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ABSTRACT 

Boundary detection is an essential first-step for many computer vision applications. In 

practice, boundary detection is difficult because most images contain texture. Normally, 

texture-boundary detectors are complex, and so cannot run in real-time. On the other hand, 

the few texture boundary detectors that do run in real-time leave much to be desired in 

terms of quality. This thesis proposes two real-time texture-boundary detectors – the 

Variance Ridge Detector and the Texton Ridge Detector – both of which can detect high-

quality texture-boundaries in real-time. The Variance Ridge Detector is able to run at 47 

frames per second on 320 by 240 images, while scoring an F-measure of 0.62 (out of a 

theoretical maximum of 0.79) on the Berkeley segmentation dataset. The Texton Ridge 

Detector runs at 10 frames per second but produces slightly better results, with an F-

measure score of 0.63. These objective measurements show that the two proposed texture-

boundary detectors outperform all other texture-boundary detectors on either quality or 

speed. As boundary detection is so widely-used, this development could induce 

improvements to many real-time computer vision applications. 
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1 INTRODUCTION 

A boundary detector is an algorithm that finds boundaries – the borders that divide 

different parts of the same image (Martin, Fowlkes, & Malik, 2004). An example of this is 

illustrated below in Figure 1-1.  

 

FIGURE 1-1: An image (left) and its boundary map (right) according to human subjects. These 
images were taken from the Berkeley segmentation dataset and benchmark  (Martin, Fowlkes, 

Tal, & Malik, 2001).  

1.1 APPLICATIONS OF BOUNDARY DETECTION 

Boundary detection is an essential step to many computer vision applications.  

In automatic car/robot navigation, the car or robot must know where the boundaries 

of its obstacles are in order to drive around them. Figure 1-2 below illustrates a system 

(Vaudrey, Wedel, Rabe, Klappstein, & Klette, 2008; Klappstein, Vaudrey, Rabe, Wedel, & 

Klette, 2009) that endeavours to automatically drive a car. It is essential that the system 

knows where the boundaries of the moving objects are so that it can avoid collisions. 

 

FIGURE 1-2: This algorithm automatically detects boundaries of moving objects so that they 
can be avoided. Image taken from Vaudren et al. (2008).  

Face detection/recognition sometimes uses boundary detection to identify the parts 

of the face or the position of the face as a whole. Figure 1-3 below illustrates a face 

detector (Hsu, Abdel-Mottaleb, & Jain, 2002) which locates the position of the face from 

the boundaries in the image.  
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FIGURE 1-3: This face detector uses boundary detection to identify the position of the face. 
Reproduced from Hsu et al. (2002) 

One of the most widely-used methods for object model reconstruction is visual hull 

carving. This technique takes multiple images of the object from many different views, 

and then uses those views to sculpt the object out of a cube. The boundary map for each 

view is used as a stencil for the carving process – it determines where the algorithm 

should carve the cube. Figure 1-4 illustrates a system that does this (Furukawa & Ponce, 

2009). 

 

FIGURE 1-4: The object shown in the left image was sculpted into a visual hull (right) using 
boundary detection. Reproduced from Furukawa and Ponce (2009).   

Drummond and Cipolla (2002) developed an efficient and robust method of 3D object 

model tracking which involves tracking only the boundaries of the object. What makes 

it so efficient is that boundaries are one-dimensional, which means that tracking only 

boundaries reduces the number of degrees of freedom substantially. This is illustrated 

below in Figure 1-5. 
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FIGURE 1-5: This object tracking technique works by comparing the boundaries of a known 
object model with the actual boundaries of the image, found using a boundary detector 

(Drummond & Cipolla, 2002). 

Figure 1-6 below illustrates a technique for object recognition which uses boundary 

detection (Shotton, Blake, & Cipolla, 2008). Obviously, objects are often made up of 

characteristic shapes, and so boundary detection is needed because it reveals the shapes 

in an image.  

 

FIGURE 1-6: This system has recognised a horse object (lef t) from a collection of learnt 
boundary fragments (right). Reproduced from Shotton et al. (2008). 

Inpainting, or object removal, involves painting over an object in order to make it look 

like the object was never in the image. Boundary detection can determine automatically 

where the inpainting should occur. Figure 1-7 shows a technique (Whyte, Sivic, & 

Zisserman, 2009) that has removed an object, given its boundaries. 
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FIGURE 1-7: Boundary detection can be used to identify where inpainting should occur . 
Reproduced from Whyte et al. (2009) 

The above examples have shown that boundary detection is a key step to many 

computer vision applications such as robot navigation, face detection and recognition, 

object model reconstruction, object tracking, object recognition and object removal. 

That is why any improvements to boundary detection are very useful. 

1.2 BOUNDARY DETECTION WITHOUT TEXTURE 

Most boundary detectors rely on one basic assumption: a boundary exists wherever 

there is significant change in the image (Sobel & Feldman, 1973). The problem here is, 

when is the change significant? 

Early attempts at boundary detection assumed that any large changes were significant. 

The well-known Canny edge detector (Canny, 1986) is a good example of an algorithm 

that follows this decision rule. Sometimes, this does not work very well:  
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FIGURE 1-8: The Canny edge detector is applied to an image of a mandrill (left), producing a 
boundary map (right).  

In Figure 1-8, there are great variations in colour within the fur of the mandrill. The 

Canny edge detector has identified each of these variations as a boundary. This has 

meant that the important boundaries, particularly the ones which separate the nose, 

cheeks and eyes, have become lost in the sea of unimportant boundaries.  

Ideally, what a boundary detector should produce is something like the boundaries 

illustrated in Figure 1-9: 

 

FIGURE 1-9: The Variance Ridge Detector, proposed by this thesis, produces this boundary map 
from the image in Figure 1-8. 

Figure 1-9 above was produced by the Variance Ridge Detector, which is one of the 

primary contributions of this thesis. Notice, the Variance Ridge Detector has strongly 

detected the important inter-texture boundaries in the image, and suppressed the 

unimportant intra-texture variations.  
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More generally, texture is a large obstacle to high-quality boundary detection. Texture 

can be defined as variations in an image that repeat with a pattern (Malik, Belongie, Shi, 

& Leung, 1999). The mandrill’s fur is one example of texture. As was stated previously, 

boundary detectors work by detecting areas of significant change in the image. By 

definition, texture introduces change into an image. That means, a boundary detector 

that does not account for texture can easily confuse changes due to texture as significant 

changes.  

Texture is very common in the real world – almost everything is covered with some 

form of texture. Obvious examples include grass, trees with leaves, clouds, clothing or 

the windows on the sides of buildings to name a few. So, for a boundary detector to be 

useful to computer vision algorithms in practice, it is important that it accounts for 

texture.  

1.3 THE PROBLEM WITH EXISTING TEXTURE-BOUNDARY DETECTORS 

A boundary detector that attempts to suppress the variations in texture while detecting 

boundaries is called a texture-boundary detector. Existing texture-boundary detectors 

can be divided into two categories – real-time and non-real-time.  

Normally, texture analysis is a computationally-intensive operation, and so almost all of 

the state-of-the-art texture-boundary detectors cannot run in real-time (see chapter 4 

for examples of this). This is highly unfortunate, because it means real-time computer 

vision applications cannot benefit from the state-of-the-art in texture-boundary 

detection.  

On the other hand, the few texture-boundary detectors that are capable of running in 

real-time produce low-quality results (see chapter 5 for examples of this).  

There is a need for a boundary detector that both (a) produces high-quality boundaries 

and (b) runs in real-time.  

1.4 RESEARCH OBJECTIVES 

The primary goal of this research is to develop a real-time texture-boundary detector 

which produces high-quality results. The scope of each part of this goal must be defined.  

Real-time 

The definition of “real-time” depends very much on the application. The aim of this 

research is to investigate boundary detectors which could be used for interactive real-
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time applications, which means speeds of approximately ten frames per second would 

be needed. This is similar to how other researchers have defined “real-time.” (Kisačanin, 

Pavlović, & Huang, 2005; Brown & Terzopoulos, 1994; Ranganathan, 2009; Taylor & 

Cowley, 2009). However, depending on the application, speeds of at least one frame per 

second could still be considered fast enough for real-time interaction. 

This research will focus on achieving real-time speeds with a single CPU – that means it 

will not investigate how to speed up boundary detection by adding more hardware, but 

will instead focus on achieving fast boundary detection through faster algorithms.  

Texture 

Texture will be defined as it is in section 1.2 – variations in an image that repeat with a 

pattern.  

Boundary detector 

A boundary detector will be defined as it is at the start of chapter 1: an algorithm which 

detects the borders that divide different parts of the same image.  

Some boundary detectors are required to divide an image into segments (Shi & Malik, 

2000; Comaniciu & Meer, 2002) – implying that they have a requirement that all 

boundaries must form closed loops. This research focuses on boundary detection 

without the closed loop constraint. Suggestions for achieving the closed-loop constraint 

will be discussed in the future work section (see section 10.2).   

High-quality 

Publicly-available image datasets and benchmarks will be used to compare the results of 

this research against existing work. Both these benchmarks and visual inspection will 

determine whether the proposed boundary detectors are high-quality.  

1.5 THE CONTRIBUTION OF THIS THESIS 

This thesis has two primary contributions: 

1. The Variance Ridge Detector. 

2. The Texton Ridge Detector. 

Both of these are high-quality texture-boundary detectors that, unlike most texture-

boundary detectors, are able to run in real-time. Each one of these algorithms takes a 

slightly different approach. The Variance Ridge Detector is faster, while the Texton 

Ridge Detector produces higher-quality boundaries.  
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This thesis will present experimental results which have shown that the Variance Ridge 

Detector and the Texton Ridge Detector both outperform all existing texture-boundary 

detectors on either speed or quality.  

This thesis has also made two secondary contributions: 

 A new, fast ridge detection algorithm is proposed. This ridge detection algorithm 

has been used as part of both the Variance Ridge Detector and the Texton Ridge 

Detector. 

 A new adaptive background modelling algorithm was developed. This algorithm 

was used to validate the quality of the Variance Ridge Detector and Texton Ridge 

Detector. 

1.6 THESIS OUTLINE 

Chapter 2 lays out the fundamental concepts used throughout this thesis by introducing 

them in the context of edge detection. Originally, the field of boundary detection began 

as edge detection, and so its basic concepts provide a useful conceptual foundation for 

the rest of this thesis.  

Chapter 3 introduces the mechanics of distinguishing texture from boundaries in the 

context of edge-preserving smoothing filters. Many texture-boundary detectors, 

including the proposed Variance Ridge Detector, were built from edge-preserving 

smoothing filters. Consequently, the techniques used in this chapter will be revisited 

throughout this thesis.  

Chapter 4 examines the field of non-real-time texture-boundary detectors. Most real-

time texture-boundary detectors are approximations of non-real-time counterparts. 

This chapter also demonstrates the complexity of the texture-boundary detection 

problem, justifying why most texture-boundary detectors cannot run in real-time. 

Chapter 5 discusses real-time texture-boundary detectors, highlighting their 

shortcomings.  

Chapter 6 proposes the Variance Ridge Detector to overcome those shortcomings. 

Chapter 7 proposes the Texton Ridge Detector, which improves the quality of the 

Variance Ridge Detector at the cost of speed. It uses textons, which are widely used in 

non-real-time texture boundary detectors. 

Chapter 8 discusses the methods used to evaluate the performance of the proposed 

boundary detectors. 
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Chapter 9 presents the experimental results which, as a whole, show that the proposed 

detectors outperform all previous texture-boundary detectors on either quality or 

speed. 

Finally, chapter 10 concludes the thesis and discusses future directions.  
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2 EDGE DETECTION 

As section 1.2 described, a boundary detector identifies a boundary by identifying a 

“significant change” in the image. Most of this thesis will discuss texture-boundary 

detectors, which define “significant change” as a change in texture. This particular 

chapter however, will discuss edge detectors, which consider any large change in 

brightness significant. Figure 2-1 illustrates the difference:  

 

FIGURE 2-1: An image (left), its edge map (middle) and its boundary map (right). The edge map 
was generated using the Canny edge detector (section 2.4), and the boundary map was 

generated using the Variance Ridge Detector (proposed in chapter 6). 

Essentially, texture-boundary detection is a more constrained and more complex 

version of edge detection. For that reason, edge detection and texture-boundary 

detection share much of the same conceptual foundation. The purpose of this chapter is 

not to go into detail about the classical field of edge detection, but to use edge 

detection’s simple algorithms to describe the fundamental building blocks that will be 

seen in the more complex texture-boundary detectors. This will include techniques such 

as: gradients, convolution, sliding windows, thresholding and thinning.  

This chapter ends by describing an early approach to texture-suppressing edge 

detection. This will give an indication of how texture-boundary detectors work – a topic 

which is developed through the rest of this thesis. 

2.1 MATHEMATICAL CONVENTIONS 

This thesis will use mathematical symbols to express ideas. This section covers the 

general mathematical conventions used throughout this thesis.   

2.1.1 IMAGES 

This thesis will represent images as functions over the spatial domain. For example, the 

pixel value at position   in image  , with x-coordinate    and y-coordinate   , would be 

referred to as follows: 
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  (2.1) 

Many computer vision algorithms work by calculating each pixel individually. As a 

convention, the term   will be used to denote the spatial location of the pixel that is 

currently being calculated. Often, the calculation of      is influenced by the values of its 

neighbours. The symbol    will denote the spatial offset of the neighbour that is 

currently being considered. So, the following expression will return the value of a pixel 

that is offset from   by   : 

         (2.2) 

2.1.2 VECTORS 

Vectors, such as  , will be rendered in bold.  

The L1 and L2 metrics calculate the magnitude of a vector   in different ways: 

            

 

 (2.3) 

 
              

 

 

 
(2.4) 

The L2 metric is used often because it calculates the length of the vector if it existed in a 

multidimensional space. The L1 metric is the sum of the absolute value of all the 

elements in a vector, and so has other specific uses. 

The dot product of two vectors   and   is defined as follows: 

          

 

 (2.5) 

If   and   are unit vectors (their length is 1), then     will return 1 if the two vectors 

are facing the same direction, 0 if they are perpendicular, or -1 if they are facing 

opposite directions. Essentially, the dot product can be used to calculate how much the 

two vectors agree in terms of direction. 

2.1.3 SETS 

Sets have a few special symbols associated with them.  
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An expression like               is a conditional subset expression. This example 

generates the subset of all elements   in set   which match the condition         

stated after the colon.  

The cardinality (size) of a set   will be denoted    .  

2.1.4 OPERATORS 

Sometimes conditional expressions such as these will be used: 

            (2.6) 

In this expression, the     notation is a function that evaluates to 1 if the contained 

expression is true, or evaluates to 0 if the contained expression is false.  

The positive bounding operator      constrains values to zero or above: 

       
         
         

  (2.7) 

The positive bounding operation is sometimes called “half-wave rectification.” 

All other mathematical terminology will be introduced as needed. 

2.2 SOBEL OPERATOR 

The Sobel operator (Sobel & Feldman, 1973) measures the change in brightness at 

around a particular pixel. The assumption is, the greater the change, the greater the 

likelihood of an edge.  

It does this by performing convolution on the image with two specially-designed 

kernels: 

 

FIGURE 2-2: The Sobel kernels.  

The left kernel is the horizontal Sobel kernel, which measures the change in the 

horizontal direction. The right kernel is the vertical Sobel kernel, which measures the 

change in the vertical direction. The image is convolved with both of these kernels, using 

the process explained next.  
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2.2.1 CONVOLUTION 

The convolution of image      with kernel      , denoted         , can be defined as 

follows: 

                       

  

 
(2.8) 

Equation (2.8) above states that, for each pixel  , convolution returns the weighted sum 

of the pixels in the local neighbourhood. The weights of the weighted sum are 

determined by the kernel.         for any values of    which are outside the range of 

the kernel.  

The next subsection illustrates convolution with the Sobel kernel. 

2.2.2 APPLYING CONVOLUTION TO SOBEL 

Let the horizontal Sobel kernel (shown earlier in section 2.2) be represented by the 

function           , and let the vertical Sobel kernel be represented by the function 

          . The origin       point of both Sobel kernels is the central element.  

Given these definitions, the Sobel operator can be used to calculate the image gradient 

     : 

 
       

      

      
  

                     

                     

(2.9) 

This calculates the two-dimensional gradient for each pixel   in the image     . The 

word gradient is used because it simply means the rate of change. Other definitions of 

the gradient       exist, these will be discussed later.  

An image and its gradient magnitude according to the Sobel operator are shown below 

in Figure 2-3: 
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FIGURE 2-3: The result of applying Sobel operator (right) to an image (lef t). 

So why does the Sobel operator calculate the gradient? Consider the horizontal Sobel 

kernel in Figure 2-2. The left side of the Sobel kernel is entirely negative, and the right 

side is entirely positive. So when an image is convolved by this kernel, the pixels on the 

left side are subtracted from the pixels on the right side – effectively measuring the 

difference between them. Clearly, this estimates the rate of change at each pixel, which is 

really just another name for the gradient.  

2.2.3 SLIDING WINDOWS 

It is necessary to define the term sliding window for future reference. When calculating 

the result for a particular pixel  , the term window is used to describe the rectangle of 

pixels that are considered in order to calculate  . For example, the Sobel operator would 

evaluate a     window centered on  . Normally, the windows are evaluated starting 

from the top left pixel      , then moving one pixel right to      , and then moving one 

pixel right to       and so on. Due to the way the window is sliding through the image, 

sometimes this is called a sliding window.  

2.3 BINARISING SOBEL 

Sometimes it is useful for the edge detector to categorise each pixel into one of two 

states: edge or non-edge. The Sobel operator generates a continuous range of gradient 

values. Thresholding is a common way to map the range of gradients produced by Sobel 

onto these two states.  

2.3.1 THRESHOLDING 

The function                 calculates the binary version of image  , at position  , by 

thresholding it at level   as follows: 
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                          (2.10) 

After thresholding, any pixel which is greater than or equal to   is set to 1, and any pixel 

less than   is set to 0. The resulting image is called a binary image because each one of 

its pixels can only be in one of two states.  

2.3.2 APPLYING THRESHOLDING TO GRADIENTS 

The function             below determines whether pixel   is an edge or not by 

identifying whether the magnitude of its gradient exceeds a threshold  . In this case, the 

gradient    has been calculated by the Sobel operator, although this would still apply if 

the gradient was calculated by some other method. 

                                (2.11) 

As equation (2.11) shows, the gradient magnitude is calculated by the L2 norm of the 

gradient     . Figure 2-4 shows the effect of a threshold operation. 

 

FIGURE 2-4: The unthresholded (left) and thresholded (right) results of the Sobel operator on 
the elephant image. The threshold was chosen to be the mean gradient magnitude in the image.  

The choice of the threshold level   is critical to successful thresholding. If the threshold 

level is too high, no edges will exceed the threshold. If the threshold level is too low, 

some non-edges would exceed the threshold. This sensitivity to parameters is the 

primary drawback of using thresholding.  

After thresholding, it is likely that the edges will be many pixels wide, which can make it 

difficult for an algorithm to pinpoint the exact location of the edge. Morphological 

thinning, described next, can be used to “thin” the edges so that they are always one-

pixel wide.  
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2.3.3 MORPHOLOGICAL THINNING 

Let               be a function that performs morphological thinning on the binary 

image   by using successive of morphological operations.  

Morphological operations are simple operations that calculate a new value for each pixel 

based on each pixel’s local neighbourhood. The two operations used by morphological 

thinning are called erosion and hit-and-miss. Both of these will now be explained. 

Erosion takes an input image, and considers the 3 by 3 sliding window centered on each 

pixel. Erosion replaces each pixel with the minimum value in its 3 by 3 neighbourhood. 

When an image is eroded repeatedly, thick lines will become thinner and thinner, until 

they disappear completely. So to stop the lines from disappearing once they reach one 

pixel wide, the hit-and-miss operator is used.  

The hit-and-miss operator takes an input image, and attempts to match each pixel’s local 

window to a set of exact-match templates. If there is a match, then that pixel is replaced 

with a one, otherwise that pixel is replaced with a zero. So for morphological thinning, 

the hit-and-miss operator is used with templates that contain all possible structures of a 

one-pixel-wide line, allowing any thinned lines to be detected and preserved.  

Using these two operations, the image is repeatedly eroded until the entire image 

becomes filled with zeroes. Before each erosion, the hit-and-miss operator is run, and 

the results are accumulated into a separate image. Once this process is complete, the 

accumulated image will contain only the one-pixel wide lines of all the edges in the 

image. This accumulated image is returned by the function              . Figure 2-5 

illustrates the effect of morphological thinning: 

 

FIGURE 2-5: The unthinned (left) and thinned (right) results of the Sobel operator on the 
elephant image. 

Using morphological thinning, the edges generated by the Sobel operator can be 

thinned, allowing each edge to be localised.  
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The Sobel operator runs very fast, but its main problem is it is not robust. It is very 

sensitive to noise – even a single noisy pixel will show up clearly in a Sobel edge map. Its 

thresholding stage is also very sensitive and prone to error – it is will normally remove 

some true edges or include some of the false edges. The next section describes the Canny 

edge detector, which is much more robust than Sobel. 

2.4 CANNY EDGE DETECTOR 

Even though it was published in 1986, the Canny edge detector (Canny, 1986) is still 

widely used today. 

2.4.1 GRADIENT ESTIMATION 

The Canny edge detector calculates its gradients by convolving the image with the first-

derivative of the Gaussian. The first-derivative of Gaussian kernel is a lot like Sobel’s 

kernel, except it considers more pixels and so is more robust to noise.   

The Gaussian kernel        with scale   can be defined as follows: 

 
       

 

 
  

      

        
       

  
    

 

    

 

         
     

  

 

(2.12) 

Conventionally, the symbol   will be used as a normalisation divisor throughout this 

thesis, as it has been used here.  

Taking the derivative of         in the direction   yields the Gaussian derivative kernel:  

 
    

      
     

  
         

(2.13) 

The following figure illustrates what the Gaussian derivative kernel looks like: 
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FIGURE 2-6: The Gaussian derivative function, for     and    
 
 
 .  

From Figure 2-6, notice that on one side, the Gaussian-derivative kernel is positive, and 

on the other side it is negative. This is the same structure as the Sobel kernel, which is 

why the Gaussian-derivative kernel can be used to estimate gradient. Also notice that 

the Gaussian-derivative kernel is oriented and is not isotropic (the same in all 

directions). The parameter   in the Gaussian-derivative kernel function     
     

determines the orientation of the kernel. Finally, notice that at the limits of the graph, 

where x and y approach   , the Gaussian-derivative kernel almost reaches zero. This is 

intuitive because the standard deviation   was set to 1, and it is a well-known fact that 

the Gaussian function almost reaches zero at 3 standard deviations away from the mean.  

Gradients can be calculated using the Gaussian derivative in the same way as with the 

Sobel kernel in equation (2.9): 

 
       

      

      
  

               

                
 
 
  

               

 
               

 
 
  

(2.14) 

With Sobel, the gradient was postprocessed with a threshold and then thinning. The 

next steps of the Canny edge detector are ridge detection and hysteresis. Ridge detection 

is like a generalisation of thinning, and hysteresis is an improvement to normal 

thresholding. So in effect, the Canny edge detector improves on the same process.  

2.4.2 RIDGE DETECTION 

The Canny edge detector uses a specially-designed ridge detection method to ensure it 

only detects one-pixel-wide edges.  
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First, the gradient orientation        is calculated: 

 
           

      

      
 (2.15) 

The Canny edge detector performs ridge detection by doing the following two steps for 

each pixel  . First, it rounds the gradient orientation        to the nearest multiple of 

45 . Second, it checks the two gradients on either side of pixel  , where “either side” 

depends on the orientation (see Figure 2-7 below). The pixel is only a ridge if it has a 

stronger gradient than the other two pixels: 

 

FIGURE 2-7: The Canny edge detector’s ridge detection stage.  

If a pixel is not a ridge, then its gradient is set to zero. This allows the Canny edge 

detector to produce one-pixel-wide edges very fast.  

2.4.3 HYSTERESIS 

The purpose of the hysteresis stage is to classify each pixel as either edge or non-edge. 

To do this, the Canny edge detector first thresholds the gradient image with a high 

threshold. The high threshold ensures that only the most likely edges are kept. The 

trouble is, a high threshold will eliminate some of the weaker edges as well. To solve 

this, the Canny edge detector uses thresholding with hysteresis.  

Hysteresis means the Canny edge detector traces each of the edges that was detected 

with the high threshold, searching for connected sections of the edge curves which were 

too weak to pass the high threshold. Any gradients which are both, (a) connected to a 

known edge and (b) stronger than another, lower threshold, will be recovered by this 

process. 

The result of this is a binary edge map which can be used as the starting point for many 

other applications. Figure 2-8 below shows the results of the Canny edge detector: 

If the central pixel’s edge is oriented this way 

…then that pixel is a ridge if and only if 

…its gradient is stronger than the 

two pixels on either side 
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FIGURE 2-8: The result of the Canny edge detector on the elephant image. The left image has its 
high threshold set to 0.25, while the middle image has its high threshold set to 0.5. The low 
threshold has been set to one quarter of the high threshold in both cases. The image on the 

right is the Variance Ridge Detector, which will be proposed by this thesis later on, shown for 
comparison. The red circles indicate the boundaries which have been lost by the Canny, yet 

have been preserved by the Variance Ridge Detector.  

Canny’s approach to edge detection is much more robust than Sobel’s approach for a 

couple of reasons. Its gradient stage integrates information from a much larger window, 

making it less sensitive to noise, and its hysteresis stage attempts to recover edges that 

are normally lost by thresholding.  

Even with these improvements though, texture is still a problem for the Canny edge 

detector. Notice in Figure 2-8 above that Canny’s approach cannot suppress the intra-

texture edges without suppressing some of the inter-texture boundaries. This is because 

it does not explicitly account for texture as part of its algorithm. The result of the 

Variance Ridge Detector, which will be proposed later by this thesis, is also shown in 

Figure 2-8 to highlight this. The next section describes an algorithm which makes some 

attempt to overcome this problem.   

2.5 EDGE DETECTION WITH VARIANCE THRESHOLDING 

One of the earliest forays into intra-texture-edge suppression was developed by Ahmad 

and Choi (1999). Their edge detector was divided into two stages. The first stage was 

just traditional edge detection. The way this was done is not important, in essence it was 

not much different from Sobel or Canny. The second stage is the most interesting stage. 

The second stage would only preserve the edges that had high variance in their local 

sliding window. All other edges would be suppressed. Figure 2-9 presents some results 

of this algorithm.  
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FIGURE 2-9: An image (left), its edge map (middle) and its edge map with variance 
thresholding applied (right). Notice some intra-texture edges have been suppressed. 

Reproduced from Ahmed and Choi (1999).  

This algorithm works because the variance between two different textures is normally 

much greater than the variance within a texture. Therefore, variance can be used to 

suppress intra-texture edges. Although Ahmad and Choi’s work uses this technique to 

some level of success, Figure 2-9 clearly shows that their resulting edge maps are quite 

noisy, and so there is still much room for improvement. Later, this thesis will propose 

the Variance Ridge Detector (in chapter 6), which expands on some of Ahmad and Choi’s 

ideas. 

2.6 CHAPTER SUMMARY  

This chapter presented three edge detectors – the Sobel operator, the Canny edge 

detector, and Ahmad and Choi’s detector.  

The Sobel operator suffers from the problem of being sensitive to noise because of its 

small sliding window and sensitive thresholding stage. The Canny edge detector 

overcomes this with its larger Gaussian-weighted sliding window and its hysteresis 

stage, but it cannot distinguish between intra-texture edges and inter-texture edges. 

Unlike Canny’s approach, Ahmad and Choi’s detector makes some distinction between 

intra-texture edges and inter-texture edges. Unfortunately, its results suffer from being 

quite noisy. So there is still a need for a detector that both suppresses noise and can 

distinguish between intra-texture and inter-texture boundaries. Chapter 4 will present 

some techniques for achieving this, but first, the next chapter will discuss some of the 

mechanisms required by those techniques in the context of edge-preserving smoothing 

filters.  



22  Chapter 3 – Edge-preserving smoothing filters 

 
 

3 EDGE-PRESERVING SMOOTHING FILTERS 

The problem with normal methods of smoothing (such as Gaussian smoothing) is that 

they will normally smooth out both salient image features as well as noise. An edge-

preserving smoothing filter attempts to solve this problem by preserving the edges 

while smoothing other areas. Some of the more recently developed edge-preserving 

smoothing filters can do even better than this – they can smooth out texture as well as 

noise while maintaining texture boundaries.  

Intuitively, an edge-preserving smoothing filter must know, at least implicitly, where the 

edges or texture boundaries are, and so many of the mechanisms behind boundary 

detection originally came from edge-preserving smoothing. This chapter will introduce 

these mechanisms in the context of edge-preserving smoothing, and the chapters 

following will expand these mechanisms into texture-boundary detectors.  

This chapter will first briefly explain the motivation for edge-preserving smoothing by 

illustrating the problems with non-edge-preserving smoothing. Then, five edge-

preserving smoothing filters will be discussed: the bilateral filter, the Nitzberg operator, 

the Kuwahara filter, the Papari filter and the mean-shift filter.  

3.1 NON-EDGE-PRESERVING SMOOTHING 

All smoothing methods involve some type of weighted average.  

The simplest and fastest method of smoothing is to weight all elements of the sliding 

window equally. This is often known as a box blur. Let               be the box blur of 

image   at pixel position  , where   is the sliding window radius: 

 
              

 

 
                  

  

 

                

 
(3.1) 

The Gaussian blur generates a more natural looking smooth as the sliding window 

weights are determined by the Gaussian function: 

                               
(3.2) 

The Gaussian kernel       in the expression above was already defined previously in 

equation (2.12). The parameter   determines the scale of the Gaussian blur. Figure 3-1 

below illustrates these two different methods of smoothing. 
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FIGURE 3-1: An image (left), its box blur (middle) and its Gaussian blur (right). Both of these 
forms of blurring will smooth important image features as well as unimportant ones.  

Notice in Figure 3-1 above that both these smoothing methods have smoothed out the 

useful edges. That is why edge-preserving smoothing is needed. 

Edge-preserving smoothing generally also uses a weighted average like the smoothing 

methods above. The difference is, the weighting given to each pixel is modified for each 

pixel according to some function. The next section introduces this concept with the 

simplest possible edge-preserving weighting function. 

3.2 BILATERAL FILTER 

Typically, pixels that are separated by a boundary tend to be different from each other. 

So, if the weighted average applies more weight to more similar pixels, then it is unlikely 

that the image will be smoothed across boundaries. The bilateral filter (Tomasi & 

Manduchi, 1998) is built on this concept. Let                     be a function that 

evaluates the bilateral filter of image   at pixel position  . 

 
                    

 

    
                

  

 

            
                    

             

  

 

 
(3.3) 

The weighting function      above calculates the weight by combining some function 

of the spatial distance       and some function of the chromatic distance      . 

Intuitively, these distance functions are designed to give higher weight to those pixels 

that are more similar to the pixel being smoothed. See Tomasi and Manduchi’s paper 

(1998) for example definitions of       and      .  
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FIGURE 3-2: The bilateral filter (right) applied to an image (left).  

In Figure 3-2 above, the bilateral filter has smoothed out some of the texture, such as the 

grass and the elephant’s skin. At the same time, the boundaries between the sky, the 

elephant, and the grass, remain very sharp. This demonstrates the usefulness of the 

bilateral filter.  

Due to this texture-suppressing ability, sometimes the bilateral filter is used to reduce 

the texture in an image before applying the Canny edge detector or Sobel operator 

(Kiranyaz, Ferreira, & Gabbouj, 2008). This helps to reduce the number of detected 

edges in textured regions. Unfortunately, the bilateral filter must evaluate a large 

number of pixel pairs and so this is not a real-time solution. 

The bilateral filter cannot smooth out all types of texture. Particularly, it does not work 

well when textures have both large variations and a large wavelength. This is illustrated 

in Figure 3-2 by the fact that the wrinkles on the elephant’s trunk and ears have not 

been smoothed away. This problem occurs because the bilateral filter only considers 

each pair of pixels in isolation – it does not analyse the influence of all pixels in the 

sliding window as a whole. The Nitzberg operator, which will be described next, 

attempts to overcome this problem.  

3.3 NITZBERG OPERATOR 

The gradient is an obvious choice for edge-preserving smoothing, because as shown in 

chapter 2, the gradient can be used to detect edges. The Nitzberg operator (Nitzberg & 

Shiota, 1992) reshapes and displaces a Gaussian smoothing kernel so that it avoids 

smoothing the local gradients. The Nitzberg operator is important because it was later 

redeveloped into a real-time texture-boundary detector called Konishi’s detector 

(section 5.1).  

The next few sections will discuss kernel reshaping and kernel displacement.  
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3.3.1 KERNEL DISPLACEMENT 

Since gradients indicate likely positions of boundaries, when near gradients, the 

Nitzberg operator shifts the smoothing window so that it can avoid smoothing those 

gradients.  

The kernel displacement vector                 for pixel   is calculated as follows: 

                                                   

  

 

                   
               
          

  

 
(3.4) 

As equation (3.4) states, to calculate the displacement for a particular pixel  , the 

Nitzberg operator considers all the gradients in the vicinity of  . Each gradient votes to 

push the kernel to one side of the boundary orientation it represents. If a boundary were 

vertically oriented, this would mean the kernel could be pushed either left or right to 

avoid smoothing that boundary. The Nitzberg operator always chooses to push the 

kernel away from the boundary and towards the pixel under consideration   using the 

                  coefficient. If this was not done, the pixels on the right side could 

take on values from the left side of the boundary, and vice versa. This would mix the 

pixels on either side of the boundary and so would smooth out the boundary instead of 

preserving it. 

To allow the Nitzberg operator to avoid smoothing boundaries even better, the kernel is 

reshaped as well as displaced.  

3.3.2 KERNEL RESHAPING 

When it is near gradients, the Nitzberg operator reshapes the Gaussian kernel from its 

normal, circular shape into a more elliptical one so that it can avoid smoothing those 

gradients. The elliptical shape is constructed so that its major axis runs parallel to the 

average gradient orientation. This allows it to avoid the gradient as much as possible, as 

illustrated in Figure 3-3. 
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FIGURE 3-3: In the left image, there is a gradient (strong line) and a kernel (circle) which has 
been displaced from the current pixel (cross). Notice that the kernel is smoothing over part of 
the boundary. The right image is the same, except the kernel has been reshaped into an ellipse. 

Notice that the kernel now avoids smoothing the boundary. This illustrates the purpose of 
kernel reshaping. 

The kernel reshaping is done using a technique called structure tensors.  

3.3.2.1 STRUCTURE TENSORS 

A structure tensor is a way of representing orientations (Bigun & Granlund, 1987; 

Knutsson, 1989). The structure tensor of a vector  
 
   can be calculated by the function 

  
 
  : 

 
  

 
    

    

       
(3.5) 

The key characteristic of a structure tensor is that it wraps around at 180°. That means, 

two vectors with opposite directions will generate the same structure tensor: 

 

FIGURE 3-4: Structure tensors wrap around at 180°, which is why they are so useful.  

An edge oriented at 0° is the same as an edge oriented at 180°, and so structure tensors 

provide a way to represent orientations like this in a mathematically sound manner.  

Structure tensors as transformations 

A structure tensor is actually a linear transformation matrix. That means that, when a 

point is multiplied by a structure tensor, that point will be transformed in a particularly 

useful way. Under the right conditions, the transformation will reveal what orientation 

the structure tensor represents.  
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Given a structure tensor that represents an unknown orientation, the best way to 

visually identify its orientation is to use the structure tensor to transform the points on a 

circle centered on the origin:  

 

FIGURE 3-5: The circle on the left is transformed with the structure tensor of the vecto r 
specified in the brackets, producing the line on the right.  

If a structure tensor represents one orientation, then its transformation will project all 

points onto a line of that orientation. Figure 3-5 shows how all the points on the circle 

have been projected (squashed) onto a single line. Most importantly though, the 

orientation of the projected line reveals the orientation represented by the structure 

tensor.  

Any number of structure tensors can be added or averaged together, and the resulting 

structure tensor will represent an average of all the orientations contained within the 

input structure tensors. 

 

FIGURE 3-6: The circle on the left is transformed with the sum of two structure tensors, 
producing the ellipse on the right.  

Figure 3-6 shows another example transformation with the sum of two structure 

tensors made from two different orientations. Notice that the circle is transformed into 

an ellipse, and that the major axis of the ellipse matches the average orientation of two 

orientations. As a rule, a structure tensor will always transform a circle into an ellipse, 

and the major axis of the ellipse will always be oriented according to the average 

orientation.  

The minor axis of the ellipse will have different widths depending on the input. Figure 

3-5 is simply a special case where the minor axis had zero-width, unlike Figure 3-6. The 

width of the minor axis holds some useful information. 

φ(   ) φ(   ) + × = 

φ(   ) × = 
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The width of the minor axis 

The width of the minor axis reveals how coherent the average orientation is. If a 

structure tensor is averaged from many input orientations that are quite similar, the 

ellipse will have a narrow minor axis. In fact, if all input orientations agree perfectly, 

meaning if they are all exactly the same, then the ellipse will have a zero-width minor 

axis, as illustrated in Figure 3-5. Conversely, if the input orientations are highly 

dissimilar, the ellipse will have a wide minor axis. In fact, if the input orientations all 

maximally dissimilar – for example, if two perpendicular orientations were input – then 

the major and minor axis will be equivalent in length. In other words, there will be no 

major or minor axis, because ellipse will actually be a circle. This makes sense, because if 

the input orientations are maximally dissimilar, then there is no average orientation.  

Coherence 

The ratio of the major axis to the minor axis indicates the level of coherence – how 

much the input orientations agree. This ratio is very important and has many 

applications. Konishi’s detector uses this for boundary detection (section 5.1), and it is 

also used to detect corners (Harris & Stephens, 1988). Coherence will be discussed in 

more detail later. 

3.3.2.2 KERNEL RESHAPING WITH STRUCTURE TENSORS 

To know how the kernel needs to be reshaped, the Nitzberg operator calculates the local 

gradient orientation                        at pixel   as a structure tensor:   

                                             

                

 
(3.6) 

The function                    was defined for an image   in equation (3.2). It is used 

here to average the gradient orientations surrounding each image position  . Using this, 

the Gaussian kernel is reshaped:  

                                                       
(3.7) 

Basically, equation (3.7) states that the normally circular Gaussian kernel is reshaped 

into an ellipse depending on the local gradient orientations. This is exactly the same as 

the circles being transformed into ellipses in the previous section.  

In a sliding window where no boundary is present, the gradients will generally be 

randomly oriented, and so the Gaussian will approximately retain its normal circular 

shape. However, if a boundary is present, generally all the gradients in the local area will 

conform to a particular orientation, causing the circular Gaussian kernel to be 
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transformed into an ellipsoidal shape like in Figure 3-6. The major axis of the ellipsoidal 

shape will match the orientation of the local gradients, which, with displacement, allows 

the smoothing kernel to better avoid boundaries.  

It turns out that the                        structure tensor has some level of texture-

suppressing ability. Konishi’s detector, which will be described later in this thesis 

(section 5.1), takes advantage of this. 

3.3.3 COMBINING RESHAPING AND DISPLACEMENT 

Together, the Nitzberg operator works as follows: 

                                    

  

 

                           

                                    

 
(3.8) 

Notice that the Nitzberg operator has a similar form to the standard convolution 

equation (2.8), except the kernel that is used is the reshaped gaussian, and the 

displacement term has been added. 

            produces the final result of the Nitzberg operator. 

 

FIGURE 3-7: The Nitzberg operator (right), applied to an image (left). These images are 
greyscale, but it is possible to use the Nitzberg operator on colour images as well.  

Unlike the bilateral filter, the Nitzberg operator considers the entire sliding window as a 

whole when deciding how an area should be smoothed, which is why it is better at 

smoothing out texture, as shown in Figure 3-7. However, it has also smoothed out some 

of the texture-boundaries slightly. This occurs because the intra-texture gradients 

introduce distractions to the displacement process, sometimes causing it to smooth over 

boundaries. The Kuwahara filter, introduced next, is able to keep all boundaries sharp, 

unlike the Nitzberg operator.  



30  Chapter 3 – Edge-preserving smoothing filters 

 
 

3.4 KUWAHARA FILTER 

The Kuwahara filter (Kuwahara, Hachimura, Ehiu, & Kinoshita, 1976) uses variance to 

detect and avoid boundaries. Many filters have been developed based upon its original 

concept. In particular, the Papari filter (described next in section 3.5) was developed 

based on Kuwahara et al.’s work. In turn, the Variance Ridge Detector, which will be 

proposed by this thesis, was developed based on the Papari filter. This makes the 

Kuwahara filter quite important. 

The Kuwahara kernel has this structure: 

 

FIGURE 3-8: The Kuwahara kernel.  

The Kuwahara filter considers each pixel p individually. The kernel center is first placed 

on pixel p. Then the filter calculates the total variance in each of the neighbouring 

regions r0, r1, r2 and r4 (see Figure 3-8), and out of these four regions, it selects the 

region    that has the lowest variance. The output for pixel p is the average colour in 

region   . 

 

FIGURE 3-9: The Kuwahara filter (right) applied to an image (left). These images are greyscale, 
but it is possible to use the Kuwahara filter on colour images too.  

The reason the Kuwahara filter works is that, an edge or boundary by definition will 

introduce variance into the image. By intentionally selecting the region of lowest 

variance, the Kuwahara filter avoids smoothing over boundaries.  

Figure 3-9 shows that the Kuwahara has left the boundaries sharp, unlike the Nitzberg 

operator. However, it has also introduced smoothing artefacts throughout the image, 
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due to its hard-selection process. This can be seen by the way the image now appears to 

be made of many coloured patches. This occurs because the Kuwahara filter hard-

assigns each pixel into one of the four regions of its kernel, and so when neighbouring 

pixels are assigned to different regions, a sharp change is introduced. The Papari filter, 

which will be introduced next, tries to avoid this by using soft-assignment.  

3.5 PAPARI FILTER 

The Papari filter (Papari, Petkov, & Campisi, 2007) is similar to the Kuwahara filter, 

except for two major differences. First, its kernel is circular:  

 

FIGURE 3-10: Papari’s circular kernel.  

Kuwahara’s square-shaped kernel has the tendency to distort shapes, which is not useful 

for some computer vision applications such as object recognition for example. Papari et 

al.’s circular kernel is isotropic, meaning it will not distort shapes.  

Secondly, instead of hard-assigning each pixel to one region only, the Papari filter takes 

a weighted average of all regions. The regions with higher variance are given smaller 

weights, which stops the filter from smoothing over boundaries. If no boundaries are 

present and variance is approximately the same in all directions, all regions will be given 

approximately equal weight. This means no artefacts will be introduced from an 

arbitrary hard-assignment of a pixel to one particular region. 

3.5.1 FORMULATION 

Let the Papari kernel have    sectors, where    is a user-defined parameter. Let the 

function         return 1 if the vector    belongs to the angle owned by sector  . 

r0 

r1 r2 

r3 

r4 

r5 r6 

r7 
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(3.9) 

Papari et al. chose to use Gaussian weights for their filter, and so each sector   has its 

own slice     
   of the Gaussian kernel       : 

     
                   

(3.10) 

Using     
  , the mean       and variance        for each sector   can be calculated at 

each pixel   as follows: 

                  

                         

 
(3.11) 

For each pixel  , the weighting       of each sector   is inversely related to the variance 

of that sector: 

 
      

 

      
  

(3.12) 

The value   is an external parameter, set by the user. The larger the value of  , the more 

the sectors of large variance are avoided. Using the weights, the Papari filter can be 

defined as the weighted average of the sectors: 

 

                
 

    
            

  

 

 

           

 

 

 

 
(3.13) 

3.5.2 IMAGE RESULTS 

Figure 3-11 below illustrates some results of the Papari filter: 
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FIGURE 3-11: The Papari filter (right) run on a textured image (left). Reproduced from 
Papari et al. (2009) 

Unlike the Kuwahara filter, the Papari filter does not introduce artefacts into the image 

because it does not hard-assign pixels to single regions. Figure 3-11 illustrates this. Also 

notice that the Papari filter is able to smooth out all the grass and water textures while 

clearly retaining strong inter-texture boundaries.  

The Papari filter can distinguish between texture boundaries and texture because, 

within the same texture, variance tends to be approximately equal. This will cause all the 

sectors of the Papari filter to have the same weight, and so the texture will be smoothed. 

When an inter-texture boundary is present, the boundary will introduce high variance 

into some of the sectors, causing them to be excluded from the smoothing. The Variance 

Ridge Detector, which is proposed later in this thesis, functions based on a similar 

mechanism to this. 

Despite the excellent results of the Papari filter, its results can still be improved on some 

textures. For example, in Figure 3-11, the tree leaf textures have not been smoothed 

away completely. This occurs because the smoothing kernel is not large enough in this 

case. A larger smoothing kernel can handle textures of larger wavelengths, but the 

problem is, it will make the boundaries coarser and less accurate. The mean-shift filter, 

introduced next, can smooth out larger scale texture without the boundaries becoming 

coarser and less accurate.  

3.6 MEAN-SHIFT FILTER 

Like the bilateral filter, the mean-shift filter (Comaniciu & Meer, 2002) uses similarity as 

part of its edge-preserving smoothing process.  

The mean-shift filter is important because it has been developed into a texture-

boundary detector called mean-shift segmentation (section 3). In turn, mean-shift 

segmentation lays down the concept of how the real-time texture-boundary detector 
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called Randomised Hashing (later in section 5.5) works. On top of all this, the mean-shift 

filter will be used to introduce the concept of clustering – an important concept which 

powers most texture boundaries today.  

Mean-shift clustering 

Clustering is simply grouping similar observations together. The mean-shift filter works 

by grouping pixels that are similar (both chromatically and spatially), and then replacing 

each pixel’s value with the average of its cluster. The mean-shift filter uses mean-shift 

clustering to achieve this.  

In mean-shift clustering, each pixel becomes a point in five-dimensional (    space. 

Those five dimensions are made up of two dimensions for the spatial coordinates (x and 

y), and three dimensions for the colour coordinates (for example, red, green and blue). 

An imaginative way to understand mean-shift clustering is to imagine that each of the 

   points have gravity. Over time, the points will fall towards each other, and eventually 

clouds of points will collapse to a singularity – that is when an entire cloud has collapsed 

to occupy the same position in space. Fortunately, images will normally consist of 

multiple point clouds which will each collapse to separate singularities. Each one of 

these point clouds is a natural cluster of the data. Once the mean-shift clustering process 

has run, the clusters can be found by identifying the singularities that have formed. 

Using clusters for smoothing 

Now that the clusters of pixels have been found, each pixel is simply replaced with the 

average colour of its cluster. Figure 3-12 shows an example of what this looks like: 

 

FIGURE 3-12: The mean-shift filter (right) run on the mandrill image (left). Images from 
Comaniciu and Meer (2002). 

One of the biggest difficulties about the mandrill image in Figure 3-12 is that the eye 

regions are small in comparison to the nose, cheek and fur regions. If the Papari filter 
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were to be used, this means its scale would have to be set small enough so that the eyes 

would not be smoothed out, which in turn limits the amount the other, larger-scale 

textures can be smoothed. Unlike the Papari filter, the mean-shift filter can function well 

on images where the regions are not similarly-sized, as illustrated in Figure 3-12.  

The mean-shift filter’s excellent ability to both smooth unequal-sized texture regions 

while preserving texture boundaries makes it one of the best edge-preserving 

smoothing filters. Its mechanism has been developed into a texture-boundary detector 

called mean-shift segmentation.  

3.7 CHAPTER SUMMARY 

This chapter has investigated five edge-preserving filters, each of which have some 

relationship to texture-boundary detection.  

Section 3.2 introduced the bilateral filter, which is sometimes used with the Canny edge 

detector for non-real-time texture-boundary detection. 

Section 3.3 introduced the Nitzberg operator, which is the core of Konishi’s detector, 

discussed later in section 5.1. 

Section 3.4 introduced the Kuwahara filter, which was built on by the Papari filter in 

section 3.5, which in turn was the inspiration for the Variance Ridge Detector in chapter 

6. 

Section 3.6 introduced the mean-shift filter, which is the core of mean-shift 

segmentation (section 4.2) which in turn has inspired boundary detection via 

Randomised Hashing (section 5.5). 

Other edge-preserving smoothing filters exist which have not been discussed as they are 

not related to texture-boundary detection. In particular, Perona and Malik’s (1990) 

anisotropic diffusion has not been discussed here.   

The next two chapters will investigate how these techniques, and others, have been used 

in the field of texture-boundary detection.  
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4 NON-REAL-TIME TEXTURE-BOUNDARY DETECTION 

Almost all texture-boundary detectors cannot run in real-time because boundary 

detection is far too complex a problem. The few real-time texture-boundary detectors 

that exist are mostly approximations of non-real-time algorithms. The purpose of this 

chapter is to outline the non-real-time algorithms which will be approximated in the 

next few chapters. Five non-real-time texture-boundary detectors will be introduced: 

normalised cut segmentation, mean-shift segmentation, TextonBoost, the probability of 

boundary (Pb) detector and the global probability of boundary (gPb) detector. In 

addition to these algorithms, section 4.3 will discuss textons, which is a technique used 

by TextonBoost, Pb and gPb, as well as a few of the real-time detectors. 

4.1 NORMALISED CUT SEGMENTATION 

Shi and Malik (2000) developed normalised cut segmentation by first defining an 

objective function which identifies what good boundary detection would look like. They 

then developed an algorithm that would optimally solve this objective function. This 

section will first discuss the objective function, and then discuss how it is solved. It will 

conclude with some image results.  

Normalised cut segmentation will only be described briefly here, so see Shi and Malik’s 

original paper for a more detailed explanation. 

4.1.1 OBJECTIVE FUNCTION 

Let   be the set of all pixel positions in image     , where                    . The 

goal of the normalised cut is to divide   into two disjoint subsets,   and  , so that the cut 

simultaneously meets the following two criteria:  

 Minimum external similarity – the pixels in each subset must be as different as 

possible from the pixels in the other subset. 

 Maximum internal similarity – the pixels in each subset must all be as similar as 

possible to each other. 

The two constraints       and       mean that the two subsets   and   

together form a two-class segmentation of the image. This section will describe how the 

two criteria can be formulated into two objective functions so that the optimal 

segmentation can be found. 
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Let          be the similarity score between pixels    and   . Many different scoring 

functions can be used – these will be discussed later. Without loss of generality, this 

thesis will assume the similarity score is always in the range [0, 1].  

Let the subset similarity                        . This calculates the similarity not 

just between pixels, but between two entire subsets   and  . Let the normalised 

similarity           from subset   to subset   be defined as: 

 
          

        

        
 

 
(4.1) 

This calculates the similarity from   to   as a proportion of the total similarity score 

that belongs  . Note that this is not commutative:                    . This 

normalisation is important because each pixel has a positive similarity score, and so 

without this normalisation, simply adding more pixels to a subset increases its 

similarity. Normalisation eliminates the dependence on the subset size. 

Now the objective functions can be defined as follows: 

                                             

                                             

 
(4.2) 

The goal is to find the segmentation of   into       so that                         is 

minimised and                         is maximised. Shi and Malik showed that if the 

equations are rearranged,                                                  , 

which means that these two goals are the same. That means that either objective 

function can be optimised and the result will be identical.  

4.1.2 SIMILARITY SCORES 

The similarity score function          can be calculated in many ways. This section will 

describe the simplest method – maximum intervening gradient (Leung & Malik, 

1998).  

Let          be the maximum intervening gradient between pixels    and   . The 

process for this is straightforward. Initially, the gradient magnitude at every pixel is 

estimated using any method, for example, the Sobel operator (section 2.2). Now 

         is defined as the maximum of all of the gradient magnitudes that lie on the line 

between    and   . From here, the similarity score can be defined as: 
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(4.3) 

In equation (4.3),   is a user-defined scaling parameter, which Leung and Malik set to 

the standard deviation of the image’s gradient magnitudes. The Figure 4-1 shows what 

this might look like for a particular pixel   : 

 

FIGURE 4-1: The Sobel gradient magnitude (left) of an image (middle). The function          is 

equal to the  maximum gradient magnitude between p i and p j as illustrated in the left image. The 
right image shows the similarity scores of all pixels in the image from pixel p i. Brighter means 

more similar. Reproduced from Leung and Malik (1998).  

Now that the similarity function has been defined, the objective function is ready to be 

solved. 

4.1.3 SOLVING THE OBJECTIVE 

Let the solution vector be denoted                   , where    equals    when 

pixel    belongs to subset  , or    when it belongs to subset  . There is a process for 

finding an approximate optimal solution vector    which maximises the objective 

function                        . This subsection will briefly summarise this process, 

see Shi and Malik (2000) for full details.  

Shi and Malik rearranged the objective function                         into this: 

 
                        

        

    
 

                    

      
     
    

  

            

 

 

        
 

   
      

  
       

    
 

 
(4.4) 

Now the objective is to minimise                         to find the optimal solution 

  , and then    can be extracted from   . This rearrangement of the objective function is 

pi 

pj 
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a Rayleigh quotient, which already has a proven solution process if the problem is 

relaxed and    is allowed to take real values. It can be shown that the eigenvector of the 

matrix         that has the second-smallest eigenvalue is equal to the optimal real-

valued solution of   . The reason it is the second smallest and not the first is because the 

first eigenvector will be entirely ones, which is not useful.  

So once    is found using an eigensolver (the Lanczos eigensolver algorithm is well-

suited to this case), the optimal real-valued solution has been found.  

4.1.4 BINARISING THE SOLUTION 

Normally, the optimal solution vector    is not extracted from the optimal vector    as 

   already indicates the optimal solution sufficiently. This can be seen on some example 

images by reshaping    back into an image shape:  

 

FIGURE 4-2: An image (left) and its optimal solution eigenvector    (right) reshaped into the 
image’s shape. Reproduced from Shi and Malik (2000).  

Figure 4-2 clearly shows that the solution eigenvector    is a real-valued vector. To 

convert    into a two-class segmentation,    is simply thresholded. Normally, the 

threshold level is found by trying many different levels, and the threshold level that best 

satisfies the dual objective functions is taken.  

4.1.5 SUBDIVIDING FURTHER 

Running the process just described will divide the image into two segments. This 

process can be repeated to further subdivide those segments. One particular problem 

with this is that it is slow to run the entire normalised cut algorithm multiple times in 

order to subdivide the image further. There is a way to speed this up. 

Section 4.1.3 stated that if the eigenvectors are sorted by ascending eigenvalue, the first 

eigenvector is not useful, while the second eigenvector represents the optimal real-

valued solution. It turns out that the third eigenvector and above also contain some 

information about further subdivisions in the image, although the eigenvectors get less 

and less accurate as the eigenvalues increase. In their paper, Shi and Malik describe a 
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way to use these higher eigenvalues to achieve a slightly approximated solution in order 

to achieve greater speeds.  

4.1.6 IMAGE RESULTS 

These are some results from running normalised cut segmentation (Barnard, Duygulu, 

Guru, Gabbur, & Forsyth, 2003): 

 

FIGURE 4-3: The normalised cut on some images. Reproduced from Barnard et al. (2003) 

As the normalised cut is always looking for a global solution, it generally is not 

distracted by intra-texture edges, as Figure 4-3 shows. It has two major problems 

though.  

First, it is not able to run in real-time, due to its intensive high-dimensional eigensolver 

stage.  

Second, normalised cut segmentation suffers from the “broken sky” problem. Take the 

example of the sky, shown in three of the images above. The sky smoothly changes from 

dark to light, and vice versa, throughout the image. That means, some parts of the sky 

are quite dissimilar to other parts of the same sky, and so it is optimal for normalised cut 

segmentation to cut the sky into pieces to in order to achieve maximum internal 

similarity.  

Mean-shift segmentation, which will be introduced next, does not suffer from the 

“broken sky” problem.  

4.2 MEAN-SHIFT SEGMENTATION 

Previously, section 3.6 already described the mean-shift filter, which is the basis of 

mean-shift segmentation (Comaniciu & Meer, 2002). Mean-shift segmentation first 

takes the mean-shift filtered image, and splits it into a number of initial regions. Initially, 

each spatially-contiguous island of equally-coloured pixels becomes one region. A 

boundary is detected at all positions where two neighbouring pixels belong to a 

different region. 
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Unfortunately, using the initial regions directly from the mean-shift filter is not useful. 

Recall that mean-shift filtering works by clustering pixels together. As there is no 

requirement that a cluster must be spatially-contiguous, the initial regions will consist of 

many, small, disconnected, interwoven regions. This is illustrated in Figure 4-4: 

 

FIGURE 4-4: This is the top-right section of the mean-shift filtered mandrill image that was 
originally shown in Figure 3-12. Adapted from Comaniciu and Meer (2002).  

There are five different clusters represented in Figure 4-4, yet because they all overlap 

and are not required to be spatially-contiguous, there are probably around one hundred 

separate regions of pixels, most of them only a few pixels large.  

To deal with this, mean-shift segmentation imposes a minimum region size. Any regions 

smaller than the minimum region size are simply combined to the neighbouring region 

of most similar colour. The regions are repeatedly combined until all regions meet the 

minimum region size requirement. At that point, mean-shift segmentation has finished, 

and a boundary is detected wherever two neighbouring pixels belong to different 

regions.  

4.2.1 IMAGE RESULTS 

The minimum region size requirement of mean-shift segmentation gives it a certain 

amount of ability to ignore intra-texture boundaries, as illustrated in Figure 4-5 below: 
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FIGURE 4-5: Mean-shift segmentation on example images. Reproduced from Comaniciu and 
Meer (2002). 

As the above figure shows, mean-shift segmentation is an excellent texture-boundary 

detector. However it has two problems. First, it is not able to run in real-time, because 

its clustering process must iterate over the image many times in order to converge. 

Second, it subdivides some textured areas, introducing boundaries in places where they 

should not exist. In Figure 4-5 this is illustrated in some of the grass and tree textures. 

This occurs because mean-shift segmentation has no explicit understanding of texture, 

and so it cannot see that differently-shaded grass areas are all actually the same texture 

and so should not be subdivided. The next section presents textons, which allow an 

algorithm to explicitly model texture and overcome this problem.  

4.3 TEXTONS 

Many state-of-the-art texture-boundary detectors use textons to recognise or 

distinguish between textures. The purpose of this section is to detail the texton 

technique as it will be used by most of the remaining boundary detectors in this thesis.  

4.3.1 THEORY: AUTOCORRELATION 

Central to the idea of textons is the idea of that texture is autocorrelated. That means, 

within a texture, there is normally some mathematical relationship between each pixel 

and other nearby pixels. By definition, texture repeats with a particular pattern, and so 
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of course the value of each pixel cannot be entirely random and independent of its 

neighbours.  

Every texture has its own unique autocorrelation pattern, which can be used to 

distinguish it from all other textures.  

Example of an autocorrelation pattern 

The following example has been adapted from Varma and Zisserman’s (2003) paper.  

Three samples of texture are shown in the Figure 4-6. Two of the samples are of the 

same texture.  

 

FIGURE 4-6: Three samples of textures. Samples B1 and B2 are different samples of the same 
texture. Adapted from Varma and Zisserman (2003).  

The graph below plots two features against each other: (1) the brightness value of each 

pixel     , and (2) the brightness of an offset pixel         where          . In 

words, this means that each pixel is plotted against another pixel which is two pixels 

right and two pixels down. Each sample of texture has been plotted separately in a 

different colour in order to illustrate how they can be differentiated.  

Sample A Sample B1 Sample B2 
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FIGURE 4-7: A plot of offset brightness values in all three samples of texture . Adapted from 
Varma and Zisserman (2003).  

What is most obvious in Figure 4-7 is that there are two separate clusters of data. 

Sample A has clustered to the lower-left part of the graph, while samples B1 and B2 have 

both clustered to the upper-right part of the graph. The fact that the data has formed 

clusters indicates that the two features are not independent, but are actually correlated. 

If they were independent, there would be no obvious pattern between the two features. 

Furthermore, since two features are both extracted from the same texture, this says that 

these textures are correlated with themselves. That is, they are autocorrelated.  

So each texture class will form clusters in different parts of the feature space. The word 

“clusters” is plural here because often the same texture will generate multiple clusters at 

different places in the feature space. In the context of texture, one of these clusters is 

called a texton.  

Different samples of the same texture class will form the same textons, while samples 

from the different texture classes will form different textons. In other words, each 

texture class has its own characteristic set of textons, like a fingerprint. Each texture’s 

“fingerprint” is different, which means textures can be recognised and distinguished. 

This is the basis of the texton technique.  

Sample A 

Sample B1 

Sample B2 

0 

128 

255 

0 128 255 

  
 

 
 

  
 

     



Chapter 4 – Non-real-time texture-boundary detection  45 

 
 

4.3.2 FEATURES 

Let the function       calculate the feature vector for pixel  . In the previous section, 

      would have been defined like this: 

 
       

    

       
  

          
 
 
  

 
(4.5) 

There are many ways to extract features; this method above is only simple illustrative 

example. In practice, two simple features like this do not have enough information to 

distinguish between textures. That is why, more commonly, convolution is used for 

feature extraction. In this approach, the algorithm will have a filter bank   

                 , that consists of a number of convolution kernels   . Now, the feature 

vector will be calculated by convolving the image with all the kernels in the filter bank: 

                  

   

  
(4.6) 

TextonBoost (Shotton J. , Winn, Rother, & Criminisi, 2009), one of the best texture-

boundary detectors today, uses the Winn-Criminisi-Minka filter bank (2005): 

 

FIGURE 4-8: In reading order, the Winn-Criminisi-Minka (2005) filter bank consists of four 
scales of Laplacian of Gaussian kernels, three scales of Gaussian kernels, and fo ur scales of 

Gaussian first derivative kernels. These kernels have had their values scaled to the [0,1] range 
so they could be viewed. 

One thing to notice about the Winn-Criminisi-Minka filter bank is that, the same filters 

are repeated at different scales. This ensures that textures will be able to be 

distinguished, regardless of their scale.  

In general, any filter bank will be comprised of two categories of filters – comparison 

filters and averaging filters. 
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Comparison filters 

Comparison filters compare one part of the texture to another, similar to the example in 

section 4.3.1.  

In the Winn-Criminisi-Minka filter bank, the Gaussian first-derivative and Laplacian 

kernels belong to this category. For each sliding window, the Gaussian first-derivative 

compares one side of to the other, while the Laplacian compares the inside to the 

outside. Naturally, some textures will cluster more uniquely with the Gaussian first-

derivative while others will cluster more uniquely with the Laplacian, so it is good to 

have both.   

Averaging filters 

Averaging filters extract the average colours that comprise a texture. Obviously, textures 

often have a normal colour – grass is usually green, while the sky is usually blue for 

example. So extracting average colour information is useful for distinguishing between 

textures.  

In the Winn-Criminisi-Minka filter bank, the averaging filters are the three Gaussian 

kernels. They extract a Gaussian-weighted average of the local colour around each pixel 

at various different scales. Naturally, if a texture has a usual colour or colours, then its 

average colour values will cluster in a characteristic way, enabling it to be recognised. 

4.3.3 LEARNING TEXTONS WITH K-MEANS CLUSTERING 

The texton technique must first learn textons in a training stage before they can be used. 

This is done from a set of training images.  

Initially, a large set of features are extracted from a training set of images using the 

previously-defined feature-extraction function        . Let this training feature set be 

denoted                    , where each    is a feature vector sampled from a 

training image. Now, the textons are simply the clusters in the training set  . Normally, 

k-means clustering (Lloyd, 1982) is used to find these clusters. 

K-means clustering 

K-means clustering is a method to automatically find exactly   clusters (or more 

specifically, textons) in the set of feature points  . The number of clusters   is set as an 

external parameter to the clustering algorithm. This is different to other clustering 

algorithms, such as mean-shift clustering (section 3.6), where the number of clusters 
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arises organically. In the case of textons, previous researchers have set   to values as 

low as      and as high as      . 

In k-means clustering, a cluster is defined by its central point   . Let                  

be the set of cluster centers. As the feature points   exist in    space, where   is the 

number of features in a feature vector, each cluster center is also an    point in the 

feature space.  

From here, the cluster of a feature point   can be determined by     : 

                  
         

       

                          

 
(4.7) 

Basically, a feature always belongs to its closest cluster. The function           only 

returns the index   of the cluster, while      returns the actual cluster center. Given 

these definitions, k-means clustering proceeds as follows: 

ALGORITHM 4-1 

1. Initialise   to be a set of   random of cluster centers. 

2. Let                . In words,    is the set of training features that 

belong to cluster  . 

3. Let            for all    . In words, move each cluster to the mean of the 

features in the cluster.  

4. If the clusters moved a total distance less than  , a final set of clusters has been 

found, so return  . The parameter   should be set to a small value. 

5. Go back to step 2 

 

To ensure a good result, Algorithm 4-1 is run multiple times from multiple different 

random starting clusters, and the most compact set of clusters is chosen. Compactness 

can be measured as follows: 

                         

   

  
(4.8) 

Now that the clusters   are known, it is possible to textonise images.  
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4.3.4 TEXTONISING IMAGES 

Textonising is the process of transforming an image      into a texton map     . A 

texton map is an image which describes which texton each pixel has been assigned to.  

The textonisation      of pixel   in image   is defined as: 

                

                      

 
(4.9) 

Basically, the above equation states that each pixel in the image is assigned to its nearest 

texton. The textons will have already been decided through clustering, as described in 

the previous section.  

Notice that the texton map      consists of the texton indices. So if there are 

             , then each pixel in the textonised image      will be an integer in the 

range [1, 100].  

4.3.5 IMAGE RESULTS 

Many texton-based algorithms exist. Figure 4-9 shows three texton map examples from 

three different algorithms. 

 

FIGURE 4-9: Texton map examples taken from some existing algorithms. Top left pair is from 
TextonBoost (section 4.4), which uses       textons. Bottom left pair is from the Texton 

Ridge Detector (proposed in chapter 7), which uses      textons. The right pair is from the 
probability of boundary detector (section 4.5), which uses      textons. The texton maps 

have been false-coloured – each texton is rendered in a different colour.  

The key point to notice is that each texture is made up of a different distribution of 

textons. This is particular noticeable in the tiger image (bottom left of Figure 4-9), where 

the tiger itself and the water surrounding the tiger have clearly different texton 

distributions, even if they share some textons. 

Different algorithms use the texton map in different ways. The next sections will discuss 

the two main approaches by introducing three different algorithms:  
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 TextonBoost (section 4.4) tries to learn how to recognise textures from the 

texton map. It does extremely well at this problem, but suffers from being 

inflexible because it always must be trained on a limited number of textures. 

 The probability of boundary detector (section 4.5) takes a flexible approach 

which can work with an unlimited number of textures, but unlike TextonBoost, it 

does not attempt to find a globally-optimal solution.  

 The global probability of boundary detector (section 4.6) improves the 

probability of boundary detector so that it attempts to find a globally-optimal 

solution. 

4.4 TEXTONBOOST 

TextonBoost (Shotton J. , Winn, Rother, & Criminisi, 2009) is one of the most influential 

texture-boundary detectors. Both real-time and non-real-time texture-boundary 

detectors have been based on its concepts.  

In the 2009 paper, TextonBoost was trained to recognise 23 different textures. It does 

this by learning from human-labelled training images such as the ones below in Figure 

4-10: 

 

FIGURE 4-10: TextonBoost learns from human-labelled images like these. Reproduced from 
Shotton et al. (2009) 

TextonBoost simultaneously tries to achieve not only pixel-perfect boundary detection, 

but also texture recognition, as shown in Figure 4-11: 



50  Chapter 4 – Non-real-time texture-boundary detection 

 
 

 

FIGURE 4-11: The result of applying TextonBoost to some images. Notice its high -quality 
boundaries. Reproduced from Shotton et al. (2009) 

TextonBoost has a number of parts to it. First, it has a training phase, where it learns to 

recognise textures from textons. Second, it has a recognition phase, where it classifies 

new images using the model that it has learnt. The recognition phase can be split into 

two parts: 

1. Soft-assignment. TextonBoost maps textons to textures using a technique 

called texture-layout filters. Soft-assignment means that each pixel is not 

assigned to a single texture class yet. Instead, the soft-assignment for a pixel 

consists of the likelihoods of it belonging to each of the textures. 

2. Hard-assignment. From there, TextonBoost uses an alpha-expansion graph 

cut to hard-assign the pixels to texture based on what appears to be globally 

optimal. 

Each of these parts will be discussed individually. 

4.4.1 TEXTON FEATURES 

Before any texture processing can occur, the images must first be textonised. This is 

done in the same way as described in section 4.3, using the Winn-Criminisi-Minka filter 

bank (2005) shown in Figure 4-8. TextonBoost was trained with       textons in its 

original paper. 
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4.4.2 TEXTURE-LAYOUT FILTERS 

The soft-assignment of pixels to textures is done using texture-layout filters.  

A texture-layout filter generates a response equal to the frequency of a texton within a 

particular offset rectangle, as illustrated in Figure 4-12: 

 

FIGURE 4-12: (a) An image. (b) One example of a texture layout filter. (c) The texture layout 
filter, applied to different areas of the image. Reproduced from Shotton et al. (2009) 

The texture-layout filter shown in Figure 4-12 generates a response for the pixel 

denoted by the yellow cross by counting the frequency of texton    within the offset 

rectangle   . Figure 4-12(c) shows three representative placements of the texture-layout 

filter: 

 At position   , the texture-layout filter will generate a 0% response, as texton    

does not occur in the offset rectangle   . 

 At position   , the response will be approximately 100%, as texton    occurs at 

almost every pixel in the offset rectangle   . 

 At position   , the  response will be approximately 50%, as texton    occurs in 

approximately 50% of the offset rectangle   . 

TextonBoost will transform this filter response into a vote for one or more textures. The 

strength of the vote will be proportional to the response. The votes from an ensemble of 

texture-layout filters are tallied together to find each pixel’s soft-assignment. 

TextonBoost also uses other visual cues – namely colour and pixel location – to cast 

votes for textures as well. However, these cues are secondary to the texture-layout 

filters, and so will not be discussed here. 

Learning the texture-layout filters 

Before any textures can be recognised, TextonBoost must first learn the ensemble of 

texture-layout filters in its training stage. It does this using a machine learning technique 

called boosting.  

(a) (b) (c) 
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Shotton et al. (2009) trained TextonBoost with two thousand texture-layout filters so 

that it could recognise 23 different textures. Boosting is made up of many rounds, where 

each round of boosting trains one additional texture-layout filter. Consequently, this 

would have required two thousand rounds of boosting. 

In the case of TextonBoost, each boosting round is a random search algorithm. That is, in 

each round, a large number of random candidate texture-layout filters are tried, and the 

“best” one is chosen. The “best” texture-layout filter is basically the most accurate one – 

that is, the one that votes for the correct texture the highest proportion of the time. The 

exact details of how boosting works in TextonBoost can be seen in the TextonBoost 

paper. 

Once the soft-assignments have been generated by the texture-layout filters, the pixels 

must then be hard-assigned to textures. This is done using an alpha-expansion graph 

cut. The next section (section 4.4.3) will explain why an alpha-expansion graph cut is 

needed at all. This section is important because two of the real-time texture boundary 

detectors attempt to remove the alpha-expansion graph cut stage, to varying levels of 

success. The section after that (section 4.4.4) will discuss the minimum cut, which forms 

the basis of the alpha-expansion graph cut (section 4.4.5). 

4.4.3 WHY NOT JUST HARD-ASSIGN A PIXEL TO ITS MODAL TEXTURE? 

Whenever texture is involved, the local soft-assignments must be combined with the 

local context in order to make a high-quality hard-assignment of pixels to textures. If 

this is not done, the resulting boundary map will be very noisy. Consequently, simply 

assigning a pixel to its most likely texture (its modal texture) will produce a low-quality 

boundary map because it does not consider any local context. One of the best examples 

of this is in the results of a texture-boundary detector developed by He, Zemel and 

Carreira-Perpinan (2004), shown in Figure 4-13. 
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FIGURE 4-13: The effect of post-processing on He et al .’s (2004) texture-boundary detector. 
Columns from left to right: (1) the original image, (2) the human -assigned ground truth, (3) the 
output of the algorithm when each pixel is hard-assigned to its modal texture, (4) the output of 
the algorithm when hard-assignment is done with an alpha-expansion graph cut. Adapted from 

He et al. (2004) 

He et al. were the original proponents of using an alpha-expansion graph cut to smooth 

the textures calculated by a texture-boundary detector, and their results in Figure 4-13 

clearly show how much difference this makes. The unsmoothed results are highly noisy, 

while the smoothed results are substantially more accurate. 

The reason why smoothing is so necessary is as follows. Texture potentials are 

calculated from local features, and so they are heavily subject to local pixel variations. 

This makes it absolutely necessary to integrate these local features with their local 

context to produce a good image-level interpretation of the textures in the image. The 

alpha-expansion graph cut, used by TextonBoost, does exactly this.  

4.4.4 THE MINIMUM CUT 

Understanding the alpha-expansion graph cut first requires understanding its most 

essential component – the minimum cut.  

Image Ground truth Modal texture Postprocessed 
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The purpose of minimum cut segmentation (Ford & Fulkerson, 1956; Greig, Porteous, & 

Seheult, 1989) is to divide an image into two separate classes. This section will explain 

the minimum cut with a graphical example, using the image below: 

 

FIGURE 4-14: This     image is made up of both dark and light pixels. The numbers overlaid 
on each pixel are the pixel brightness values, where all brightnesses are in th e range [0, 1]. The 

minimum cut will be demonstrated on this image.  

The above example image has two classes of pixels – dark and light. In this example, the 

goal of minimum-cut segmentation is to find the cut which best separates the dark class 

from the light class. This is not straightforward because there is some intra-class 

variation. 

Converting the image to a graph 

The minimum cut algorithm first converts an image into a graph, as illustrated on the 

example image below: 

 

FIGURE 4-15: The example image, converted to a graph. The large nodes on the left and right 
side are class nodes, while the nine nodes in the middle are the pixel nodes – one for each pixel.  

In the image graph, each pixel is represented as a pixel node. Additionally two class 

nodes are created for each of the two classes. In Figure 4-15, the dark class is 
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represented by the large dark node on the left, while the light class is represented by the 

large light node on the right.  

An arc connects each of the pixel nodes to its neighbours. Also, the pixels on the sides 

have been connected to the class nodes. Normally, each class node would be connected 

to every pixel node in the entire image. This has not been done to make the example 

look clearer. Without loss of generality, this example has been engineered so that the 

result will still be the same with this simplification. 

The minimum cut algorithm requires all the arcs of the graph to be given a weight, 

where the weight is a similarity score. This similarity score can be calculated in a 

multitude of ways. The example will use the simplest ways possible.  

In this example, the similarity of two pixel nodes can be defined as follows. First the 

difference in their brightness values is taken, and then the difference is subtracted from 

the maximum brightness value to make it a similarity score and not a difference score. If 

the two pixels are denoted by    and   , then the similarity score  between them is 

defined as:                 . The   in this equation is used because it is the maximum 

brightness value. 

The similarity of a pixel node to a class node will be calculated by simple colour 

similarity in this example. Therefore, the similarity of a pixel   to the dark class node 

will be:           . Likewise, the similarity of a pixel   to the light class node will be: 

          .  

The similarity scores of the example image according to these calculations can be seen 

above in Figure 4-15 where each arc has been given a weight equal to its similarity 

score. 

Finding the minimum cut 

In graph theory, a cut is defined as a set of arcs which, when removed (or “cut”), divide 

the graph into two disjoint subsets. In this context, each cut will have a cost, where the 

cost is the sum of the weights of the arcs that are cut. The minimum cut is the cut which 

has the minimum cost. In this case, the cut of minimum cost is equivalent to the cut of 

maximum dissimilarity, which makes it useful for boundary detection.  

The minimum cut can be found exactly by applying a simple algorithm (Ford & 

Fulkerson, 1956): 
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ALGORITHM 4-2: The minimum cut algorithm. 

1. Find the shortest path p between the class nodes.  

1.1. If no path exists, the minimum cut has been found, so stop. 

2. Let m = the minimum value of all arcs on path p. 

3. Subtract m from all arcs on that path p. 

4. Cut any arcs that are now equal to zero. 

5. Go back to step 1. 

 

The following series of figures show how the minimum cut algorithm listed in Algorithm 

4-2 will eventually progress to the optimal solution. 

 

FIGURE 4-16: The shortest path is found (shown in red), and its minimum value is subtracted 
from all arcs on the path. One of the arcs becomes zero, and so it is cut (shown in the next 

figure).  
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FIGURE 4-17: One of the arcs has been cut (dotted blue line). The algorithm repeats. The 
shortest path (in red) cannot cross the arc that was just cut, so that is why the shortest path has 

changed. Again, the minimum is subtracted from the shortest path. One of the ar cs becomes 
zero, and so it is cut (shown in the next figure).  

 

FIGURE 4-18: Two arcs have now been cut. The algorithm repeats, and another arc is cut 
(shown in next figure).  

  

FIGURE 4-19: Now three arcs have been cut. The algorithm repeats and cuts another arc 
(shown in next figure).  
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FIGURE 4-20: Now four arcs have been cut. Now no path exists between the two class nodes, so 
the algorithm has finished. The minimum cut is shown as a thick blue line.  

Figure 4-20 above shows the final result of the algorithm on the example initially shown 

in Figure 4-14. Notice that the minimum cut algorithm has perfectly separated the dark 

pixels from the light pixels. The class of a particular pixel can be found by tracing the 

graph to find out which of the class nodes it is connected to. This illustrates one of the 

most important characteristics of minimum-cut segmentation – it always finds the 

optimal solution.  

As its similarity scoring functions are fully customisable, it is possible to use the 

minimum cut to solve a much more complicated texture-based boundary detection 

problem. The problem is though, the minimum cut algorithm can only ever separate two 

classes. TextonBoost needs to be able to separate between many more than two classes 

in order to be useful. For this reason, the alpha-expansion graph cut was developed. 

4.4.5 ALPHA-EXPANSION GRAPH CUTS 

Alpha-expansion graph cuts (Boykov & Jolly, 2001) are a workaround to the problem of 

a graph cut only being able to separate two classes.  

Initially, TextonBoost begins with a simple solution, where each pixel is assigned to its 

most likely texture. TextonBoost then repeatedly uses an alpha-expansion graph cut to 

improve the solution. When the solution stops improving, TextonBoost stops and 

returns that solution as the final hard-assignment. 

An alpha-expansion graph cut works like this. Let the set of all textures be denoted 

                   . TextonBoost chooses one of the textures and calls it  , where 

   . Now each pixel must now make a decision to either: 

1. Remain as its current texture   , or 
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2. Switch to the new texture   

Clearly, the alpha-expansion graph cut problem has two classes, and so it can be solved 

optimally using the minimum cut. The weights of the graph can be calculated easily 

because each pixel’s affinity to each of the textures is already known from the soft-

assignment stage. 

The alpha-expansion graph cut is applied repeatedly in this manner. To ensure there is 

no bias in the results, each texture in   should get a chance to be   an equal number of 

times over the course of the hard-assignment stage. Eventually, this process will 

converge on a strong local maximum, and this is the final result of TextonBoost.  

4.4.6 IMAGE RESULTS 

Figure 4-21 shows some examples of how TextonBoost performs. 
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FIGURE 4-21: Some example results of TextonBoost. Reproduced from Shotton et al. (2009) 

As Figure 4-21 shows, TextonBoost produces excellent boundaries and can recognise 

texture well. It has two problems though. First, it is unable to run in real-time, primarily 

because of its iterative alpha-expansion graph cut stage. Second, it is always limited to 

the textures that it is trained to recognise, which limits its practical applications to 
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controlled conditions. The probability of boundary detector, introduced next, does not 

have this problem.  

4.5 PB: THE PROBABILITY OF BOUNDARY DETECTOR 

Like TextonBoost, the probability of boundary (Pb) detector (Martin, Fowlkes, & Malik, 

2004) uses textons to find boundaries. However, it takes a very different approach from 

TextonBoost. The Pb detector calculates the local change in texton distributions as the 

texton gradient. It then performs ridge detection on the texton gradient (called 

localisation in the original paper). Finally, a logistic regression model combines the 

texton ridges with some other visual cues to produce a boundary map. Each of these 

stages will be discussed individually.  

4.5.1 TEXTON FEATURES 

The Pb detector uses 13 filters to extract features for textonisation. This filter bank is 

illustrated below in Figure 4-22: 

 

FIGURE 4-22: The filter bank used by the Pb detector. Reproduced from Martin et al. (2004) 

This is different from the Winn-Criminisi-Minka (2005) filter bank shown in Figure 4-8 

in a three main of ways. Firstly, there is only one scale of filters. Martin et al. (2004) 

found that multiscale integration was not necessary when the textons are combined 

with other visual cues. Secondly, all filters are oriented, except for the center-surround 

filter. This allows it to distinguish between different orientations of the same texture. 

Thirdly, there are no averaging filters (described in section 4.3.2), which means textons 

do not depend on colour. Instead, Pb integrates colour separately. 

In the original paper, Pb was trained with      textons, using the k-means clustering 

algorithm as normal.  
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4.5.2 TEXTON GRADIENTS 

Pb calculates texton gradients using a circular kernel split into two half-discs: 

 

FIGURE 4-23: The Pb kernel, used to calculate gradients, shown at two orientations. The left 
one calculates horizontal gradients, the right one calculates vertical gradients.  

As Figure 4-23 shows, the circular kernel can be oriented in different ways. At any 

particular orientation  , the kernel is split into two regions, which will be denoted   
  

and   
 .   

The texton gradient for pixel   and orientation   is calculated by the following process. 

The kernel is centered on pixel  , which establishes which of the surrounding pixels 

belong to   
  and   

 . Now the frequency of each texton is counted in both regions. This 

generates two texton histograms,   
  and   

 , one each for regions   
  and   

  

respectively. The texton gradient         is equal to the chi-squared distance       

between the two histograms: 

              
    

   

        
 

 
 

       
 

     
 

(4.10) 

The texton gradients are calculated at   orientations. Martin et al. chose to use     

orientations in their original paper.  

4.5.3 RIDGE DETECTION 

Normally, the texton gradient process will produce large, spatially-extended responses 

for each boundary. This is because texton gradients are built from a large area of 

support, and so a single texture boundary will influence a wide area. Ridge detection is 

needed to “thin” the responses so that they are better localised. 

Ridges in the texton gradient          are detected within each orientation   

separately, using this formulation: 
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(4.11) 

In equation (4.11) above, the function      is the texton gradient         for one 

particular orientation  . This has been defined to make the equations simpler.  

The function      estimates the distance to the nearest ridge. The general concept is, 

dividing the texton gradient      by the distance      should cause the texton gradient 

to be emphasised infinitely on ridges, where       .  

In practice, a few modifications have to be made to the formulation presented in (4.11): 

 
         

     

      
 (4.12) 

In equation (4.12) above, a small value   is added to the      to ensure computational 

divide-by-zero errors do not occur. Also, as      is merely a ridge estimate, some ridges 

may exist where       , and so   ensures these are still detected as ridges.  

The smoothed texton gradient       is used in equation (4.12) to avoid the double 

response phenomenon. That is, it is normally a boundary causes two gradients, one on 

either side, instead of a single response on the actual boundary. Smoothing allows the 

response to occur directly on the boundary itself.  

The function      , can be calculated by using a Gaussian blur (section 3.1) of     . The 

function       can be calculated by convolving      with the Gaussian derivative 

(section 2.4.1). Convolving       again with another Gaussian derivative will yield 

      . In their original paper, Martin et al. calculated      ,       and        by 

fitting a parabola, but they also stated that the Gaussian method described here 

generated similar results. 

After this, the Pb detector combines the texton ridges          with other visual cues to 

improve the detection further.  

4.5.4 COMBINING WITH OTHER VISUAL CUES 

The texton gradient does not detect changes in colour, just texture. This can cause it to 

miss some important boundaries. For this reason, Pb also calculates a colour gradient, 

and combines it with the texton gradient.  
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Colour gradient 

The colour gradient         is calculated in the same way as the texton gradient, except 

colour histograms, not texton histograms, are constructed. Like the texton gradient, the 

colour gradient is also equal to the chi-squared distance between the histograms.  

Martin et al. also experimented with ridge detection on the colour gradient, but found it 

did not make any difference. Consequently, ridge detection is only performed on the 

texton gradient.  

Logistic regression model 

The texton gradient and colour gradient are combined using a logistic regression model. 

A logistic regression model takes a weighted sum of its inputs, then transforms them 

using a logistic function: 

                                           

                  
 

     
 

 
(4.13) 

This model is illustrated in Figure 4-24: 

 

FIGURE 4-24: An illustration of Pb’s logistic regression model.  

The logistic function in particular has been chosen because it works as a soft-threshold 

function – it does not hard-assign input values to either zero or one, but instead will 

soft-assign them to a real number between zero and one. Figure 4-25 illustrates this 

with a plot of             for various values of  . 
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FIGURE 4-25: The logistic function. 

Notice in Figure 4-25 above, the logistic function is almost zero for    , and it is 

almost one for    . In the area close to    , the logistic function gradually changes 

from zero to one. This behaviour makes the logistic function work like a soft-threshold 

function.  

As Figure 4-14 shows, the logistic regression model used by the Pb detector takes three 

inputs: the texton gradient, the colour gradient, and a constant value of 1. The weighted 

constant input is needed because it allows the threshold level of the logistic function to 

be set.  

The Pb detector first learns the optimal logistic function model from the 200 training 

images of Berkeley dataset (which will be detailed later in section 8.1). Learning is 

possible because each image in the Berkeley dataset has a human-defined ground truth.  

In the training stage, the texton and colour gradients are first calculated on each of the 

training images. Then, using these as inputs, the weights of the logistic regression model 

are optimised so that the output of the model best matches the ground truth. Newton-

Raphson’s method is used for the optimisation process.  

The output of the logistic regression model is the final boundary map for the image. 

4.5.5 IMAGE EXAMPLES 

The Pb detector produces results such as the ones in Figure 4-26:  
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FIGURE 4-26: A series of results from the probability of boundary (Pb) detector. Original 
images are on the left, and their boundary maps are on the right. Original images are from the 

Berkeley dataset (Martin et al. , 2001). 

The images above in Figure 4-26 show that the Pb detector is able to suppress most of 

the smaller scale textures (such as grass), but it still struggles with some of the larger 

scale textures (such as the zebra stripes). This is because, unlike normalised cut 

segmentation, mean-shift segmentation and TextonBoost, the Pb detector only 

interprets the image at the local level, as opposed to the image level. The next section 

will discuss the global probability of boundary detector, which integrates the 

normalised cut with the Pb detector so that it can handle these larger-scale textures as 

well.  

Another problem with the Pb detector is that it cannot run in real-time. It requires 

thirteen convolutions for each of the thirteen filters in its filter bank, and then its ridge 
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detection stage requires three convolutions per orientation. Any algorithm with this 

many convolutions simply cannot run in real-time.  

4.6 GPB: THE GLOBAL PROBABILITY OF BOUNDARY DETECTOR 

The global probability of boundary (gPb) detector (Maire, Arbelaez, Fowlkes, & Malik, 

2008) is essentially a modified normalised cut (section 4.1), with two differences.  

The normalised cut traditionally uses gradient magnitude for its similarity score (as 

described in section 4.1.2). The gPb detector instead uses the result of the probability of 

boundary detector. This gives the normalised cut algorithm texture-awareness.  

Also, the normalised cut traditionally splits the image into only two segments because it 

only uses the information from one of the eigenvectors. The gPb detector modifies this 

stage so that more than two segments can be detected. It does this by taking the gradient 

magnitudes for the first   eigenvectors, and summing them together. This works 

because as section 4.1.5 stated, the higher eigenvectors contain information on further 

subdivisions of the image. Maire et al. set the parameter     in their original paper. 

The gradient magnitude is used because it avoids hard-assigning each pixel into two 

classes like the traditional binarising process. The gradients can be calculated by 

convolving with Gaussian derivatives (already explained in 2.4.1).  

All other stages of the gPb detector are identical to the normalised cut.  

4.6.1 IMAGE EXAMPLES 

The gPb detector produces results such as shown in Figure 4-27 on some example 

images: 



68  Chapter 4 – Non-real-time texture-boundary detection 

 
 

   

   

   
FIGURE 4-27: The gPb detector (right) versus the Pb detector (middle) on some example 

images (left). Original images are from the Berkeley dataset (Martin et al., 2001). 

Notice in the images above that the global probability of boundary detector has 

produced a much higher-quality image interpretation because it integrates the 

information at a global scale.  

The global probability of boundary detector is one of the best boundary detectors 

currently. It has the highest score of all algorithms on the Berkeley benchmark 

(described later in section 8.1). Unfortunately, as gPb is a combination of two already 

non-real-time algorithms – normalised cut segmentation and the Pb detector, it is not 

possible for it to run in real-time.  

4.7 CHAPTER SUMMARY 

This chapter has discussed the inner workings of five excellent texture-boundary 

detectors: normalised cut segmentation, mean-shift segmentation, TextonBoost, the 

probability of boundary detector, and the global probability of boundary detector.  

Normalised cut segmentation produces optimal results according to an objective 

function, but it suffers from the “broken sky” problem.  

Mean-shift segmentation avoids the “broken sky” problem, but it sometimes finds intra-

texture boundaries as opposed to inter-texture boundaries because it has no explicit 

understanding of texture.  

TextonBoost explicitly learns and models texture, but it is always limited to the textures 

it is trained on, and so can only really be used in controlled conditions.  
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The probability of boundary detector does not have this limitation, but it does not 

integrate information at the image level and so cannot handle large-wavelength 

textures.  

The global probability of boundary detector combines the normalised cut with the 

probability of boundary detector to make the highest-quality boundary detector 

according to the Berkeley benchmark (section 8.1).  

Unfortunately, none of these high-quality approaches can run in real-time. This shows 

that texture-boundary detection as a whole is a difficult problem, and it is best solved 

without time constraints. Consequently, very few texture-boundary detectors are able to 

run in real-time. This is a problem because it means real-time applications cannot 

benefit from the state-of-the-art in texture-boundary detection. The next chapter will 

investigate five real-time texture-boundary detectors which attempt to bring texture-

boundary detection to real-time.  
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5 REAL-TIME TEXTURE-BOUNDARY DETECTION 

This chapter will investigate five existing real-time texture boundary detectors: 

 Konishi’s detector (section 5.1) 

 Surround Suppression (section 5.2) 

 TextonRML (section 5.3) 

 Semantic Texton Forests (section 5.4) 

 Randomised Hashing (section 5.5) 

These detectors are relevant for two reasons. Firstly, the detectors that will be proposed 

later by this thesis use similar processes to some of these other real-time detectors. 

Secondly, each of the existing real-time detectors has its problems, which provides a 

motivation for the development of new real-time texture-boundary detectors. 

5.1 KONISHI’S DETECTOR 

Konishi’s detector (Konishi, Yuille, & Coughlan, 2002) is the boundary detector 

counterpart of the Nitzberg operator, previously introduced in section 3.3. It works by 

detecting a boundary wherever the local gradients are all similarly oriented, or in other 

words, wherever they are highly coherent. This detects boundaries quite accurately, 

and is able to suppress intra-texture boundaries to some level of success.  

Recall from section 3.3.2.2 that Nitzberg’s operator calculates the average local gradient 

orientation                        at each pixel   according to equation (3.6). 

Konishi’s detector calculates the local coherence from the result of that function. This is 

possible because                        returns a structure tensor. 

The rest of this section will explain how coherence can be calculated, using a 

pedagogical example.  

Example definition 

Normally, there would be many gradients of varying strengths in the local sliding 

window, but for this example let there be only two gradients of equal strength in the 

local neighbourhood of pixel  : 
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FIGURE 5-1: Two example gradient orientations.  

Now the average gradient orientation                          will be equal to the 

average structure tensor of these two gradients. 

 

  
  

       
       

    
      
      

 

 
 

  
        
        

  

 
(5.1) 

Previously, section 3.3.2.1 showed that a structure tensor would transform a circle into 

an ellipse, where the ellipse’s major axis will be parallel to the average orientation, and 

the ratio of the major and minor axis of the transformed ellipse will measure coherence. 

Structure tensor   will transform a circle of radius 1 into the ellipse in Figure 5-2: 

 

FIGURE 5-2: The transformed ellipse from structure tensor A. 

As expected, the orientation of the ellipse in Figure 5-2 above is equal to the average 

orientation of the two vectors illustrated in Figure 5-1. Coherence requires that the 

lengths of the major and minor axis of this ellipse be calculated. This can be done by 

calculating the eigenvectors of the structure tensor  . 

Eigenvectors 

A structure tensor is a transformation matrix. A transformation matrix can have zero or 

more eigenvectors. An eigenvector is a vector that will not change direction under that 
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particular transformation. It is a fact that, for a particular structure tensor, the only 

places eigenvectors can occur are on the major and minor axes of the transformed 

ellipse. This makes sense, as all other vectors will change direction. See Figure 5-3 below 

for an illustration of this. 

 

FIGURE 5-3: The outer circle (of radius 1) is transformed to the inner ellipse by a structure 
tensor. Notice that the vectors on the major and minor axes do not change direction – that 

means they are eigenvectors.  

So finding the eigenvectors of a matrix and finding the axes of an ellipse are equivalent 

problems.  

Eigenvalues 

Coherence is only interested in the lengths of the major and minor axes, which means 

the actual eigenvectors are not required. That means, only the eigenvalues need to be 

calculated.  

Eigenvectors are not allowed to change direction, but they are allowed to change in 

length. The factor at which an eigenvector will be scaled by a particular transformation 

is called its eigenvalue. As a structure tensor is a linear transformation, all eigenvectors 

on the same axis will be scaled by the same amount – that is, they will all have the same 

eigenvalue. That means, the major axis will have one eigenvalue, and the minor axis will 

have another eigenvalue. So the axial lengths of the ellipse are proportional to the 

eigenvalues.  

If a circle of radius 1 is transformed by a structure tensor, then it will generate an ellipse 

with axial lengths equal to the eigenvalues because 1 is the multiplicative identity. So, 

for simplicity, a circle of radius 1 is always used. Now the coherence is simply the ratio 

of the eigenvalues of the structure tensor.  

Eigenvalues of the example structure tensor 

An eigenvalue   of transformation matrix   is a value that satisfies the condition: 

Eigenvectors: direction unchanged 

Non-eigenvectors: direction changed 
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(5.2) 

In the above equation,   is the identity matrix, and     is the determinant of a matrix.  

Now the eigenvalues for structure tensor   can be found by solving equation (5.2). First 

the equation is rearranged into a quadratic: 

          

 
          

          
    

                             

             

 
(5.3) 

Now it can be solved with the quadratic formula: 

 
  

          

  
 

  
                        

    
 

  
      

 
 

                                 

 
(5.4) 

Now the two eigenvalues of the structure tensor are known. Another way of seeing this 

is, if structure tensor   were to transform a circle of radius 1, the resulting ellipse would 

have a major axis length of        and a minor axis length of       . These values can 

now be used to calculate coherence. 

Coherence 

Given a structure tensor  , which has two eigenvalues    and   , the normalised 

coherence measure (Weickert J. , 1999) is defined as: 

 
             

        

        
 

 
(5.5) 

The function              will always return values in the range [0, 1].  

Eigenvalues to boundaries 

Instead of actually calculating coherence itself, Konishi’s detector works directly on the 

eigenvalues of                       . The detector is essentially a classifier which, 

for each pixel, takes the two eigenvalues as input and then outputs either “boundary” or 

“non-boundary”. The most recent implementation of Konishi’s detector (Martin, 

Fowlkes, & Malik, 2004) used a logistic regression model as the classifier. This classifier 
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was trained from a training set of human-labelled images in the same way as it was for 

the Pb detector (see section 4.5.4).  

5.1.1 IMAGE RESULTS 

Some results of Konishi’s detector are shown below in Figure 5-4: 

  

  

  

FIGURE 5-4: Some results of Konishi’s detector. Original images are from the Berkeley dataset 
(Martin et al. , 2001). 

5.1.2 CRITIQUE 

Although Konishi’s detector generally detects boundaries well, it has limited texture-

suppressing ability, as it can only suppress the textures that have low coherence. This 

works well for textures such as grass, but not for strongly-oriented textures like zebra 

stripes, as illustrated in Figure 5-4. The reason for this is, by definition, strongly-

oriented textures will consist of highly coherent gradients. This leaves much room for 
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improvement. Surround Suppression, which will be introduced next, does not have this 

problem.  

5.2 SURROUND SUPPRESSION 

Surround Suppression (Grigorescu, Petkov, & Westenberg, 2003; 2004) is a modification 

to the Canny edge detector that attempts to remove intra-texture edges. This section will 

describe the most basic version of Grigorescu et al.’s Surround Suppression algorithm. 

Other variations of the Surround Suppression algorithm exist, but all of them are based 

on the same concept. 

The concept is quite simple. An intra-texture edge is likely to be surrounded by many 

other intra-texture edges of the same strength, simply because of the fact that texture is 

a pattern that repeats itself. So, if a gradient is of similar strength to its surrounding 

gradients then it should be suppressed. 

5.2.1 FORMULATION 

For the most part, Grigorescu et al.’s algorithm is exactly the same as the Canny edge 

detector (already described in section 2.4), except a new step called “Surround 

Suppression” has been added. 

Let the Surround Suppression kernel        be defined as follows: 

 
       

 

 
        

                                

              

  

 

(5.6) 

The function        is the Gaussian function with scale  , as defined previously in 

equation (3.2). The scale   is an external parameter which is set by the user. 

The Surround Suppression kernel can be used to find a weighted average of the 

surrounding region. It is used to calculate the surround potential      , which is then 

subtracted from the gradient magnitude to generate the edge potential      : 

                     

                         
(5.7) 

The algorithm then proceeds in exactly the same way as the Canny edge detector, except 

now it finds ridges in the edge potential       instead of the gradient magnitude 

       .  



76  Chapter 5 – Real-time texture-boundary detection 

 
 

At the conceptual level, Surround Suppression works exactly as its name implies. Each 

gradient is suppressed by the average surrounding gradient. The result is that some 

intra-texture edges are suppressed. 

5.2.2 IMAGE RESULTS 

Grigorescu et al.’s 2004 paper shows some good results, reproduced in Figure 5-5: 

 

 

FIGURE 5-5: Surround Suppression (right) versus the Canny edge detector (middle) on some 
example images (left). Adapted from Grigorescu et al. (2004).  

5.2.3 CRITIQUE 

Surround Suppression is extremely fast and suppresses most texture edges. It is not 

confused by strongly-oriented textures like Konishi’s detector is. In fact, Grigorescu et 

al.’s original paper (2003) presents some modifications to Surround Suppression that 

are specifically designed to handle strongly-oriented textures well.  

Unfortunately, Surround Suppression still has some problems. As Figure 5-5 shows, 

Surround Suppression sometimes produces fragmented boundaries, and the grass 

texture has not been completely suppressed. These problems occur because Surround 

Suppression is based on edge detection, and so it focuses on the low-level interpretation 

of the image. The next section describes TextonRML, a method which uses high-level 

analysis in an attempt to avoid these problems.   

Image Canny Surround Suppression 
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5.3 TEXTONRML 

Section 4.5.4 described logistic regression models in the context of the probability of 

boundary detector. A logistic regression model is useful because it is fast, but its main 

problem is it can only distinguish between two classes. Multinomial logit is an 

extension of logistic regression to more than two classes. Random multinomial logit 

(RML) is a way to combine an ensemble of multinomial logit models together to improve 

classification accuracy. Ranganathan (2009) replaced the boosting stage in TextonBoost 

with random multinomial logit, making it much faster. This new algorithm will be 

referred to as TextonRML throughout this thesis.  

In this context, the term classifier refers to the algorithm used to soft-assign pixels to 

textures – in this section the classifier will either be boosting (for TextonBoost) or 

random multinomial logit (for TextonRML). 

In the same way as TextonBoost, TextonRML uses texture-layout filters as input to the 

classifier. Also in the same way as TextonBoost, after the classifier generates a soft-

assignment of pixels to textures, the hard-assignment is found using alpha-expansion 

graph cuts. The only difference between TextonBoost and TextonRML is the classifier. 

Intuitively, because the classifiers are different, the training stages are also different. 

Each of these points will be discussed in turn. 

5.3.1 RANDOM MULTINOMIAL LOGIT 

Like all classifiers, random multinomial logit takes a number of features as inputs, and 

then outputs the predicted class for those inputs. Similar to logistic regression, the 

inputs are combined using weighted sums, and so a weight must be learnt for each input 

feature during the training process. The weights can be learnt from a training set using 

well-known gradient descent methods. This is all that is necessary to understand 

random multinomial logit at a high level, see Ranganathan’s (2009) paper for details. 

5.3.2 FEATURE SELECTION 

Like TextonBoost, TextonRML must learn a good set of texture-layout filters to use as 

input features to the classifier. Let   be the number of features that need to be learnt by 

the training process. Both boosting and random multinomial logit divide their training 

process into rounds. However, what they do in each round is different.  



78  Chapter 5 – Real-time texture-boundary detection 

 
 

As section 4.4.2 described, one round of boosting will generate one additional texture-

layout filter to classifier, and so   rounds of boosting will generate   texture-layout 

filters.  

In contrast, random multinomial logit initially begins with a random set of   features. 

Each round of RML training will incrementally improve this random set.  

At the beginning of each round, one of the texture-layout filters is chosen to be replaced 

by a new randomly-generated texture-layout filter. A new random multinomial logit 

model is now trained on the new set of features. The accuracy of this new classifier is 

compared to the previous classifier, and only the classifier of highest accuracy is kept.  

Choosing which filter to replace in each round is an important process, and it works as 

follows. If some of the texture-layout filters have small weights, then that means they do 

not contribute much, and so one of them will be replaced. However, if none of the 

texture-layout filters have small weights, then a random one will be chosen to be 

replaced. 

Eventually after many rounds, this yields an accurate random multinomial logit 

classifier which can be used to soft-assign pixels to the textures. All other parts of 

TextonBoost’s algorithm remain the same, so see section 4.4 for more details. 

5.3.3 IMAGE RESULTS 

Ranganathan’s 2009 paper publishes some results of TextonRML, reproduced in Figure 

5-6 below. 

 

FIGURE 5-6: TextonRML applied to some images, both with and without alpha -expansion graph 
cuts (denoted GC). Reproduced from Ranganathan (2009).  

Notice from Figure 5-6 the clear improvement in results when an alpha-expansion graph 

cut is used.  
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5.3.4 CRITIQUE 

When the alpha-expansion graph cut is used, TextonRML produces excellent results. 

This is because it is generating an image-level interpretation of the image, unlike 

Surround Suppression and Konishi’s detector.  

Unfortunately, TextonRML can only run in real-time when the alpha-expansion graph 

cut stage is omitted. As Figure 5-6 shows, when the graph cut is omitted, the pixel 

classifications are generally correct, but the boundaries between them are quite noisy. 

The reasoning for this is the same as it was for TextonBoost – texture needs to be 

smoothed for the boundaries to be useful. This was already described fully in the section 

titled “Why not just hard-assign a pixel to its modal texture?” (section 4.4.3). Without an 

alpha-expansion graph cut stage, TextonRML’s real-time boundary maps are inadequate. 

Semantic Texton Forest segmentation, described next, is another algorithm that 

interprets the image at the image level, but instead of omitting the alpha-expansion 

graph cut stage entirely like TextonRML, it substitutes it with a real-time approximation.  

5.4 SEMANTIC TEXTON FORESTS 

The Semantic Texton Forests (Shotton J. , Winn, Rother, & Criminisi, 2009) algorithm 

was developed by the same research group as TextonBoost (section 4.4) and is 

considered to be its successor. Semantic Texton Forests (STF) segmentation achieves 

the same purpose as TextonBoost – that is, it performs simultaneous segmentation and 

texture recognition, but its approach is quite different. STF segmentation can be divided 

into three major stages: 

1. Textonisation using Semantic Texton Forests. This replaces TextonBoost’s 

textonisation stage, which used convolution and k-means clustering (section 

4.3.4). 

2. Texture classification. At this stage, the pixels are soft-assigned to textures. This 

is almost identical to TextonBoost’s boosting stage (section 4.4.2) except the 

classifier is different. 

3. Improving boundary detection with image categorisation. This replaces 

TextonBoost’s alpha-expansion graph cut stage (section 4.4.5). 

Each of these stages will be discussed separately. 
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5.4.1 TEXTONISATION WITH DECISION FORESTS 

Semantic textons are different from the normal concept of textons introduced in 

section 4.3, but ultimately they fill the same purpose. Semantic textons are calculated 

using decision forests. This section will describe how this is done. 

Decision forests 

A decision tree is a classifier that soft-assigns observations to classes based on simple 

decisions. In Figure 5-7, a decision tree is used to determine the class a pixel belongs to.  

 

FIGURE 5-7: A decision tree. Each node represents one simple decision, where an observation 
will choose to proceed to either the left or right node based on some simple cri teria. The 

histograms at the bottom indicate the soft-assignments given to observations which reach each 
of the respective leaf nodes. 

To train a decision tree, first there must be a training set of classified observations. Next, 

a wide range of random decision rules are tried, and the decision which splits the 

training set in the “most informative” way is chosen. Normally, the “most informative” 

decision rule is the one that creates the purest split between the classes. The pureness of 

a split can be measured using Shannon entropy.  

The chosen decision rule will split the data into two subsets. Now, each subset is 

subdivided with the same process. The algorithm stops subdividing when a desired level 

of classification accuracy is reached. Once the decision tree is constructed, the soft-

assignment for each leaf-node can be determined by running every training observation 

through the decision tree, and then counting the mixture of classes that ends up at each 

leaf node.  

A decision forest is simply an ensemble of decision trees. Each tree in a decision forest is 

trained on a different subset of the training data, which helps avoid overfitting.  
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Semantic textons forests 

A semantic texton forest is just a decision tree that has specifically been trained to 

classify a sliding window to one of many classes of texture. Semantic Texton Forests are 

trained from the same human-labelled training input as TextonBoost (see section 4.4).  

Each decision node in a Semantic Texton Forest will compare one of four different 

features against a decision threshold. The four features are: (1) the colour of one of the 

pixels in the sliding window, or (2) the sum, (3) difference, or (4) absolute difference 

between two pixels in the sliding window. There are many random variations on these 

four decision formats, which allows highly-discriminative decision trees to be 

constructed. 

Semantic textons 

A semantic texton is one of the nodes in the decision tree. That means, each sliding 

window can be described by a set of many semantic textons, instead of just one texton 

like in the normal texton approach (discussed previously in section 4.3). So for example, 

if there are ten decision trees, each ten levels deep, then every sliding window can be 

described by one hundred semantic textons. This makes semantic textons quite different 

from normal textons, but at the same time, both semantic textons and normal textons 

achieve the same purpose. That is, they provide the information required to distinguish 

between textures.  

5.4.2 SEGMENTATION 

To perform boundary detection, STF segmentation begins by calculating the semantic 

textons for every sliding window. From here, the next step is to recognise the textures 

from those textons.  

Even though the Semantic Texton Forests are already capable of soft-assigning each 

pixel to a texture, STF segmentation works by using the same texture-layout filters used 

by TextonBoost (described in section 4.4.2). The reason for this is, the Semantic Texton 

Forests used to classify each sliding window only work at the low-level, using local 

information. Using texture-layout filters adds some mid-level context to the soft-

assignment process, making STF segmentation more accurate.  

The texture-layout filters work exactly the same way as with TextonBoost, except the 

boosting classifier is replaced with a decision forest classifier – similar to how boosting 

was replaced with random multinomial logit in section 5.3.  
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This generates a soft-assignment of pixels to textures. Next, the hard-assignment must 

be calculated. 

5.4.3 IMAGE CATEGORISATION 

TextonBoost uses alpha-expansion graph cuts to hard-assign each pixel to a texture. As 

section 4.4.5 described, the reason this is needed is that, if the modal texture were 

simply taken, then the result would be noisy and the resulting boundary detection 

would not be useful.  

The problem is that alpha-expansion graph cuts are slow, and definitely cannot run in 

real-time. So, STF segmentation applies something called an image category prior. This 

will be described next.  

Theory 

Different categories of images contain different textures. For example, outdoor images 

are likely to contain trees and grass, while indoor images are likely to contain desks and 

chairs. Therefore, if the image category is known, then it can be used to suppress the 

unlikely textures. It turns out that this makes the modal texture much more useable, 

albeit not as good as an alpha-expansion graph cut. However, some loss in quality must 

be expected for an algorithm that is constrained to real-time. 

Automatic image categorisation algorithm 

A classifier is used to recognise an image’s category from its semantic texton histogram. 

Generating the semantic texton histogram is straightforward – it is simply the 

frequencies of each semantic texton tallied over the entire image. The most difficult part 

of this stage is the classifier. Shotton et al. chose to use a multi-class support vector 

machine, which will not be described here as it is beyond the scope of this thesis. The 

end result though, is that the system can automatically determine what category an 

image belongs to.   

So, in the training stage, STF segmentation will count the frequencies of each texture for 

each image category from the training set. Then in the online stage, it will modify the 

soft-assignment for each pixel so that the unlikely textures for an image’s category are 

suppressed. This allows each pixel to be hard-assigned to its modal texture with 

adequate results. 
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5.4.4 IMAGE RESULTS 

STF segmentation can only run in real-time when it does not have to evaluate every 

possible sliding window in the image. Instead, the algorithm is only run on the cells of a 

grid, where each grid cell is       pixels large. This generates a downsampled 

boundary map, as shown in Figure 5-8: 

 

FIGURE 5-8: The results of Semantic Texton Forest segmentation. Reproduced from 
Shotton et al. (2009). 

5.4.5 CRITIQUE 

As Figure 5-8 shows, STF segmentation produces excellent real-time image labelings. 

However, the focus of this thesis is on boundary detection. STF segmentation can only 

generate low-resolution boundary maps in real-time. This is inadequate for most real-

time applications. For example, in the context of face recognition, different faces look the 

same at low resolution. Or in real-time tracking, the trajectory of the object cannot be 

predicted at such a low resolution.  

Boundary detection via Randomised Hashing, which will be introduced next, generates 

full-resolution boundary maps unlike STF segmentation. It also generates a high-level 

interpretation of the image, unlike Konishi’s detector and Surround Suppression.  

5.5 RANDOMISED HASHING 

Boundary detection via Randomised Hashing (Taylor & Cowley, 2009) is similar in spirit 

to mean-shift segmentation (section 4.2) in that it finds boundaries by clustering the 

pixels in the image. Mean-shift segmentation however, is highly iterative and so is 

unable to run in real-time. Randomised Hashing has been designed so that its clustering 

is non-iterative which makes it able to run in real-time. 
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5.5.1 ALGORITHM 

Randomised Hashing begins by extracting a feature vector      from each pixel  . 

Taylor and Cowley (2009) chose to use the RGB values as the feature vector for a pixel.  

The feature space is subdivided by   randomly-chosen hyperplanes, where   is a user-

specified parameter. These hyperplanes will subdivide the feature space into at most    

partitions. 

Each partition is given a unique binary partition code of length  , where each bit of the 

code is determined by a different hyperplane. A hyperplane’s bit will be set to either 

zero or one, depending on which side of the hyperplane the partition lays. For example, 

consider the partition labelled “0110” in Figure 5-9. Its first bit is “0” because the 

partition is on the right side of the first hyperplane   . Its second bit is “1” because the 

partition is on the left side of the second hyperplane   . The other bits are calculated in a 

similar way. 

 

FIGURE 5-9: This diagram represents a hypothetical two-dimensional feature space. Each point 
represents the feature vector for a particular pixel. The feature space has bee n subdivided by 
hyperplanes, and a partition code has been assigned to each partition. Diagram adapted from 

Taylor and Cowley (2009). 

The neighbours of each partition can be found using the partition codes. A partition is 

considered to be a neighbour of another partition if their partition codes differ by at 

most   bits.  Now, clustering can begin. 

Randomised Hashing will count how many of an image’s feature points have been 

assigned to each of the partitions. Naturally, some partitions will have more feature 
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points than its neighbours. In Randomised Hashing, each partition is assigned to its most 

popular neighbour – that is the neighbour that has the most feature points in it. A cluster 

in Randomised Hashing is made up of a partition and all of the other partitions that are 

assigned to it by this process.  

Each pixel   is assigned to the cluster that its feature vector      belongs to. A possible 

example of this is shown in Figure 5-10.  

 

FIGURE 5-10: In this 3 by 3 image, each pixel has been assigned a partition code, depending on 
where its feature vector falls in the feature space.  

A boundary is detected at all points where neighbouring pixels belong to different 

clusters. 

5.5.2 IMAGE RESULTS 

Running Randomised Hashing on some example images from the Berkeley dataset (see 

section 8.1) yields the results shown in Figure 5-11 below. 
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FIGURE 5-11: The results of Randomised Hashing on some images. Each colour is a different 
cluster. Adapted from Taylor and Cowley (2009).  

5.5.3 CRITIQUE 

In some of the example images in Figure 5-11 above, Randomised Hashing has 

subdivided areas of very similar colour. This can particularly be seen on the deer’s back 

(b), and on the elephants (g). This happens because the clustering process is forced to 

introduce hard splits to the feature space in some way, and so sometimes similar feature 

points can be hard-assigned to entirely different clusters. Unfortunately in this case, this 

causes Randomised Hashing to introduce phantom boundaries – boundaries that exist 

where they should not. This is the main problem with Randomised Hashing.  

5.6 CHAPTER SUMMARY 

This chapter has explored the inner workings of five real-time texture boundary 

detectors. Each of these has its problems: 

 Konishi’s detector (section 5.1) is good at detecting boundaries, but oriented 

textures (like zebra stripes) cannot be suppressed by Konishi’s detector. 

 Surround Suppression (section 5.1) is fast and produces good results, but it is 

based on an edge detector, making it heavily focused on low-level information. 

This means it is prone to generating fragmented boundaries and also means it 
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cannot suppress the textures that can only be detected via higher-level 

interpretation.  

 TextonRML (section 5.3) is able to generate pixelwise texture classifications 

which are generally correct, and so is useful for some real-time applications. 

However, the only reason why it can run in real-time is because it avoids doing 

the necessary alpha-expansion graph cut stage. Without it, TextonRML produces 

low-quality boundary maps.  

 Semantic Texton Forests segmentation (section 5.4) attempts to overcome the 

need for the slow alpha-expansion graph cut stage by lowering the boundary 

map resolution and involving an image categorisation algorithm. This allows it to 

generate high-quality texture classifications in real-time, but unfortunately the 

low-resolution boundary maps leave much room for improvement.  

 Boundary detection via Randomised Hashing (section 5.5) finds boundaries 

using real-time clustering. Unfortunately, the clustering process introduces non-

existent “phantom” boundaries.  

The next two chapters will propose two new texture-boundary detectors which 

overcome all the above problems, and most importantly, are able to run in real-time.  
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6 PROPOSAL: THE VARIANCE RIDGE DETECTOR 

This chapter proposes the Variance Ridge Detector, a texture-boundary detector that 

overcomes the shortfalls of all previous methods.  

6.1 RATIONALE 

The Variance Ridge Detector is built on a single principal axiom, which is that ridges in 

the variance space are likely positions of texture boundaries. This is true for two reasons.  

Firstly, consider a sliding window of pixels in an image. If only one texture is contained 

within this window, then the variance of this window only has to encapsulate the intra-

class variation of the texture. Now, if the window is moved so that it now contains two 

textures, then the variance must now represent the inter-class variation between the 

textures in addition to the intra-class variation. For this reason, variance is likely to peak 

whenever two textures meet. Since a boundary is defined as the frontier at which two 

textures meet, variance is likely to form a ridge on a boundary.  

Secondly, for different areas of the same texture, variance tends to be approximately 

uniform (Papari, Petkov, & Campisi, 2007). This occurs because different windows of the 

same texture are simply different samples from the same distribution. This uniformity of 

variance within texture means that it is unlikely that variance ridges will occur inside a 

texture.  

The combination of the two above reasons enables variance to be an excellent choice for 

boundary detection. In addition to this, variance can be calculated significantly faster 

than most other features of texture (such as textons), which makes it ideal for 

constructing a real-time texture-boundary detector.  

Based on this premise, the Variance Ridge Detector was developed. The steps of this 

algorithm can be divided into two phases. The first phase calculates the local variance at 

each pixel. The second phase detects ridges in the variance space. These two phases will 

be detailed into further steps in this chapter.  

6.2 VARIANCE IN PREVIOUS WORK 

Variance has been used for texture some notable previous work.  

The most relevant work is the edge-preserving smoothing filter developed by Papari, 

Petkov and Campisi (2007), introduced in section 3.5. The heart of the Variance Ridge 
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Detector was inspired by their work. The Papari filter does not explicitly detect 

boundaries, but it does have an indirect mechanism for determining where the 

boundaries are so that it can avoid smoothing them. The Variance Ridge Detector was 

inspired by this mechanism. Having said that, Papari et al. did not intend for their filter 

to run in real-time, and so they used slower techniques such as convolution and non-

rectangular smoothing, which meant many changes had to be made to adapt their work 

to the Variance Ridge Detector. 

Another relevant work is the edge detector developed by Ahmad and Choi (1999), 

introduced in section 2.5. Their edge detector first detects edges in the image, as all 

traditional edge detectors do, but then it improves the result by only including the edges 

that occur on areas of high variance. Although they did not connect this to the concept of 

texture, it is likely that the reason this worked so well was because of the fact that 

variance peaks at texture boundaries, as was stated previously. Suppressing edges in 

areas of low variance would have removed many unimportant texture edges. In some 

ways, Ahmad and Choi’s edge detector is like an early predecessor of the Variance Ridge 

Detector. 

Tuzel, Porikli and Meer (2006) interestingly used covariance to recognise textures from 

the Brodatz texture dataset. Their covariance-based features achieve a recognition rate 

of 97.7%, which actually outperforms all texton-based methods that it was compared 

against.  

The covariance-based features used by Tuzel et al.’s are much more complicated than 

simple variance, which is used by the Variance Ridge Detector. No texture-boundary 

detector based on this feature exists yet, and so that is a direction for future research.  

Sharon and Brandt (2000) proposed a non-real-time segmentation algorithm which 

handles texture implicitly. The algorithm iteratively combines pixels into segments, and 

then combines those segments into bigger segments. This process is continued until the 

entire image is one big segment.  

The segments are combined based on a similarity measure. If desired, variance can be 

used as part of this similarity measure. Their algorithm appears to produce good results, 

which can be seen in their paper. However, the algorithm cannot run in real-time, and it 

also does not take advantage of the critically useful fact that variance peaks at 

boundaries.  
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Overall, variance has been used for texture in some instances, but it appears that, unlike 

the Variance Ridge Detector, no method so far has taken advantage of the fact that it 

forms ridges on boundaries.   

6.3 ALGORITHM OVERVIEW 

The Variance Ridge Detector takes an input image        , and it transforms the image 

through five major stages: 

1. Convert to CIELab:             . Described in section 6.4. 

2. Variance transform:          . Described in section 6.5. 

3. Gradient transform:           . Described in section 6.6. 

4. Ridge transform:           . Described in section 6.7. 

5. Gradient magnitude subtraction:          . Described in section 6.8. 

The final result of the algorithm is the boundary map     .  

Parameters 

The proposed algorithm takes only one parameter – the window radius r. The choice of r 

should depend on the wavelength of textures in the image.  

If r is much smaller than the texture wavelength, then the texture will not repeat within 

the algorithm’s sliding window, meaning it will not look like texture to the algorithm, so 

it cannot be suppressed. On the other hand, if r is too large, then the boundary map will 

be coarser, and will not include the finer details. In essence, r is a scaling parameter. 

Ideally, r should match the general texture wavelength seen in the image. However, in 

practice r is not a sensitive parameter, and so it does not need to be chosen precisely. 

Example images 

The progress of the various stages of the algorithm will be illustrated with three 

example images, shown in Figure 6-1. 
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FIGURE 6-1: The various stages of the Variance Ridge Detector will be demonstrated on these 
images. Mandrill image (left) taken from Comaniciu and Meer (2002). Tiger and starfish images 

(right) taken from Berkeley segmentation dataset (Martin et al., 2001). 

The goal for the Variance Ridge Detector is to detect the boundaries, and suppress the 

edges within the most obvious textures in these example images. The most obvious 

textures are: the mandrill’s fur (left picture), the tiger’s stripes and the water (top right 

picture), and finally the scales on the starfish (bottom right picture). To achieve this, the 

parameter r has been set to r = 6 pixels, in order to match the general texture 

wavelength.  

The Canny edge detector has been run on each of these images to show how difficult 

texture-boundary detection is on these images, as shown in Figure 6-2: 
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FIGURE 6-2: The results of running the Canny edge detector on the example images.  

The Canny edge detector reveals that there is plenty of texture in the example images. 

The goal of the Variance Ridge Detector is to ignore this texture entirely and detect only 

the important boundaries.   

6.4 CONVERT TO CIELAB COLOUR SPACE 

The image is first converted from the RGB colour model to the CIELab colour model: 

                      (6.1) 

It is very common for boundary detection to use the CIELab colour space – most of the 

detectors introduced in chapters 4 and 5 use CIELab. This is because the CIELab colour 

space was designed to match experimental measurements of human colour perception. 

Therefore, using CIELab allows an algorithm to better approach human performance. 

To convert a colour from RGB to CIELab, the RGB model must first be converted to 

CIEXYZ, and then to CIELab, using this algorithm (OpenCV, 2008; Poynton, 2006): 
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(6.2) 

This algorithm is used to convert the image      to CIELab space.  

6.5 VARIANCE TRANSFORM 

As its name suggests, the key to the Variance Ridge Detector is variance. The variance 

transform      calculates the local variance for every pixel  : 

                       

                    
(6.3) 

The smoothing function       is defined as              , which was defined 

previously in equation (3.1). Unless otherwise noted, the box blur will always be used as 

the smoothing function throughout this chapter.  

     calculates the variance separately in each of the three colour channels, and then 

combines the channels together using the L2 norm.  

6.5.1 IMAGE EXAMPLES 

Running the variance transform on the example images yields this: 
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FIGURE 6-3: The variance transform on the example images.  

Notice that the two important points stated in section 6.1 can both be seen in these 

images: 

1. Variance peaks at the texture boundaries. 

2. Within a texture, variance tends to be approximately the same.  

These two facts provide a platform to run the rest of the Variance Ridge Detector.  

6.5.2 JUSTIFICATION FOR THE REARRANGED VARIANCE EQUATION 

     calculates the variance for a window surrounding pixel   by using a well-known 

rearrangement of the standard variance formula, as derived below: 

                  

              

              

                

(6.4) 

(6.5) 

The rearrangement stated in equation (6.5) states that variance is equal to the squared 

mean minus the mean squared. The variance transform uses this equation, employing 

the smoothing function       to calculate the mean and squared mean. The rearranged 

variance equation (6.5) is used instead of the standard variance equation (6.4) simply 

because it is faster. This can be explained as follows. 

The rearranged variance equation requires two means to be calculated. The mean of a 

sliding window is equal to its sum divided by its size. Calculating the sum of a sliding 
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window can be done quickly because information can be shared, as illustrated in Figure 

6-4: 

 

FIGURE 6-4: When calculating the sum of a sliding window, some calculations can be reused as 
the window slides. Normally the sliding direction will be either horizontal or vertical, this 

diagram just slides it in a slightly off-vertical direction to make the diagram clearer.  

If the standard variance equation (6.4) were to be used, then no calculations could be 

reused. For a sliding window centered on pixel  , the standard variance equation must 

calculate the difference between each pixel         and the mean of that particular 

window      . The mean of each window is different, which means two different 

windows cannot share any calculations. Hence it is faster for the algorithm to use the 

rearranged variance equation (6.5).  

6.5.3 JUSTIFICATION FOR SQUARE-SHAPED SLIDING WINDOWS 

The Variance Ridge Detector calculates variance in a square-shaped sliding window. 

Doing this means the pixels on the perimeter of the window are not equidistant from the 

center pixel, which introduces a bias into the variance transform.  

The obvious solution to this is to use a circular sliding window. This can be done by 

changing the box blur into a circular blur: 

                         

                  
 

 
                  

  

 

             

  

 

 
(6.6) 

The only difference between                   above and              in equation 

(3.1), is that the L2 norm is used instead of the L1 norm.  

Doing this yields results such as these: 

subtract 

add 

reuse 
Slide window in 

this direction 



96  Chapter 6 – Proposal: the Variance Ridge Detector 

 
 

 

FIGURE 6-5: The variance transform on the example images, when using a circular sliding 
window instead of the proposed square window.  

Comparing the results in Figure 6-5 to those shown in Figure 6-3 illustrates the effect of 

using a circular window versus a square window respectively. Notice that in Figure 6-3, 

the peaks look jagged – indicative of the bias introduced by using square-shaped sliding 

windows. This bias is not present when using circular windows, as shown in Figure 6-5. 

The reason why square-shaped windows have been chosen is because they are faster. 

Even though it degrades the quality of the variance transform slightly, the result is a 

similar enough approximation that the high-quality results (presented in chapter 9) can 

still be achieved. 

The reason they are faster is because they allow more calculations to be reused, as 

illustrated in Figure 6-6: 
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FIGURE 6-6: The reason why square-shaped sliding windows are faster.  

That is why square-shaped sliding windows have been used.  

6.5.4 JUSTIFICATION FOR AN EQUALLY-WEIGHTED WINDOW 

Interestingly, Papari, Petkov and Campisi (2007) chose to calculate variance using a 

Gaussian-weighted window. That means that each pixel contributes to the variance with 

a different weight. This was tested with the Variance Ridge Detector, but ultimately it 

was found that not only did this produce lower-quality results, but it also runs slower. 

There are some clear reasons for this.  

Calculating a Gaussian-weighted variance is clearly more complex than a uniformly-

weighted variance, which is why it is more computationally-intensive and slower.  

The lower-quality results can also be explained. Using a Gaussian-weight distorts the 

texture and introduces false boundaries, as illustrated in the Figure 6-7: 

Two different square windows can share 

some calculations because the rows are 

the same length. 

Two different circular windows cannot 

share calculations (as easily) because the 

rows are different lengths.  
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FIGURE 6-7: Using a Gaussian weighting distorts texture like a lens would, making it non -
uniform. 

The distortion of the texture makes it look non-uniform, which makes its variance non-

uniform. Ultimately, this means intra-texture boundaries are detected when they should 

instead be suppressed. Texture needs to be uniform in order to be suppressed 

effectively. 

This can be explained as follows. A seemingly non-uniform texture has non-uniform 

variance. To be able to be non-uniform, there must be peaks and troughs in the variance. 

The Variance Ridge Detector identifies peaks as boundaries, and so false peaks means 

false boundaries. Therefore using a Gaussian-weighted variance produces lower-quality 

results. 

6.6 GRADIENT TRANSFORM 

The gradient transform calculates the gradient at each pixel. The reasons for having this 

stage are twofold.  

Firstly, variance is approximately equal for different areas of the same texture. This 

means that textured areas will have very little gradient in the variance space, which 

enables the variations in texture to be suppressed.  

Secondly, the gradient transform will allow variance ridges to be detected in the next 

stage.  

6.6.1 VISUALISATION 

One way to visualise the gradient transform is shown in Figure 6-8: 

1D Texture: 

Gaussian weighting considers 
central pixels more important: 

So it is as if the texture has 
been distorted into this: 
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FIGURE 6-8: An illustration of how the gradient transform works.  

Figure 6-8(a) and Figure 6-8(b) illustrate what normally happens near a boundary. 

Boundaries introduce strong variance into the image, and so they introduce strong 

gradients in the variance space. Figure 6-8(c) and Figure 6-8(d) illustrate that within a 

texture and away from boundaries, the gradient cancels itself out. The fact that the 

gradient transform responds differently to each situation is the core reason why the 

Variance Ridge Detector can handle texture. 

6.6.2 FORMULATION 

The gradient transform function       calculates the gradient vector for the pixel at 

position  . The term “gradient vector” is used because both the gradient strength and 

direction are calculated. This can be formulated as follows: 

(b) The attraction forces are all summed 

together to find the overall gradient for 

that pixel. 

(a) Each pixel is “attracted” towards 

different directions, where each the 

attraction force is proportional to the 

variance in that direction. 

(c) Variance is about the same 

throughout texture, which means 

the attraction forces are 

approximately equal 

(d) That means texture (almost) 

cancels itself out. 
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(6.7) 

The high-level view of the equations above is this.         calculates the gradient 

strength at pixel   for a particular direction  .       uses         to calculate the 

gradient over    total directions, taking the vector sum over all of the directions.   

The parameter    defines the number of directions to use. A small value of    means 

lower-quality results, while a high value of    slows down the algorithm. Throughout 

this thesis,    has implicitly been set to 8 as this has allows for both good results and 

speed.  

The function       calculates unit vectors for    directions and will be reused 

throughout this chapter and the next one.  

6.6.3 JUSTIFICATION FOR SMOOTHED VARIANCE 

The gradient calculation       only samples the variance at a small number of points 

and so is prone to sampling errors. Using the smoothed variance       in the gradient 

calculation is a fast method to reduce noise and make the gradient calculation robust.  

It is possible to achieve a similar result by simply doubling the window size that is used 

for variance transform. However, it was found that this approach runs faster, due to the 

greater locality of reference when using smaller windows.  

6.6.4 IMAGE EXAMPLES 

The gradient transform produces the images shown in Figure 6-9: 
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FIGURE 6-9: The gradient transform on the example images. Hue represents gradient 
orientation. 

There are two points to take note of in Figure 6-9: 

 As stated before, textured areas do not have much gradient in their variance, so 

much of the texture has been eliminated from the algorithm. Particularly, notice 

the mandrill’s fur and the tiger’s stripes are almost all gone.  

 The gradients indicate where the variance ridges, and therefore boundaries are. 

More specifically, the boundaries are surrounded by a particular pattern of 

gradients. This fact is utilised by the next stage to detect boundaries. 

6.7 RIDGE TRANSFORM 

In one dimension, a peak will produce a double response in the gradient space – a 

positive gradient on one side, and a negative gradient on the other. This is illustrated in 

Figure 6-10.  

 

FIGURE 6-10: A peak has a positive gradient on one side, and a negative gradient on the other.  

Positive gradient Negative gradient 
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In two dimensions, gradients point inwards towards the ridge, for the same reasons as 

the one-dimensional case: 

 

FIGURE 6-11: A ridge can be detected because the surrounding gradients will point inwards 
towards it.   

The pattern described in Figure 6-10 can be seen in the gradient transform of the 

example images (Figure 6-9). In the figure, it can be seen that each boundary has 

opposite hues on either side of it. This occurs because, the gradient direction is 

represented by hue, and when the gradients face inwards, one side of the boundary 

must face an opposite direction to the other. 

The purpose of the ridge transform is to detect these inward-facing gradient responses 

as ridges.  

6.7.1 FORMULATION 

The ridge transform      can be expressed by the following equations: 

         
       

        

          
           

           

  
                                   

  
           

                      

 
 

           
                         

               
  

(6.8) 

Optionally, the ridge normal       can be calculated as well: 

              
       

        
(6.9) 

The high-level view of the above equations is this.         calculates the strength of a 

single ridge orientation  .      uses         to find the maximum ridge strength over 

   possible ridge orientations. 
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FIGURE 6-12: Variance (vertical axis) at different spatial offsets (horizontal axis) from image 
position p on a cross section along direction d. The ridge strength at p is calculated by 

combining the variance gradients on either side of p. 

The ridge strength function         measures how strongly the pixel   matches the 

pattern of having a negative gradient on one side, and a positive gradient on the other. In 

practice, this looks like two gradients pointing towards each other, as shown in Figure 

6-11. The ridge strength function         linearly combines two different methods for 

this:   
        , which is similar to the geometric mean, and   

          , which is 

similar to the arithmetic mean. In these functions,           is used to ensure that only 

gradients pointing inwards are considered, but otherwise it is identical to         .  

The heart of the   
         function calculates the negated dot product of the two 

gradients on either side. This will produce a strong positive response only when the 

gradients are pointing towards each other. Combining the dot product with a square 

root essentially makes the function work like a geometric mean – that means, the 

function will only produce the maximum response when both gradients on either side 

are of similar strength. This minimises the occurrence of false positives.   

In contrast, the   
           simply subtracts the gradient on one side from the gradient 

on the other. If the gradients are facing towards each other, this will generate a large 

response. This response is divided by two, which makes the function work like the 

arithmetic mean. Unlike the geometric mean, this means a gradient can be one-sided and 

still produce a response. This ensures some ridges are not eliminated prematurely. 

        then linearly combines   
           and   

         with equal weight.  

6.7.2 RIDGE STRENGTH APPROXIMATION 

In practice, the ridge strength is calculated with an approximation: 

   
                                        

  
                                    

(6.10) 
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Equation (6.10) above and the original equations proposed in (6.9) have a couple of 

differences worth noting.  

Instead of comparing the gradients to each other directly, these functions first compare 

the gradients to the direction  , by using the dot product        , and then they 

compare those dot products to each other using the geometric or arithmetic mean, in the 

same way as the original equations (6.9).  

This produces a similar result, but is much faster due to a number of reasons:  

1. The values of         can be precalculated for all pixels  , and their cost 

amortised over multiple usages. In fact, for a particular pixel  ,          will be 

reused four times over the course of the ridge transform stage, which 

significantly reduces computation.  

2. The   
         and   

           functions now only have to work with scalars 

instead of    vectors, due to the fact that         produces scalar values. This 

halves the number of operations required.  

3. Calculating the vector magnitude in the original   
           equation (6.9) is a 

costly process, involving multiple operations. Now that only scalars are used 

instead of vectors, this process reduces to just a single subtraction operation.  

4. The function         is not necessary anymore, instead it has been replaced 

with positive bounding operators     . This is faster because the positive 

bounding operator takes a single CPU instruction, while         involved a dot 

product and so required many more CPU instructions.  

5. Another difference between the approximation (6.10) and the original equations 

(6.9) is,   
           no longer involves a division. It was found that this division 

did not make much difference to the results, and so removing it means one less 

operation. 

These approximations allow the Variance Ridge Detector to better achieve real-time. 

6.7.3 IMAGE EXAMPLES 

The ridge transform produces the following on the example images shown in Figure 

6-13: 
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FIGURE 6-13: The ridge transform on the example images. Hue represents ridge orientation.  

In Figure 6-13, notice that all the boundaries have been detected, and the textures have 

been suppressed. Although, this could be the final output of the algorithm, the results 

are further improved when Variance Ridge Detector performs one last stage, described 

later in section 6.8. 

6.7.4 ALTERNATIVE APPROACH: OPPOSITES FILTER 

Several alternative methods to the standard ridge transform have been developed. One 

of them was called the “opposites filter,” which convolves the image with kernels that 

look like similar to the one shown in Figure 6-14: 

 

FIGURE 6-14: The opposites filter uses convolution kernels like these.  
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Figure 6-14 shows a kernel made up of vectors. All the vectors are pointing inwards 

towards a dividing line. This arrangement of vectors mimics the inward pattern of 

gradients on either side of a boundary, as explained earlier. This type of kernel will 

produce the maximum response on a boundary, as that is where the gradients will 

match this pattern. 

The kernel is produced using the following equations: 

                                          

               
         
         

          

  
(6.11) 

The Gaussian kernel        was already defined previously in equation (2.12). The 

Gaussian scaling parameter   is normally set to     to ensure that the Gaussian 

approaches zero near the edges of a sliding window of radius  . In the above equations, 

the                       function generates the value of the kernel for direction   at 

position   . The vectors in the kernel are weighted according to the Gaussian function.  

Now the ridge transform can be defined as follows: 

         
       

        

                   

                                   

(6.12) 

Although this produces a more robust response than the standard ridge transform, it is 

much slower because it must use convolution. It was found that this slowdown was not 

necessary to achieve high-quality results, and so the opposites filter is merely presented 

here as an interesting alternative approach and is not proposed as part of the Variance 

Ridge Detector. 

6.7.5 ALTERNATIVE APPROACH: STRUCTURE TENSORS 

Another alternative approach to the standard ridge transform is to use structure 

tensors, in the same way that Konishi’s detector does (see section 5.1). In this approach, 

each gradient in the local area votes for a boundary orientation, and the coherence of the 

votes is taken.  

 

                                     

  

  (6.13) 
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The      and              functions were already defined in equations (3.5) and 

(5.5) respectively. 

There are two problems with this approach.  

Firstly, this approach is slower than the standard ridge detection approach. One of the 

primary reasons for this is that it accesses more pixels. Notice that the standard ridge 

transform in equation (6.8) will only access two pixels per direction, while the structure 

tensor approach in equation (6.13) above must access every pixel in the sliding window. 

Memory access is the slowest operation of all, and so this slows down the algorithm 

substantially. 

Secondly, this approach does not try to compare whether there are opposing gradients 

on either side of the boundary. The gradients can be positioned anywhere and still 

contribute equally to the average boundary orientation. This tends to introduce false-

positives.  

The combination of these two problems is why the structure tensor approach to the 

ridge transform is only presented here as an interesting approach, and is not proposed 

as part of the variance ridge transform. 

6.8 GRADIENT MAGNITUDE SUBTRACTION 

The ridge transform is effective at identifying ridges, but it turns out that ridges are 

often over-detected in the ridge transform. That means, often they appear thicker than 

they actually are, particularly around corners. This occurs because the ridge transform 

only takes an extremely small sample of two points for each ridge orientation.  

One solution to this would be to increase the sample size. However, this would slow 

down the algorithm. This section proposes a much faster solution which achieves the 

same purpose. 

As its name suggests, the gradient magnitude subtraction simply subtracts the gradient 

magnitude from the ridge transform. This produces the boundary map, which is the final 

result of the algorithm. This can be formulated as follows: 

                   (6.14) 

This is useful because a ridge can only exist between two gradients – a positive gradient 

on one side, and a negative gradient on the other. Therefore, if a ridge occurs at the same 

location as a gradient, instead of between gradients, then it is unlikely to be a true ridge. 

This stage subtracts the gradient magnitude from the ridge transform, which means that 
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any ridges that exist at the same location as a gradient will be removed. This results in 

thinner, more accurate ridges. These ridges are output as the final result of the detector.  

6.8.1 IMAGE EXAMPLES 

The final result of the Variance Ridge Detector on the example images is shown in Figure 

6-15: 

 

FIGURE 6-15: The final result of the Variance Ridge Detector on the example images. Hue 
represents boundary orientation.  
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Comparing this output (Figure 6-15) to those of the previous stage (Figure 6-13) shows 

that the gradient magnitude subtraction process makes the boundary map much clearer 

and better localised. More results will be presented in chapter 9. 

6.8.2 ALTERNATIVE APPROACH: ANISOTROPIC SUBTRACTION 

The method that was just presented is called isotropic gradient magnitude subtraction. 

The word isotropic here means that the subtraction is always the same, regardless of 

direction. This can sometimes cause problems, as illustrated in Figure 6-16:   

  

FIGURE 6-16: The problem with isotropic gradient magnitude subtraction.  

The problem is, when at a junction where multiple boundaries meet, the gradients of 

one boundary might overlap another valid boundary. A simple isotropic subtraction will 

therefore remove some valid boundaries.  

One possible solution to this relies on gradients always being perpendicular to their 

boundaries. So, if a boundary and gradient appear at the same position, the subtraction 

should only occur if they are perpendicular. This can be formulated into the anisotropic 

gradient subtraction equation: 

                        (6.15) 

      was defined in equation (6.9) to return the ridge normal, or in other words, the 

boundary normal. The boundary normal is already perpendicular to the boundary, 

which makes the calculation quite simple. The dot product of the unit boundary normal 
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and the gradient is found. Effectively this weights the amount of gradient subtraction so 

that the full gradient magnitude is only subtracted when the boundary is perpendicular 

to the gradient.  

Doing this produces interesting results, as illustrated in Figure 6-17. 

 

FIGURE 6-17: Anisotropic gradient magnitude subtraction applied to the example images.  

Unfortunately, anisotropic gradient magnitude subtraction introduces some unwanted 

artefacts into the boundary map. In Figure 6-17, this can be seen around the mandrill’s 

eyes (left image), as well as at various corners throughout the other images.  

The non-homogeneous subtraction of gradient magnitude leaves artefacts when it does 

not completely subtract away all unwanted boundaries. This particularly happens 

around corners, where the boundary orientation is ambiguous.  

At this point, isotropic gradient magnitude subtraction produces better results, and so 

anisotropic gradient magnitude subtraction is simply presented here as an interesting 

alternative approach, and is not proposed as part of the variance transform.  

6.9 COMPARISON WITH OTHER RIDGE DETECTION APPROACHES 

The gradient transform (section 6.6), ridge transform (section 6.7) and gradient 

magnitude subtraction (section 6.8) stages are all part of the proposed ridge detection 

method. Previous approaches to ridge detection include: morphological thinning, 

Canny’s non-maximum suppression and convolution thinning. However, these 

approaches were inadequate for the Variance Ridge Detector, for the following reasons.  
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As described in section 2.3.3, morphological thinning requires a binary image as input. 

Normally, thresholding would be used to convert an image into a binary image. Doing 

the threshold before the ridge detection means there is a strong possibility that 

thresholding might eliminate useful information, or introduce artefacts into the 

boundary detection. Hence morphological thinning was not used.  

In contrast, section 2.4.2 described the non-maximum suppression algorithm used by 

the Canny edge detector. This approach performs ridge detection first before 

thresholding. This is a better approach, as reduces the chance that thresholding will 

eliminate ridges or introduce artefacts.  

The problem with Canny’s ridge detection is that it has no substitute for the proposed 

gradient transform of the Variance Ridge Detector (section 6.6). As mentioned earlier, 

the gradient transform eliminates texture by taking advantage of the fact that within a 

texture, variance is approximately uniform. Canny’s ridge detection does not use this 

fact, and so would not perform as well as the proposed ridge detection method. In other 

words, Canny’s ridge detection is good at detecting ridges, but it has no method for 

suppressing false positives like the proposed ridge detection method does.  

Section 4.5.3 described convolution thinning, which is used as part of the state-of-the-art 

probability of boundary detector. In this case, convolution is unnecessarily 

computationally expensive – the proposed ridge detection method already produces an 

satisfactory result with much less computation.  

All other ridge detection methods were inadequate for this situation, that is why a new 

ridge detection method was proposed. 

6.10 IMPLEMENTATION 

The Variance Ridge Detector was implemented so that its speed and quality could be 

measured. The results of this are presented in chapter 9. There were a number of issues 

with implementing the algorithm, and the purpose of this section is to detail these 

issues.  

6.10.1 EXPANDING THE IMAGE 

Whenever a sliding window partially lies outside the bounds of the image, the pixel 

values are interpolated by mirroring the image at the image bounds.  
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FIGURE 6-18: Illustration of how missing pixels are interpolated.  

An alternative to mirroring at the image boundaries would be to just use a solid colour 

such as white or black beyond beyond the image boundaries. This was not done because 

it would be likely to introduce strong variance and thus reduce the reliability of the 

results near the image extremities.  

6.10.2 DISCRETISATION 

Often an expression such as          has been used. In this expression,      could 

potentially refer to a non-integral pixel position in the gradient image   . In the 

implementation,      would be rounded to the nearest integral position.  

6.10.3 SLIDING WINDOWS 

Many expressions, such as the box blur in equation (3.1) have a window term such as 

          . This ensures that only pixels within the window radius   have an effect on 

the calculation – other pixels are zeroed out by this term. Naturally, the implementation 

does not waste time on values outside of the window – it does not calculate them only to 

zero them out.   

6.10.4 IMPLEMENTATION RESOURCES 

The Variance Ridge Detector was implemented as a highly-optimised single-threaded 

C++ program. Images were represented as 32-bit floating-point numbers. The 

implementation utilised OpenCV and SSE instructions.  

OpenCV (the Open Computer Vision library) is an open-source computer vision library 

which contains common image processing functions and algorithms. OpenCV 1.1 was 

used for this implementation.  

SSE stands for Streaming SIMD Extensions, where SIMD stands for Single-Input Multiple 

Data. The SSE instruction set is a special collection of CPU instructions which allows the 

CPU to process multiple pieces of data at a time. For example, the SSE add instruction 

This window exceeds the 

bounds of the image. 

Interpolate missing pixels by 

mirroring image. 
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can add four pairs of floating point numbers in one operation. A normal add instruction 

would only add one pair of numbers. Intuitively, this allows an algorithm to run up to 

four times faster. Instructions from SSE, SSE2 and SSE3 were used for this 

implementation. 

6.10.5 USING SSE INSTRUCTIONS 

OpenCV 1.1 is highly optimised, but does not utilise SSE instructions even though they 

are widely available on modern CPUs. For that reason, only a few of OpenCV’s functions 

were used, and most of the operations were separately coded so that they could be 

accelerated with SSE instructions.  

There were three cases in particular where OpenCV’s implementation was faster than 

our SSE implementation, and so in those cases, OpenCV’s implementation was used. 

These cases included the averaging function      , the conversion from RGB to CIELab, 

and the mirroring of the image at image bounds. SSE instructions were used in all other 

cases.  

One of the cases where using SSE was not straightforward was the three-channel sum 

algorithm, which is needed in the variance transform. This case provides an interesting 

insight into how the Variance Ridge Detector was optimised, and will be detailed in the 

next section.  

6.11 THE THREE-CHANNEL SUM ALGORITHM 

The variance transform calculates the variance separately in each colour channel, and 

then combines them using the L2 norm. As described in section 2.1, the L2 norm simply 

squares each channel, sums the channels together, and then takes the square root. The 

three-channel sum operation required some thought to be able to implement it with SSE. 

The purpose of having this section is not so much to explain the solution, but to provide 

an insight into what was involved in making the Variance Ridge Detector run at 

maximum speed. 

What makes it difficult? 

In a three-channel image, each pixel is a tuple of three values, one value for each colour 

channel. Floating-point SSE works with tuples of four values. This mismatch of tuple 

sizes makes using SSE difficult. 

The memory layout of an image can be visualised like in Figure 6-19: 
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FIGURE 6-19: SSE’s grouping of the image data is different from how the pixels should be 
grouped, making the three-channel sum difficult.  

SSE groups the numbers differently, and in the process, it groups different pixels into the 

same tuple. This makes it difficult to perform a three-channel sum with SSE instructions.  

One solution would be to rearrange the memory layout to make it easier for SSE to work. 

This is possible, but would be slow. There is a better solution, which will be described 

next.  

Introducing the SSE instructions 

There are a few instructions in the SSE instruction set that can be used to solve this 

three-channel sum problem.   

The SSE add instruction is obviously useful when calculating sums. Figure 6-20 

illustrates what it does: 

 

FIGURE 6-20: The SSE add operation adds each pair in two different tuples together.  

Another instruction, horizontal add will add neighbouring pairs together: 

A1 A2 A3 A4 B1 B2 B3 B4 

A1+B1 A2+B2 A3+B3 A4+B4 

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 Actual: 
(1 pixel = 3-tuple) 

SSE sees: 
(4-tuples) 
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FIGURE 6-21: The SSE horizontal add operation. 

Shuffle extracts 4 out of the 8 elements in two input 4-tuples, producing a resultant 4-

tuple. Any 4 elements can be extracted, subject to some conditions.  

The first 2 elements in the resultant tuple must always come from the first input 4-tuple. 

In the same way, the last 2 elements in the resultant tuple must always come from the 

second input 4-tuple. Consequently, it is not possible to, for example, take three 

elements from the first 4-tuple and only one element from the second 4-tuple. This 

restriction is the basis for certain design decisions presented later.   

The SSE three-channel sum algorithm 

The SSE three-channel sum algorithm has two halves. The first half sums two out of the 

three channels in each pixel. The second half adds the remaining channel. 

Figure 6-22 below outlines the first half of the algorithm.  

 

FIGURE 6-22: The first half of the three-channel sum algorithm. Each cell represents one value 
in the image. The cells are numbered according to which pixel they come from. The cell colours 

represent what sums they contain.  

The SSE three-channel sum algorithm operates on groups of eight pixels at a time, one of 

which is represented at the top of Figure 6-22. The image has three channels of colour, 

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 

1 2 3   4 5  6 7  8 

4  3 

1 2 3 4 5 6 7 8 

1. Horizontal add 

2. Shuffle 

3. Shuffle 

        

 6  5  

A1 A2 A3 A4 B1 B2 B3 B4 

A1+A2 A3+A4 B1+B2 B3+B4 
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in this case, red, green and blue. Each cell has been coloured according to which of these 

channels it belongs to.  

From here, the three-channel sum algorithm proceeds as follows. In step 1, horizontal 

adds are used to add two out of the three channels in each pixel, forming partial sums. 

Some of the add operations will have summed channels from different pixels, which is 

not useful. The diagram marks the useless sums as a white square with an X drawn 

through them. The useful sums are rendered in the combined colour. Intuitively, adding 

red and green cells results in a yellow cell, and adding green and blue cells results in a 

cyan cell. 

Steps 2 and 3 then rearrange the partial sums into the correct order. This cannot be 

done in one step because of the restrictions of the shuffle operation discussed 

previously. 

Figure 6-23 below outlines the second half of the algorithm: 

 

FIGURE 6-23: The second half of the three-channel sum algorithm.  

The second half of the algorithm extracts the remaining unsummed values using a 

shuffle (step 4), and then adds them to the partial sums previous calculated (step 5) to 

generate the final three-channel sums. As the sums are already in the correct order, they 

can simply be stored into the image directly with no further manipulation or reordering. 

Advantages of the SSE three-channel sum algorithm 

Performing a three-channel sum for one pixel without SSE would require:  

 Three load operations, one for each channel. 

 Two addition operations. For example,       involves two additions. 

 One store operation, to store the result. 

That is six total operations per pixel.  

The SSE three-channel sum requires the following operations for eight pixels: 

 Six SSE load operations, to load the image data. 

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 

1 2 3 4 5 6 7 8 

4. Shuffle 

5. Add 

        1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 
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 Three horizontal add operations (for step 1). 

 Six shuffle operations (for steps 2-4). 

 Two addition operations (for step 5). 

 Two SSE store operations, to store the results. 

That comes to a total of twelve operations for eight pixels. For comparison, if the non-

SSE three-channel sum were run on eight pixels, it would take 48 operations (6 

operations/pixel × 8 pixels). This is four times the number of operations as the SSE 

version. Hence, the SSE three-channel sum is much faster.  

6.12 CHAPTER SUMMARY 

This chapter proposed the Variance Ridge Detector, a novel texture-boundary detector 

that is both capable of detecting texture boundaries, and is also able to run in real-time. 

The next chapter explains further modifications that can be made to the Variance Ridge 

Detector algorithm to enable it to generate even higher quality results.  
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7 PROPOSAL: THE TEXTON RIDGE DETECTOR 

Textons have already been introduced as state-of-the-art (section 4.3), and some 

authors have managed to calculate them in real-time (Ranganathan, 2009; Shotton, 

Johnson, & Cipolla, 2008). However, all real-time texton-based boundary detectors have 

had their problems. This chapter proposes a way to overcome these problems by 

improving the Variance Ridge Detector with textons.  

7.1 RATIONALE 

The Variance Ridge Detector relies on the fact that variance will peak at boundaries. The 

Texton Ridge Detector is based on a similar idea, except instead of variance, a texton 

gradient is used. The magnitude of the texton gradient will peak at boundaries. The 

texton gradient can be explained as follows.  

Section 4.3 stated that each texture has its own characteristic distribution of textons. 

Consider then, what happens at a texture boundary. The two different textures on either 

side of the boundary will have vastly different distributions of textons. In contrast, 

consider a non-boundary pixel. As the textures on both sides of this pixel are the same, 

the texton distributions on either side will be similar.  

The texton gradient is simply the distance between the texton distributions on either 

side of a pixel. This distance will peak at texture boundaries, forming the texton ridges 

underlying the Texton Ridge Detector. 

7.2 ALGORITHM OVERVIEW 

The Texton Ridge Detector is effectively a real-time version of the Pb (probability of 

boundary) detector (Martin, Fowlkes, & Malik, 2004), described in section 4.5. Both of 

these algorithms generally follow this procedure: 

1. Extract features for textons. Pb convolves with a filter bank for this, whereas 

the Texton Ridge Detector extracts brightness gradients. 

2. Textonise the image. Pb matches a feature vector to its nearest texton using 

linear search, whereas the Texton Ridge Detector proposes the use of an 

approximate nearest neighbour algorithm. 

3. Calculate the texton gradient as the distance between sliding window 

histograms. Pb uses semicircle shaped-sliding windows for this, while the 
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Texton Ridge Detector uses square-shaped sliding windows. Both algorithms 

measure the histogram distance using the chi-squared distance measure. 

4. Combine the texton gradient with other information. Pb uses a logistic 

regression model to combine the texton gradient with colour information. The 

Texton Ridge Detector combines the texton gradient with variance by 

multiplying them together.  

5. Perform ridge detection. Pb uses convolution thinning for this. The Texton 

Ridge Detector uses the same ridge detection method used by the Variance Ridge 

Detector. 

Both Pb and the Texton Ridge Detector have an offline training phase. In this stage, both 

algorithms must find the textons via k-means clustering (see chapter 4.3). The Texton 

Ridge Detector also must train its approximate nearest neighbour model during this 

stage. 

The remaining sections in this chapter will describe the stages of the Texton Ridge 

Detector in more detail. 

7.3 TEXTURE FEATURES 

The Texton Ridge Detector uses brightness gradients as texture features. The brightness 

gradients are calculated at a scale determined by the user-defined window radius 

parameter  . This parameter is the same as the one already introduced in the previous 

chapter (in section 6.3).  

Section 4.3 explained that textons work because each texture has its own characteristic 

autocorrelation pattern. As long as   is somewhat similar to the texture wavelength, 

simple brightness gradients are enough to make the autocorrelation pattern evident, 

making textures distinguishable. Section 6.3 already stated that the parameter   should 

already be approximately similar to the texture wavelength, and so the reuse of   for this 

purpose is ideal. 

7.3.1 FORMULATION 

The brightness gradients are calculated in greyscale. Using the same mathematical 

conventions as the previous chapter (see section 2.1), the conversion of a CIELab image 

     into a greyscale image       can be expressed as follows: 
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  (7.1) 

This simply extracts the L (luminosity) channel from the CIELab image  .  

The features are then extracted by the function      : 

               

       

 

           
          

       

(7.2) 

The high-level view of the above equations is this.         calculates the brightness 

gradient in direction   from pixel   by comparing the means of two offset windows. The 

function       concatenates the brightness gradients in    directions from that pixel to 

form a feature vector (also known as a feature point). The number of directions    has 

implicitly been set to 2 in all cases throughout this thesis as this produces adequate 

results while maintaining speed.  

The features extracted by       are then used as input for the textonisation stage. 

7.4 APPROXIMATE TEXTONISATION 

As stated previously in section 4.3, a texton is a cluster of feature points. Most texton-

based algorithms assign feature points to their nearest texton. This section proposes 

approximate textonisation, meaning that feature points will be assigned to a near texton, 

not necessarily the nearest. This allows for greater speeds at some cost to the 

textonisation quality.  

The approximate textonisation algorithm has many similarities to Randomised Hashing, 

which was discussed in section 5.5, and so many of the terms and symbols from that 

section will be reused. 

7.4.1 VISUALISATION 

The novel approximate textonisation algorithm partitions the feature space by splitting 

it with a number of hyperplanes, as illustrated in Figure 7-1: 
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FIGURE 7-1: A diagram representing a feature space, with each feature point coloured 
according to the texton it belongs to. The dotted lines represent the separating hyperplanes in 

the feature space. 

The separating hyperplanes split the feature space into a number of isolated cells. The 

word partition refers to one of these cells.  

The task of finding the approximate texton for a given feature point is called querying. 

When querying, the approximate textonisation algorithm finds which partition the 

feature point belongs to, and then returns the modal (most common) texton for that 

partition.  

The approximate textonisation algorithm needs to be trained before it can perform any 

querying. Once textons have already been found using the standard k-means clustering 

method (previously described in section 4.3.3), training involves generating a good set 

of separating hyperplanes which can be used to approximate the textons.  

Querying and training are described in more detail in the next few sections. 

7.4.2 QUERYING 

Let the set of separating hyperplanes                 . In this subsection, S will 

sometimes be expressed implicitly in equations because it is fixed during querying. For 

example, a function may be defined as       , but since   is fixed during querying, this 

will sometimes be written as      to make the equations easier to read. 

Each hyperplane    is defined as a binary function which takes a feature point   and 

returns either 0 or 1 depending on which side of the hyperplane the feature is on: 
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                   (7.3) 

Let the feature points exist in an    feature space, where   is the number of features in 

a feature vector. In this function,    is an    unit vector that determines the orientation 

of the hyperplane, and    determines the offset of the hyperplane from the origin.  

Given this information, the algorithm can calculate which side a feature point lays for all 

of the hyperplanes in  . It is useful to collapse these values into a single number, called 

the partition code: 

 

                  

   

 

 (7.4) 

In the above equation, the partition code      can be thought of as a binary number, 

where each hyperplane in   contributes its respective bit of the partition code. The the 

partition code is important because all the points in the same partition will be assigned 

the same partition code, and points which do not belong to the same partition will be 

assigned to different codes. Effectively, the partition code is an ID number of each 

partition, and      is a fast method of calculating which partition ID a feature point   

belongs to. This concept is identical to the partition code used by Randomised Hashing 

(section 5.5.1). 

Let         be a function that approximately assigns feature point   to a nearby texton. 

Let         be a function that returns the modal texton for partition  . This allows 

      to be defined as follows: 

                (7.5) 

In practice,       is precalculated for all     , where    is the set of all possible 

partition codes: 

                     (7.6) 

That means, the modal texton of every partition is precalculated and stored in a lookup 

table, so that once the partition code for a feature point   is calculated by     , the 

modal texton can be found with a single memory access. This allows the approximate 

textonisation algorithm to run extremely fast. 

Finally, let the function      denote the textonisation of the image  : 

                (7.7) 
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In the above equation       is the feature extraction function defined previously in 

equation (7.2). That is how an image is textonised by the Texton Ridge Detector.  

7.4.3 TRAINING 

The quality of the approximate textonisation algorithm depends on the quality of the 

hyperplane set. The task is to find the set   , the set of separating hyperplanes that 

maximises the objective function             . This section will first construct the 

objective function. Then an algorithm that attempts to maximise the objective function 

will be introduced.  

Training data 

Let the training data be contained in the set                    .   is a set of 

feature points. As per the normal texton-learning process (already described in section 

4.3.3), the training feature points are first clustered using k-means clustering (Lloyd, 

1982). This process can be sped up using the k-means++ optimisation (Arthur & 

Vassilvitskii, 2007). The output of k-means clustering is the function      , which 

returns the texton to which feature point   belongs to. The function       was already 

defined previously in equation (4.9) in section 4.3.4.  

The objective function 

Let   be the number of textons. Let                 , which means    is the set 

of all training features in   which belong to texton  . 

The function         defined below is a histogram consisting of the training frequencies 

of each texton in one partition, identified by its partition code  : 

 
                  

 

 

 

                           

    

 

(7.8) 

The histogram is more useful if it is normalised. That is, if the total of all its bins equals 

one. The normalised texton histogram for a partition,        , is defined as: 
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(7.9) 

In the above equations,        equals the number of training feature points that have 

been assigned to partition  .  

Using the histogram, the modal texton         of partition   can be found: 

                
       

          (7.10) 

If there is a tie for the modal texton, then one of the modal textons is chosen arbitrarily. 

The querying function       defined in equation (7.5) states that, when querying for the 

texton for any feature point in partition  , the modal texton         is returned. 

Knowing this, the accuracy of hyperplanes   on the training set can be determined as 

follows: 

 
            

                           

   
 (7.11) 

The             function is equal to the probability that a random feature point from 

the training set will be assigned correctly by the approximate textonisation algorithm. 

Defining             this way allows it to be used as the objective function, which 

provides a framework for the training algorithm to run. 

Training algorithm 

Repeated random-restart hill climbing (Russell & Norvig, 2009; Jacobson & Yücesan, 

2004) is used to find a good set of hyperplanes    according to the objective function.  

Hill climbing works like this. First, a random solution is taken. The algorithm then 

searches neighbouring solutions, looking for one which improves the current solution. 

After many iterations of this, eventually the solution will reach a local maximum and will 

therefore be unable to be improved by just hill climbing. To be able to find the global 

maximum, random-restart hill climbing runs hill climbing from many random starting 

points, taking the best out of all runs.  

The training algorithm takes a number of parameters: 

    specifies how many separating hyperplanes are to be found. 
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    specifies the number of random-restart hill climbing iterations. 

          specifies the probability that the hill climbing will be restarted from a 

new random starting solution.  

   specifies the maximum amount to adjust each value by when hill climbing. 

Effectively, this determines how far a “neighbouring solution” can be from the 

current solution. 

   specifies the maximum offset from the origin for a separating hyperplane. 

The training stage is described in Algorithm 7-1: 

ALGORITHM 7-1: Training stage of the approximate textonisation algorithm  

1. Initialise    as an empty set:      

2. Use random-restart hill climbing to find the best new hyperplane    

3. Store the new hyperplane:            

4. If        , go back to step 2 

5. Return    

 

The random-restart hill climbing step, which is step 2 of Algorithm 7-1, can be 

subdivided further into the steps listed in Algorithm 7-2: 
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ALGORITHM 7-2: The random-restart hill climbing stage of the approximate textonisation 
algorithm 

Let               be a function that randomly chooses a real number between     

and     inclusive, with all numbers in that range having equal probability. Given this, 

random-restart hill climbing does the following steps to find the best new hyperplane 

  : 

1. Initialise the best new hyperplane         

2. Initialise the number of iterations      

3. Randomly generate    to be a random hyperplane, with the orientation    and 

offset   :  

3.1. Let   
             for all          , where   is the number of 

dimensions in the feature space. 

3.2. Let               

4. Improve    by hill climbing 

4.1. Let     be a random adjustment of   , where     is a hyperplane with 

orientation     and offset    : 

4.1.1. Let   
     

             for all          , where   is the 

number of dimensions in the feature space. 

4.1.2. Normalise               

4.1.3. Let                     

4.2. If                                      then: 

4.2.1. Update        

4.3. Increment         

4.4. With a probability of      , go back to step 4.1  

5. If         or                                     then: 

5.1. Update       

6. If       then go back to step 3 

7. Return    
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7.4.4 TRAINING PARAMETERS 

Unless otherwise stated, whenever results of the Texton Ridge Detector are discussed in 

this thesis, the following parameters were used for training: 

      textons. 

 K-means++ clustering is run 1000 times. 

     = 1 000 000 feature points were used for training, sampled from the 

Berkeley dataset (described later in section 8.1). 

    = 20 separating hyperplanes. 

    = 100 000 iterations for random-restart hill climbing. 

          = 5% chance of random restart. 

   = 5% random adjustment for the separating hyperplanes. 

         maximum separating hyperplane offset from the origin. 

This particular value of   was chosen for the following reasons. A hyperplane has the 

form      . In that equation,   is a unit vector describing the orientation of the 

hyperplane, while   is the offset of the hyperplane from the origin. The value   

determines the maximum valid range of  . This valid range can be determined as 

follows: 

(1) The L channel, which is the brightness channel in CIELab, has the range        .  

(2) The function       calculates a feature as the difference between two 

brightness values. 

(3) Because of (1) and (2), each element in a feature vector   generated by      

can be in the range           .  

(4) Section 7.3.1 stated that a feature vector   has two elements – it is   .  

(5) The hyperplane orientation   must be a unit vector. 

(6) Because of (4) and (5), it is known that the value of   which generates the 

maximum   is    
 

  
 

 

  
 . This is because for this value,     is at maximum. 

(7) A hyperplane has the form      . 

(8) Therefore,   can be found by substituting the maximal values of   and  , 

known in (3) and (6), into the hyperplane equation (7).  
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If the feature vector generated by       was different, then   would be different.  

Training using these parameters took approximately ten hours. The trained set    of 

separating hyperplanes had an accuracy score of                 . 

More textons or more features? 

Different versions of the Texton Ridge Detector with up to 128 textons and an    feature 

vector, but none of them improved the results, even though they did slow down the 

algorithm. The parameters stated here are the smallest parameters required to make the 

algorithm run fast while still achieving the high-quality results presented in chapter 9. 

7.4.5 TEXTONISATION IMAGE EXAMPLES 

The figure below demonstrates what the texton maps of the example images (used in the 

previous chapter) look like: 

 

FIGURE 7-2: The texton maps of the example images. A different colour has been ass igned to 
each texton. The scale    . 

The texton maps are difficult for a human to fully interpret because it is difficult to 

visualise the distribution of textons at different places in the image. However, some 

interesting points can be seen. For example, it is clear that the water in the tiger’s image 

(top right) has a much different texton distribution to the tiger itself.  

Once the approximate textonisation algorithm is trained, the Texton Ridge Detector can 

textonise images using the function     , which was defined previously in equation 

(7.7). Next, the texton gradient is calculated from this texton map. 
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7.5 TEXTON GRADIENT  

The Pb algorithm calculates the magnitude of the texton gradient by comparing the 

texton histograms of two semicircle-shaped windows using the chi-squared distance. 

The Texton Ridge Detector does the same, except it uses square-shaped windows, 

allowing for faster speeds.  

7.5.1 FORMULATION 

Given a pixel position  , a texton histogram of the square-shaped window centered on   

can be calculated by the function     : 

             

   

 

                                    

  

 
(7.12) 

The texton gradient magnitude can then be calculated by the function        : 

            
       

        

                              
(7.13) 

The high-level view of the above equations is this.         calculates the texton 

gradient for direction   at pixel   using the chi-squared distance   , which was already 

defined for the probability of boundary detector in section 4.5.2 equation (4.10).  

        takes the maximum         over    directions to find the magnitude of the 

texton gradient. The direction of the texton gradient       is not important, so to 

maximise computational speed, only the magnitude         is calculated. Throughout 

this thesis,    has been set to 2 as this produces good results while maintaining speed.  

7.5.2 TEXTON GRADIENT IMAGE EXAMPLES 

The texton gradient magnitudes of the example images are shown in Figure 7-3: 
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FIGURE 7-3: The texton gradient magnitude of the example images.  

The texton gradient magnitude (Figure 7-3 above) is very different from the variance, 

shown previously in Figure 6-3. The boundaries of the tiger (top right) are detected 

much more clearly than with variance. However, the boundaries of the starfish (bottom 

right) are detected less clearly. Later, section 7.6 describes how both texton gradients 

and variance can be combined two allow to further improve this result.  

7.5.3 JUSTIFICATION FOR THE DOUBLED SCALE 

The equations (7.12) and (7.13) show that the texton gradient is calculated at the scale 

   instead of just  . This was found to produce higher-quality results. One possible 

reason for this is suggested here.  

The features chosen in section 7.3 involve smoothing with scale  , which causes each 

pixel to influence all other pixels within radius  . That means pixels that are closer than 

  tend to be assigned to the same texton. 

Figure 7-4 demonstrates how “nearby” textons tend to be same, where “nearby” means 

“closer than the scale r.” The two images in Figure 7-4  are texton maps of the “starfish” 

example image (see Figure 6-1). In the left image,    . In the right image,     . 
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FIGURE 7-4: Pixels that are closer than r tend to be assigned to the same texton.  

Notice that, in the right image where the scale is four times bigger, there are large blobs 

of equal colour where many nearby pixels have been assigned to the same texton. This is 

also happening in the left image, but at a much smaller scale. Indeed, it is clear that when 

pixels are closer than r, they have the tendency to be assigned to the same texton.  

Due to this phenomenon, if the texton distribution is also calculated at scale r, then the 

distribution will be locally biased and will not represent the texture well. Doubling the 

scale for the texton distribution alleviates this problem. 

7.5.4 IMPLEMENTATION DETAILS 

The slowest part of the Texton Ridge Detector is the part that calculates the texton 

histogram      for all sliding windows on the image. To ensure maximum speed, this 

stage was optimised as much as possible using a number of techniques. 

Square-shaped windows 

Square-shaped windows are used instead of the semicircle shape used by the Pb 

detector because they are much faster, for the reasons already stated in section 6.5.  
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Rolling sum 

The histogram is accumulated using a rolling sum algorithm. A rolling sum can be 

demonstrated with an example problem: 

5 10 17 6 3 12 8 10 4 2 

 

This problem concerns an array of numbers, like the one illustrated above. The sum of 

the first sliding window is known (highlighted above), where in this example, the 

window is six elements wide. Now the window is slid one place to the right (highlighted 

below).  

5 10 17 6 3 12 8 10 4 2 

 

The fastest way to calculate the new sum given the sum of the previous window is to 

first take the known total of elements 1-6, then subtract element 1 and add element 7. 

This gives the desired sum for elements 2-7. Only two operations need to be performed 

even though the sliding window contains six numbers.  

Rolling sums for two dimensions 

Calculating the rolling sum in two-dimensions is done as follows. First the rolling sums 

are calculated vertically for each column using a vertical window of size    . Then, on 

the resulting vertical sums, the rolling sums are calculated horizontally for each row 

using a horizontal window of size    . This gives the sums for a window of size    .  

Figure 7-5 illustrates why this works: 

 

FIGURE 7-5: Vertical sums followed by a horizontal sum can be used to find the total of a two -
dimensional sliding window. 

5 7 9 3 

10 19 12 7 

3 4 15 2 

8 6 4 11 

 

26 36 40 23 

 

125 
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Using rolling sums for texton histograms 

Equation (7.12) requires the texton histograms to be calculated. The rolling sum 

technique can easily be applied to this situation. The only change is that, textons are 

added and subtracted from a histogram instead of just a sum. The rest of the rolling sum 

technique remains the same. 

Summing order 

Memory is linear but an image is two-dimensional, and so some mapping must occur 

between the two spaces. The conventional way to unravel a two-dimensional image for 

storage in memory is “rows-first”. That is, in this order: 

 

FIGURE 7-6: Images needs to be stored linearly in memory. They are conventionally stored in 
“row-first” order, which stores an image row by row. 

Assuming the conventional image-memory layout, it is faster to calculate the rolling sum 

is vertically first, and then horizontally. The reason for this is as follows.  

The first rolling sum can be calculated by reading data directly from the texton map. 

Each pixel in the texton map only contains one value – the ID of the texton that pixel 

belongs to.  

The input to the second rolling sum is the output of the first rolling sum – this is an 

image where each pixel is a texton histogram. Section 7.4.4 suggests that 32 textons be 

used, implying that each histogram will have 32 values in it. This means that the second 

rolling sum must read 32 times more data than the first rolling sum, and so its memory 

access pattern is much more important to the speed of the algorithm.  

Choosing to do the second rolling sum horizontally ensures greater locality of reference, 

because the histograms that need to be added/subtracted for the rolling sum will always 

be right next to each other in memory. This increases the chance that they will be stored 

on the same memory page, and also allows for better hardware caching. Hence, choosing 

to calculate the rolling sum vertically first and horizontally second allows the Texton 

Ridge Detector to run faster. 
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SSE acceleration 

The SSE instruction set was also used wherever possible to improve the speed of 

calculating the histograms. In particular, it was found that having a multiple of 32 

textons is most efficient. This is because there are eight SSE registers, each storing four 

values each, and 8 registers × 4 values each = 32 values in total. That is why 32 textons 

were recommended in section 7.4.4. 

The texton gradient is useful for boundary detection, but it needs to be combined with 

other information to produce robust results. This is explained in the next section.  

7.6 COMBINING VISUAL CUES 

Using texton ridges in isolation for boundary detection is not an optimal solution for the 

following reasons. Firstly, some boundaries will change the brightness or colour of an 

image greatly, but will not change its texture, and so cannot be recognised by a texton 

ridge. Secondly, texton ridges can appear where no boundaries exist because of the way 

similar pixels might be binned to entirely different textons – something section 5.5.3 

called “phantom boundaries.” For these reasons, it is necessary to combine the texton 

gradient with another visual cue to ensure optimal results.  

The previous chapter demonstrated the power of variance as a visual cue. It is fast, and 

it has the important characteristic that it peaks at boundaries. That is why the Texton 

Ridge Detector combines the texton gradient with variance. The combination of the two 

will be called the boundary potential      : 

                    (7.14) 

There are two reasons why the two visual cues are multiplied together in the above 

equation, instead of adding them.  

Firstly, if the two visual cues were simply added, then the variance would not suppress 

the phantom boundaries. Those phantom boundaries would still be added into the 

image from the texton gradient. 

Secondly, the variance by itself already makes an excellent boundary detector. 

Multiplying variance with the texton gradient effectively suppresses variance ridges 

from occurring where there is no change in the texture. Doing this removes boundaries 

which would have been detected inaccurately by the Variance Ridge Detector, while 

preserving the other high-quality boundaries.  
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7.6.1 IMAGE EXAMPLES 

The boundary potentials of the example images, calculated by combining the texton 

gradients and variances, are shown in Figure 7-7. 

 

FIGURE 7-7: The combined texton gradient and variance (right) of the example images, versus 
just variance (left).  

The example images above show that when the variance is combined with the texton 

gradient, more texture is suppressed. For example, the mandrill’s fur (bottom row) is 

suppressed almost entirely when using the texton gradient, whereas it can still be seen 

in the variance. The water in the tiger’s image (top row) is also suppressed when using 

textons.  
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7.7 RIDGE DETECTION 

Once the boundary potentials are calculated, ridge detection is performed to find 

boundaries. This proceeds in exactly the same way as with the Variance Ridge Detector, 

see sections 6.6 to 6.8 for the details.  

7.8 IMAGE EXAMPLES 

Applying the Texton Ridge Detector to the example images yields the results shown in 

Figure 7-8: 
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FIGURE 7-8: The Variance Ridge Detector (left column) versus the Texton Ridge Detector (right 
column). Hue represents boundary orientation. All images have been brightened to make the 

subtle differences easier to see.  

The example results above are similar for both the Variance Ridge Detector and the 

Texton Ridge Detector. The Texton Ridge Detector has suppressed a few more intra-

texture boundaries, but has also suppressed some inter-texture boundaries. Generally 

speaking, the Variance Ridge Detector focuses on detecting all texture boundaries, while 

the Texton Ridge Detector focuses on detecting only the boundaries with a high 

confidence. It is up to the user to choose which algorithm is best for their situation.  
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7.9 COMPARISON TO PREVIOUS WORK 

The proposed Texton Ridge Detector differs from previous work in certain key ways. 

This subsection will explore what these differences are, and the reasons why these 

differences improve the algorithm for this situation. 

Locality-sensitive hashing 

The proposed approximate textonisation algorithm is a type of approximate nearest 

neighbour search algorithm which uses locality-sensitive hashing (LSH) (Indyk & 

Motwani, 1998; Gionis, Indyk, & Motwani, 1999). Generally, all LSH methods partition 

the feature space with a set of separating hyperplanes in the same way as the proposed 

approximate textonisation algorithm. However, the proposed approximate textonisation 

algorithm differs in a two substantial ways. 

Most approximate nearest neighbour algorithms are designed to find the nearest 

neighbour out of hundreds of thousands of candidate points. That is why LSH algorithms 

normally have multiple candidates per partition, meaning once the partition is found, 

some further searching has to occur, and sometimes some backtracking, to produce a 

suitable result. In this case, there are much fewer candidate points; in fact section 7.4.4 

recommended there be only 32 textons. Having so much fewer candidate points means 

that it is feasible for each partition to only have one candidate, which made it possible 

for the lookup table optimisation to be used (described in section 7.4.2).  

Additionally, LSH algorithms use random hyperplanes, whereas this approximate 

textonisation algorithm attempts to find the best set of hyperplanes using machine 

learning techniques.  

These optimisations make this approximate textonisation algorithm much more suited 

to this problem than traditional LSH algorithms.  

Boundary detection via Randomised Hashing 

Boundary detection via Randomised Hashing (Taylor & Cowley, 2009), introduced in 

section 5.5, is also based on locality-sensitive hashing, and so it shows some similarities 

to the Texton Ridge Detector.  

Both algorithms use hyperplane splits of the feature space. In Randomised Hashing, the 

hyperplanes are random, whereas with the Texton Ridge Detector, they are learnt from 

a training set. Intuitively, randomness makes no guarantee of quality, which is one 

drawback of Randomised Hashing.  
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Both algorithms have the potential to introduce phantom boundaries because they 

quantise features. The Texton Ridge Detector uses variance to eliminate these phantom 

boundaries, whereas Randomised Hashing does not have any method for dealing with 

this problem. 

Also, the Texton Ridge Detector calculates texton histograms, which allows it to 

integrate texture information at a higher level. Randomised Hashing does not explicitly 

do anything beyond low-level processing, which means its results are noisier because it 

is sensitive to the low-level variations in the image. 

Boundary detection via Semantic Texton Forests 

Semantic Texton Forest segmentation (Shotton, Johnson, & Cipolla, 2008), introduced in 

section 5.4, uses a decision forest to transform an image into textons. This textonisation 

approach is quite different from the proposed approximate textonisation approach.  

One reason why decision forests can produce such high-quality results is that, each 

decision node in each of the decision trees uses the most discriminant feature possible. 

The problem is, when there are thousands of decisions in the decision forest, there will 

be thousands of different features. This is the primary reason why decision trees are 

slow.  

Consider an image being textonised using Semantic Texton Forests. Each pixel must 

follow a different path down each decision tree, which means different features must be 

calculated for each pixel. This creates an unpredictable memory access pattern. This is a 

problem because a memory fetch operation is normally 10-100 times slower than a 

normal CPU operation, and so the inefficient memory access of Semantic Texton Forests 

slows it down dramatically. 

Unlike Semantic Texton Forests, the proposed Texton Ridge Detector uses a limited, 

fixed set of features. Additionally, every pixel is analysed with the same set of decisions 

(in this case, each hyperplane is one decision). This creates a predictable memory access 

pattern, allowing the Texton Ridge Detector run much faster than Semantic Texton 

Forests. Consequently, unlike Semantic Texton Forests, the proposed Texton Ridge 

Detector can run at full resolution in real-time.  

7.10 CHAPTER SUMMARY 

This chapter proposed the Texton Ridge Detector, a texture-boundary detector. It uses 

the existing state-of-the-art texton approach and applies it to real-time. The next two 



140  Chapter 7 – Proposal: the Texton Ridge Detector 

 
 

chapters will evaluate the proposed boundary detectors against the prior real-time 

boundary detectors. 
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8 VALIDATION METHODS 

The purpose of this chapter is to introduce three methods which were used in the 

experiments to compare the proposed detectors with existing work: 

 Section 8.1 discusses the Berkeley segmentation dataset and benchmark, which 

will be used to compare the quality of the proposed boundary detectors against 

other boundary detectors. 

 Section 8.2 discusses the Microsoft Research Cambridge 9-class dataset, which 

will be used to compare the speed of the proposed boundary detectors against 

other boundary detectors. 

 Section 8.3 discusses an adaptive background learning method, which was used 

to evaluate the speed of one of the stages of TextonBoost.  

The experiments in which these methods are used will be described in the next chapter. 

8.1 BERKELEY SEGMENTATION DATASET AND BENCHMARK 

The Berkeley segmentation dataset (BSDS) and benchmark (Martin D. , Fowlkes, Tal, & 

Malik, 2001) is a publicly-available method for objectively measuring the performance 

of a boundary detector. It will be used in the next chapter to validate the proposed 

boundary detectors, and compare their performance to other boundary detectors. 

The benchmark consists of three hundred 481 by 321 images, separated into a training 

set of two hundred images and a test set of one hundred images. In addition, every 

image has several sets of human-labelled boundaries, produced by twelve human 

subjects. These human-labelled boundary maps form the ground truth which boundary 

detectors should strive for.  

Benchmarking a boundary detector using the Berkeley benchmark produces a precision-

recall curve (van Rijsbergen, 1979; Baeza-Yates & Ribeiro-Neto, 1999), which shows 

how the algorithm performs at different levels of trade-off between precision and recall 

(this will be explained in section 8.1.5). An algorithm’s entire precision-recall curve can 

be summarised in one value called the F-measure – a number between 0 and 1, where a 

higher number is better. Both the precision-recall curve and the F-measure will be used 

to compare the performance of different algorithms.  

The authors of the benchmark have run two informative tests to show the range of 

useful values of the F-measure. First, a random number generator scores       . So 
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this is the lower bound of what a boundary detector should score. Second, humans score 

      . The reason humans do not score       is because boundaries are subjective, 

and so different humans do not agree exactly as to where the boundaries should be 

placed. This means, if a boundary detector scored equal to or above this value, it has 

achieved human performance.  

8.1.1 BENCHMARKING ALGORITHM OVERVIEW 

The BSDS benchmark rates machine-generated boundary maps by comparing them to 

the human-labelled boundary maps. Given one machine boundary map and a set of 

human boundary maps for the same image, the benchmark is calculated via the 

following algorithm: 

ALGORITHM 8-1: The Berkeley benchmarking algorithm for one machine -generated image.  

1. Threshold the boundary map at thirty different thresholds to generate thirty 

different binary boundary maps. 

2. For each thresholded boundary map: 

a. Thin the boundary map, using morphological thinning. 

b. Match the machine boundary map with each human boundary map by 

solving an assignment problem. 

c. Calculate the precision, the recall and the F-measure from the number of 

matched and unmatched boundaries. 

3. Return the precision-recall curve and the maximum F-measure as the final result 

for that image. 

 

After this algorithm has been run on each image, the Berkeley benchmark averages all 

the results over all images to calculate the overall precision-recall and overall F-measure 

for that boundary detector. 

The remaining subsections in this section will examine the Berkeley benchmark 

algorithm in more detail. 

8.1.2 THRESHOLDING  

The benchmark only functions on binary images, and so thresholding is applied to 

convert a boundary map into a binary image. The BSDS benchmark thresholds the 

boundary map at thirty evenly-spaced levels. Each of these threshold levels will become 



Chapter 8 – Validation methods  143 

 
 

one point on the precision-recall curve. Thresholding was already been described in 

section 2.3.1. 

8.1.3 THINNING 

Next, morphological thinning is applied to each binary boundary map. Thinning is 

needed because it allows for a simple one-to-one matching with the human-labelled 

boundary maps. Morphological thinning was already described in section 2.3.3. 

8.1.4 MATCHING 

The most important part of the Berkeley benchmark is matching stage. This stage takes 

the machine boundary map and one of the human boundary maps, and compares how 

close they are. This is repeated for all of the human boundary maps, and the results are 

combined in the next stage.  

It is highly unlikely the two boundary maps will be exactly the same, and so the Berkeley 

benchmark finds the lowest-cost bipartite matching between the two boundary maps, as 

illustrated in Figure 8-1: 

 

FIGURE 8-1: The machine boundaries are matched to the human boundaries by solving an 
assignment problem 

A bipartite matching is a matching where each of the machine boundary pixels (found 

from the previous stage) is matched to exactly one of the human boundary pixels. Some 

of the boundary pixels will be left unmatched. The proportion of boundary pixels that 

were able to be matched is a measure of the machine’s performance on the Berkeley 

benchmark.  

The optimal bipartite matching is found by solving an assignment problem.  

Machine boundary 

Human boundary 

Matching 
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8.1.4.1 SOLVING THE ASSIGNMENT PROBLEM 

In the assignment problem, there are a number of workers and a number of tasks. The 

problem is to assign each worker to a task so that the total cost of the assignments is 

minimised. The Hungarian method, sometimes known as the Kuhn-Munkres algorithm 

(Kuhn, 1955; Munkres, 1957), is a polynomial-time algorithm for solving the assignment 

problem optimally. This algorithm will be illustrated with an example. 

In this example, there are four workers – A, B, C and D – and four tasks – W, X, Y and Z. 

Each possible assignment has a different cost, as shown in the cost matrix: 

 W X Y Z 

A 164 140 80 180 

B 100 40 30 140 

C 150 80 64 200 

D 126 60 52 150 

 

There are six steps to the Kuhn-Munkres algorithm. 

Step 1: Subtract the row minimum from each row 

Subtract the minimum of each row from each cell in the row: 

  W X Y Z 

A 84 60 0 100 

B 70 10 0 110 

C 86 16 0 136 

D 74 8 0 98 

 

Step 2: Subtract the column minimum from each column 

Subtract the minimum of each column from each cell in the column: 

 W X Y Z 

A 14 52 0 2 

B 0 2 0 12 

C 16 8 0 38 

D 4 0 0 0 
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Step 3: Assign greedily 

Assign each worker (row) to the first available task (column) that has a zero in it. No 

task can be assigned to two workers, so a task becomes unavailable once it has been 

assigned. The assignments are shown in blue: 

 W X Y Z 

A 14 52 0 2 

B 0 2 0 12 

C 16 8 0 38 

D 4 0 0 0 

 

If all workers have been assigned to a task, then the optimal solution has been found – so 

the algorithm stops. In this case, worker C could not be assigned to a task, so further 

processing is required. 

Step 4: Assign optimally 

Greedy assignment does not find the optimal all-zeroes assignment. For this reason, 

another step is required to improve the greedy assignment. However, at this point in the 

example, the greedy assignment cannot be improved, and so this step will be revisited 

later. 

Step 5: Minimum cover 

(a) Mark all unassigned rows (shown in red): 

 W X Y Z 

A 14 52 0 2 

B 0 2 0 12 

C 16 8 0 38 

D 4 0 0 0 

 

(b) Mark all the unmarked columns that have a zero in the rows just marked: 
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 W X Y Z 

A 14 52 0 2 

B 0 2 0 12 

C 16 8 0 38 

D 4 0 0 0 

 

(c) Find all the assignments in the columns just marked, and mark those rows: 

 W X Y Z 

A 14 52 0 2 

B 0 2 0 12 

C 16 8 0 38 

D 4 0 0 0 

 

(d) Keep repeating from step (b) until no additional rows or columns get marked.  

In this example, no further rows or columns get marked when repeating these 

steps. 

(e) Draw lines over all unmarked rows and all marked columns: 

 W X Y Z 

A 14 52 0 2 

B 0 2 0 12 

C 16 8 0 38 

D 4 0 0 0 

 

The drawn lines will cover all of the assignments, as shown. This is called the minimum 

cover because it covers all of the assignments with the minimal amount of lines.  

Step 6: Reweight matrix 

Find the minimum uncovered value. Subtract this minimum from all uncovered 

elements, and add this minimum to all intersections (where the minimum cover lines 

cross).  
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 W X Y Z 

A 12 50 0 0 

B 0 2 2 12 

C 14 6 0 36 

D 4 0 2 0 

 

The result of this is a new matrix to be solved. Now the algorithm goes back to step 3 

with this new matrix.  

Back to step 4: Assign optimally 

Step 3 was run, and the following greedy assignment was found: 

 W X Y Z 

A 12 50 0 0 

B 0 2 2 12 

C 14 6 0 36 

D 4 0 2 0 

 

This assignment can be improved, and that is the purpose of the previously unexplained 

step 4. The assignment is improved by finding alternating paths. This is best illustrated 

by reimagining the assignments in the above matrix as a graph: 

 

FIGURE 8-2: In this graph, the workers are the nodes on the left, and the tasks are the nodes on 
the right. The greedy assignments are illustrated on this graph. The strong  thick lines are the 

chosen assignments (transferred from the matrix), the weak grey lines are the possible 
assignments (the zeroes in the matrix).  

An alternating path is a path that traverses the arcs of the graph in an alternating 

fashion: unassigned, assigned, unassigned, assigned, unassigned… and so on. The path 

must always begin and end with an unassigned arc. There is only one alternating path in 

this example, highlighted in Figure 8-3: 

A 

B 

C 

D 

W 

X 

Y 

Z 
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FIGURE 8-3: The only alternating path in this example is highlighted in purple.  

Alternating paths can be found by running a breadth-first search algorithm, starting 

from one of the unassigned workers. When an alternating path is found, the algorithm 

flips all assignments along the path. As all alternating paths must both start and end on 

an unassigned arc, all alternating paths will have more unassigned arcs than assigned 

arcs, and so flipping all assignments along the path will always cause a net increase to 

the number of assignments – improving the solution. The algorithm repeats this process 

until no further alternating paths can be found. 

Flipping the assignments along the alternating path has the following effect on the 

example: 

 W X Y Z 

A 12 50 0 0 

B 0 2 2 12 

C 14 6 0 36 

D 4 0 2 0 

 

In the above table, the elements along the alternating path have been shown with a 

purple border.  

At this point, no further alternating paths can be found, and so the optimal all-zeroes 

assignment has been found. If some workers were still left unassigned, the algorithm 

would proceed to step 5. However, in this case, all workers have been assigned, and so 

the optimal solution has been found, so the algorithm stops here.  

8.1.4.2 APPLYING THE ASSIGNMENT PROBLEM TO BERKELEY BENCHMARK 

A few steps must be taken to apply the assignment problem to find a bipartite matching 

of the boundary maps.  

A 

B 

C 

D 

W 

X 

Y 

Z 
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First, each boundary pixel in the machine boundary map becomes a “worker” and each 

boundary pixel in the human boundary map becomes a “task.” With these changes, now 

the assignment problem will find the lowest-cost matching between the machine 

boundaries and the human boundaries. 

Second, the cost of assigning a machine boundary pixel to a human boundary pixel is set 

so that it is equal to the distance between their positions. The Berkeley benchmark only 

allows matching between pixels that are at most two pixels apart, and so any possible 

assignment between boundaries greater than two pixels apart is set to infinite cost.  

Third, a high-cost dummy assignment is created for every boundary pixel (human or 

machine), so if the algorithm cannot find a suitable matching for that boundary, then the 

boundary will be assigned to this dummy assignment. If a boundary pixel is assigned to 

this high-cost dummy assignment instead of an actual matching, then that means it was 

unable to be matched. This is important, because this allows for every boundary pixel in 

both the human and machine boundary maps to be put into one of two states: matched 

or unmatched. These two states provide all the information required to calculate the 

precision/recall, explained in the next section. 

8.1.5 CALCULATING PRECISION/RECALL 

Precision measures the fraction of machine boundaries that were correct (van 

Rijsbergen, 1979; Martin D. , Fowlkes, Tal, & Malik, 2001): 

           
                                             

                                     
 

The Berkeley benchmark has multiple human boundary maps for each image. If a 

machine boundary matched a human boundary from at least one of the human 

boundary maps, then it is considered correct, and so it will contribute to the precision 

score.  

Recall measures the fraction of true boundaries that were found: 

       
                                            

                                   
  

If a human boundary did not match a machine boundary, then it was not successfully 

recalled, and so is not counted in the recall score. This statistic is calculated individually 

for each of the human boundary maps, and then the average is taken. That means a 

machine boundary map must be able to explain the boundaries of all human subjects in 
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order to achieve a perfect score. This is different from precision – precision only 

requires one human subject’s boundaries to match each of the machine boundaries.  

The precision/recall values are calculated individually for each of the thirty threshold 

levels using the aforementioned process, resulting in thirty precision/recall pairs for 

each image. These thirty pairs form the precision-recall curve. 

8.1.6 THE F-MEASURE 

The F-measure(van Rijsbergen, 1979) summarises the precision/recall in one number. 

It is calculated as follows: 

  
  

         
 

The F-measure can be modified to consider either precision or recall more important by 

changing the value of  . The Berkeley benchmark considers both to be equally 

important, and so it sets      .  

The Berkeley benchmark calculates the F-measure for each of the threshold levels using 

the precision/recall values calculated previously. The F-measure of a boundary detector 

on a particular image is equal to its maximum F-measure over all threshold levels for 

that image. Furthermore, the average F-measure can be calculated over all images in the 

Berkeley benchmark to indicate the overall performance of a boundary detector.  

8.1.7 RESULTS OF THE BERKELEY BENCHMARK 

The previous sections described how a boundary detector would be scored on a single 

image using the Berkeley benchmark. A boundary detector’s overall performance over 

all images in the benchmark can be measured in two ways. First, the average F-measure 

over all images is used as an overall score for each boundary detector. Second, a 

precision-recall curve over all images can be constructed by taking the average 

precision/recall values for each threshold over all images. Both of these forms of results 

will be used in the next chapter to illustrate the performance of various boundary 

detectors. 

8.2 THE MSRC-9 DATASET 

The publicly available Microsoft Research Cambridge 9-class dataset contains 240 

images, where each image is comprised of up to nine classes of objects: cow, horse, 

sheep, tree, building, aeroplane, face, car or bike. There are also two non-object classes: 



Chapter 8 – Validation methods  151 

 
 

sky and grass. This dataset will be used in the next chapter to validate the speed of 

various boundary detectors. Figure 8-4 shows a selection of images from this dataset. 

 

FIGURE 8-4: A random selection of images from the MSRC-9 dataset 

This dataset was chosen because of a number of reasons: 

1. It is publicly available, and so it provides a platform for other researchers to 

compare their results. 

2. Every image has a human-labelled ground truth, which labels each pixel 

according to which of the nine classes it belongs to. Without this information, 

some algorithms such as TextonBoost, Semantic Texton Forests and TextonRML, 

would not be able to be tested against this dataset.  

3. It has a comparatively small number of classes when compared to other common 

options such as the MSRC-21 dataset or PASCAL VOC2008 dataset. The argument 

is that real-time applications are likely to be trained on fewer classes, enabling 

less computational demands and higher speeds. With fewer classes, the MSRC-9 

dataset meets this requirement.  

4. The image size is 320 by 213, which slightly smaller than the commonly-used 

camera resolution of 320 by 240, and so the results are indicative of how these 

algorithms might perform when using real-time input from a camera. 

All of the above reasons meant the MSRC-9 dataset was a good choice to measure 

boundary detector speed. It would have been useful to also use the Berkeley dataset for 

this purpose, but that is not possible because the Berkeley dataset does not provide 

class-labelled ground truths which TextonBoost requires.  

The use of the MSRC-9 dataset will be seen in the next chapter. 

8.3 ADAPTIVE BACKGROUND LEARNING 

An adaptive background learning algorithm will be used in the next chapter to test the 

speed of the minimum cut – a critical part of TextonBoost. The adaptive background 
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algorithm that will be used was actually a novel innovation developed as a side-project 

during the course of this research.  

The novel part about this adaptive background learning algorithm is that it learns each 

pixel at a different rate, depending on a novel concept called stability.  

8.3.1 OVERVIEW 

The adaptive background learning algorithm takes a single frame of input      and a 

learning rate parameter  , and returns an error image     .      is the difference 

between the frame      and the background      .  

8.3.2 STABILITY 

The most important concept in this adaptive background learning algorithm is stability. 

Stability is dependent on the temporal variance of the error image     . This is 

illustrated in Figure 8-5:  

 

FIGURE 8-5: This diagram is an illustration of how the error of a pixel would change when a 
new object is added into the background.  

Figure 8-5 illustrates how the error of a pixel would change when a new object is added 

into the background. There are three phases, each indicated in Figure 8-5 by its number: 

1. Initially, when there is no movement in the frame, the error will be low and the 

variance of the error will also be low.   

     

Time 

     – error of a single pixel over time 

1. No foreground 

movement 

2. Moving foreground object – 

learning rate should slow down. 

3. Foreground object stops moving – 

learning rate should speed up. 
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2. When there is foreground movement, there will be high temporal variance in the 

error, as the pixel will be constantly changing as the object moves through the 

image.  

3. Finally, the foreground object stops moving and it becomes part of the 

background. This causes the temporal variance of the error to become low again. 

So the likelihood of a pixel being part of the background depends on the temporal 

variance of the error. Stability is a calculation that transforms the variance of the error 

to a score in the [0, 1] range. The formula for stability will be introduced later.  

8.3.3 BACKGROUND MODEL 

On each invocation, the algorithm updates a number of variables, which store the 

current model of the background.  

Two images are stored in order to keep track of the background mean and standard 

deviation: 

       is the mean background. 

       is the mean of the squared background.  

Two more images are stored in order to keep track of each pixel’s stability: 

       is the mean error. 

       is the mean of the squared error.  

Storing the squares of both the background and the error means that the standard 

deviation of both the background and the error can be calculated at all times. Initially, all 

four variables above are initialised with zero-filled images at the start of the algorithm.  

8.3.4 ALGORITHM 

On each new captured frame     , the adaptive background model is learnt using the 

Algorithm 8-2: 
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ALGORITHM 8-2: The adaptive background subtraction algorithm for a single new frame     . 

1. Let the background standard deviation                     

2. Calculate the frame error      
          

     
 

3. Calculate the stability image by performing the following steps: 

3.1. Update average error                        

3.2. Update average square error                         

3.3. Let the error standard deviation                     

3.4. Calculate stability image               

4. Update the background model using the stability matrix: 

4.1. Update average background:  

                                 

4.2. Update average square background:  

                                  

5. Return the frame error image      

 

As      indicates the likelihood of pixel   belonging to the foreground, a minimum cut 

can be used on      to separate the foreground from the background. This is how this 

algorithm is used in the next chapter.  
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9 EXPERIMENTAL RESULTS 

This thesis proposes two texture boundary detectors – the Variance Ridge Detector and 

the Texton Ridge Detector. This chapter will compare the proposed detectors against 

other existing texture-boundary detectors.  

9.1 OVERVIEW OF THE EXPERIMENTS 

The first group of experiments validates whether the proposed detectors can be 

considered real-time, while the second group investigates the quality. 

Real-time 

The speed of the two proposed boundary detectors was measured with two 

experiments. First, the proposed detectors processed the real-time input from a camera. 

Second, the proposed detectors processed images from the publicly-available Microsoft 

Research Cambridge 9-class (MSRC-9) database. These two experiments will determine 

whether the proposed boundary detectors are capable of running in real-time.  

For comparison, the speeds of the gPb detector and TextonBoost were both measured 

on the same MSRC-9 database as the proposed detectors. This will investigate whether it 

is true that these state-of-the-art detectors cannot run in real-time.  

Speed measurements were not taken on the existing real-time texture-boundary 

detectors as their authors have already shown them to run in real-time.  

Quality 

The quality of the two proposed boundary detectors was measured on the publicly-

available Berkeley segmentation dataset (BSDS), using the benchmarking algorithm 

provided with the dataset. This benchmark compares the output of a boundary detector 

against a database of human-segmented images. The purpose of this experiment is to 

objectively measure the quality of boundary maps produced by the proposed boundary 

detectors.  

For comparison, the qualities of the Konishi detector and Surround Suppression have 

also both been measured on the Berkeley segmentation dataset and benchmark. These 

results will investigate whether the proposed detectors produce higher quality results 

than these other real-time algorithms.  

The remaining real-time detectors – TextonRML (section 5.3), Semantic Texton Forests 

(section 5.4) and Randomised Hashing (section 5.5) – were not able to be benchmarked 
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on the Berkeley benchmark. Chapter 5 already showed that these algorithms cannot 

produce high-quality boundary detections.  

The combination of all of the above results will show whether the two boundary 

detectors proposed by this thesis outperform other established texture-boundary 

detectors.  

9.2 APPARATUS 

The experiments were run on three separate machines.  

The first machine had an Intel Core 2 Duo E6750 2.66 Ghz 32-bit CPU, 2 GB of RAM and 

used Windows XP Professional with service pack 3. This machine was used for all of the 

speed measurements. Even though this machine has two CPU cores, all speed 

measurements were executed as single-threaded applications and so only one CPU core 

was used in those cases.  

The second machine was identical to the first, except it ran Fedora Core 8 instead of 

Windows XP. This machine was used to run the Berkeley benchmark, as the Berkeley 

benchmark required a Linux environment. 

The third machine was a server which had sixteen Intel Xeon MP 2.70 Ghz CPUs, each 

with one CPU core only, and 32 GB of RAM. It ran Windows Server 2003 Enterprise 

edition with service pack 2. This machine was used for training classifiers, as its many 

CPUs and large memory size sped up the training time significantly.   

Whenever real-time camera input was needed, a Logitech QuickCam 5000 was used, 

connected via USB. 

The C++ programs used by the experiments were all compiled using Visual C++ 2008. 

When speed was being measured, the programs were compiled with maximum code 

optimisation and linked with whole program optimisation.  

Some of the Boost C++ libraries1 (version 1.38) were used in the C++ implementations, 

particularly the smart pointers, the filesystem libraries and timer library.  

OpenCV2 1.1 was used for most experiments, but OpenCV 2.0 was used in some cases. 

This was because OpenCV 2.0 only became available more recently. Not all functions in 

OpenCV 1.1 were used as they are not SSE-accelerated (see section 6.10.5), and so 

                                                             
1 http://www.boost.org/  

2 http://www.opencv.org/  

http://www.boost.org/
http://www.opencv.org/
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separate SSE-accelerated functions were implemented. The functions in OpenCV 2.0 are 

generally already SSE-accelerated, and so they were used directly.  

OpenMP3 was used to create multithreaded implementations of some of the detectors. 

However, this was only used to speed up training – only a single thread was used when 

performing boundary detection. This was done to ensure that if a boundary detector 

was found to achieve real-time, it would be because of the algorithm’s design and not 

because of the number of CPUs it was running on.  

MATLAB R2007b was used to run the Berkeley benchmark and the normalised cut 

algorithm. Although MATLAB itself is slower than C++, the most computationally 

intensive parts of the MATLAB applications were implemented in other languages. The 

eigenvectors were solved using the ARPACK library4, compiled natively from Fortran90, 

and C was used for all other computationally-intensive parts.  

Finally, one of the programs was implemented using C++/CLI, compiled with Visual C++ 

2008. Essentially, this language allows a programmer to write both native code (in a C++ 

manner) and managed code (in a .NET) manner together in the same program. As 

expected, the managed code is slower than the native code. However, this language was 

not used in any of the cases where speed was being measured.  

9.3 SPEED OF PROPOSED DETECTORS ON REAL-TIME CAMERA INPUT 

The proposed detectors are intended to be used on real-time camera input. This 

experiment measures the speed of the proposed detectors in that intended setup, and 

will investigate whether the detectors are capable of running in real-time.  

9.3.1 APPARATUS 

This experiment was run on the Windows Intel Core 2 Duo 2.66 Ghz machine using a 

Logitech Quickcam 5000, both of which were previously introduced in greater detail in 

section 9.2.  

9.3.2 METHOD 

The Variance Ridge Detector and the Texton Ridge Detector were implemented as 

described in chapters 6 and 7. They were compiled with Visual C++ 2008, using OpenCV 

                                                             
3 http://www.openmp.org/  

4 http://people.sc.fsu.edu/~burkardt/m_src/arpack/arpack.html 

http://www.openmp.org/
http://people.sc.fsu.edu/~burkardt/m_src/arpack/arpack.html
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1.1 and some of the Boost C++ libraries. SSE instructions were used wherever possible 

to speed up the implementations. 

The Texton Ridge Detector was trained with 32 textons, using 20 hyperplane splits. The 

training data was 200-image training set from the Berkeley benchmark. Training took 

approximately eight hours, by which time the approximate textonisation algorithm had 

achieved an accuracy of 91%.  

The average execution speed of the detectors was measured over 100 000 frames, 

captured in real-time from the camera. This was repeated using two different frame 

sizes: 320 by 240 pixels, and 640 by 480 pixels. For 320 by 240 pixels, the scaling 

parameter was set to    , as this generates the highest-quality results on the Berkeley 

benchmark. For 640 by 480 pixels, the scaling parameter was doubled to    . 

Only the time spent processing images was included. That means the time capturing the 

images from the camera was not included in the execution time, as this is not part of the 

algorithm. The Boost timer library was used to measure time. It was found that the CPU 

only had a time granularity down to steps of approximately 0.015 seconds. So to 

measure the speed accurately, each frame was captured and the detector was run on it 

repeatedly until the elapsed time was at least one second, and the speed measured over 

that time period. This ensured the time granularity would not introduce errors into the 

results.  

9.3.3 RESULTS 

The speed of the proposed detectors on 320 by 240 images is shown in Table 9-1, while 

the speed of the proposed detectors on 640 by 480 images is shown in Table 9-2.  

Detector Seconds per frame Frames per second 

Variance Ridge Detector 0.021 47.9 

Texton Ridge Detector 0.094 10.6 

TABLE 9-1: The speed results of the proposed detectors on 320 by 240 images  

Detector Seconds per frame Frames per second 

Variance Ridge Detector 0.12 8.12 

Texton Ridge Detector 0.46 2.19 

TABLE 9-2: The speed results of the proposed detectors on 640 by 480 images  
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9.3.4 DISCUSSION 

Clearly, the proposed detectors are able to run in real-time for the 320 by 240 images. 

For the 640 by 480 images, the detectors run between one and ten frames per second, 

and so could still be considered real-time depending on the application.  

The Texton Ridge Detector is approximately 4.5 times slower than the Variance Ridge 

Detector. This is understandable as it not only has to run the Variance Ridge Detector 

itself, but it also must textonise the images and calculate their texton gradient.  

When the resolution was doubled, the Variance Ridge Detector slowed down by a factor 

of 5.9, while the Texton Ridge Detector slowed down by a factor of 4.8. Part of this can 

be explained by the fact that doubling the resolution from increases the number of pixels 

by four times. The remainder of the slowdown factor is likely to be due to the fact that 

the scale parameter   was doubled, which quadrupled the size of the sliding window. 

This does not cause a further quadrupling of the slowdown factor though because 

rolling sums (described section 7.5.4) were used throughout the implementations.  

9.4 SPEED MEASUREMENTS ON MSRC-9 DATABASE 

The speed of TextonBoost (section 4.4) and the Pb detector (section 4.5) were both 

measured on the MSRC-9 dataset. The purpose of this was to investigate whether these 

state-of-the-art algorithms are capable of running in real-time. For comparison, the 

results of the proposed boundary detectors on this dataset have also been measured. 

9.4.1 APPARATUS 

All speed measurements were made on the Windows Intel Core 2 Duo 2.66 Ghz, which 

was already introduced in section 9.2. Some of the training was done on the sixteen-CPU 

server machine, also introduced in section 9.2. The MSRC-9 dataset (described in section 

8.2) was used for testing.  

9.4.2 METHOD 

The same implementations of the Variance Ridge Detector and Texton Ridge Detector 

were reused from the previous experiment (section 9.3), they were just adapted so that 

they could take input from files. The Texton Ridge Detector was not retrained from the 

previous experiment, the same one was used. The scale parameter   was set to 3 for 

both of the proposed detectors.  
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The rest of this section will describe how the implementations used for the probability 

of boundary detector and TextonBoost, and then will finally describe how the speed 

benchmark was run. 

The probability of boundary detector 

Two versions of the probability of boundary (Pb) detector were used. First, a MATLAB 

implementation of the Pb detector, which was made publicly available by its authors, 

was used. Second, a C++ implementation of part of the Pb detector was developed.  

The C++ implementation of Pb was compiled with Visual C++ 2008, using the libraries 

OpenCV 2.0.0a and some of the Boost C++ libraries. It only included the two core parts of 

Pb – the texton extraction stage and the texture gradient calculation stage. All possible 

optimisations were used: 

 The feature extraction stage was implemented using OpenCV’s filter2D method, 

which uses the discrete Fourier transform over different tiles throughout the 

image to achieve maximum speed.  

 The textonisation stage uses a kd-tree, implemented with the Fast Library for 

Approximate Nearest Neighbours (FLANN) included with OpenCV 2.0.  

 The texton frequencies for   oriented half-discs is calculated by first counting 

the texton frequencies over    slices of the disc, and then taking the rolling sum 

over the slices.  

 The slices themselves are calculated by using precalculated slice masks for the 

first column, and then difference masks for the remaining columns.  

All of the above points mean that this C++ implementation will demonstrate a lower 

bound for the speed of the Pb detector.  

All parameters were set to the optimal values presented in Pb’s 2004 paper. That is, 

    orientations were used, and all scales were set to 2% of the image diagonal except 

for the brightness gradient, which was set to 1% of the image diagonal. Both 

implementations were trained on the Berkeley 200-image dataset. See section 4.5 for 

further details on the Pb algorithm.  

TextonBoost 

Two implementations of TextonBoost were also used. First, a C# implementation of 

TextonBoost, provided by its authors, was used. Second, a C++ implementation of part of 

the TextonBoost algorithm was developed.  
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The C# implementation did not include the alpha-expansion graph cut stage, which 

means it runs slightly faster than it would normally.  

The C++ implementation of TextonBoost was compiled with Visual C++ 2008, using the 

libraries OpenCV 2.0.0a and some of the Boost C++ libraries. It only included the two 

core parts of TextonBoost – the texton extraction stage and the texture-layout filter 

stage. All possible optimisations were used: 

 TextonBoost’s feature extraction stage happens to use linearly separable 

kernels. This allowed them to be applied separately in turn for each dimension – 

first across the rows and then across the columns – which is much faster than 

having to use a two-dimensional sliding window.   

 Convolution is commutative, which means that applying the Laplacian of the 

Gaussian kernel to an image is the same as applying the Gaussian kernel to an 

image, and then applying the Laplacian operator to the Gaussian-filtered image. 

For this reason, the image was only filtered with Gaussian kernels, and then the 

Laplacian was applied afterwards. The same was done for the first-derivative of 

the Gaussian, where the derivative was calculated on the Gaussian-filtered image 

using the Sobel filter. This reduced the number of convolutions threefold, 

allowing for greater speeds.  

 The textonisation stage uses a kd-tree, implemented with the Fast Library for 

Approximate Nearest Neighbours (FLANN) included with OpenCV 2.0.  

 As the original TextonBoost paper prescribed, integral images were calculated 

for each texton to maximise the speed of the texture-layout filters. 

All of the above points mean that this C++ implementation will demonstrate a lower 

bound for the speed of the TextonBoost detector.  

Both implementations of TextonBoost were as trained with two sets of parameters.  

The first set of parameters was 100 textons and 500 texture-layout filters. These 

parameters have been chosen to be the identical to Ranganathan’s work (2009). 

Ranganathan’s TextonRML was intended for real-time segmentation, and so their choice 

of parameters would have been optimised for real-time.  

The second set of parameters was 400 textons and 5000 texture-layout filters. These 

parameters were the same as in TextonBoost’s 2009 paper (Shotton J. , Winn, Rother, & 

Criminisi, 2009). When the C# implementation was trained with these parameters, it 

only produced 760 texture-layout filters because it could not improve its accuracy after 
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this point. Consequently, the C++ implementation was restricted to 1000 texture-layout 

filters in order to allow for effective speed comparisons to be made. It is likely that the 

C++ implementation could achieve more texture-layout filters because it was trained on 

the much more powerful sixteen-CPU server and so higher quality settings were used 

for its training.  

TextonBoost should run faster (but less accurately) for the first set of parameters as 

they are smaller. Having both of these sets of parameters is useful as it demonstrates the 

performance of TextonBoost when either speed or quality is emphasised.  

Both implementations were trained on a 48-image subset of the MSRC-9 dataset. Both 

implementations subsampled the training data by a factor of 5 in order to achieve 

acceptable training times.  

Speed benchmark 

Each of the algorithms was run ten times on each image in the MSRC-9 dataset, and the 

average speed was taken. In all cases, only the time spent processing images was 

included. That means the time loading the images from disk was not included in the 

execution time, as this is not a part of the algorithms. All measurements were taken on 

the Windows Intel Core 2 Duo 2.66 Ghz machine which was already described in section 

9.2.  

9.4.3 RESULTS 

The results are presented in the table below: 

Detector 
Seconds 
per frame 

Frames per 
second Notes 

Variance Ridge Detector 0.023 43.6 Proposed 

Texton Ridge Detector 0.094 10.7 Proposed 

Pb (C++) 2.78 0.36  

TextonBoost (C++)  
(100 textons, 500 texture-layout filters) 

4.37 0.23  

TextonBoost (C++)  
(400 textons, 1000 texture-layout filters) 

8.59 0.012  

Pb (MATLAB) 12.6 0.079  

TextonBoost (C#)  
(100 textons, 500 texture-layout filters) 

24.9 0.040  

TextonBoost (C#) 
 (400 textons, 760 texture-layout filters) 

44.2 0.022  

TABLE 9-3: The speed results of various algorithms on the MSRC-9 dataset 
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Image results 

Although this experiment was only measuring speed, for interest, some of the image 

results are presented below in Figure 9-1. 

 

FIGURE 9-1: From left to right: the original image, the Variance Ridge Detector (proposed), the 
Texton Ridge Detector (proposed), TextonBoost (100 textons, 500 texture -layout filters), 

TextonBoost (400 textons, 760 texture-layout filters). These are the output of the C# 
implementation of TextonBoost, and so they do not include an alpha -expansion graph cut. 

Original images all from the MSRC-9 image database. 

9.4.4 DISCUSSION 

Clearly the results show that both TextonBoost and the Pb detector cannot run in real-

time, even when only the core parts of the algorithms are implemented optimally. The 

results also clearly show that the Variance Ridge Detector and Texton Ridge Detector 

can clearly achieve real-time.  

Interestingly, the Variance Ridge Detector is slightly slower here than when running on 

camera input as in the last experiment, even though the images in the MSRC-9 dataset 

are smaller. The experiment has been rerun and this pattern has been confirmed 

consistently. It is not clear why this is. Perhaps the image is cached differently when it 

comes from the camera as opposed to the hard drive. The Texton Ridge Detector does 

run slightly faster in this case though, as expected.  

Image VR TR TB (small) TB (large) 
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The C++ implementations of TextonBoost and Pb show large speedups over their C# or 

MATLAB counterparts, with Pb running 4.5 times faster, and TextonBoost running about 

6 times faster. A significant part of this would be due to the fact that the C++ 

implementations do not include all stages of the algorithms. However, the fact that even 

these highly optimised stripped-down versions of the detectors cannot run in real-time 

shows that there is no way any version of TextonBoost or Pb can run in real-time.  

TextonBoost also shows that it slows down linearly with the number of texture-layout 

filters, as expected. The results show that when the number of texture-layout filters 

were approximately doubled, the execution time approximately doubled as well.  

Another important point is that, in Figure 9-1 it can be seen that TextonBoost produces 

extremely low-quality boundaries without its alpha-expansion graph cut stage. This is 

significant, because some texton-based algorithms claim they can achieve real-time 

execution by simply not running the graph cut stage, clearly with substantially lower 

results. This observation was discussed further in section 4.4.3. 

These results show that the state-of-the-art texture-boundary detectors Pb and 

TextonBoost cannot run in real-time, as they take well over one second per frame. By 

contrast, the results have also shown that the proposed detectors can run in real-time.  

9.5 ESTIMATING THE SPEED OF GPB 

The global probability of boundary detector (gPb) was introduced as a state-of-the-art 

non-real-time texture-boundary detector in section 4.6. This section presents an 

experiment which will investigate whether it is possible for gPb to run in real-time.  

The gPb algorithm consists of two halves. The first half of the algorithm is the same as 

the probability of boundary detector (Pb). The second half improves the boundary map 

by using global information. Section 9.4 already showed that Pb detector, which was the 

first half, cannot run in real-time. The purpose of this experiment is to show that the 

second half also cannot run in real-time.  

The code for the gPb algorithm was not made publicly available. So instead of running 

the whole of gPb itself, this experiment runs only the most computationally-expensive 

part of the second half of gPb – the part where the eigenvectors are calculated. This will 

strongly indicate whether it is possible to run the second half of gPb in real-time.  
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9.5.1 APPARATUS 

This experiment was run on the Fedora Core Intel Core 2 Duo 2.66 Ghz machine that 

was introduced in section 9.2.  

9.5.2 METHOD 

The normalised cut (Shi & Malik, 2000) is very similar to the second half of gPb – it 

involves calculating eigenvectors in the same way. Shi and Malik made their MATLAB 

implementation of the normalised cut publicly-available, and so this code was taken and 

modified to simulate eigenvector part of gPb.  

Traditionally, the first three steps of the normalised cut are as follows:  

1. Calculate the gradients 

2. Construct the affinity matrix 

3. Find eigenvectors in the affinity matrix 

This is identical to gPb, except gPb replaces step 1 with the Pb detector. So, the code of 

the normalised cut was modified so that step 1 would in fact use the Pb detector. This 

was possible because the code for Pb had been made available by its authors. Making 

these modifications meant the code was identical to gPb up to the eigenvector stage. The 

gPb detector does further postprocessing after this stage, but these parts were not 

coded for this experiment. That means this experiments will only provide a lower bound 

of what the speed of gPb could be, which is acceptable for this purpose. The full details 

about the gPb algorithm can be found in section 4.6. 

In this experiment, the partial gPb algorithm that was described above was run ten 

times on each image in the MSRC-9 dataset (explained in section 9.4), and the average 

speed of the eigenvector stage only (that is step 3 only, above) was taken. That means 

the time spent loading the images from disk or performing steps 1 or 2 above was not 

included in the execution time.  

It was considered acceptable to use a MATLAB implementation for this speed test 

because the eigenvector stage, which is the only stage that is speed tested, calls natively 

compiled Fortran90 code.  

9.5.3 RESULTS 

Running the experiment showed that it would take an average of 30.0 seconds for gPb to 

calculate the eigenvectors for the images in the MSRC-9 dataset.  
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9.5.4 DISCUSSION 

Thirty seconds is clearly slower than real-time, and so this experiment shows that gPb 

cannot run in real-time. This long execution time makes sense, as the solver must 

consider an extremely large number of pixel pairs. As the Pb algorithm, which 

constitutes the first half of gPb, was also shown to be non-real-time in section 9.4, this 

shows that running the entire gPb algorithm in real-time is impossible.  

9.6 ESTIMATING THE SPEED OF ALPHA-EXPANSION GRAPH CUTS 

Section 9.4 measured the speed of only part of TextonBoost. This section presents an 

experiment that attempts to indicate whether the remaining part of TextonBoost – the 

alpha-expansion graph cut stage – could be run in real-time. This is important because if 

alpha-expansion graph cuts can run in real-time, then they could be used with the real-

time algorithm TextonRML (introduced in section 5.3), allowing for extremely high-

quality boundary detection in real-time.  

As shown in section 4.4.5, the alpha-expansion graph cut is simply a minimum cut with 

special inputs. So to investigate whether alpha-expansion graph cuts can be solved in 

real-time, this experiment will investigate whether it is possible to run multiple 

minimum cuts in real-time. 

9.6.1 APPARATUS 

This experiment was run on the Windows Intel Core 2 Duo 2.66 Ghz machine using the 

Logitech QuickCam camera, both of which were introduced previously in section 9.2.  

9.6.2 METHOD 

A system, involving a camera connected to a computer, was setup to watch a particular 

scene. The scene was simply an outdoor scene at the University where this research was 

undertaken, as shown in Figure 9-2. The scene contained a path, and people would 

frequently walk through the scene along the path. The system would continually learn 

the background of the scene using an adaptive background learning algorithm 

(described in section 8.3). 
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FIGURE 9-2: A still frame of the scene that was used for this experiment.  

Whenever the total difference from the background exceeded a certain high threshold, 

the system would assume that a person had entered the scene, and so it would use a 

minimum cut to separate the person from the learnt background. From this, the average 

speed of the minimum cut algorithm was measured over a large number of frames. The 

system was left running over the course of one day.  

The minimum cut algorithm that was the Boost C++ graph library implementation of the 

Kolgomorov algorithm (Boykov & Jolly, 2001; Boykov & Kolmogorov, 2004). 

Kolmogorov’s algorithm was specifically designed with computer vision applications in 

mind, and so is currently the fastest known minimum cut algorithm for this purpose.  

Only the speed of the minimum cut was measured. That means, the time spent capturing 

the image, learning the background or transforming the image into a graph was not 

included in the execution time. The minimum cut would always run in its own thread, 

while the rest of the program ran in another thread. This ensured the adaptive 

background model was correct at all times. The two threads would not have interfered 

with each other as the CPU had two separate cores.  

9.6.3 RESULTS 

Over eight hours of execution, the program ran the minimum cut over two thousand 

different frames of movement. It was found that it took 0.61 seconds on average to run 

the minimum cut algorithm.  

9.6.4 DISCUSSION 

An algorithm that uses alpha-expansion graph cuts, such as TextonBoost, must run the 

minimum cut algorithm at least as many times as the number of classes. The MSRC-9 

dataset contains eleven classes (nine of them are object classes), and so at least eleven 
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minimum cuts would need to be run. Given that each cut takes 0.61 seconds, this would 

take approximately 6.71 seconds, which clearly cannot be considered real-time. Even if 

only two classes were used, this process would take 1.2 seconds, which would be too 

slow for most real-time applications.  

Combining the results of this experiment with the fact that the first half of TextonBoost’s 

algorithm also does not run in real-time (see section 9.4), this experiment shows that it 

is impossible for an algorithm such as TextonBoost to run in real-time.  

9.7 QUALITY MEASUREMENTS ON BERKELEY BENCHMARK 

The quality of the proposed detectors, Konishi’s detector and Surround Suppression was 

measured using the Berkeley segmentation dataset and benchmark (explained 

previously in section 8.1). This is to show that the proposed detectors outperform both 

of these state-of-the-art real-time texture-boundary detectors.  

Code for other real-time texture-boundary detectors was not publicly available. So 

instead, a visual comparison will be made in the next section. Together, this section and 

the next section will investigate whether the proposed detectors outperform all other 

real-time texture-boundary detectors in terms of quality.  

9.7.1 APPARATUS 

This experiment was run on the Fedora Core Intel Core 2 Duo 2.66 Ghz machine 

introduced in section 9.2. 

9.7.2 METHOD 

The same implementations of the Variance Ridge Detector and Texton Ridge Detector 

were reused from the experiment in section 9.3. The Texton Ridge Detector was not 

retrained from that experiment, the same one was used. The scale parameter   was set 

to 3 for both of the proposed detectors.  

This experiment used the MATLAB implementation for Konishi’s detector provided by 

the authors of the Pb detector (Martin, Fowlkes, & Malik, 2004). Konishi’s detector was 

already described in full in section 5.1.  

Surround Suppression was implemented in C++/CLI using OpenCV functions. The scale 

parameter,  , was set to 2, which is what was used by Martin et al. (2004) for the 

gradient magnitude operator. See section 5.1 for details of the Surround Suppression 

algorithm.  
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9.7.3 RESULTS 

The Berkeley benchmark was calculated in the way it was described in the previous 

chapter (see section 8.1). The results over a wide selection of algorithms are as follows: 

Detector F-measure Comments 

Humans 0.79  

gPb 
(Maire, Arbelaez, Fowlkes, & Malik, 2008) 

0.70 Non-real-time 

Boosted edge learning 
(Dollar, Tu, & Belongie, 2006)  

0.66 Non-real-time 

pB (colour) 
(Martin, Fowlkes, & Malik, 2004) 

0.65 Non-real-time 

pB (greyscale) 
(Martin, Fowlkes, & Malik, 2004) 

0.63 Non-real-time 

Texton Ridge Detector 0.63 Real-time, proposed 

Variance Ridge Detector 0.62 Real-time, proposed 

Surround Suppression 
(Grigorescu, Petkov, & Westenberg, 2003) 

0.58 Real-time 

Konishi’s detector 
(Konishi, Yuille, & Coughlan, 2002) 

0.57 Real-time 

Gradient magnitude 0.56 Real-time 

Random 0.43  

TABLE 9-4: The quality results of various algorithms on Berkeley segmentation dataset. Higher 
is better. 

The graph below in Figure 9-3 shows how the precision-recall curves of the proposed 

detectors compare to other real-time texture-boundary detectors: 
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FIGURE 9-3: The precision-recall curves of the various real-time boundary detectors, including 
the proposed detectors.  

A detector’s precision-recall curve is better when it is closer to the top-right corner of 

the graph – indicating it has higher precision and recall.  

The graph below shows how the precision-recall curves of the proposed detectors 

compare to non-real-time detectors: 

 

FIGURE 9-4: The precision-recall curves of the proposed detectors versus non-real-time 
boundary detectors.  
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Image results 

 

FIGURE 9-5: From left to right: images from the Berkeley dataset, the Variance Ridge Detector, 
and the Texton Ridge Detector. For the variance ridge and Texton Ridge Detectors, hue 

represents boundary orientation.  
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9.7.4 DISCUSSION 

Table 9-4 shows that the proposed Variance Ridge Detector scores        and the 

Texton Ridge Detector scores       . With these scores, the two proposed detectors 

are the highest-quality out of all the real-time detectors listed.  

The precision-recall curves in Figure 9-3 and Figure 9-4 show the usual inverse 

relationship between precision and recall. This is expected, because as recall increases, 

more true boundaries are detected as well as more false boundaries, meaning precision 

will decrease.  

Figure 9-3 confirms what the F-measures showed, with the precision-recall curves of the 

proposed detectors outperforming all the other established real-time texture boundary 

detectors in the graph. Figure 9-4 also shows that the results generated by the proposed 

detectors are not far from the best non-real-time detectors, even though the non-real-

time detectors are many times slower.  

Interestingly, the Texton Ridge Detector scores the same F-measure as the the greyscale 

version of Pb, and their precision-recall curves are very close, although the Texton Ridge 

Detector performs slightly worse at high recall. The Texton Ridge Detector is a real-time 

approximation of the Pb detector, and so this might explain why they can generate 

similar results.  

A few interesting points can be seen from the example images in Figure 9-5.  

Firstly, Figure 9-5 shows that the proposed detectors work well on small-scale texture. 

This can be seen particularly in rows (a), (b) and (c), where the proposed detectors 

produce little response to the grass, lizard and grain textures. Rows (g), (h) and (i) show 

larger-scale textures which have not been suppressed as much. This might have been 

able to be partially alleviated by increasing the scaling parameter  , however, it was 

found that any increases to   would decrease the overall score of the detectors, even 

though the score for some of the images increased. Perhaps future research could 

include some form of automatic scale selection to alleviate this problem.   

Secondly, the Texton Ridge Detector is slightly better at suppressing texture than the 

Variance Ridge Detector. This can be seen in rows (b), (c) and (d), where the less 

response is generated by the Texton Ridge Detector in textured areas. 

This experiment has shown that the proposed boundary detectors are able to produce 

higher-quality output than other established real-time boundary detectors.  
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9.8 COMPARISON TO THE REMAINING REAL-TIME DETECTORS 

Chapter 5 introduced five real-time texture-boundary detectors. Two of these have 

already been outperformed in the previous section using the Berkeley benchmark. The 

remaining three algorithms – Semantic Texton Forests, TextonRML and Randomised 

Hashing – could not be measured on the Berkeley benchmark. However, it is still clear 

that the proposed detectors outperform these algorithms, simply because all of these 

three algorithms produce low-quality boundary maps. Chapter 7 already discussed why 

these low-quality results are produced by the algorithms. This section will discuss 

further why the proposed detectors outperform these three algorithms.  

Comparison with Semantic Texton Forests 

Semantic Texton Forest segmentation (section 5.4) is only able to run in real-time 

because it does not consider every pixel neighbourhood. Due to this, it produces a 

boundary map at a resolution 21 times smaller than the image. This severe reduction in 

resolution means a severe reduction in boundary quality. The proposed detectors 

produce full-resolution boundary maps, which is why the proposed detectors 

outperform Semantic Texton Forests. Section 5.4.5 goes into more detail about this. 

Comparison with TextonRML 

TextonRML (section 5.3) is able to run in real-time because it does not smooth its results 

with alpha-expansion graph cuts. For the purpose of boundary detection, this is not 

acceptable because unsmoothed texton approaches normally produce quite noisy class 

labelings. Section 4.4.3 illustrated how unsmoothed results are inadequate for use as a 

boundary map. Additionally, section 9.6 showed that adding a smoothing stage using 

alpha-expansion graph cuts would clearly make it impossible for any algorithm to run in 

real-time. For these reasons, the proposed detectors produce higher-quality results 

when compared to TextonRML. However, in real-time, TextonRML is useful for other 

purposes, such as solving the image labelling problem.  

Comparison with Randomised Hashing 

Like TextonRML, Randomised Hashing (section 5.5) also does not smooth its results, 

which is one reason why it produces low-quality boundary maps. However, the biggest 

problem with Randomised Hashing is its quantisation problem. Sometimes, similar 

pixels are assigned to entirely separate textons. The sudden change from one texton to 

another sometimes introduces phantom boundaries into the image. The proposed 

detectors do not have this problem. For this reason, the proposed detectors outperform 

Randomised Hashing. Section 5.5.3 goes into more detail about this. 
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This chapter has compared the two proposed detectors – the Variance Ridge Detector 

and the Texton Ridge Detector – to seven algorithms, and shown that it outperforms all 

of them on either quality or speed.  
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10 CONCLUSIONS 

This thesis proposed two new methods for real-time texture-boundary detection, 

namely, the Variance Ridge Detector and the Texton Ridge Detector. It was found that 

the two proposed methods outperform the other established texture-boundary 

detectors on either speed or quality.  

10.1 SUMMARY OF RESULTS 

The reasons why the proposed detectors outperform established texture-boundary 

detectors will be summarised in this section.  

Most texture-boundary detectors cannot run in real-time 

Most texture-boundary detectors cannot run in real-time, simply because they are too 

computationally intensive. This means they are not useful for real-time computer vision 

applications.  

Section 9.4 investigated the speeds of two established texture-boundary detectors – 

TextonBoost and GPb – and found that, even if all the non-essential parts of the 

algorithms are removed, both algorithms still could not run in real-time. This was made 

clear by the fact that TextonBoost took 4.37 seconds per frame, and GPb took 2.78 

seconds per frame. In practice, TextonBoost would also have to run an alpha-expansion 

graph cut, and GPb would run its normalised cut algorithm, and so there is no chance for 

texture-boundary detectors such as these to run in real-time.  

Section 9.3 measured the speeds of the two proposed detectors and found that both are 

capable of running in real-time. The Variance Ridge Detector ran at 47.9 frames per 

second, while the Texton Ridge Detector ran at 10.6 frames per second. This shows that, 

unlike most texture-boundary detectors, the proposed detectors are capable of real-time 

execution, which means they can be used for real-time applications. 

So given that the proposed detectors run in real-time, the question is, how do they 

compare to other real-time boundary detectors? As the next two subsections will 

discuss, all other real-time boundary detectors are either too low level, or they make 

inadequate approximations of non-real-time counterparts. 

Some real-time detectors are too low-level 

Low-level computer vision algorithms normally run much faster than high-level 

algorithms because, generally, they consider less information when making their 
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decisions. Consequently, some texture-boundary detectors are designed to only 

interpret the image at a low level so that they can achieve the speed needed for real-time 

execution. However, low-level often means low-quality boundaries.  

Section 9.7 compared the proposed detectors against two real-time low-level texture-

boundary detectors using the Berkeley benchmark. The scores of the established 

texture-boundary detectors were        for Konishi’s detector, and        for 

Surround Suppression. The proposed detectors clearly outperform these two methods 

with their scores of        for the Variance Ridge Detector, and        for the 

Texton Ridge Detector. This happens because, unlike the two established methods, the 

proposed detectors generate a higher-level interpretation of images. 

Other real-time detectors make inadequate approximations 

Many real-time texture boundary detectors were developed by approximating non-real-

time counterparts. By definition, every approximation involves some degradation in 

quality in return for faster speeds. Section 9.8 investigated three established real-time 

texture-boundary detectors – TextonRML, Semantic Texton Forests and Randomised 

Hashing – each of which approximate a non-real-time method. It was shown that each 

approximation had its own set of shortcomings. 

TextonRML (section 5.3) is a real-time approximation of TextonBoost (section 4.4). Its 

most important difference is that it removes the slow alpha-expansion graph cut stage, 

allowing it to run in real-time. Unfortunately, the graph cut stage is what allows 

TextonBoost to produce high-quality boundaries, and so without it, TextonRML can only 

produce low-quality boundaries. This was elaborated further in section 4.4.3. Unlike 

TextonRML, the proposed detectors produce high-quality boundaries.  

Semantic Texton Forest segmentation (section 5.4) also approximates TextonBoost. It 

removes the need for the slow alpha-expansion graph cut stage by calculating the 

boundary map at a much lower resolution. Unfortunately, the lower resolution means 

the boundary map is of much lower quality. Unlike Semantic Texton Forest 

segmentation, the proposed detectors produce full-resolution boundary maps, and so 

the proposed detectors outperform Semantic Texton Forests. 

Randomised Hashing (section 5.5) is a real-time approximation of mean-shift 

segmentation (section 4.1). It uses hashing instead of mean-shift clustering so that it can 

achieve real-time. Unfortunately, the clustering process will sometimes assign similar 

colours to separate clusters, which introduces boundaries into the image where they 

should not exist. These phantom boundaries degrade the quality of its boundary maps. 
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Unlike Randomised Hashing, the proposed detectors do not suffer the problem of 

phantom boundaries.  

The primary goal of this research was to develop a real-time texture-boundary detector 

that produces high-quality results. All of the above points show this goal has been 

achieved. 

10.2 FUTURE WORK 

There are four areas in which future work will proceed from here. First, the texture-

suppressing abilities of the detectors can still be improved, as there are still some 

textures which cannot be suppressed easily by the proposed detectors. Second, the 

proposed detectors cannot guarantee closed boundary contours at present. This may be 

useful in some applications and so is another area that could be improved. Third, the 

boundary maps that are produced currently only involve mid-level information, and so 

perhaps an image-level interpretation stage could be added to improve the boundary 

detection quality. Fourth, the detectors themselves could be used to improve real-time 

applications. Each of these areas will be discussed individually.  

Improving texture-suppressing ability 

It might be possible to improve the texture-suppressing ability of the proposed 

detectors by using some form of covariance instead of just variance. Tuzel, Porikli and 

Meer (2006) used covariance with great success for texture recognition, with their 

results outperforming even the widely-used texton approach on the Brodatz texture 

dataset. So perhaps covariance could be used for both fast and high-quality texture 

boundary detection.  

Perhaps it is possible to improve the Texton Ridge Detector by using different machine 

learning methods to train its approximate textonisation stage. Techniques such as 

simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983) or particle swarm optimisation 

(Kennedy & Eberhart, 1995) could be appropriate choices for further investigation.  

Finding closed boundary contours 

Normally, non-real-time boundary detectors find closed boundary contours using 

clustering or graph cuts. Many of the high-performance methods for this cannot run in 

real-time, but perhaps approximations can be made. Juan and Boykov (2006) have 

developed a minimum cut which can run fast when given a near solution to start with, 

making it capable of running in real-time at least some of the time. Additionally, 

Randomised Hashing (section 5.5) and the watershed algorithm (Beucher & Lantuéjoul, 
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1979) are able to perform some approximate forms of real-time clustering. Perhaps 

these could be starting points for future solutions.  

Image-level interpretation 

The proposed Texton Ridge Detector has a real-time approximation of every stage of the 

global probability of boundary detector (section 4.6), except for one – the normalised 

cut stage. The normalised cut is important because it detects boundaries at the image-

level, but unfortunately it does not run in real-time. Future work could involve 

investigating ways of bringing the normalised cut into real-time.  

Alternatively, perhaps higher-level or domain-specific knowledge could be incorporated 

into the algorithm. Achieving image-level interpretation of any kind though would be 

quite difficult due to the time constraints on the algorithm.  

Applications 

Most importantly, future work could also include applying the proposed Variance Ridge 

Detector and Texton Ridge Detector to other applications.  As boundary detection is 

such a low-level feature, there are many possible fields of application – robot navigation, 

face recognition, object model reconstruction, object tracking, inpainting, and many 

more.  

To assist with developing applications, it would be useful to do an investigation into the 

trade-off between speed and quality for the range of real-time texture-boundary 

detectors. This would allow users to choose the texture-boundary detector that suits 

their application best.  

10.3 THESIS SUMMARY 

In summary, objective measurements have shown that both the proposed Variance 

Ridge Detector and the proposed Texton Ridge Detector outperform all previous work, 

due to the following two reasons: 

1. The proposed boundary detectors run in real-time, unlike most texture-

boundary detectors. 

2. The proposed boundary detectors produce higher quality-results than the few 

texture-boundary detectors that do run in real-time. 

Boundary detection is an essential first step for many computer vision algorithms, and 

so potentially, the improvement to boundary detection that was presented by this thesis 

could induce improvements to a wide-range of applications throughout computer vision.
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