datapoints, and a different one used for other dat-

apoint pairs. Consequently we now count the number of vector table elements

appearing per unique MTP pair, and filter out any pairs of MTPs for which

this number is not one. We now have a list of distinct pairs of MTPs which

map onto each other – this in turn enables us to group MTPs into equivalent

sets. For each equivalent set, we select the MTP with the ‘smallest’ associated

vector table element, and assert that this MTP also has rdf:type sia:Tec.

We have now added triples to our triple store which define our unique set

of TECs, and it just remains to associate each TEC with the set of vectors

from our vector table W which will translate the TEC onto other datapoints

within our dataset. Starting again at the innermost sub-query and working

outwards, Query 13 selects the unique set of vectors from vector table W , pairs

each one with every TEC and concurrently counts the number of datapoints

belonging to each TEC, performs the projection of the value of each dimension

of each datapoint via each vector, counts the number of dimensions in which

these projections successfully map onto other datapoints, counts the number

of successfully projected datapoints and the number of datapoints belonging

to the TEC, and filters out any results in which these numbers are not equal.

We may then finally assert that a particular TEC can be translated by (using

property sia:canBeTranslatedBy) certain VTEs. This completes the SIATEC

algorithm.

5.3.9 Informative Queries

Queries 1 to 13, executed sequentially on a triple store containing datapoints

described using the ontology shown in Section 5.3.1, carry out the necessary

computations in order to find the MTPs and TECs which form the results of

the SIA and SIATEC algorithms. Queries 14 to 18 may be used to extract

these results – Query 14 shows us the full details of any MTPs found (the

blank node representing the MTP, the ordered index of the vector by which

this group of datapoints may be translated onto other datapoints, the values in

each dimension of the vector, the values in each dimension of every datapoint

belonging to this MTP, and the ordered index of each datapoint). Similarly,

Query 15 shows us the details of any TECs found (the blank node representing

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 128

the TEC, the values in each dimension of the TEC’s vector, and the values

in each dimension of every datapoint belonging to this TEC). Queries 16 and

17 count the number of MTPs and TECs found, respectively, whilst Query 18

is a simple query, useful for debugging, which select all triples from the triple

store. The full set of SPARQL queries are also available online8, and we used

the OWLIM RDF database management system9 to run our queries.

5.3.10 MIDI to RDF

Before we are able to process a set of datapoints, we need some method of

converting symbolic music data (in our case we use MIDI data) to the SIA RDF

format described in Section 5.3.1. We use some custom written Java code, and

classes from the javax.sound.midi package for extracting onset time, pitch and

channel (three-dimensional) information from a midi file. In pseudo-code, the

process is:

read midi file

for each midi track {

get all midi events

for each midi event {

if the event is a note onset {

get event time and pitch

create an RDF blank node subject "datapointBnode" with
property rdf:type and object sia:Datapoint

find an existing, or create if one doesn’t exist, RDF
blank node "vectorBnode" which has three
sia:DimensionValue objects corresponding to onset time
(dimension 1), pitch (dimension 2) and channel number
(dimension 3)

Add the triple "datapointBnode" (subject) sia:vector
(property) "vectorBnode" (object)

}
}

}

8https://code.soundsoftware.ac.uk/projects/siasesame/repository/entry/

queries/sample.sparql
9http://www.ontotext.com/owlim

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 129

write the RDF dataset out to file

This process could easily be modified to incorporate information in other di-

mensions, e.g. offset time, channel loudness etc., or alternatively reduced down

to two dimensions with just onset time and pitch (for example).

5.4 Performance Evaluation

There are two aspects to the evaluation of our SPARQL implementation of

SIA and SIATEC – validation of the results, and execution time. In order

to validate the results we compared our SPARQL results against both a Java

implementation of SIA(TEC) written by the author of this thesis, and available

from a Mercurial repository10, and an implementation by Meredith, available

from a subversion repository11 using (a) the small set of two-dimensional data

given in (Meredith et al., 2002), and (b) both two and three dimensional versions

of a real midi file. In all cases the results matched.

Execution time of both our SPARQL implementation12 and the purely Java

version10 was measured across a varying number of datapoints n, and for k = 2

and k = 3 dimensions. Both implementations were run on an Apple Mac Mini,

with 2.3 GHz Intel Core i5 processor, 4GB 1333 MHz RAM, and default mini-

mum and maximum heap size settings for the Java Virtual Machine. The results

are shown with a log scale on the y-axis in Figures 5.7 (k = 2) and 5.8 (k = 3).

We have a range of 1 to 150 datapoints for the Java implementation, but only

1 to 17 when k = 2 and 1 to 11 when k = 3 for the SPARQL implementation.

Insufficient memory prevented us from obtaining results for higher numbers of

datapoints for the SPARQL queries. Execution times for both implementations

begin to exhibit polynomial and/or log type increases beyond certain datapoint

number thresholds (approximately n = 6 for the SPARQL implementation and

n = 50 for Java). We speculate that the slightly surprising shape of the curves

below these thresholds are a consequence of the use of the ‘Just-In-Time’ compi-

lation technique inherent in Java. Just-InTime compilation results in an initial

10https://code.soundsoftware.ac.uk/hg/semantic-sia
11http://chromamorph.googlecode.com/svn/trunk
12https://code.soundsoftware.ac.uk/projects/siasesame/repository/entry/

queries/sample.sparql

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 130

0 50 100 150
10

1

10
2

10
3

10
4

10
5

10
6

No. Datapoints (n)

T
im

e
 (

m
s
)

Java

SPARQL

Figure 5.7: Execution time for both the Java and SPARQL implementations of
SIATEC, for (k = 2) dimensions

‘quick and dirty’ compilation, which is fast to compile but not necessarily op-

timum in terms of execution time. The Java Virtual Machine then monitors

the active threads at run time, and then if necessary, makes adjustments to the

compiled code in order to optimise execution time. Our Java code involves a

large number of calls to an object comparison method (for ordering datapoints

and vectors), which may well be optimised by the Java Just-In-Time compiler

as the number of datapoints increases.

Increasing the number of dimensions k from 2 to 3 has little effect on the ex-

ecution time of the Java implementation, but is quite significant in the SPARQL

implementation. The difference is shown more clearly in Figure 5.9. It’s clear

from Figures 5.7 and 5.8 that the execution time of the SPARQL version of

SIATEC is significantly inferior to the pure Java version, reaching over 2 min-

utes for n = 17 datapoints and k = 2 dimensions, whereas the Java implemen-

tation takes just 40 seconds to process n = 150 two-dimensional datapoints.

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 131

0 50 100 150
10

1

10
2

10
3

10
4

10
5

10
6

No. Datapoints (n)

T
im

e
 (

m
s
)

Java

SPARQL

Figure 5.8: Execution time for both the Java and SPARQL implementations of
SIATEC, for (k = 3) dimensions

Some heuristic curve-fitting reveals the execution time of our Java implemen-

tation to be approximately O(k0.3n6), compared to approximately O(k2n7) for

our SPARQL implementation. Our SPARQL queries, then, introduce a signifi-

cant performance cost, particularly with respect to the dimensionality k of the

dataset, but also to the number of datapoints n.

The SPARQL implementation actually consists of thirteen separate queries

executed in sequence. In Figure 5.10 we show a typical break-down (obtained

for n = 17 datapoints and k = 2 dimensions) of the execution times of the

individual queries as percentages of the full set of thirteen (for brevity we only

show the slowest seven – the remaining queries have vanishingly small execution

times compared to these seven). Already we observe that one particular query

dominates the overall execution time; and it is instructive to delve a little deeper

into the nature of each query in order to establish why some are faster than

others.

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 132

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

No. Datapoints (n)

Ti
m

e
(s

ec
on

ds
)

k = 2
k = 3

Figure 5.9: Execution time for the SPARQL implementation of SIATEC, for
(k = 2 & k = 3) dimensions

SPARQL queries may involve various additional levels of complexity beyond

the most simple cases. Our SIATEC queries, to differing degrees, utilise nested

sub-queries, aggregate functions (e.g. find the minimum of a range of values),

alternatives (the UNION SET operation), assignments (binding the result of

an arithmetic operation to a variable), and restrictions (filtering out results

according to certain conditions).

Table 5.5 makes explicit these additional levels of complexity for each query.

The slowest query by far (‘InsertDistinctTecs’) also has the deepest level of

nested sub-queries (eight), the highest number of aggregate functions (also

eight), the joint-highest number of assignments (one), and the joint-second high-

est number of alternatives and restrictions (zero and three, respectively). Ac-

cordingly, the fastest of these seven queries (‘InsertNewDimValsForVectorTable’)

has the joint lowest number in all categories except assignments.

The extensive use of nested sub-queries in combination with a high number

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 133

12 8 13 10 7 1 6
0

10

20

30

40

50

60

70

80

90

SPARQL query ID

%
 e

xe
cu

tio
n

tim
e

Figure 5.10: Relative execution times for SPARQL queries

Query
ID

Query Name % Execu-
tion Time

Deepest
Nesting
Level

Aggregate
Functions

Alternatives Assignments Restrictions

12 InsertDistinctTecs 84.7 8 8 0 1 3

8 InsertVteOrderBarOne 9.8 3 4 1 1 5

13 InsertTecVectors 3.7 4 5 0 1 2

10 InsertVteEquivalence 1.5 0 2 0 0 3

7 InsertVectorTableDetails 0.2 0 0 0 1 3

1 InsertDatapointOrderBarOne 0.1 1 2 0 1 2

6 InsertNewDimValsForVectorTable 0.1 0 0 0 1 1

Table 5.5: SPARQL query execution times and complexity

of aggregate functions seems to present a clear performance cost, but is nonethe-

less difficult to avoid when attempting, as we are here, to perform comparisons

between complex, multi-dimensional entities.

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 134

5.5 Evaluation with Respect to the New MIR

Paradigm

In Chapter 3 we described our vision of a new MIR paradigm, based upon early,

studio-based metadata capture, and exploitation of open, machine-readable Se-

mantic Web data. We repeat here our list of fundamentally different aspects of

the new paradigm, as well as the illustrative Semantic Audio Paradigm diagram

(Figure 5.11) from Chapter 3. In the new paradigm, we:

• Exploit the processing power available to us in the recording studio

• Simplify the complexity and/or increase the accuracy of MIR algorithms

by targeting source audio tracks rather than the full mix

• Are able to use the results of one MIR algorithm within the execution of

another

• Produce a rich set of symbolic, or close to symbolic, metadata for a piece

of recorded music

• Exploit the potential of the Semantic Web by publishing our metadata in

a common, machine-readable, format

• Infer new musical information at a later date via less computationally

expensive processing of our symbolic metadata (e.g. via the use of onto-

logical inferencing or SPARQL queries)

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 135

S
tu

d
io

S
em

an
ti

c
W

eb
S

o
u

rc
e

A
u

d
io

Tr
ac

ks
D

S
P

 P
h

as
e

S
ym

b
o

lic
 (

R
D

F
)

M
et

ad
at

a

B
ea

t O
ns

et
s

M
ul

tip
le

 F
0

E
st

im
at

io
n

S
tr

uc
tu

ra
l

S
eg

m
en

ts

C
ho

rd
s

M
ul

tip
le

 F
0

E
st

im
at

io
n

C
ho

rd
s

P
at

te
rn

s

P
ro

du
ct

io
n

M
et

ad
at

aP
at

te
rn

s

O
W

L
in

fe
re

nc
e

an
d/

or
S

P
A

R
Q

L
qu

er
y

N
o

te

de
no

te
s

D
ru

m
s

K
ey

bo
ar

d

G
ui

ta
r

C
ho

rd

O
nt

ol
og

y

S
eg

m
en

t
O

nt
ol

og
y

S
tu

di
o

O
nt

ol
og

y

F
ig

u
re

5.
11

:
S

em
an

ti
c

A
u

d
io

P
ar

ad
ig

m

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 136

Taking each item of this list in turn, we may evaluate our SPARQL version of

SIA and SIATEC in the wider context of this new vision.

Exploit the processing power available to us in the recording studio

This is not directly applicable to our SPARQL SIA and SIATEC research, as

the assumption here is that we have already performed some complex processing

in the recording studio to produce the appropriate symbolic data which forms

the input to our implementation (rather, this aspect is implicitly dealt with in

Chapter 4).

Simplify the complexity and/or increase the accuracy of MIR algo-

rithms by targeting source audio tracks rather than the full mix

Again, this point is more directly relevant to any earlier signal processing which

may have occurred, such as that described in Chapter 4. Nevertheless it is im-

portant to acknowledge here that due to the limitations of current SPARQL

implementations, we have introduced a significant performance degradation by

using SPARQL rather than a more conventional, non-Semantic Web program-

ming language. Additionally, the SPARQL queries used are themselves quite

complex.

The ability to use the results of one MIR algorithm within the exe-

cution of another

The input (onset time and pitch) data for our implementation is assumed to

have been generated by a signal processing-based algorithm earlier on in the

chain. The output from our implementation, which is MTP and TEC data in

RDF format, would certainly form valuable input data to other Semantic Web

components of the overall picture, such as the inference of structural segments

from perceptually significant pattern locations.

Production of a rich set of symbolic, or close to symbolic, metadata

for a piece of recorded music

Together with the assumed existence of onset time and pitch symbolic data, our

RDF MTPs and TECs form an additional and important part of the rich set

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 137

of symbolic data envisioned in Chapter 3, which could easily be augmented by

RDF versions of chord, beat, segment and production metadata, for example.

Exploiting the potential of the Semantic Web by publishing our meta-

data in a common, machine-readable, format

We have successfully enabled the discovery of repeated patterns and their gen-

eration as RDF, fulfilling this aspect of the vision.

Infer new musical information at a later date via less computationally

expensive processing of our symbolic metadata

We have partially fulfilled this requirement, in that we have successfully inferred

the locations of repeated patterns from our input data via a set of SPARQL

queries. However, the amount processing and memory required is, at this stage,

too great. Nevertheless we assume that the performance of SPARQL engines as

well as OWL reasoners will improve as Semantic Web technologies mature, and,

combined with improved knowledge of the capabilities of the Semantic Web, we

may move towards complete fulfilment of this requirement.

We also described some use-cases in Chapter 3, and whilst the aim of this

present chapter was not to fulfil all of them, it is nevertheless instructive to

assess what impact, if any, our SPARQL SIA and SIATEC implementation has

in relation to those.

Semantic Navigation Around a Multitrack Audio Project

Repeated melodic patterns are precisely the kind of fundamental musical com-

ponent we would like to visualise and navigate to within an audio project, and

furthermore, they are often the mid-level sub-components of verse / chorus level

structure. Consequently, our ability to both locate these patterns and also to

label them as RDF data is a critical element in enabling improved semantic

navigation around an audio project.

Custom End-User Audio Content

Our SPARQL implementation of SIA and SIATEC helps us to identify percep-

tually significant patterns, which moves us closer to fulfilment of this use-case.

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 138

Further audio processing and additional metadata would be required for a com-

plete implementation.

Advanced Online Music Search

Again, the ability to discover repeat patterns provides us with a partial ful-

filment of this use-case. We still require rhythm, chord, musician, instrumen-

tation, production and musical idiom metadata. Nevertheless, semantic web

ontologies do already exist for several of these types of metadata – e.g. chord13,

musician and instrumentation (Raimond et al., 2007), and production (Fazekas

and Sandler, 2011; Fazekas, 2012).

Semantic Web Pattern Discovery

We have entirely satisfied this particular use-case, albeit with caveats about

current execution time, as described in Section 5.4.

5.6 Discussion

We have successfully implemented a version of the SIA and SIATEC pattern dis-

covery algorithms using purely Semantic Web technologies, opening up the pos-

sibility of performing many different MIR and musicological tasks in an internet-

wide, machine architecture-independent manner. From a practical point of view

however, we did find that the task was non-trivial compared to using an object-

oriented programming language such as Java. Indeed, having completed this

mostly SPARQL implementation of the algorithms, our impression is that we

are very much pushing the boundaries of the type of computation which can be

realistically achieved using SPARQL, OWL and RDF.

It is not possible to express the fact that a datapoint has value x in dimension

i, y in dimension j, z in dimension k, and so on, up to some unknown number of

dimensions, in a single triple. Instead, we resort to a hierarchy, making repeat

use of blank nodes at each level of the hierarchy (as seen in Figure 5.5). However,

the complexity of our data increases further – we also need to process VTEs,

MTPs and TECs, which themselves ‘contain’ multiple datapoints and / or

VTEs, and which we need to make relational comparisons between. One might

13http://purl.org/ontology/chord/

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 139

expect that OWL, dealing as it does with set membership and set operations,

would be the ideal technology to utilise here – unfortunately though the types of

data we need to express and compare are defined by their numerical values, and

OWL does not possess the appropriate numerical operations. Whilst SPARQL

does permit numerical operations, when attempting to query for this kind of

complex, hierarchical structure, we frequently find that we can only query for

one aspect of the structure at a time, and each of these aspects takes the form

of a subquery to the next aspect for which we would like to query. So a typical

query becomes a complex chain such as:

1. Select all vectors v1

2. Select all MTPs mtp1

3. Select all datapoints dp1 belonging to all mtp1

4. For each combination of vectors v1, MTP mtp1, datapoints dp1, and di-

mension q, add the value of vector v1 in dimension q to the value of

datapoint dp1 in the same dimension

5. For each combination of vectors v1, MTP mtp1 and datapoints dp1, find,

if one exists, the DimensionValue node belonging to a datapoint dp2,

itself belonging to an MTP mtp2 which has the value dp1 + v1 in any one

dimension

6. For each combination of vectors v1, MTP mtp1 and datapoints dp1 and

dp2, count the number of dimensions kprojected in which the projected

datapoint dp2 and the original datapoint dp1 share the same value

7. Determine the dataset dimensionality k

8. Remove results for which kprojected 6= k

9. Determine whether each combination mtp1 and mtp2 share at least one

datapoint

10. Count the number of datapoints s each combination mtp1 and mtp2 share

11. Count the number of datapoints n belonging to each mtp1

12. Remove results for which s 6= n

CHAPTER 5. SEMANTIC WEB PATTERN DISCOVERY 140

13. Any remaining results satisfy our full search criteria

What would be a relatively simple task in (for example) an object-oriented

programming language, quickly becomes considerably complex to express using

Semantic Web technologies, and slow to execute. Furthermore, whilst we were

able to find a suitable reasoning triple store in OWLIM, we found in general

that deficiencies exist in certain other current alternatives.

Specifically, in the case of Pellet, queries which should have resulted in the

insertion of one triple, the object of which was an xsd-typed literal, actually

resulted in the insertion of two triples – both having the same subject and

predicate, but one with an untyped literal and the other typed. This caused

undesirable effects further down the query chain, and required the (theoretically

unnecessary) use of SPARQL FILTERs to eradicate unwanted duplicate results.

Another, perhaps more fundamental problem with Pellet, was that we found

it would not allow RDF blank nodes as the subject of an owl:equivalentClass

definition. OWL syntax does not prohibit this, and indeed, it is permitted by

OWLIM. OpenLink Virtuoso was unable to process some of our more complex,

deeply-nested SPARQL queries.

Despite these problems, we believe, given the significant amount of interest

in the use of Semantic Web technologies within MIR (see Section 2.3.5), these

are nevertheless important and useful results for other researchers working in

the same field, providing valuable guidance regarding both the type of problems

we might realistically expect to solve and the performance of taking such an

approach.

Chapter 6

Conclusions and Further Work

6.1 Summary

In this thesis, partly in response to the evidence of a ‘glass ceiling’ for MIR

algorithm accuracy, as well as the current level of interest surrounding the

Semantic Web, we set out in Chapter 3 a vision for a new MIR paradigm. The

vision is based around the principles of early, accurate signal processing-based

methods of metadata generation in the recording studio, and the exploitation

of open, machine-readable Semantic Web data as a means of sharing, querying,

and making inferences from, lightweight symbolic music metadata. From this

starting position, we then explored two important aspects of our new MIR

paradigm – the potential to increase MIR algorithm accuracy via the use of

multitrack audio (Chapter 4), and the implementation of an important class of

pattern discovery algorithms using only Semantic Web technologies (Chapter

5).

When individual instrument recordings are mixed together, certain per-

ceptually significant musical events which might have been prominent in their

source tracks, occasionally become obscured by those occurring simultaneously

in other tracks. Consequently, we hypothesised that certain MIR tasks could

be made more accurate and/or simplified if we were to use multitrack audio as

our input data, rather than the more typical case of fully mixed audio. The

task of pitch detection for example, intuitively must surely become significantly

more tractable when we are able to isolate one harmonic instrument at a time,

and therefore also remove some potential sources of confusion. Separating in-

struments with different timbre, fundamental pitch and harmonics, as well as

141

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 142

percussive instruments with their inherently wide dynamic range and broad fre-

quency spread, allows us to concentrate our focus on the specific characteristics

of one particular source from an ensemble. Temporal trajectories of melody

and harmony too, become easier to predict. We can of course make a similar

case for beat-tracking concentrated solely on a percussion track, albeit there

are cases in which some musical attribute may well be spread across multiple

source tracks, and therefore only truly makes ‘sense’ when analysed as a whole.

One MIR task, that of structural segmentation, stood out as a particu-

larly interesting case in this respect. A human listener can, and will, perceive

the transition from one structural segment to another from a variety of cues

(Bruderer, 2008), which may themselves originate from any subset of the en-

tire musical ensemble. Moreover, if a particular cue is audibly prominent at

regular intervals (a cymbal crash on beat one of every four bars, for example)

but obscured by other instruments in certain passages, the listener may well

still infer the same event, and perceive a structural boundary. If we happen

to use an algorithm focusing on the detection of local, short time-span audio

frame changes, then this event will be lost to some degree in the mixed audio

recording, but still present in a multitrack version.

Consequently, we set out in Chapter 4 to test our hypothesis. We ap-

plied a typical segmentation technique, based upon audio feature extraction,

self-distance matrices and homogeneity detection via novelty curves, to both

mixed and multitrack versions of the same dataset, and compared the results.

We also compared our results to those obtained using a state-of-the-art algo-

rithm applied to mixed audio. In the process we created a publicly accessible,

human-annotated, ground-truth structural segmentation dataset consisting of

104 multitrack rock and pop songs. Our results were very favourable, indicat-

ing a significant improvement in segmentation accuracy for multitrack audio

when compared to mixed. Specifically, our method applied to multitrack data

resulted in an F-value of 0.38, compared to 0.30 for mixed data, and 0.29 for

the state-of-the-art algorithm applied to mixed data (at a 1s tolerance). We

determined that results were optimal when we used equal weightings of RMS

energy, chroma and MFCC features, and that the rhythmogram feature was

of no benefit. Additionally, a comparison of two human segmentation anno-

tations for the same song lent some weight to our prediction that there is an

implicit limit to the level of confidence one may have in any human judgement

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 143

of structural segments.

It is undoubtedly the case that current MIR techniques, to varying degrees,

still have room for improvement in terms of accuracy (see Section 2.1). Nev-

ertheless, with the ability to target the single instrument recordings available

in multitrack rather than mixed data, together with the ongoing development

of MIR algorithms, it seems reasonable to assume that we are moving towards

a situation in which we will be able to generate close to a full, accurate set of

symbolic metadata (onsets, offsets, pitches, keys, chords, beats, tempos, and

segments) from recorded multitrack audio. Crucially, by then publishing this

metadata in a machine-readable, implementation-independent format, together

with ontologies, we open up a vast amount of new possibilities in terms of fur-

ther musicological analysis, as well as music data sharing and searching. The

ability to go beyond simple linked-data and actually perform algorithmic pro-

cessing of RDF data moves us closer to the prospect of not only representing,

linking, and sharing music metadata, but also deriving new insights into musical

content itself.

In Chapter 5, therefore, taking multichannel, symbolic (MIDI) data as our

starting point, we investigated the viability of conducting further content anal-

ysis (in this case, pattern discovery) of existing RDF music metadata without

having to leave the Semantic Web domain. We showed that it is technologi-

cally possible to fully implement a known pair of pattern discovery algorithms,

SIA and SIATEC, using a combination of SPARQL queries, OWL, and RDF.

However, the execution times of our Semantic Web implementation compared

unfavourably with a more conventional (Java) programming language imple-

mentation. Execution time was found empirically to be (worst-case) O(k2n)

times worse than the Java version (where k is the dimensionality of the dataset

and n is the number of datapoints), and required impracticably large amounts

of computer memory.

We established that both expressing, and querying for, complex, compound

data structures using Semantic Web technologies, whilst possible, is some-

what cumbersome and inefficient using currently available implementations of

reasoning-enabled RDF data storage tools. We were able to produce a working

implementation using OWLIM1, but we also identified certain deficiencies in

1http://www.ontotext.com/owlim

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 144

other widely-used alternatives (e.g. Pellet and OpenLink Virtuoso) which were

therefore unusable for our purposes.

6.2 Specific Contributions

• Empirical evidence that structural segmentation accuracy may be signifi-

cantly improved by using multitrack rather than mixed audio recordings.

This result was published in the IEEE Transactions on Audio, Speech and

Language Processing journal (Hargreaves et al., 2012).

• A human-annotated structural segmentation ground-truth dataset of mul-

titrack audio, containing 104 songs2, publicly accessible for re-use by other

researchers.

• Proof-of-concept evidence that a pattern discovery algorithm involving

complex, compound data structures, can successfully be fully implemented

using only Semantic Web technologies, together with performance evalu-

ation metrics and full implementation details (Hargreaves et al., 2014, in

print).

6.3 Future Work

In this thesis we have researched signal processing methods for locating segment

boundaries in multitrack audio, and Semantic Web methods of pattern discovery

in symbolic data. However we do not have to limit ourselves to these goals. To

date, and to the authors’ knowledge, all MIR research – be that structural

segmentation, genre/artist/mood classification, music similarity measurement,

onset/key detection, cover song identification, or chord/melody extraction, has

been undertaken using either fully mixed music or single instrument recordings

alone. The potential advantages offered by early capture of a more accurate

and rich set of metadata from full multitrack sources in the studio are vast,

and, because the metadata need not stay tightly bound to the commercial audio

recording, are not limited to the improvement of studio editing tools. RDF data

is already being used to enhance on-line artist information websites such as that

2http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/36

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 145

provided by the BBC3, and the publication of enhanced metadata alongside

commercial audio recordings would only increase their versatility. Instead of

concentrating on complex signal processing forms of ‘reverse engineering’ fully

mixed audio, the MIR community may instead concentrate on exploiting an

already present, easy to query and potentially vast amount of metadata via

logical inferencing.

6.3.1 Instrument-Specific Audio Features for Structural Seg-

mentation

Our first structural segmentation experiment, described in Section 4.4 of Chap-

ter 4, used an algorithm based upon extraction of four audio features, self-

distance matrix calculation, and homogeneity detection. It paid no attention

to the particular type of instrument present in each source track. We then

described a subsequent experiment in Section 4.5 in which we picked audio fea-

tures according to the general class of musical instrument in each track; however,

segmentation accuracy did not improve compared to the first experiment. This

result is inconclusive – it may be the case that the particular instrument group-

ings and instrument group to audio feature mappings we used were simply not

optimal. Current computing resources placed a limit on the number of instru-

ment groupings and feature mappings we were able to test, but that does not

preclude the possibility that given either a more sophisticated method of opti-

mising the groupings and mappings, or simply increased brute-force compute

power, we might achieve better results using such an approach.

6.3.2 Audio Feature Selection for Structural Segmentation Ac-

cording to Musical Function

Instead of select audio features according to musical instrument type, another

possibility would be to select them according to what we might loosely call

‘musical function’. It is of course true that audio tracks containing the same

type of instrument can nevertheless vary widely in terms of timbre, dynamics,

and pitch range. A guitar recording, for example, could in one instance be

flamenco, incorporating high levels of percussive transients as the player taps

3http://www.bbc.co.uk/music

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 146

the body of the instrument, whilst in other instances be electric and overdriven,

or acoustic chords, or classical and melodic. Treating these types of recordings

similarly does not necessarily make sense – a more suitable approach might be

to treat (for example) percussive, harmonic, rhythmic and ambient recordings

as distinct groups.

6.3.3 Minimum Dataset Requirements

It has been implicitly assumed so far that at the point of analysis, all the source

audio tracks required prior to producing the final mixdown are present. How-

ever, at intermediate stages of the recording process, only a subset of these

tracks will exist. Another interesting direction for future work would therefore

be to determine how accurately we are able to segment incomplete subsets of

multitrack projects. Answering this question would also enable us to estab-

lish whether or not either a single or a minimal number of tracks of certain

instrument combinations are sufficient for the derivation of an accurate seg-

mentation, without needing to perform analysis of tracks which offer little or

no new information. Given that DAW multitrack projects frequently contain

around 8, 16 or 24 tracks, this would have the added benefit of greatly reducing

computational complexity.

6.3.4 Lower-Level Segmentation

In addition to high-level verse/chorus type segmentations, we should also expect

to be able to achieve lower (i.e. bar and beat) level segmentations. Possible ways

to achieve this might be by analysis of the sub-structure of self-distance matrices

(i.e. recursively analyse a self-distance matrix after first identifying high-level

boundaries) or by using existing beat tracking or transcription algorithms, for

example.

6.3.5 Additional Multitrack-Based MIR Experiments

We demonstrated improved structural segmentation accuracy in Chapter 4,

but we could just as easily try to gain similar improvements for other MIR

tasks. Onset, pitch, key, chord, beat, and tempo detection, as well as timbre

analysis, instrument identification and automatic transcription are all excellent

candidates for similar experiments using multitrack data.

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 147

6.3.6 Semantic Web Technique Optimisations

One of our goals when implementing the SIATEC algorithms was to retain the

ability to deal with any dataset dimensionality. Scope does exist though to

simplify these queries enormously if we decided instead upon a set number of

dimensions at the outset, which, in practical terms, is not such an unreasonable

compromise.

Additionally, the SPARQL implementation of SIATEC we have presented

here is one Semantic Web implementation of SIATEC, but not necessarily the

optimal version. Indeed, in an earlier implementation version we used the ‘mi-

nus’ operation in several of our SPARQL queries, and could only process n = 8

two-dimensional datapoints in 37 minutes. Performing a minus operation on

two large datasets is computationally expensive; eradicating this operation im-

proved performance significantly, and it is of course possible that further opti-

misations still exist.

Perhaps more importantly though, a fundamental difference between taking

a SPARQL approach to algorithm implementation, and using a more conven-

tional object-oriented programming language, is that whereas in an object-

oriented language one may perform an operation such as “given two instances

A and B of a certain class, compare their respective values of property C”, in

SPARQL we may only ask “given RDF nodes A and B, perform a search across

the dataset for one or more RDF nodes for which the set of conditions C is

true. This set of conditions can, and indeed is likely, to grow in complexity and

involve multiple sub-queries as the complexity of the entities we are modelling

increases. Nevertheless, this is no different to the kind of operation performed

by logic and constraint programming languages such as Prolog, which benefit

from highly mature and optimised search strategies.

Directions for future work include further optimisations of our SPARQL

queries, testing alternative SPARQL engines, comparing execution time against

a Prolog (or other logic programming language) implementation, or, more gen-

erally, identifying common bottlenecks in current SPARQL implementations

which cause the kind of deeply-nested queries we use to perform so poorly. Al-

though several authors have published research pertaining to SPARQL query

optimisation (Schmidt et al., 2010) and the computational complexity of SPARQL

(Pérez et al., 2009), these works do not relate to SPARQL version 1.1, features

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 148

of which we make extensive use of here (particularly aggregate functions, sub-

queries and projections – see Table 5.5).

A rule-based approach, such as the Semantic Web Rule Language4 (SWRL),

is also worthy of investigation, although many current SWRL libraries only

provide partial implementations of the full specification – the ‘list builtin’, for

example, which we would anticipate being a requirement, is a common omis-

sion. Anecdotal evidence suggests that current SWRL implementations are still

some distance from constituting a practical solution; moreover, the SWRL is

currently only a W3C proposal, rather than a final specification.

Of great value would be the ability to make compound objects (such as our

vectors, MTPs and TECs) the subject of a SPARQL query, rather than having

to build complex, deeply-nested queries. Having to do the latter effectively

leaves the definition of the compound object to the query itself, rather than to

the data model. Alternatively, the ability to express compound objects in OWL,

and then define (and evaluate) operations such as equality and greater than /

less than (perhaps by drilling down each entity’s graph until we can establish

that they both have the same structure and, where applicable, compare actual

node values) would be a valuable and wide-reaching research area.

6.3.7 SIATEC as a Segmentation Method

We made extensive use of the SIATEC algorithm in Chapter 5 as a means of

demonstrating the use of Semantic Web technologies in algorithm implementa-

tion. Regardless of implementation technology though, this algorithm, besides

its intended use for pattern discovery, holds some promise as a method of struc-

tural segmentation. It is widely accepted that sequence repetition (see Section

2.2.5) is a strong indicator of high-level music structure. Consequently, we sug-

gest there may be great value in using the SIATEC algorithm as a basis for

determining the structural segments within symbolic music data.

6.3.8 A Musical Affect Ontology

Lerdahl and Jackendoff (1996) put forward the argument that music itself is

a purely psychological phenomenon, and, building upon this assertion, Wig-

gins (2009) argues that any attempt to derive meaningful information from a

4http://www.w3.org/Submission/SWRL/

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 149

recording of a musical performance must begin with an attempt to understand

the relationship between these representations of music and the actual musical

effects they stimulate in the human brain.

In many fields of scientific or philosophical study, in order to develop our

understanding of some particular domain, we begin with a study of the language

we commonly use to express and describe as many aspects of that domain

as possible. Whilst it is true that music itself is not a branch of linguistics

(when listening to music, we don’t consciously generate a stream of words to

describe what we are experiencing), we can nevertheless, to a certain degree,

retrospectively and introspectively describe a piece of music linguistically. We

could use various adjectives (e.g. aggressive, placid, sparse, dense, spiritual) to

describe certain passages or indeed the whole piece, state that we experience

some kind of “lift” at certain points, identify themes and patterns, or ascribe

similes (e.g. “sounds like thunder”).

In a task such as structural segmentation, we commonly use words such as

verse and chorus when referring to certain passages of music. We also make

associations between words; for example we might say that a new segment fol-

lows a crescendo, or an orchestral swell, which itself sounds rich and warm.

Equally though, we wouldn’t strongly associate the term “resolved” with “me-

ter”. These are just a few examples though of a very rich set of terms commonly

used not only to describe the surface level aspects of music, but also our un-

derstanding of it and the emotional effects it has upon us. If these concepts do

indeed describe our psychological reaction to, understanding of, and relation-

ship with, music, then the fundamental purpose of MIR must be the ability

to automatically arrive at the same kinds of descriptions from a starting point

of digital audio signals. To this end, we propose the development of a new

ontology, one of “Musical Affect”. The advantage of an ontology over a more

straightforward classification system, such as a taxonomy, is that we may eluci-

date the complexities and subtleties of the domain in depth as well as in relation

to other aspects of the world.

Semantic web ontologies, in fact, in the MIR world, are nothing new; music

(Raimond et al., 2007), audio features5, studio (Fazekas and Sandler, 2011),

5http://motools.sourceforge.net/doc/audio_features.html

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 150

segment (Fields et al., 2011) and chord6 ontologies already exist, and integrate

with other ontologies not specifically related to music (the timeline7 and event8

ontologies, for example). Whilst all of these certainly have, to varying degrees,

some relevance to and overlap with musical affects, none of them were designed

with the specific objective of encapsulating the kind of vocabulary we use in

that domain. Rather, they focus variously on specific aspects of music such as

recording and performance, signal processing results, music production in the

recording studio, segmentation and the symbolic representation of chords.

We began in Chapter 5 to use Semantic Web technologies to identify some

perceptually significant patterns in music. The creation of musical affect ontol-

ogy, possibly in conjunction with a probabilistic reasoner (although to the au-

thor’s knowledge, probabilistic reasoning within the Semantic Web is currently

very much in its infancy) might allow us to go even further, possibly inferring,

for example, musical semantics such as crescendo, ‘triumphant return’ (i.e. the

return, at the conclusion of a piece of music, of a recurrent theme throughout

the work), or fundamental motifs, from sequences and combinations of notes,

chords, meter, and key.

Full development of such an ontology could entail a rigorous examination of

the domain; some authors (Kolozali et al., 2011; Jordanous, 2010) working in

related fields have employed automatic or semi-automatic methods of ontology

generation. Jordanous (2010) for example performs a statistical comparison of

the vocabulary used in a corpus of texts having a high degree of relevance to the

domain (judged by number of citations, year of publication and author), with

a corpus representing more general British word usage (the British National

Corpus9) in order to discover terms with a high degree of relevance within the

domain of interest.

Consequently we propose a similar analysis, building upon our own domain

knowledge and intuitions by examining relevant texts from musical emotion,

music perception and cognition, and musicology.

6http://motools.sourceforge.net/chord_draft_1/chord.html
7http://motools.sourceforge.net/timeline/timeline.html
8http://motools.sourceforge.net/event/event.html
9http://www.natcorp.ox.ac.uk/

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 151

6.4 Applications

Beyond the principal results and conclusions presented in this thesis, we describe

in the following subsections some further potential applications of this research

include.

6.4.1 Improved Navigation within Digital Audio Workstations

for Recording Studio Engineers

Navigation within Digital Audio Workstations is generally a matter of scrolling

backwards or forwards through audio files, with visualisations of the audio

waveforms displayed on screen. The ability to manually add temporal labels is

usually present, and any distinct sections (created, for example, using copy and

paste type operations), can easily be jumped to. The addition of an automatic

segmentation capability, either to subsets of audio tracks or the whole set,

would undoubtedly enhance the usability of such software tools. The engineer

would be able to jump instantly to the starts or ends of perceptually significant

segments, from where he or she could audition or edit the desired passages of

audio.

6.4.2 Guidance Regarding the Applicability of Semantic Web

Technologies to Algorithmic MIR

We presented some evidence in Sections 2.3.4 and 2.3.5 of the growing trend

towards the use of the Semantic Web, both generally and within the MIR

community. Researchers new to the field may find an abundance of textbook

tutorial material hailing the promise and capabilities of the Semantic Web, and

in particular, the inferencing capabilities of OWL. Our Semantic Web pattern

discovery research, described in Chapter 5, offers valuable insight not only into

the technical effort and resources required for such an endeavour, but also its

efficacy.

6.4.3 Automatic Transcription

Transcribing music, even manually, is a non-trivial task, requiring a high level of

understanding and experience of music theory. No one uniquely accurate tran-

scription exists for each musical work; rather, it is the job of the transcription

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 152

expert to sensibly group notes into chords, sequences into bars, and to apply

appropriate time and key signatures, and ties between notes. One critical as-

pect of this process is forming an understanding of the high-level structure of a

piece, and, as such, any accurate structural segmentation algorithm can provide

an invaluable pre-processing step for automatic transcription systems. Mauch

et al. (2009), for example, employ just such an approach in order to enhance

the results of a chord transcription algorithm.

6.4.4 Audio Thumbnailing

Large digital music databases are now commonplace, particularly amongst com-

mercial music retailers and streaming services. The ability to locate a short

snapshot, which is in some sense maximally representative of a piece of music,

is of great benefit when browsing such large collections (Bartsch and Wakefield,

2005; Burges et al., 2005; Chai and Vercoe, 2003; Levy et al., 2006). Segmenta-

tion is a valuable aid when attempting to find these snapshots, and as such, any

segmentation algorithm offering increased levels of accuracy is highly applicable

to audio thumbnailing.

6.5 Final Thoughts

Music Information Retrieval is now an extremely active and wide-reaching re-

search area. The starting point is usually some representation of music – be

that either an audio recording or symbolic data, before some form of analysis

follows, leading to a certain type of music metadata. Often this takes place

at the end of the music production chain, but as we have demonstrated here,

earlier analysis can be beneficial.

This metadata is not always the end of the story though. As described

in our wider vision for a new MIR paradigm in Chapter 3, the results of one

audio-based MIR algorithm may then be combined with those of another, to be

analysed further, perhaps this time in the symbolic domain. The ultimate end

goal, we believe, should be the ability not only to derive accurate low-level meta-

data, but to be able to derive new insights from that low-level data – insights

which will enable, for example, musicologists to better understand composi-

tional techniques, or a music recommendation engine to determine similarity

between songs.

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 153

Often, MIR algorithms are heavily signal processing-based and probabilis-

tic, although certain rules may be implicit within them. On the other hand,

some algorithms are much more explicitly grounded in rules-based logic, acting

on symbolic data. Moreover, the increasing prominence of the Semantic Web

encourages us to think about ways in which we might exploit logic-based knowl-

edge representation. Neither approach, alone, is likely to yield an over-arching

method of answering all of the many different types of question we might ask

of an audio recording, or a musical score; music itself is not purely a logic or

rules-based phenomena, any more than it is purely a manifestation of signal

processing or probability. The combination of all of these strands though holds

much promise with regard to the goal of computing and representing a rich

semantics of music.

The MIR community has already achieved impressive advances in certain

areas of this overall picture, and in this thesis we hope to have contributed in

greater depth to the themes of early, low level metadata capture, and Semantic

Web-based knowledge discovery and representation. There is still huge potential

for further research in this direction though – our vision is not only to be able to

accurately determine which notes occur where, or what the structural segments

of a song are, but also to build our understanding of what music actually is into

the very data itself – a form of musical knowledge representation, from which

we may infer new knowledge from basic facts. Rather than us setting out to

answer just one particular, narrowly-defined question, the metadata then, in a

sense, takes on a life of its own, and ‘speaks for itself’ - for example revealing

to us that a piece under consideration has a certain type of compositional form,

or that it concludes with a rousing crescendo. We hope other MIR researchers

will continue this philosophy by further exploiting multitrack audio data early

in the production chain, as well as enhancing the level of sophistication and

utility of both existing and new Semantic Web technologies.

Appendix A

Novelty Curve Peak Picking

An alternative method of picking peaks from a novelty score, proposed by Bren-

nan (2010), consists of the following steps:

1. Calculate the standard novelty score using Equation 2.15, with a kernel

size of 32.

2. Generate 6 more novelty scores with increasing degrees of smoothness,

using zero-phase versions of the 6th order low-pass Butterworth design

filters having normalised (with respect to half the sample rate) cutoff

frequencies of 0.5, 0.25, 0.125, 0.1, 0.075 and 0.05. We will call the result-

ing novelty scores n1, n2, ...n7, where n1 is the original, unfiltered novelty

score, n2 has a normalised cutoff frequency of 0.5, and n7 has a normalised

cutoff frequency of 0.05

3. Despite using zero-phase filters, the low-pass filtered peaks might span

several higher frequency peaks in the unfiltered novelty score. Compen-

sate for this peak-smearing by comparing the peak locations of each nov-

elty score with those of the novelty score two numbers lower (i.e. compare

n7 to n5, n6 to n4, etc. In the case of n2, compare to the original nov-

elty score n1). To make each pairwise comparison, we use the Dixon

(2006) peak-picking method to locate the peaks of both novelty scores,

then search six beats either side of each peak in the smoother of the two

novelty scores (i.e. the one filtered with the lower cutoff frequency) for

a matching peak in the other novelty score. This gives us seven alterna-

tive sets of peaks (including the peaks from the original unfiltered novelty

score).

154

APPENDIX A. NOVELTY CURVE PEAK PICKING 155

4. Further refine the peak locations by comparing each set with the peaks

from the original novelty score (again, by searching six beats either side

of each peak for a match in the original set).

5. For each peak in the original novelty score, count how many of the other

six sets of peaks also contain the same peak.

6. Peaks appearing in six or more sets constitute the highest level set of

segment boundary temporal locations, those appearing four times or more

make up the mid-level segment boundaries, and peaks appearing in at

least two of the sets go to make up the lowest level of segment boundaries.

Appendix B

SIATEC SPARQL Queries

B.1 Requirement 3 Queries

Executed sequentially in the order they appear here, the following two queries

satisfy requirement 3 in Chapter 5, Section 5.2.

Query 1 - InsertDatapointOrderBarOne

^[InsertDatapointOrderBarOne]
PREFIX sia: <http://example.org/sia#>

INSERT { ?datapoint1 sia:orderedIndex ?orderedIndex;
sia:memberOfOrderedSet ?dataset}

WHERE
{
{
Select each datapoint, and count the number of
datapoints which are ’smaller’ than it
SELECT ?datapoint1 (COUNT (?datapoint2) AS ?numSmallerDatapoints)

?dataset
WHERE
{
?datapoint1 sia:vector ?vector1 .
?vector1 a sia:Vector .
?vector1 sia:dimVal ?dimVal1x .
?datapoint1 sia:memberOfDataset ?dataset .
?dimVal1x sia:dimension ?smallestDimensionMin .
?dimVal1x sia:value ?value1x .

?datapoint2 sia:vector ?vector2 .
?vector2 a sia:Vector .
?vector2 sia:dimVal ?dimVal2x .
?dimVal2x sia:dimension ?smallestDimensionMin .
?dimVal2x sia:value ?value2x .

FILTER (?value1x > ?value2x) .

156

APPENDIX B. SIATEC SPARQL QUERIES 157

{
Select all pairs of datapoints whose values differ
in at least one dimension, and find the smallest
of those dimensions in which the values differ
SELECT ?datapoint1 ?datapoint2

(MIN(?dimension) AS ?smallestDimensionMin)
WHERE
{
?datapoint1 sia:vector ?vector1 .
?vector1 a sia:Vector .
?datapoint1 a sia:Datapoint .
?datapoint1 sia:memberOfDataset ?dataset .
?vector1 sia:dimVal ?dimVal1 .
?dimVal1 sia:dimension ?dimension .
?dimVal1 sia:value ?value1 .

?datapoint2 sia:vector ?vector2 .
?vector2 a sia:Vector .
?datapoint2 a sia:Datapoint .
?datapoint2 sia:memberOfDataset ?dataset .
?vector2 sia:dimVal ?dimVal2 .
?dimVal2 sia:dimension ?dimension .
?dimVal2 sia:value ?value2 .

FILTER (?value1 != ?value2) .
}
GROUP BY ?datapoint1 ?datapoint2

}
}
GROUP BY ?datapoint1 ?dataset

}

Use the number of datapoints which are smaller than
datapoint1 as the orderedIndex
BIND (?numSmallerDatapoints + 1 AS ?orderedIndex)

}

Query 2 - InsertDatapointOrderLastOne

^[InsertDatapointOrderLastOne]
PREFIX sia: <http://example.org/sia#>
INSERT { ?datapoint sia:orderedIndex 1;

sia:memberOfOrderedSet ?dataset}

WHERE
{
?datapoint a sia:Datapoint .
?datapoint sia:memberOfDataset ?dataset .
FILTER NOT EXISTS {?datapoint sia:memberOfOrderedSet ?orderedSet}

}

APPENDIX B. SIATEC SPARQL QUERIES 158

B.2 Requirements 4 and 5 Queries

Executed sequentially in the order they appear here, the following five queries

(queries 3 to 7) satisfy requirements 4 and 5 in Chapter 5, Section 5.2.

Query 3 - InsertSiatecVectorTableBnodes

^[InsertSiatecVectorTableBnodes]
PREFIX sia: <http://example.org/sia#>
INSERT { _:vte rdf:type sia:VectorTableElement;

rdfs:subClassOf _:vte;
sia:fromDatapoint ?datapoint1;
sia:toDatapoint ?datapoint2;
sia:memberOfDataset ?dataset}

WHERE
{
?datapoint1 a sia:Datapoint .
?datapoint2 a sia:Datapoint .
?datapoint1 sia:memberOfOrderedSet ?orderedSet .
?datapoint2 sia:memberOfOrderedSet ?orderedSet .
?orderedSet a sia:OrderedSet

{
SELECT ?dataset ?orderedSet
WHERE
{
?orderedSet a sia:OrderedSet .
BIND (bnode() AS ?dataset)

}
}

}

Query 4 - InsertSetVClassification

^[InsertSetVClassification]
PREFIX sia: <http://example.org/sia#>
INSERT { ?vte a sia:SetV }
WHERE
{
?vte a sia:VectorTableElement .
?vte sia:fromDatapoint ?datapoint1 .
?vte sia:toDatapoint ?datapoint2 .
?vte sia:memberOfDataset ?dataset .
?datapoint1 sia:orderedIndex ?i1 .
?datapoint2 sia:orderedIndex ?i2

FILTER ((?datapoint1 != ?datapoint2) && (?i1 < ?i2))
}

APPENDIX B. SIATEC SPARQL QUERIES 159

Query 5 - InsertSetWClassification

^[InsertSetWClassification]
PREFIX sia: <http://example.org/sia#>
INSERT { ?vte a sia:SetW }
WHERE
{
?vte a sia:VectorTableElement .
?vte sia:memberOfDataset ?dataset .

}

Query 6 - InsertNewDimValsForVectorTable

^[InsertNewDimValsForVectorTable]
PREFIX sia: <http://example.org/sia#>
INSERT { _:dimVal a sia:DimensionValue;

sia:dimension ?dim;
sia:value ?val}

WHERE
{
{
SELECT DISTINCT ?dim ?val
WHERE
{
?vte rdf:type sia:VectorTableElement .
?vte sia:fromDatapoint ?datapoint1 .
?vte sia:toDatapoint ?datapoint2 .
?datapoint1 sia:vector ?vector1 .
?vector1 sia:dimVal ?dv1 .
?dv1 sia:dimension ?dim .
?dv1 sia:value ?val1 .
?datapoint2 sia:vector ?vector2 .
?vector2 sia:dimVal ?dv2 .
?dv2 sia:dimension ?dim .
?dv2 sia:value ?val2 .
BIND (?val2 - ?val1 AS ?val)

Remove any pairs of dimensions and
values from our results for which
a sia:DimensionValue already exists
FILTER NOT EXISTS
{
?dimVal a sia:DimensionValue .
?dimVal sia:dimension ?dim .
?dimVal sia:value ?val

}
}

}
}

Query 7 - InsertVectorTableDetails

^[InsertVectorTableDetails]

APPENDIX B. SIATEC SPARQL QUERIES 160

PREFIX sia: <http://example.org/sia#>
INSERT { ?vte sia:dimVal ?dimVal}
WHERE
{
?vte rdf:type sia:VectorTableElement .
?vte sia:fromDatapoint ?datapoint1 .
?vte sia:toDatapoint ?datapoint2 .
?datapoint1 sia:vector ?vector1 .
?vector1 sia:dimVal ?dv1 .
?dv1 sia:dimension ?dim .
?dv1 sia:value ?val1 .
?datapoint2 sia:vector ?vector2 .
?vector2 sia:dimVal ?dv2 .
?dv2 sia:dimension ?dim .
?dv2 sia:value ?val2 .
BIND (?val2 - ?val1 AS ?val)
?dimVal a sia:DimensionValue .
?dimVal sia:dimension ?dim .
?dimVal sia:value ?val

}

B.3 Requirement 6 Queries

Executed sequentially in the order they appear here, the following two queries

(queries 8 and 9) satisfy requirement 6 in Chapter 5, Section 5.2.

Query 8 - InsertVteOrderBarOne

^[InsertVteOrderBarOne]
PREFIX sia: <http://example.org/sia#>
INSERT { ?vte1 sia:orderedIndex ?orderedIndex;

sia:memberOfOrderedSet ?dataset}

WHERE
{
{
Select each VectorTableElement, and count the number of
VectorTableElements which are ’smaller’ than it
SELECT ?dataset ?vte1 (COUNT (DISTINCT(?vte2)) AS ?numSmallerVtes)
WHERE
{
{
SELECT ?vte1 ?vte2 ?dataset
WHERE
{
?vte1 sia:dimVal ?dimVal1x .
?dimVal1x sia:dimension ?smallestDimensionMin .
?dimVal1x sia:value ?value1x .

?vte2 sia:dimVal ?dimVal2x .
?dimVal2x sia:dimension ?smallestDimensionMin .

APPENDIX B. SIATEC SPARQL QUERIES 161

?dimVal2x sia:value ?value2x .

FILTER (?value1x > ?value2x) .

{
{
Select all pairs of VectorTableElements
whose values differ in at least one dimension,
and find the smallest of those dimensions in
which the values differ
SELECT ?vte1 ?vte2

(MIN(?dimension) AS ?smallestDimensionMin)
?dataset

WHERE
{
?vte1 a sia:VectorTableElement .
?vte1 sia:dimVal ?dimVal1 .
?vte1 sia:memberOfDataset ?dataset .
?dimVal1 sia:dimension ?dimension .
?dimVal1 sia:value ?value1 .

?vte2 a sia:VectorTableElement .
?vte2 sia:dimVal ?dimVal2 .
?vte2 sia:memberOfDataset ?dataset .
?dimVal2 sia:dimension ?dimension .
?dimVal2 sia:value ?value2 .

FILTER (?value1 != ?value2) .
}
GROUP BY ?dataset ?vte1 ?vte2

}
}

}
}

UNION

{
SELECT ?vte1 ?vte2 ?dataset
WHERE
{
?vte1 sia:fromDatapoint ?vte1FromDatapoint .
?vte1FromDatapoint sia:orderedIndex ?value1 .

?vte2 sia:fromDatapoint ?vte2FromDatapoint .
?vte2FromDatapoint sia:orderedIndex ?value2 .

FILTER (?value1 > ?value2) .

{
Select all pairs of VectorTableElements
whose vector values are equal in all dimensions
SELECT ?dataset ?vte1 ?vte2

APPENDIX B. SIATEC SPARQL QUERIES 162

WHERE
{
{
SELECT ?dataset ?vte1 ?vte2

(COUNT (DISTINCT(?dimension)) AS ?numDims)
WHERE
{
?vte1 a sia:VectorTableElement .
?vte1 sia:memberOfDataset ?dataset .
?vte1 sia:dimVal ?dimVal1 .
?dimVal1 sia:dimension ?dimension .
?dimVal1 sia:value ?value .

?vte2 a sia:VectorTableElement .
?vte2 sia:memberOfDataset ?dataset .
?vte2 sia:dimVal ?dimVal2 .
?dimVal2 sia:dimension ?dimension .
?dimVal2 sia:value ?value .

FILTER (?vte1 != ?vte2) .
}
GROUP BY ?dataset ?vte1 ?vte2

}

{
Find the dimensionality of this dataset
SELECT (COUNT (DISTINCT (?vectorDim))

AS ?datasetDimensionality)
WHERE
{
?datapoint a sia:Datapoint;

sia:vector ?vector .

?vector sia:dimVal ?vectorDimVal .

?vectorDimVal sia:dimension ?vectorDim
}

}

FILTER (?numDims = ?datasetDimensionality)
}
GROUP BY ?dataset ?vte1 ?vte2

}
}

}
}
GROUP BY ?dataset ?vte1

}
BIND (?numSmallerVtes + 1 AS ?orderedIndex)

}

APPENDIX B. SIATEC SPARQL QUERIES 163

Query 9 - InsertVteOrderLastOne

^[InsertVteOrderLastOne]
PREFIX sia: <http://example.org/sia#>
INSERT { ?vte sia:orderedIndex 1;

sia:memberOfOrderedSet ?dataset}
WHERE
{
?vte a sia:VectorTableElement .
?vte sia:memberOfDataset ?dataset .
FILTER NOT EXISTS {?vte sia:memberOfOrderedSet ?orderedSet}

}

B.4 Requirement 7 Query

The following query (query 10) satisfies requirement 7 in Chapter 5, Section

5.2.

Query 10 - InsertVteEquivalence

^[InsertVteEquivalence]
PREFIX sia: <http://example.org/sia#>
INSERT {?vte1 owl:equivalentClass ?vte2}
WHERE
{
{
Select all pairs of VectorTableElements whose
vector values are equal in all dimensions
SELECT ?dataset ?vte1 ?vte2

(COUNT (DISTINCT(?dimension)) AS ?numDims)
WHERE
{
?vte1 a sia:VectorTableElement .
?vte1 sia:memberOfDataset ?dataset .
?vte1 sia:dimVal ?dimVal1 .
?dimVal1 sia:dimension ?dimension .
?dimVal1 sia:value ?value .

?vte2 a sia:VectorTableElement .
?vte2 sia:memberOfDataset ?dataset .
?vte2 sia:dimVal ?dimVal2 .
?dimVal2 sia:dimension ?dimension .
?dimVal2 sia:value ?value .

FILTER (?vte1 != ?vte2) .
}
GROUP BY ?dataset ?vte1 ?vte2

}

{
Find the dimensionality of this dataset

APPENDIX B. SIATEC SPARQL QUERIES 164

SELECT (COUNT (DISTINCT (?vectorDim)) AS ?datasetDimensionality)
WHERE
{
?datapoint a sia:Datapoint;

sia:vector ?vector .

?vector sia:dimVal ?vectorDimVal .

?vectorDimVal sia:dimension ?vectorDim
}

}

FILTER (?numDims = ?datasetDimensionality) .
FILTER (?vte1 != ?vte2) .

}

B.5 Requirement 8 Query

The following query (query 11) satisfies requirement 8 in Chapter 5, Section

5.2.

Query 11 - InsertMtps

^[InsertMtps]
PREFIX sia: <http://example.org/sia#>
INSERT { ?mtp a sia:Mtp;

sia:vector ?vte;
sia:datapoint ?fromDatapoint }

WHERE
{
{
Select every VectorTableElement ?vte, blank node
?mtp, orderedIndex ?idx, and the minimum orderedIndex
?minIdx of all VectorTableElements equivalent
to ?vte
SELECT ?vte ?mtp ?idx (MIN (?allIdxs) AS ?minIdx)
WHERE
{
{
Select every VectorTableElement of type
SetV, the vte ordered index, and a unique
blank node to be used as a maximally
translatable pattern (MTP)
SELECT ?vte ?mtp ?idx
WHERE
{
?vte a sia:VectorTableElement;

sia:orderedIndex ?idx;
a sia:SetV .

BIND (bnode() AS ?mtp) .

APPENDIX B. SIATEC SPARQL QUERIES 165

}
}

get the ordered indices of all
VectorTableElements which are
"equivalent" to ?vte (i.e. have
equal vector values in all dimensions)
?vteSub rdfs:subClassOf ?vte;

a sia:VectorTableElement;
sia:orderedIndex ?allIdxs;
a sia:SetV .

}
GROUP BY ?vte ?mtp ?idx

}

Restrict results to the VectorTableElement ?vte
having the smallest orderedIndex of the group
of VectorTableElements equivalent to ?vte
FILTER (?idx = ?minIdx)
?vteSub rdfs:subClassOf ?vte .
?vteSub a sia:VectorTableElement .
?vteSub sia:fromDatapoint ?fromDatapoint .

}

B.6 Requirement 9 Queries

Executed sequentially in the order they appear here, the following two queries

(queries 12 and 13) satisfy requirement 9 in Chapter 5, Section 5.2.

Query 12 - InsertDistinctTecs

^[InsertDistinctTecs]
PREFIX sia: <http://example.org/sia#>
INSERT {?tec a sia:Tec}
WHERE
{
{
Select, from each group of Mtps which map onto other Mtps via
some VectorTableElement, the Mtp whose VectorTableElements has
the smallest orderedIndex, and call this Mtp ?tec (a
Translationally Equivalent Class)
SELECT DISTINCT ?tec
WHERE
{
{
Select the smallest orderedIndex of the VectorTableElements
of all the Mtps which Mtp ?mtp1 maps onto via some
VectorTableElement
SELECT DISTINCT ?mtp1 (MIN (?mtp2Index) AS ?minMtpIndex)
WHERE
{

APPENDIX B. SIATEC SPARQL QUERIES 166

{
Select the number of VectorTableElements ?numVtes which
map ALL datapoints from Mtp ?mtp1 onto ALL datapoints
from Mtp ?mtp2 in ALL dimensions
SELECT DISTINCT ?mtp1 ?mtp2

(COUNT (DISTINCT (?vte)) AS ?numVtes)
{
{
Find Mtps ?mtp2 for which we arrive at
?numMatchedMtp1Datapoints datapoints from Mtp ?mtp1
via the vector values of VectorTableElement ?vte,
and count the number of datapoints ?numMtp1Datapoints
and ?numMtp2Datapoints belonging to ?mtp1 and ?mtp2
SELECT DISTINCT ?vte ?mtp1

?numMatchedMtp1Datapoints ?mtp2
(COUNT (DISTINCT (?mtp1Datapoint))
AS ?numMtp1Datapoints)

(COUNT (DISTINCT (?mtp2Datapoint))
AS ?numMtp2Datapoints)

WHERE
{
{
Find Mtps ?mtp2 for which we arrive at at least
one datapoint from Mtp ?mtp1 via the vector
values of VectorTableElement ?vte, and count
the number of datapoints
?numMatchedMtp1Datapoints and
?numMatchedMtp2Datapoints for which the
vector mapping is valid
SELECT DISTINCT ?vte

?mtp1
(COUNT (DISTINCT (?mtp1Datapoint))
AS ?numMatchedMtp1Datapoints)

?mtp2
(COUNT (DISTINCT (?mtp2Datapoint))
AS ?numMatchedMtp2Datapoints)

WHERE
{
{
Find datapoints ?mtp2Datapoint belonging to
Mtp ?mtp2 which are arrived at from datapoint
?mtp1Datapoint belonging to Mtp ?mtp1 via the
vector values of VectorTableElement ?vte, and
count the number of dimensions in which the
two datapoints match
SELECT ?vte

?mtp1
?mtp1Datapoint
?mtp2
?mtp2Datapoint
(COUNT (DISTINCT (?dim)) AS ?numDims)

WHERE
{

APPENDIX B. SIATEC SPARQL QUERIES 167

{
Select all combinations of vtes (from the
previously selected set of "unique" vtes),
maximally translatable patterns ?mtp1,
and the datapoints belonging to ?mtp1
SELECT ?vte

?mtp1
?mtp1Datapoint

WHERE
{
{
Select the unique, in the sense
of having unique vector values,
set of VectorTableElements
SELECT DISTINCT ?vte
WHERE
{
{
SELECT ?vte

(MIN (?vteSbIdx)
AS ?minVteIdx)

WHERE
{
?vte a sia:VectorTableElement;

rdfs:subClassOf ?vteSb .

?vteSb sia:orderedIndex ?vteSbIdx.
}
GROUP BY ?vte

}

?vte sia:orderedIndex ?minVteIdx
}

}

?mtp1 a sia:Mtp;
sia:datapoint ?mtp1Datapoint .

}
}

?mtp1Datapoint sia:vector ?mtp1Vector .

?mtp1Vector sia:dimVal ?mtp1DimVal .
?mtp1DimVal sia:dimension ?dim .
?mtp1DimVal sia:value ?mtp1Val .

?vte sia:dimVal ?vteDimVal .

?vteDimVal sia:dimension ?dim .
?vteDimVal sia:value ?vteVal .

BIND (?mtp1Val + ?vteVal AS ?mtp2Val) .

APPENDIX B. SIATEC SPARQL QUERIES 168

?mtp2 a sia:Mtp;
sia:datapoint ?mtp2Datapoint .

?mtp2Datapoint sia:vector ?mtp2Vector .

?mtp2Vector sia:dimVal ?mtp2DimVal .
?mtp2DimVal sia:dimension ?dim .
?mtp2DimVal sia:value ?mtp2Val .

}
GROUP BY ?vte ?mtp1 ?mtp1Datapoint

?mtp2 ?mtp2Datapoint
}

{
Find the dimensionality of this dataset
SELECT (COUNT (DISTINCT (?vectorDim))

AS ?datasetDimensionality)
WHERE
{
?datapoint a sia:Datapoint;

sia:vector ?vector .

?vector sia:dimVal ?vectorDimVal .

?vectorDimVal sia:dimension ?vectorDim
}

}

FILTER (?numDims = ?datasetDimensionality)
}
GROUP BY ?vte ?mtp1 ?mtp2

}

?mtp1 sia:datapoint ?mtp1Datapoint .
?mtp2 sia:datapoint ?mtp2Datapoint .

}
GROUP BY ?vte ?mtp1 ?numMatchedMtp1Datapoints ?mtp2

}
FILTER (?numMtp1Datapoints = ?numMtp2Datapoints

&& ?numMatchedMtp1Datapoints = ?numMtp1Datapoints)
}
GROUP BY ?mtp1 ?mtp2

}

FILTER (?numVtes = 1)

?mtp1 sia:vector ?vte1 .
?mtp2 sia:vector ?vte2 .

?vte1 sia:orderedIndex ?mtp1Index .
?vte2 sia:orderedIndex ?mtp2Index .

}
GROUP BY ?mtp1

APPENDIX B. SIATEC SPARQL QUERIES 169

}

?tec a sia:Mtp;
sia:vector ?mtpVector .

?mtpVector sia:orderedIndex ?minMtpIndex .
}

}
}

Query 13 - InsertTecVectors

^[InsertTecVectors]
PREFIX sia: <http://example.org/sia#>
INSERT {?tec sia:canBeTranslatedBy ?vte}
WHERE
{
Select every combination of TEC and VectorTableElement
where the TEC has a one-to-one mapping onto another MPT
via the VectorTableElement
{
SELECT ?vte ?tec ?numTecDatapoints

(COUNT (DISTINCT (?projectedDatapoint))
AS ?numProjectedDatapoints)

WHERE
{
{
Select every combination of TEC and VectorTableElement,
along with the number of datapoints belonging to each TEC,
the actual datapoints belonging to each TEC, the
projectedDatapoint each TEC maps to via the
VectorTableElement in at least one dimension, and the number
of dimensions in which the TEC datapoint and the
projectedDatapoint match
SELECT ?vte ?tec ?numTecDatapoints ?tecDatapoint

?projectedDatapoint
(COUNT (DISTINCT (?dim)) AS ?numMatchedDims)

WHERE
{
{
Select every combination of TEC and VectorTableElement,
along with the number of datapoints belonging to each TEC
SELECT ?tec ?vte

(COUNT (DISTINCT (?tecDatapoint))
AS ?numTecDatapoints)

WHERE
{
{
Select the unique, in the sense
of having unique vector values,
set of VectorTableElements
SELECT DISTINCT ?vte
WHERE
{

APPENDIX B. SIATEC SPARQL QUERIES 170

{
SELECT ?vte (MIN (?vteSubIdx) AS ?minVteIdx)
WHERE
{
?vte a sia:VectorTableElement;

rdfs:subClassOf ?vteSub .

?vteSub sia:orderedIndex ?vteSubIdx.
}
GROUP BY ?vte

}

?vte sia:orderedIndex ?minVteIdx
}

}

?tec a sia:Tec;
sia:datapoint ?tecDatapoint .

}
GROUP BY ?tec ?vte

}

?tec sia:datapoint ?tecDatapoint .

?tecDatapoint sia:vector ?tecVector .

?tecVector sia:dimVal ?tecDimVal .
?tecDimVal sia:dimension ?dim .
?tecDimVal sia:value ?tecVal .

?vte sia:dimVal ?vteDimVal .

?vteDimVal sia:dimension ?dim .
?vteDimVal sia:value ?vteVal .

BIND (?tecVal + ?vteVal AS ?projectedVal) .

?projectedDatapoint a sia:Datapoint;
sia:vector ?projectedVector .

?projectedVector sia:dimVal ?projectedDimVal .
?projectedDimVal sia:dimension ?dim .
?projectedDimVal sia:value ?projectedVal .

}
GROUP BY ?vte ?tec ?numTecDatapoints

?tecDatapoint ?projectedDatapoint
}

Find the dimensionality of this dataset
{
SELECT (COUNT (DISTINCT (?vectorDim))

AS ?datasetDimensionality)
WHERE

APPENDIX B. SIATEC SPARQL QUERIES 171

{
?datapoint a sia:Datapoint;

sia:vector ?vector .

?vector sia:dimVal ?vectorDimVal .

?vectorDimVal sia:dimension ?vectorDim
}

}

FILTER (?numMatchedDims = ?datasetDimensionality)
}
GROUP BY ?vte ?tec ?numTecDatapoints

}

FILTER (?numTecDatapoints = ?numProjectedDatapoints)
}

B.7 Informative Queries

The queries below are do not form part of the Semantic Web implementation

of the SIA and SIATEC algorithms, but are useful for extracting results.

Query 14 - SelectMtps

^[SelectMtps]
PREFIX sia: <http://example.org/sia#>
SELECT ?mtp ?idx ?dim ?val ?mtpElementIdx ?mtpDim ?mtpVal
WHERE
{
?mtp a sia:Mtp .
?mtp sia:vector ?mtpVector .
?mtpVector sia:orderedIndex ?idx .
?mtpVector sia:dimVal ?mtpDimVal .
?mtpDimVal sia:dimension ?dim .
?mtpDimVal sia:value ?val .
?mtp sia:datapoint ?datapoint .
?datapoint sia:vector ?vector .
?datapoint sia:orderedIndex ?mtpElementIdx .
?vector sia:dimVal ?vectorDimVal .
?vectorDimVal sia:dimension ?mtpDim .
?vectorDimVal sia:value ?mtpVal .

}
ORDER BY ?idx ?dim ?mtpElementIdx ?mtpDim

Query 15 - SelectTecs

^[SelectTecs]
PREFIX sia: <http://example.org/sia#>
SELECT ?tec ?tecDatapoint ?tecDatapointVectorDim

APPENDIX B. SIATEC SPARQL QUERIES 172

?tecDatapointVectorVal ?vector ?vectorDim ?vectorVal
WHERE
{
?tec a sia:Tec;

sia:datapoint ?tecDatapoint;
sia:canBeTranslatedBy ?vector.

?tecDatapoint sia:vector ?tecDatapointVector .

?tecDatapointVector sia:dimVal ?tecDatapointVectorDimVal .
?tecDatapointVectorDimVal sia:dimension ?tecDatapointVectorDim;

sia:value ?tecDatapointVectorVal .

?vector sia:dimVal ?vectorDimVal .
?vectorDimVal sia:dimension ?vectorDim;

sia:value ?vectorVal .
}
ORDER BY ?tec ?tecDatapoint ?tecDatapointVectorDim ?vector ?vectorDim

Query 16 - SelectCountMtps

^[SelectCountMtps]
PREFIX sia: <http://example.org/sia#>
SELECT (COUNT (DISTINCT (?mtp)) AS ?numMtps)
WHERE
{
?mtp a sia:Mtp

}

Query 17 - SelectCountTecs

^[SelectCountTecs]
PREFIX sia: <http://example.org/sia#>
SELECT (COUNT (DISTINCT (?tec)) AS ?numTecs)
WHERE
{
?tec a sia:Tec

}

Query 18 - SelectAll

^[SelectAll]
PREFIX sia: <http://example.org/sia#>
SELECT ?s ?p ?o
WHERE
{
?s ?p ?o

}

Bibliography

S. Abdallah, K. Noland, M. Sandler, M. Casey, and C. Rhodes. Theory and

evaluation of a Bayesian music structure extractor. In Proc. International

Conference on Music Information Retrieval (ISMIR). Citeseer, 2005.

Dean Allemang and James Hendler. Semantic web for the working ontologist:

effective modeling in RDFS and OWL. Access Online via Elsevier, 2011.

ANSI. USA standard acoustical terminology, Tech. Rep. S1.1-1960. American

National Standards Institute, 1960.

Grigoris Antoniou. A semantic web primer. the MIT Press, 2004.

J. Aucouturier, F. Pachet, and M. Sandler. “the way it sounds”: timbre models

for analysis and retrieval of music signals. IEEE Transactions on Multimedia,

7(6):1028–1035, 2005.

J.J. Aucouturier and M. Sandler. Segmentation of musical signals using hidden

markov models. Preprints-Audio Engineering Society, 2001.

L. Barrington, A.B. Chan, and G. Lanckriet. Modeling music as a dynamic

texture. Audio, Speech, and Language Processing, IEEE Transactions on, 18

(3):602–612, 2010.

Mathieu Barthet, Steven Hargreaves, and Mark Sandler. Speech/music discrim-

ination in audio podcast using structural segmentation and timbre recogni-

tion. In Sølvi Ystad, Mitsuko Aramaki, Richard Kronland-Martinet, and

Kristoffer Jensen, editors, Exploring Music Contents, volume 6684 of Lecture

Notes in Computer Science, pages 138–162. Springer Berlin Heidelberg, 2011.

ISBN 978-3-642-23125-4.

M.A. Bartsch and G.H. Wakefield. Audio thumbnailing of popular music using

chroma-based representations. IEEE Transactions on Multimedia, 7(1):96–

104, 2005.

173

BIBLIOGRAPHY 174

Emmanouil Benetos and Simon Dixon. A temporally-constrained convolutive

probabilistic model for pitch detection. In Applications of Signal Processing to

Audio and Acoustics (WASPAA), 2011 IEEE Workshop on, pages 133–136.

IEEE, 2011.

Emmanouil Benetos and Simon Dixon. Temporally-constrained convolutive

probabilistic latent component analysis for multi-pitch detection. In Latent

Variable Analysis and Signal Separation, pages 364–371. Springer, 2012.

Emmanouil Benetos, Simon Dixon, Dimitrios Giannoulis, Holger Kirchhoff, and

Anssi Klapuri. Automatic music transcription: Breaking the glass ceiling. In

ISMIR, pages 379–384, 2012.

A.S. Bregman. Auditory scene analysis: The perceptual organization of sound.

The MIT Press, 1994.

T Brennan. Music structure analysis. Master’s thesis, Queen Mary University

of London, 2010.

Bertrand H Bronson. Mechanical help in the study of folk song. The Journal

of American Folklore, 62(244):81–86, 1949.

M.J. Bruderer. Perception and Modeling of Segment Boundaries in Popular

Music. PhD thesis, 2008.

M.J. Bruderer, M. McKinney, and A. Kohlrausch. Structural boundary per-

ception in popular music. In Proc. 7th Int. Conf. Music Inf. Retrieval, pages

198–201. Citeseer, 2006.

C.J.C. Burges, D. Plastina, J.C. Platt, E. Renshaw, and H.S. Malvar. Using

audio fingerprinting for duplicate detection and thumbnail generation. In

Acoustics, Speech, and Signal Processing, 2005. Proceedings.(ICASSP’05).

IEEE International Conference on, volume 3. IEEE, 2005.

John Ashley Burgoyne, Jonathan Wild, and Ichiro Fujinaga. An expert ground

truth set for audio chord recognition and music analysis. In ISMIR, pages

633–638, 2011.

Emilios Cambouropoulos. Towards a General Computational Theory of Musical

Structure. PhD thesis, University of Edinburgh, UK, May 1998.

BIBLIOGRAPHY 175

Chris Cannam, Mark Sandler, Michael O. Jewell, Christophe Rhodes, and Mark

d’Inverno. Linked data and you: Bringing music research software into the

semantic web. Journal of New Music Research, 39(4):313–325, 2010. doi:

10.1080/09298215.2010.522715.

W. Chai and B. Vercoe. Music thumbnailing via structural analysis. In Pro-

ceedings of the eleventh ACM international conference on Multimedia, pages

223–226. ACM New York, NY, USA, 2003.

Raphaël Clifford, Manolis Christodoulakis, Tim Crawford, David Meredith, and

Geraint A Wiggins. A fast, randomised, maximal subset matching algorithm

for document-level music retrieval. In ISMIR, pages 150–155, 2006.

Tom Collins. Improved methods for pattern discovery in music, with applications

in automated stylistic composition. PhD thesis, The Open University, 2011.

Tom Collins and David Meredith. Maximal translational equivalence classes of

musical patterns in point-set representations. In Mathematics and Computa-

tion in Music, pages 88–99. Springer, 2013.

Tom Collins, Jeremy Thurlow, Robin Laney, Alistair Willis, and Paul Garth-

waite. A comparative evaluation of algorithms for discovering translational

patterns in baroque keyboard works. 2010.

Tom Collins, Robin Laney, Alistair Willis, and Paul H. Garthwaite. Modeling

pattern importance in chopin’s mazurkas. Music Perception: An Interdisci-

plinary Journal, 28(4):pp. 387–414, 2011. ISSN 07307829.

Darrell Conklin. Discovery of distinctive patterns in music. Intelligent Data

Analysis, 14(5):547–554, 2010.

Darrell Conklin and Christina Anagnostopoulou. Representation and discovery

of multiple viewpoint patterns. In Proceedings of the International Computer

Music Conference, pages 479–485. Citeseer, 2001.

John Davies, Rudi Studer, and Paul Warren. Semantic Web technologies: trends

and research in ontology-based systems. Wiley. com, 2006.

Martin Dillon and Michael Hunter. Automated identification of melodic variants

in folk music. Computers and the Humanities, 16(2):107–117, 1982.

BIBLIOGRAPHY 176

S. Dixon. Onset detection revisited. In Proceedings of the 9th International

Conference on Digital Audio Effects, pages 133–137, 2006.

J Stephen Downie. The music information retrieval evaluation exchange (2005–

2007): A window into music information retrieval research. Acoustical Science

and Technology, 29(4):247–255, 2008.

Daniel P. W. Ellis. Beat tracking by dynamic programming. Journal of New

Music Research, 36(1):51 – 60, 2007. ISSN 09298215.

D.P.W. Ellis and G.E. Poliner. IdentifyingCover Songs’ with Chroma Fea-

tures and Dynamic Programming Beat Tracking. In Acoustics, Speech and

Signal Processing, 2007. ICASSP 2007. IEEE International Conference on,

volume 4. IEEE, 2007.

G. Fazekas and M. Sandler. Structural decomposition of recorded vocal perfor-

mances and it’s application to intelligent audio editing. In Proceedings of the

123rd AES Convention, 2007a.

G. Fazekas and M. Sandler. Intelligent editing of studio recordings with the

help of automatic music structure extraction. In Proceedings of the 122nd

AES Convention, 2007b.

G. Fazekas and M.B. Sandler. The studio ontology framework. ISMIR 2011

12th International Conference on Music Information Retrieval Proceedings,

2011.

G. Fazekas, Y. Raimond, and M. Sandler. A Framework for Producing Rich

Musical Metadata in Creative Music Production. In AES 125th Convention,

San Francisco, 2008.

Gyorgy Fazekas. Semantic audio analysis: utilities and applications. PhD

thesis, Queen Mary, University of London, 2012.

B. Fields, K. Page, D. De Roure, and T. Crawford. The segment ontol-

ogy: Bridging music-generic and domain-specific. In Multimedia and Expo

(ICME), 2011 IEEE International Conference on, pages 1–6. IEEE, 2011.

Derry Fitzgerald. Harmonic/percussive separation using median filtering.

Dublin Institute of Technology, 2010.

BIBLIOGRAPHY 177

J. Foote. Automatic audio segmentation using a measure of audio novelty.

In Proceedings of IEEE International Conference on Multimedia and Expo,

volume 1, pages 452–455, 2000.

Asif Ghias, Jonathan Logan, David Chamberlin, and Brian C Smith. Query by

humming: musical information retrieval in an audio database. In Proceedings

of the third ACM international conference on Multimedia, pages 231–236.

ACM, 1995.

M. Goto. A chorus section detection method for musical audio signals and

its application to a music listening station. IEEE Transactions on Audio,

Speech, and Language Processing, 14(5):1783–1794, 2006.

Masataka Goto, Hiroki Hashiguchi, Takuichi Nishimura, and Ryuichi Oka.

Rwc music database: Music genre database and musical instrument sound

database. In ISMIR, volume 3, pages 229–230, 2003.

S. Hargreaves, A. Klapuri, and M. Sandler. Structural segmentation of mul-

titrack audio. Audio, Speech, and Language Processing, IEEE Transactions

on, 20(10):2637 –2647, dec. 2012. ISSN 1558-7916.

Steven Hargreaves, Chris Landone, Mark Sandler, and Panos Kudumakis. Seg-

mentation and discovery of podcast content. In Audio Engineering Society

Conference 128. Audio Engineering Society, 2010.

Steven Hargreaves, Geraint Wiggins, and Mark Sandler. A semantic web ap-

proach to pattern discovery in data and music. In Audio Engineering Society

Conference: 53rd International Conference: Semantic Audio. Audio Engi-

neering Society, 2014.

Christopher Harte, Mark Sandler, Samer Abdallah, and Emilia Gómez. Sym-

bolic representation of musical chords: A proposed syntax for text anno-

tations. Proceedings of the International Conference on Music Information

Retrieval (ISMIR), pages 66–71, 2005.

D.M. Huber and R.E. Runstein. Modern recording techniques. Focal press,

2005.

John Bryan Ibbotson. A framework for the real-time analysis of musical events.

PhD thesis, University of Southampton, 2009.

BIBLIOGRAPHY 178

Kurt Jacobson. Connections in Music. PhD thesis, Queen Mary, University of

London, 2011.

K. Jensen, J. Xu, and M. Zachariasen. Rhythm-based segmentation of popular

chinese music. In Proc. ISMIR. Citeseer, 2005.

A. Jordanous. Defining creativity: Finding keywords for creativity using corpus

linguistics techniques. Ventura, D.; Pease, A.; Pérez y Pérez, R, pages 278–

287, 2010.

A. Klapuri and M. Davy. Signal processing methods for music transcription.

Springer-Verlag New York Inc, 2006.

Anssi Klapuri. Signal processing methods for the automatic transcription of

music. Tampere University of Technology Finland, 2004.

S. Kolozali, M. Barthet, G. Fazekas, and M. Sandler. Towards the automatic

generation of a semantic web ontology for musical instruments. Semantic

Multimedia, pages 186–187, 2011.

Sefki Kolozali. Automatic Ontology Generation Based on Semantic Audio Anal-

ysis. PhD thesis, Queen Mary, University of London, 2013.

Kjell Lemström. String matching techniques for music retrieval. University of

Helsinki, 2000.

Kjell Lemström and Jorma Tarhio. Transposition invariant pattern matching

for multi-track strings. Nordic Journal of Computing, 10:185–205, 2003.

Kjell Lemström, Pauli Laine, and Sami Perttu. Using relative interval slope in

music information retrieval. 1999.

F. Lerdahl and R. Jackendoff. A generative theory of tonal music. The MIT

Press, 1996.

Bo Leuf. The Semantic Web: crafting infrastructure for agency. Wiley. com,

2006.

M. Levy and M. Sandler. Structural segmentation of musical audio by con-

strained clustering. Audio, Speech, and Language Processing, IEEE Trans-

actions on, 16(2):318–326, 2008. ISSN 1558-7916.

BIBLIOGRAPHY 179

M. Levy, M. Sandler, and M. Casey. Extraction of high-level musical struc-

ture from audio data and its application to thumbnail generation. In Proc.

ICASSP, pages 1433–1436. Citeseer, 2006.

Anna Lubiw and Luke Tanur. Pattern matching in polyphonic music as a

weighted geometric translation problem. In ISMIR, 2004.

M. Mauch, K.C. Noland, and S. Dixon. Using musical structure to enhance

automatic chord transcription. In Proc. ISMIR, pages 231–236, 2009.

M. F. McKinney, D. Moelants, M. E. P. Davies, and A. Klapuri. Evaluation of

audio beat tracking and music tempo extraction algorithms. Journal of New

Music Research, 36(1):1 – 16, 2007. ISSN 09298215.

David Meredith, Kjell Lemström, and Geraint A Wiggins. Algorithms for dis-

covering repeated patterns in multidimensional representations of polyphonic

music. Journal of New Music Research, 31(4):321–345, 2002. ISSN 09298215.

Marcel Mongeau and David Sankoff. Comparison of musical sequences. Com-

puters and the Humanities, 24(3):161–175, 1990.

Eugene Narmour. The analysis and cognition of melodic complexity: The

implication-realization model. University of Chicago Press, 1992.

Nobutaka Ono, Kenichi Miyamoto, Hirokazu Kameoka, and Shigeki Sagayama.

A real-time equalizer of harmonic and percussive components in music signals.

In ISMIR, pages 139–144, 2008.

Francois Pachet and Jean-Julien Aucouturier. Improving timbre similarity:

How high is the sky? Journal of negative results in speech and audio sciences,

1(1):1–13, 2004.

Thomas B Passin. Explorer’s guide to the semantic web. Manning Greenwich,

2004.

J. Paulus and A. Klapuri. Acoustic features for music piece structure analysis.

In Proc. of 11th International Conference on Digital Audio Effects, pages

309–312. Citeseer, 2008.

J. Paulus, M. Müller, and A. Klapuri. Audio-based music structure analysis. In

Proc. 11th International Conference on Music Information Retrieval, 2010.

BIBLIOGRAPHY 180

G. Peeters and E. Deruty. Is Music Structure Annotation Multi-Dimensional?

A Proposal for Robust Local Music Annotation. In Proc. of 3rd Workshop

on Learning the Semantics of Audio Signals, pages 75–90. Citeseer, 2009.

G. Peeters, A. La Burthe, and X. Rodet. Toward automatic music audio sum-

mary generation from signal analysis. In Proc. International Conference on

Music Information Retrieval, pages 94–100. Citeseer, 2002.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity

of sparql. ACM Transactions on Database Systems (TODS), 34(3):16, 2009.

E Poliner, Graham and PW Ellis, Daniel. A discriminative model for polyphonic

piano transcription. EURASIP Journal on Advances in Signal Processing,

2007.

L.R. Rabiner. A tutorial on hidden markov models and selected applications in

speech recognition. Proceedings of the IEEE, 77(2):257 –286, feb 1989. ISSN

0018-9219. doi: 10.1109/5.18626.

Y. Raimond, S. Abdallah, M. Sandler, and F. Giasson. The music ontology. In

Proceedings of the International Conference on Music Information Retrieval,

pages 417–422, 2007.

C. Raphael. Automatic segmentation of acoustic musical signals using hidden

markov models. Pattern Analysis and Machine Intelligence, IEEE Transac-

tions on, 21(4):360–370, 1999.

S. Ravuri and D.P.W. Ellis. Cover song detection: from high scores to general

classification. In Acoustics Speech and Signal Processing (ICASSP), 2010

IEEE International Conference on, pages 65–68. IEEE, 2010.

Halfdan Rump, Shigeki Miyabe, Emiru Tsunoo, Nobutaka Ono, and Shigeki

Sagayama. Autoregressive mfcc models for genre classification improved by

harmonic-percussion separation. In ISMIR, pages 87–92, 2010.

Michael Schmidt, Michael Meier, and Georg Lausen. Foundations of sparql

query optimization. In Proceedings of the 13th International Conference on

Database Theory, pages 4–33. ACM, 2010.

BIBLIOGRAPHY 181

Toby Segaran, Colin Evans, and Jamie Taylor. Programming the semantic web.

O’Reilly Media, 2009.

X Serra, M Magas, E Benetos, M Chudy, S Dixon, A Flexer, E Gómez,

F Gouyon, P Herrera, S Jordà, et al. Roadmap for music information re-

search. Creative Commons BY-NC-ND, 3, 2013.

Roger Shepard. Circularity in judgments of relative pitch. The Journal of

the Acoustical Society of America, 36(12):2346–2353, 1964. doi: 10.1121/1.

1919362.

David A Stech. A computer-assisted approach to micro-analysis of melodic

lines. Computers and the Humanities, 15(4):211–221, 1981.

E. Tsunoo, T. Akase, N. Ono, and S. Sagayama. Music mood classification by

rhythm and bass-line unit pattern analysis. In Acoustics Speech and Signal

Processing (ICASSP), 2010 IEEE International Conference on, pages 265–

268, 2010. doi: 10.1109/ICASSP.2010.5495964.

Rainer Typke, Panos Giannopoulos, Remco C Veltkamp, Frans Wiering, and

René Van Oostrum. Using transportation distances for measuring melodic

similarity. 2003.

G. Tzanetakis and P. Cook. Multifeature audio segmentation for browsing

and annotation. In Proceedings of IEEE Workshop on Applications of Signal

Processing to Audio and Acoustics. Citeseer, 1999.

Y. Ueda, Y. Uchiyama, T. Nishimoto, N. Ono, and S. Sagayama. Hmm-based

approach for automatic chord detection using refined acoustic features. In

Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International

Conference on, pages 5518–5521, 2010. doi: 10.1109/ICASSP.2010.5495218.

J. Wellhausen and M. Hoeynck. Audio thumbnailing using mpeg-7 low level

audio descriptors. In Proc. ITCom’03. Citeseer, 2003.

G. A. Wiggins, D. Müllensiefen, and M. T. Pearce. On the non-existence of

music: Why music theory is a figment of the imagination. Musicae Scientiae,

Discussion Forum 5:231–255, 2010.

BIBLIOGRAPHY 182

Geraint A. Wiggins. Semantic Gap?? Schemantic Schmap!! Methodological

considerations in the scientific study of music. In Proceedings of 11th IEEE

International Symposium on Multimedia, pages 477–482, 2009. ISBN 978-1-

4244-5231-6. doi: 10.1109/ISM.2009.36.

T. Wilmering, G. Fazekas, and M. B. Sandler. Towards ontological representa-

tions of digital audio effects. Proceedings of the 14th International Conference

on Digital Audio Effects (DAFx-11), Paris, France, 2011.

