7 research outputs found

    Context-aware Approach for Determining the Threshold Price in Name-Your-Own-Price Channels

    Get PDF
    Key feature of a context-aware application is the ability to adapt based on the change of context. Two approaches that are widely used in this regard are the context-action pair mapping where developers match an action to execute for a particular context change and the adaptive learning where a context-aware application refines its action over time based on the preceding action’s outcome. Both these approaches have limitation which makes them unsuitable in situations where a context-aware application has to deal with unknown context changes. In this paper we propose a framework where adaptation is carried out via concurrent multi-action evaluation of a dynamically created action space. This dynamic creation of the action space eliminates the need for relying on the developers to create context-action pairs and the concurrent multi-action evaluation reduces the adaptation time as opposed to the iterative approach used by adaptive learning techniques. Using our reference implementation of the framework we show how it could be used to dynamically determine the threshold price in an e-commerce system which uses the name-your-own-price (NYOP) strategy

    Performance Tuning of Database Systems Using a Context-aware Approach

    Get PDF
    Database system performance problems have a cascading effect into all aspects of an enterprise application. Database vendors and application developers provide guidelines, best practices and even initial database settings for good performance. But database performance tuning is not a one-off task. Database administrators have to keep a constant eye on the database performance as the tuning work carried out earlier could be invalidated due to multitude of reasons. Before engaging in a performance tuning endeavor, a database administrator must prioritize which tuning tasks to carry out first. This prioritization is done based on which tuning action would yield highest performance benefit. However, this prediction may not always be accurate. Experiment-based performance tuning methodologies have been introduced as an alternative to prediction-based performance tuning approaches. Experimenting on a representative system similar to the production one allows a database administrator to accurately gauge the performance gain for a particular tuning task. In this paper we propose a novel approach to experiment-based performance tuning with the use of a context-aware application model. Using a proof-of-concept implementation we show how it could be used to automate the detection of performance changes, experiment creation and evaluate the performance tuning outcomes for mixed workload types through database configuration parameter changes

    Context-Aware Framework for Performance Tuning via Multi-action Evaluation

    Get PDF
    Context-aware systems perform adaptive changes in several ways. One way is for the system developers to encompass all possible context changes in a context-aware application and embed them into the system. However, this may not suit situations where the system encounters unknown contexts. In such cases, system inferences and adaptive learning are used whereby the system executes one action and evaluates the outcome to self-adapts/self-learns based on that. Unfortunately, this iterative approach is time-consuming if high number of actions needs to be evaluated. By contrast, our framework for context-aware systems finds the best action for unknown context through concurrent multi-action evaluation and self-adaptation which reduces significantly the evolution time in comparison to the iterative approach. In our implementation we show how the context-aware multi-action system can be used for a context-aware evaluation for database performance tuning

    Self-adaptation via concurrent multi-action evaluation for unknown context

    Get PDF
    Context-aware computing has been attracting growing attention in recent years. Generally, there are several ways for a context-aware system to select a course of action for a particular change of context. One way is for the system developers to encompass all possible context changes in the domain knowledge. Other methods include system inferences and adaptive learning whereby the system executes one action and evaluates the outcome and self-adapts/self-learns based on that. However, in situations where a system encounters unknown contexts, the iterative approach would become unfeasible when the size of the action space increases. Providing efficient solutions to this problem has been the main goal of this research project. Based on the developed abstract model, the designed methodology replaces the single action implementation and evaluation by multiple actions implemented and evaluated concurrently. This parallel evaluation of actions speeds up significantly the evolution time taken to select the best action suited to unknown context compared to the iterative approach. The designed and implemented framework efficiently carries out concurrent multi-action evaluation when an unknown context is encountered and finds the best course of action. Two concrete implementations of the framework were carried out demonstrating the usability and adaptability of the framework across multiple domains. The first implementation was in the domain of database performance tuning. The concrete implementation of the framework demonstrated the ability of concurrent multi-action evaluation technique to performance tune a database when performance is regressed for an unknown reason. The second implementation demonstrated the ability of the framework to correctly determine the threshold price to be used in a name-your-own-price channel when an unknown context is encountered. In conclusion the research introduced a new paradigm of a self-adaptation technique for context-aware application. Among the existing body of work, the concurrent multi-action evaluation is classified under the abstract concept of experiment-based self-adaptation techniques

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Semantic Approach to Context Management and Reasoning in Ubiquitous Context-Aware Systems

    No full text
    International audienceUbiquitous computing involves applications that adapt their behavior to every changing physical, social, and computing environment. This can be realized through proper capturing, representation, management and reasoning of constantly changing context. In this work, we propose a hybrid approach to collaborative context management. It uses semantic ontology and relational schema. System scalability is addressed by heuristic based selective loading of relevant context data into the reasoner. We have also developed a collaborative platform that performs context-aware reasoning and decisions based on the context management model. A result from the preliminary test shows that ourmodel is scalable and the platform is domain independent

    Context modelling for natural Human Computer Interaction applications in e-health

    Get PDF
    The conception of IoT (Internet of Things) is accepted as the future tendency of Internet among academia and industry. It will enable people and things to be connected at anytime and anyplace, with anything and anyone. IoT has been proposed to be applied into many areas such as Healthcare, Transportation,Logistics, and Smart environment etc. However, this thesis emphasizes on the home healthcare area as it is the potential healthcare model to solve many problems such as the limited medical resources, the increasing demands for healthcare from elderly and chronic patients which the traditional model is not capable of. A remarkable change in IoT in semantic oriented vision is that vast sensors or devices are involved which could generate enormous data. Methods to manage the data including acquiring, interpreting, processing and storing data need to be implemented. Apart from this, other abilities that IoT is not capable of are concluded, namely, interoperation, context awareness and security & privacy. Context awareness is an emerging technology to manage and take advantage of context to enable any type of system to provide personalized services. The aim of this thesis is to explore ways to facilitate context awareness in IoT. In order to realize this objective, a preliminary research is carried out in this thesis. The most basic premise to realize context awareness is to collect, model, understand, reason and make use of context. A complete literature review for the existing context modelling and context reasoning techniques is conducted. The conclusion is that the ontology-based context modelling and ontology-based context reasoning are the most promising and efficient techniques to manage context. In order to fuse ontology into IoT, a specific ontology-based context awareness framework is proposed for IoT applications. In general, the framework is composed of eight components which are hardware, UI (User Interface), Context modelling, Context fusion, Context reasoning, Context repository, Security unit and Context dissemination. Moreover, on the basis of TOVE (Toronto Virtual Enterprise), a formal ontology developing methodology is proposed and illustrated which consists of four stages: Specification & Conceptualization, Competency Formulation, Implementation and Validation & Documentation. In addition, a home healthcare scenario is elaborated by listing its well-defined functionalities. Aiming at representing this specific scenario, the proposed ontology developing methodology is applied and the ontology-based model is developed in a free and open-source ontology editor called Protégé. Finally, the accuracy and completeness of the proposed ontology are validated to show that this proposed ontology is able to accurately represent the scenario of interest
    corecore