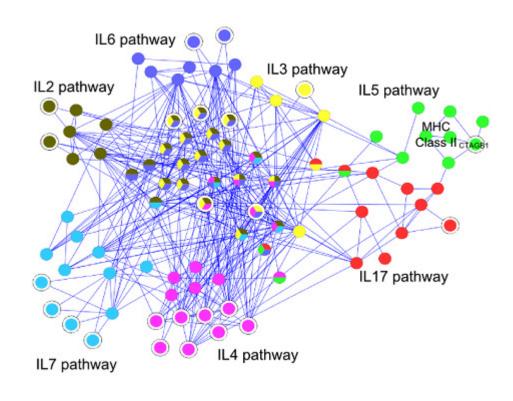
Computer Science

PathExpand: Extending biological pathways using molecular interaction networks



Outline

Overview:

Introduction / Motivation

Pathway extension procedure and criteria

Validation methods

Biological application: Alzheimer and cancer pathways

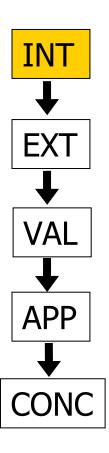
Conclusion

INT
↓
EXT
↓
VAL
↓
APP

CONC

PathExpand Page 2 of 22

Introduction



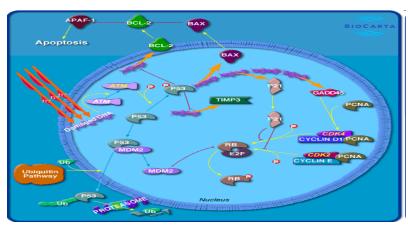
Introduction / Motivation: Why do we want to extend classical biological pathway definitions?

PathExpand Page 3 of 22

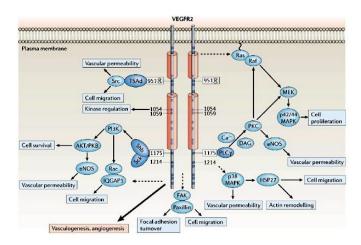
Introduction

Biological pathways and processes:

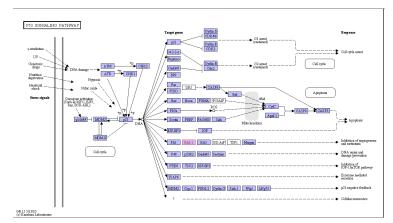
Rich sources of information, but partly subjective and inconsistent.



BioCarta (p53 signalling)



Reactome (VEGF signalling)



KEGG (p53 signalling)

PathExpand Page 4 of 22

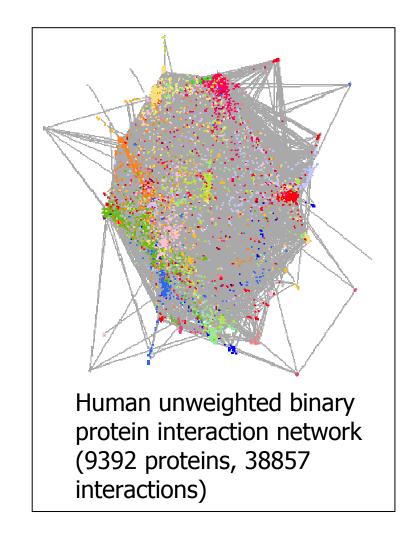
Goals

Include functional genomics data:

- protein-protein interactions
- genetic interactions
- gene co-expression
- → large-scale, less biased

Questions / Goals:

- Can we improve pathway definitions (compactness, connectivity, density)?
- How are pathways communicating ("cross-talk")?

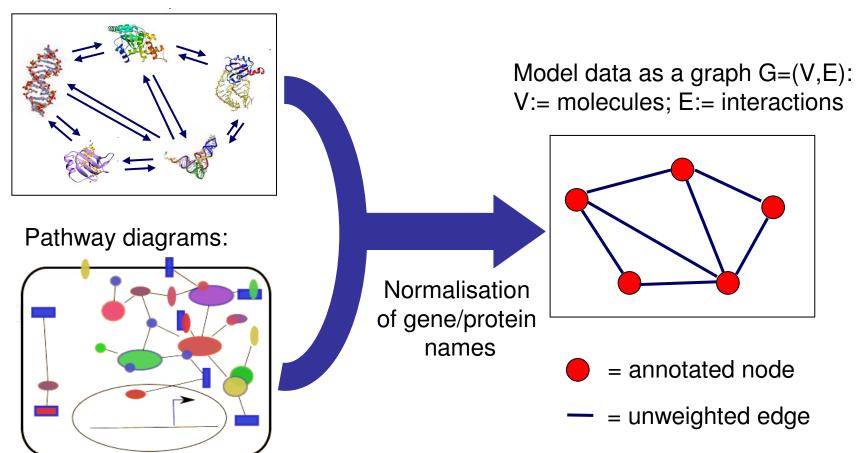


PathExpand Page 5 of 22

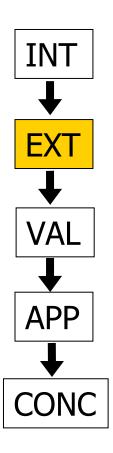
Data representation / integration

Modelling and combining the data

Molecular interactions:



PathExpand Page 6 of 22



Pathway extension procedure and criteria: How do we recognize "good" pathway definitions and improve them?

PathExpand Page 7 of 22

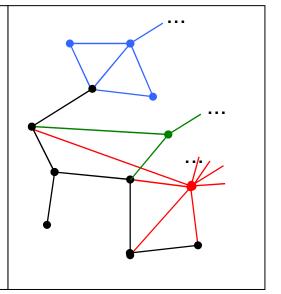
PPI-based pathway extension

PathExpand – Idea:

Extend pathways by adding genes that are "strongly connected" to the pathway-nodes or increase the pathway-"compactness" in a PPI.

Pathway extension criteria: Add a node v to set P if:

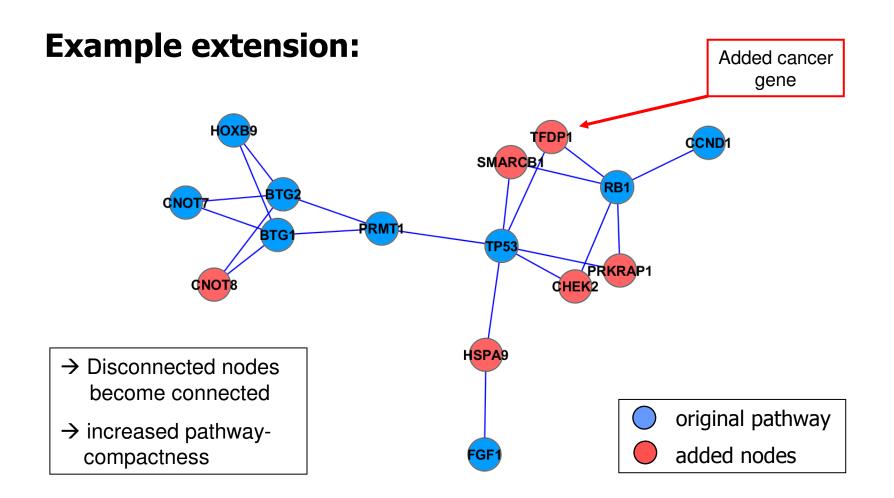
- v has a pathway-neighbour and degree(v) > 1; and
- #pathway-links(v,p) / #outside-links(v,p) $> T_1$; or
- #triangle-links(v,p) / #possible_triangles(v,p) > T₂; or
- #pathway-links(v,p) / #pathway-nodes(p) > T₃; and
- avg. shortest path distance in {P,v} smaller than in P



black = pathway-nodes
red blue green = nodes added based on different criteria

PathExpand Page 8 of 22

Example pathway extension



Pathway: BioCarta "BTG family proteins and cell cycle regulation"

PathExpand Page 9 of 22

Validation: How to validate pathway extensions without a real "gold standard"?

PathExpand Page 10 of 22

Evaluation (1)

Cross-validation

Can randomly deleted genes in the original pathways be recovered by the expansion procedure?

- → 3-step cross-validation procedure:
- Randomly remove 10% of the pathway members (among proteins with at least one partner in the pathway)
- 2. Apply the proposed extension procedure as well as 100 random extensions (random sampling among candidates)
- 3. Estimate p-value-like significance scores:

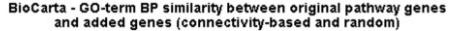
$$\sum_{i \in P} \left(\frac{\sum_{i=1}^{100} I(recovery_random_i >= recovery_proposed)}{100} \right) / |P|$$

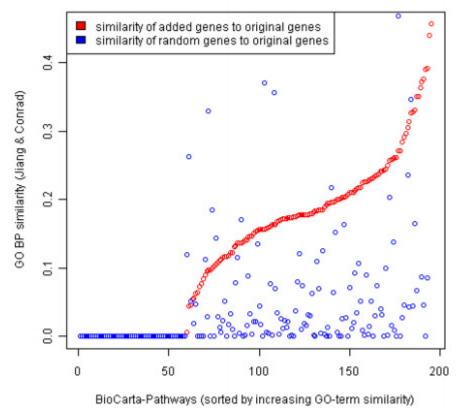
PathExpand Page 11 of 22

Evaluation (2)

Semantic similarity analysis (Gene Ontology)

- Quantify pairwise similarities between protein annotations using Jiang & Conrath's semantic similarity measure for GO-terms
- Compute avg. GO-term similarity between pathway-proteins and added proteins
 → compare to random extension model





PathExpand Page 12 of 22

Extension statistics

Extension statistics across all databases

Property	BioCarta	KEGG	Reactome
no. of used pathways	195	140	62
avg. pathway size	19	49	75
avg. size after expansion	24	61	85
total no. of added proteins	935	1745	622
no. of unique added proteins	280	623	409

Statistics on added proteins across 3 pathway databases:

- → pathways increase to 113% 126% of original size
- → many proteins added to multiple pathways

PathExpand Page 13 of 22

Topological Analysis

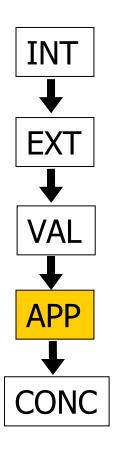
Topological properties of added proteins

	Protein set	Random set (mean)	Network (mean)
Shortest path length Node betweenness	3.68	4.11 (0.03)	4.12 (0.94)
	21998	14545 (4751)	14669 (68893)
Degree	10.3	8.11 (0.94)	8.27 (16.2)
Clustering coefficient	0.34 0.04	0.11 (0.01)	0.11 (0.21)
Eigenvector centrality		0.01 (0.04)	0 (0.57)

Network topological properties for proteins added to BioCarta pathways

The added proteins are more central, more densily clustered and have shorter distances between them in comparison to matched-size random proteins and the global network average.

PathExpand Page 14 of 22



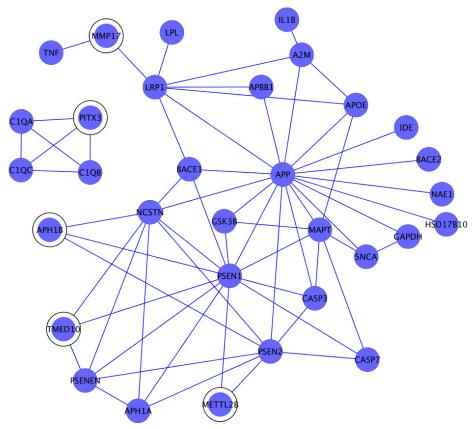
Biological application: Which insights do we gain when applying the approach to Alzheimer and cancer pathways?

PathExpand Page 15 of 22

Biological results (1)

Application: Alzheimer disease pathway

- More than 20 proteins annotated in our PPI-network
- 5 proteins added by the extension process (circled)
- 3 known to be associated with the disease
- 2 novel candidates:
 METTL2B, TMED10



KEGG Alzheimer disease pathway mapped on human PPI-network

PathExpand Page 16 of 22

Biological results (2)

Application: Interleukin signalling pathways

- Complex system of intracellular signalling cascades
- New putative pathway regulators identified
- New "crosstalk proteins" identified (associated with multiple pathways)



Two functions: pathway-regulation & pathway-communication?

PathExpand Page 17 of 22

Biological results (3)

Using extended pathways for functional enrichment analysis

- classical approach:
 Test enrichment of experimentally derived gene sets in cellular pathway members (one-sided Fisher exact test)
- → idea: replace original pathways by extended versions

Example: Enrichment analysis for pancreatic mutated genes

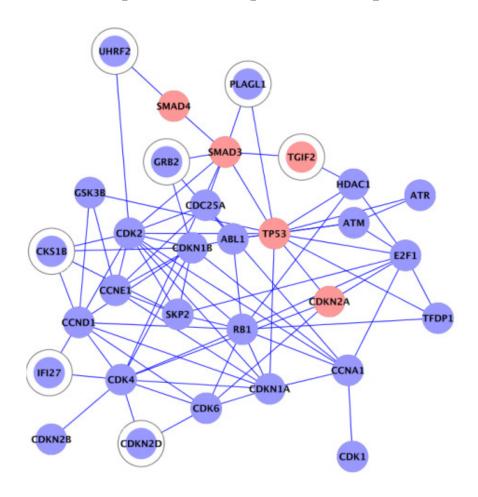
Cellular	Cellular	Pathway	Number of	Number of	Mutated genes
Process	process	size	pathway	mutated genes	among added
database			mutated	among added	proteins
			genes	proteins	
Biocarta	Agrin Postsynaptic	38	5	2	PGM5,
	Differentiation				PLEKHG2
Kegg	Fc epsilon RI	112	10	5	DOCK2,MAPKBP1,
	signaling pathway				DUSP19,ATF2,RASGRP3
Kegg	ErbB signaling	190	13	7	VPS13A,MAPKBP1,NEK8,
	pathway				LIG3,DUSP19,AFF2,GLTSCR1

PathExpand Page 18 of 22

Cancer mutated genes

Pancreatic mutated genes in expanded pathways

- "Cell cycle G1/S check point process" - extension procedure adds 7 proteins
- 6 of the added proteins are involved in cell cycle regulation
- the 7th (TGIF2) is known to be mutated in pancreatic cancer
- points to functional role of added proteins



PathExpand Page 19 of 22

Comparison to previous methods

Relation to other network analysis methods

(Disease) candidate gene prioritization		(Ab initio) pathway prediction
	_ · · · · · · · · · · · · · · · · · · ·	nilar Kelley & Ideker (2005)
Nitsch et al. (2009)	discussed	Shamir & Ulitsky (2007)
Cerami et al. (2010)	(PathExpand)	Ma & Tarone & Li (2008)
Sander et al. (2010)		Brady et al. (2009)
•••		•••

PathExpand Page 20 of 22

Conclusion

Conclusion & Summary

- The method integrates two sources of information, extending canonical pathways using large-scale protein interaction data
- Three validation methods: cross-validation, GO-term semantic similarity and enrichment analysis
- Extended pathways have advantages in terms of network-compactness and can provide new insights on pathway regulators, the cross-talk between pathways and gene set functional enrichment

PathExpand Page 21 of 22

References

References

- 1. E. Glaab, A. Baudot, N. Krasnogor, A. Valencia. *Extending pathways and processes using molecular interaction networks to analyse cancer genome data*, BMC Bioinformatics, 11(1), 597, 2010
- 2. E. Glaab, A. Baudot, N. Krasnogor, A. Valencia. *TopoGSA: network topological gene set analysis*, Bioinformatics, 26(9):1271-1272, 2010
- 3. E. Glaab, J. M. Garibaldi and N. Krasnogor. *ArrayMining: a modular web-application for microarray analysis combining ensemble and consensus methods with cross-study normalization*, BMC Bioinformatics, 10:358, 2009
- 4. E. Glaab, J. M. Garibaldi, N. Krasnogor. *Learning pathway-based decision rules to classify microarray cancer samples*, German Conference on Bioinformatics 2010, Lecture Notes in Informatics (LNI), 173, 123-134
- 5. H. O. Habashy, D. G. Powe, E. Glaab, G. Ball, I. Spiteri, N. Krasnogor, J. M. Garibaldi, E. A. Rakha, A. R. Green, C. Caldas, I. O. Ellis. *RERG (Ras-like, oestrogen-regulated, growth-inhibitor) expression in breast cancer: a marker of ER-positive luminal-like subtype, Breast Cancer Research and Treatment*, (Epub ahead of print)
- 6. E. Glaab, J. M. Garibaldi and N. Krasnogor. *VRMLGen: An R-package for 3D Data Visualization on the Web*, Journal of Statistical Software, 36(8),1-18, 2010

PathExpand Page 22 of 22