755 research outputs found

    Sharing Human-Generated Observations by Integrating HMI and the Semantic Sensor Web

    Get PDF
    Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is soun

    Survey of Models and Architectures to Ensure Linked Data Access

    Get PDF
    Mobile Access to the Web of Data is currently a real challenge in developing countries, mainly characterized by limited Internet connectivity and high penetration of mobile devices with the limited resources (such as cache and memory). In this paper, we survey and compare proposed solutions (such as models and architectures) that could contribute to solving this problem of mobile access to the Web of Data with intermittent Internet access. These solutions are discussed in relation to the underlying network architectures and data models considered. We present a conceptual study of peer-to-peer solutions based on gossip protocols dedicated to design the connected overlay networks. In addition, we provide a detailed analysis of client-server and data replication systems generally designed to ensure the local availability of data on the system. We conclude with some recommendations to achieve a connected architecture that provides mobile contributors with local access to the Web of data

    3D DATA INTEGRATION FOR WEB BASED OPEN SOURCE WebGL INTERACTIVE VISUALISATION

    Get PDF
    Recent advances in open-source geospatial technologies in WebGIS allowed the visualization of a 3D complex environment on the web, exploiting realistic Globe reproduction of the real territorial asset. At the same time, in the field of gaming technologies, the new possibilities offered by open-source WebGL JavaScript libraries allowed the creation of Virtual Reality navigation models on the web. The integration between 3D GIS globe navigation models and VR environment navigation is a solution that offers a further level of detail in web navigation, exploiting the capabilities of web browsers in the best way. This research further contributes to this field, showing a workflow to integrate different 3D data in a VR and 3D WebGIS navigation model. The case study for this research is the new building of the University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC) of Enschede (The Netherlands). This work tests the online integration of variety of 3D input data that can lead to different Levels of Details (LoD) of the buildings inside the Globe-based WebGIS platform. The developed solution works on desktop and mobile devices using the capabilities of the most common web browsers, avoiding any software installation. The result of this work is based on completely open-source solutions that offers the possibility to navigate within a 3D model, which is useful for citizens, governmental or private institutions in decision-making processes. This work represents a first step towards the ambition to generate a web Digital Twin platform to combine datasets from different sources in a unique open-source solution

    Enabling Technologies for Web 3.0: A Comprehensive Survey

    Full text link
    Web 3.0 represents the next stage of Internet evolution, aiming to empower users with increased autonomy, efficiency, quality, security, and privacy. This evolution can potentially democratize content access by utilizing the latest developments in enabling technologies. In this paper, we conduct an in-depth survey of enabling technologies in the context of Web 3.0, such as blockchain, semantic web, 3D interactive web, Metaverse, Virtual reality/Augmented reality, Internet of Things technology, and their roles in shaping Web 3.0. We commence by providing a comprehensive background of Web 3.0, including its concept, basic architecture, potential applications, and industry adoption. Subsequently, we examine recent breakthroughs in IoT, 5G, and blockchain technologies that are pivotal to Web 3.0 development. Following that, other enabling technologies, including AI, semantic web, and 3D interactive web, are discussed. Utilizing these technologies can effectively address the critical challenges in realizing Web 3.0, such as ensuring decentralized identity, platform interoperability, data transparency, reducing latency, and enhancing the system's scalability. Finally, we highlight significant challenges associated with Web 3.0 implementation, emphasizing potential solutions and providing insights into future research directions in this field

    Argotario: Computational Argumentation Meets Serious Games

    Full text link
    An important skill in critical thinking and argumentation is the ability to spot and recognize fallacies. Fallacious arguments, omnipresent in argumentative discourse, can be deceptive, manipulative, or simply leading to `wrong moves' in a discussion. Despite their importance, argumentation scholars and NLP researchers with focus on argumentation quality have not yet investigated fallacies empirically. The nonexistence of resources dealing with fallacious argumentation calls for scalable approaches to data acquisition and annotation, for which the serious games methodology offers an appealing, yet unexplored, alternative. We present Argotario, a serious game that deals with fallacies in everyday argumentation. Argotario is a multilingual, open-source, platform-independent application with strong educational aspects, accessible at www.argotario.net.Comment: EMNLP 2017 demo paper. Source codes: https://github.com/UKPLab/argotari
    • 

    corecore