4 research outputs found

    Multi Sentence Description of Complex Manipulation Action Videos

    Full text link
    Automatic video description requires the generation of natural language statements about the actions, events, and objects in the video. An important human trait, when we describe a video, is that we are able to do this with variable levels of detail. Different from this, existing approaches for automatic video descriptions are mostly focused on single sentence generation at a fixed level of detail. Instead, here we address video description of manipulation actions where different levels of detail are required for being able to convey information about the hierarchical structure of these actions relevant also for modern approaches of robot learning. We propose one hybrid statistical and one end-to-end framework to address this problem. The hybrid method needs much less data for training, because it models statistically uncertainties within the video clips, while in the end-to-end method, which is more data-heavy, we are directly connecting the visual encoder to the language decoder without any intermediate (statistical) processing step. Both frameworks use LSTM stacks to allow for different levels of description granularity and videos can be described by simple single-sentences or complex multiple-sentence descriptions. In addition, quantitative results demonstrate that these methods produce more realistic descriptions than other competing approaches

    Semantic analysis of manipulation actions using spatial relations

    No full text
    INSPEC Accession Number: 17058376Recognition of human manipulation actions together with the analysis and execution by a robot is an important issue. Also, perception of spatial relationships between objects is central to understanding the meaning of manipulation actions. Here we would like to merge these two notions and analyze manipulation actions using symbolic spatial relations between objects in the scene. Specifically, we define procedures for extraction of symbolic human-readable relations based on Axis Aligned Bounding Box object models and use sequences of those relations for action recognition from image sequences. Our framework is inspired by the so called Semantic Event Chain framework, which analyzes touching and un-touching events of different objects during the manipulation. However, our framework uses fourteen spatial relations instead of two. We show that our relational framework is able to differentiate between more manipulation actions than the original Semantic Event Chains. We quantitatively evaluate the method on the MANIAC dataset containing 120 videos of eight different manipulation actions and obtain 97% classification accuracy which is 12 % more as compared to the original Semantic Event ChainsSistemų analizės katedraVytauto Didžiojo universiteta
    corecore