323 research outputs found

    Weakly- and Semi-Supervised Panoptic Segmentation

    Full text link
    We present a weakly supervised model that jointly performs both semantic- and instance-segmentation -- a particularly relevant problem given the substantial cost of obtaining pixel-perfect annotation for these tasks. In contrast to many popular instance segmentation approaches based on object detectors, our method does not predict any overlapping instances. Moreover, we are able to segment both "thing" and "stuff" classes, and thus explain all the pixels in the image. "Thing" classes are weakly-supervised with bounding boxes, and "stuff" with image-level tags. We obtain state-of-the-art results on Pascal VOC, for both full and weak supervision (which achieves about 95% of fully-supervised performance). Furthermore, we present the first weakly-supervised results on Cityscapes for both semantic- and instance-segmentation. Finally, we use our weakly supervised framework to analyse the relationship between annotation quality and predictive performance, which is of interest to dataset creators.Comment: ECCV 2018. The first two authors contributed equall

    How Well Do Self-Supervised Models Transfer?

    Get PDF
    Self-supervised visual representation learning has seen huge progress recently, but no large scale evaluation has compared the many models now available. We evaluate the transfer performance of 13 top self-supervised models on 40 downstream tasks, including many-shot and few-shot recognition, object detection, and dense prediction. We compare their performance to a supervised baseline and show that on most tasks the best self-supervised models outperform supervision, confirming the recently observed trend in the literature. We find ImageNet Top-1 accuracy to be highly correlated with transfer to many-shot recognition, but increasingly less so for few-shot, object detection and dense prediction. No single self-supervised method dominates overall, suggesting that universal pre-training is still unsolved. Our analysis of features suggests that top self-supervised learners fail to preserve colour information as well as supervised alternatives, but tend to induce better classifier calibration, and less attentive overfitting than supervised learners.Comment: CVPR 2021. Code available at https://github.com/linusericsson/ssl-transfe

    Texture-boundary detection in real-time

    Get PDF
    Boundary detection is an essential first-step for many computer vision applications. In practice, boundary detection is difficult because most images contain texture. Normally, texture-boundary detectors are complex, and so cannot run in real-time. On the other hand, the few texture boundary detectors that do run in real-time leave much to be desired in terms of quality. This thesis proposes two real-time texture-boundary detectors – the Variance Ridge Detector and the Texton Ridge Detector – both of which can detect high-quality texture-boundaries in real-time. The Variance Ridge Detector is able to run at 47 frames per second on 320 by 240 images, while scoring an F-measure of 0.62 (out of a theoretical maximum of 0.79) on the Berkeley segmentation dataset. The Texton Ridge Detector runs at 10 frames per second but produces slightly better results, with an F-measure score of 0.63. These objective measurements show that the two proposed texture-boundary detectors outperform all other texture-boundary detectors on either quality or speed. As boundary detection is so widely-used, this development could induce improvements to many real-time computer vision applications
    corecore