8,373 research outputs found

    Seeing the Forest for the Trees: Using the Gene Ontology to Restructure Hierarchical Clustering

    Get PDF
    Motivation: There is a growing interest in improving the cluster analysis of expression data by incorporating into it prior knowledge, such as the Gene Ontology (GO) annotations of genes, in order to improve the biological relevance of the clusters that are subjected to subsequent scrutiny. The structure of the GO is another source of background knowledge that can be exploited through the use of semantic similarity. Results: We propose here a novel algorithm that integrates semantic similarities (derived from the ontology structure) into the procedure of deriving clusters from the dendrogram constructed during expression-based hierarchical clustering. Our approach can handle the multiple annotations, from different levels of the GO hierarchy, which most genes have. Moreover, it treats annotated and unannotated genes in a uniform manner. Consequently, the clusters obtained by our algorithm are characterized by significantly enriched annotations. In both cross-validation tests and when using an external index such as proteinā€“protein interactions, our algorithm performs better than previous approaches. When applied to human cancer expression data, our algorithm identifies, among others, clusters of genes related to immune response and glucose metabolism. These clusters are also supported by proteinā€“protein interaction data. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.Lynne and William Frankel Center for Computer Science; Paul Ivanier center for robotics research and production; National Institutes of Health (R01 HG003367-01A1

    Semi-supervised prediction of protein interaction sentences exploiting semantically encoded metrics

    Get PDF
    Protein-protein interaction (PPI) identification is an integral component of many biomedical research and database curation tools. Automation of this task through classification is one of the key goals of text mining (TM). However, labelled PPI corpora required to train classifiers are generally small. In order to overcome this sparsity in the training data, we propose a novel method of integrating corpora that do not contain relevance judgements. Our approach uses a semantic language model to gather word similarity from a large unlabelled corpus. This additional information is integrated into the sentence classification process using kernel transformations and has a re-weighting effect on the training features that leads to an 8% improvement in F-score over the baseline results. Furthermore, we discover that some words which are generally considered indicative of interactions are actually neutralised by this process

    Extracting Biomolecular Interactions Using Semantic Parsing of Biomedical Text

    Full text link
    We advance the state of the art in biomolecular interaction extraction with three contributions: (i) We show that deep, Abstract Meaning Representations (AMR) significantly improve the accuracy of a biomolecular interaction extraction system when compared to a baseline that relies solely on surface- and syntax-based features; (ii) In contrast with previous approaches that infer relations on a sentence-by-sentence basis, we expand our framework to enable consistent predictions over sets of sentences (documents); (iii) We further modify and expand a graph kernel learning framework to enable concurrent exploitation of automatically induced AMR (semantic) and dependency structure (syntactic) representations. Our experiments show that our approach yields interaction extraction systems that are more robust in environments where there is a significant mismatch between training and test conditions.Comment: Appearing in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16

    Herb Target Prediction Based on Representation Learning of Symptom related Heterogeneous Network.

    Get PDF
    Traditional Chinese Medicine (TCM) has received increasing attention as a complementary approach or alternative to modern medicine. However, experimental methods for identifying novel targets of TCM herbs heavily relied on the current available herb-compound-target relationships. In this work, we present an Herb-Target Interaction Network (HTINet) approach, a novel network integration pipeline for herb-target prediction mainly relying on the symptom related associations. HTINet focuses on capturing the low-dimensional feature vectors for both herbs and proteins by network embedding, which incorporate the topological properties of nodes across multi-layered heterogeneous network, and then performs supervised learning based on these low-dimensional feature representations. HTINet obtains performance improvement over a well-established random walk based herb-target prediction method. Furthermore, we have manually validated several predicted herb-target interactions from independent literatures. These results indicate that HTINet can be used to integrate heterogeneous information to predict novel herb-target interactions

    PathExpand: Extending biological pathways using molecular interaction networks

    Get PDF
    We present a methodology for extending pre-defined protein sets representing cellular pathways and processes by mapping them onto a protein-protein interaction network, and extending them to include densely interconnected interaction partners. The added proteins display distinctive network topological features and molecular function annotations, and can be proposed as putative new components, and/or as regulators of the communication between the different cellular processes. Finally, these extended pathways and processes are used to analyze their enrichment in cancer mutated genes. Significant associations between mutated genes and certain processes are identified, enabling an analysis of the influence of previously non-annotated cancer mutated genes
    • ā€¦
    corecore