

Texture-boundary
detection in real-time

A thesis submitted in partial fulfilment of the
requirements for the Degree of

Doctor of Philosophy

in the University of Canterbury

by
Ray Hidayat

2010

Supervisor: Dr. Richard Green
Co-supervisor: A/Prof. R. Mukundan

Publications  iii

PUBLICATIONS

The research presented in this thesis has been published in the following peer-reviewed

papers:

Hidayat, R. and Green, R. (2009). Real-time texture boundary detection from ridges

in the standard deviation space. British Machine Vision Conference, London, United

Kingdom, September 2009.

Hidayat, R. and Green, R. (2008). Texture-suppressing edge detection in real-time.

Image and Vision Computing New Zealand, Lincoln, New Zealand, November 2008.

iv  Abstract

ABSTRACT

Boundary detection is an essential first-step for many computer vision applications. In

practice, boundary detection is difficult because most images contain texture. Normally,

texture-boundary detectors are complex, and so cannot run in real-time. On the other hand,

the few texture boundary detectors that do run in real-time leave much to be desired in

terms of quality. This thesis proposes two real-time texture-boundary detectors – the

Variance Ridge Detector and the Texton Ridge Detector – both of which can detect high-

quality texture-boundaries in real-time. The Variance Ridge Detector is able to run at 47

frames per second on 320 by 240 images, while scoring an F-measure of 0.62 (out of a

theoretical maximum of 0.79) on the Berkeley segmentation dataset. The Texton Ridge

Detector runs at 10 frames per second but produces slightly better results, with an F-

measure score of 0.63. These objective measurements show that the two proposed texture-

boundary detectors outperform all other texture-boundary detectors on either quality or

speed. As boundary detection is so widely-used, this development could induce

improvements to many real-time computer vision applications.

Acknowledgements  v

ACKNOWLEDGEMENTS

First and foremost, thank you to my supervisor Dr. Richard Green for making this work

possible. Your direction and forward-thinking always made sure this research was heading

in the right direction.

Thank you to my co-supervisor A/Prof. Mukundan for the positive encouragement and

useful feedback.

Thank you to my fellow computer scientists for making this a pleasant learning experience.

Thank you also to the Tertiary Education Commission, University of Canterbury and

Freemasons New Zealand for the awards of the Top Achiever Doctoral Scholarship,

Canterbury Scholarship and the Freemasons Postgraduate Scholarship respectively, which

all made this research possible.

Most of all, thank you to my parents, Rudy and Rini Hidajat, and brother Ryan, for your

constant love and support. I could not have done this without you.

vi  Table of Contents

TABLE OF CONTENTS

Publications ... iii

Abstract ... iv

Acknowledgements .. v

Table of Contents ... vi

1 Introduction .. 1

1.1 Applications of boundary detection .. 1

1.2 Boundary detection without texture ... 4

1.3 The problem with existing texture-boundary detectors .. 6

1.4 Research objectives .. 6

1.5 The contribution of this thesis ... 7

1.6 Thesis outline .. 8

2 Edge detection .. 10

2.1 Mathematical conventions .. 10

2.1.1 Images .. 10

2.1.2 Vectors ... 11

2.1.3 Sets... 11

2.1.4 Operators .. 12

2.2 Sobel operator .. 12

2.2.1 Convolution .. 13

2.2.2 Applying convolution to Sobel ... 13

2.2.3 Sliding windows ... 14

2.3 Binarising sobel ... 14

2.3.1 Thresholding ... 14

2.3.2 Applying thresholding to gradients ... 15

2.3.3 Morphological thinning ... 16

2.4 Canny edge detector... 17

2.4.1 Gradient estimation .. 17

2.4.2 Ridge detection ... 18

2.4.3 Hysteresis ... 19

2.5 Edge detection with variance thresholding ... 20

2.6 Chapter summary .. 21

3 Edge-preserving smoothing filters .. 22

3.1 Non-edge-preserving smoothing .. 22

3.2 Bilateral filter .. 23

3.3 Nitzberg operator .. 24

Table of Contents  vii

3.3.1 Kernel displacement .. 25

3.3.2 Kernel reshaping ... 25

3.3.3 Combining reshaping and displacement ... 29

3.4 Kuwahara filter ... 30

3.5 Papari filter ... 31

3.5.1 Formulation .. 31

3.5.2 Image results .. 32

3.6 Mean-shift filter... 33

3.7 Chapter summary ... 35

4 Non-real-time texture-boundary detection .. 36

4.1 Normalised cut segmentation ... 36

4.1.1 Objective function ... 36

4.1.2 Similarity scores .. 37

4.1.3 Solving the objective.. 38

4.1.4 Binarising the solution ... 39

4.1.5 Subdividing further .. 39

4.1.6 Image results .. 40

4.2 Mean-shift segmentation... 40

4.2.1 Image results .. 41

4.3 Textons ... 42

4.3.1 Theory: autocorrelation ... 42

4.3.2 Features .. 45

4.3.3 Learning textons with K-means clustering .. 46

4.3.4 Textonising images .. 48

4.3.5 Image results .. 48

4.4 TextonBoost .. 49

4.4.1 Texton features .. 50

4.4.2 Texture-layout filters .. 51

4.4.3 Why not just hard-assign a pixel to its modal texture? ... 52

4.4.4 The minimum cut .. 53

4.4.5 Alpha-expansion graph cuts ... 58

4.4.6 Image results .. 59

4.5 Pb: The probability of boundary detector .. 61

4.5.1 Texton features .. 61

4.5.2 Texton gradients ... 62

4.5.3 Ridge detection .. 62

4.5.4 Combining with other visual cues.. 63

viii  Table of Contents

4.5.5 Image examples .. 65

4.6 gPb: The global probability of boundary detector .. 67

4.6.1 Image examples .. 67

4.7 Chapter summary .. 68

5 Real-time texture-boundary detection .. 70

5.1 Konishi’s detector ... 70

5.1.1 Image results ... 74

5.1.2 Critique .. 74

5.2 Surround Suppression .. 75

5.2.1 Formulation ... 75

5.2.2 Image results ... 76

5.2.3 Critique .. 76

5.3 TextonRML ... 77

5.3.1 Random multinomial logit ... 77

5.3.2 Feature selection.. 77

5.3.3 Image results ... 78

5.3.4 Critique .. 79

5.4 Semantic Texton Forests .. 79

5.4.1 Textonisation with decision forests ... 80

5.4.2 Segmentation ... 81

5.4.3 Image categorisation .. 82

5.4.4 Image results ... 83

5.4.5 Critique .. 83

5.5 Randomised Hashing ... 83

5.5.1 Algorithm .. 84

5.5.2 Image results ... 85

5.5.3 Critique .. 86

5.6 Chapter summary .. 86

6 Proposal: the Variance Ridge Detector .. 88

6.1 Rationale ... 88

6.2 Variance in previous work .. 88

6.3 Algorithm overview ... 90

6.4 Convert to CIELab colour space .. 92

6.5 Variance transform ... 93

6.5.1 Image examples .. 93

6.5.2 Justification for the rearranged variance equation ... 94

6.5.3 Justification for square-shaped sliding windows ... 95

Table of Contents  ix

6.5.4 Justification for an equally-weighted window .. 97

6.6 Gradient transform .. 98

6.6.1 Visualisation.. 98

6.6.2 Formulation .. 99

6.6.3 Justification for smoothed variance .. 100

6.6.4 Image examples ... 100

6.7 Ridge transform .. 101

6.7.1 Formulation .. 102

6.7.2 Ridge strength approximation .. 103

6.7.3 Image examples ... 104

6.7.4 Alternative approach: opposites filter ... 105

6.7.5 Alternative approach: structure tensors ... 106

6.8 Gradient magnitude subtraction .. 107

6.8.1 Image examples ... 108

6.8.2 Alternative approach: anisotropic subtraction .. 109

6.9 Comparison with other ridge detection approaches ... 110

6.10 Implementation ... 111

6.10.1 Expanding the image ... 111

6.10.2 Discretisation ... 112

6.10.3 Sliding windows .. 112

6.10.4 Implementation resources .. 112

6.10.5 Using SSE instructions .. 113

6.11 The three-channel sum algorithm ... 113

6.12 Chapter summary ... 117

7 Proposal: the Texton Ridge Detector ... 118

7.1 Rationale .. 118

7.2 Algorithm overview ... 118

7.3 Texture features .. 119

7.3.1 Formulation .. 119

7.4 Approximate textonisation ... 120

7.4.1 Visualisation.. 120

7.4.2 Querying ... 121

7.4.3 Training .. 123

7.4.4 Training parameters .. 127

7.4.5 Textonisation image examples .. 128

7.5 Texton gradient ... 129

7.5.1 Formulation .. 129

x  Table of Contents

7.5.2 Texton gradient image examples ... 129

7.5.3 Justification for the doubled scale ... 130

7.5.4 Implementation details .. 131

7.6 Combining visual cues .. 134

7.6.1 Image examples ... 135

7.7 Ridge detection ... 136

7.8 Image examples .. 136

7.9 Comparison to previous work .. 138

7.10 Chapter summary ... 139

8 Validation methods ... 141

8.1 Berkeley segmentation dataset and benchmark ... 141

8.1.1 Benchmarking algorithm overview .. 142

8.1.2 Thresholding .. 142

8.1.3 Thinning ... 143

8.1.4 Matching ... 143

8.1.5 Calculating precision/recall ... 149

8.1.6 The F-measure ... 150

8.1.7 Results of the Berkeley benchmark .. 150

8.2 The MSRC-9 Dataset .. 150

8.3 Adaptive background learning ... 151

8.3.1 Overview .. 152

8.3.2 Stability ... 152

8.3.3 Background model ... 153

8.3.4 Algorithm ... 153

9 Experimental results .. 155

9.1 Overview of the experiments .. 155

9.2 Apparatus .. 156

9.3 Speed of proposed detectors on real-time camera input .. 157

9.3.1 Apparatus... 157

9.3.2 Method .. 157

9.3.3 Results ... 158

9.3.4 Discussion .. 159

9.4 Speed measurements on MSRC-9 database .. 159

9.4.1 Apparatus... 159

9.4.2 Method .. 159

9.4.3 Results ... 162

9.4.4 Discussion .. 163

Table of Contents  xi

9.5 Estimating the speed of gPb ... 164

9.5.1 Apparatus ... 165

9.5.2 Method .. 165

9.5.3 Results ... 165

9.5.4 Discussion .. 166

9.6 Estimating the speed of alpha-expansion graph cuts .. 166

9.6.1 Apparatus ... 166

9.6.2 Method .. 166

9.6.3 Results ... 167

9.6.4 Discussion .. 167

9.7 Quality measurements on Berkeley benchmark ... 168

9.7.1 Apparatus ... 168

9.7.2 Method .. 168

9.7.3 Results ... 169

9.7.4 Discussion .. 172

9.8 Comparison to the remaining real-time detectors ... 173

10 Conclusions .. 175

10.1 Summary of results .. 175

10.2 Future work .. 177

10.3 Thesis summary .. 178

Bibliography .. 180

Chapter 1 – Introduction  1

1 INTRODUCTION

A boundary detector is an algorithm that finds boundaries – the borders that divide

different parts of the same image (Martin, Fowlkes, & Malik, 2004). An example of this is

illustrated below in Figure 1-1.

FIGURE 1-1: An image (left) and its boundary map (right) according to human subjects. These
images were taken from the Berkeley segmentation dataset and benchmark (Martin, Fowlkes,

Tal, & Malik, 2001).

1.1 APPLICATIONS OF BOUNDARY DETECTION

Boundary detection is an essential step to many computer vision applications.

In automatic car/robot navigation, the car or robot must know where the boundaries

of its obstacles are in order to drive around them. Figure 1-2 below illustrates a system

(Vaudrey, Wedel, Rabe, Klappstein, & Klette, 2008; Klappstein, Vaudrey, Rabe, Wedel, &

Klette, 2009) that endeavours to automatically drive a car. It is essential that the system

knows where the boundaries of the moving objects are so that it can avoid collisions.

FIGURE 1-2: This algorithm automatically detects boundaries of moving objects so that they
can be avoided. Image taken from Vaudren et al. (2008).

Face detection/recognition sometimes uses boundary detection to identify the parts

of the face or the position of the face as a whole. Figure 1-3 below illustrates a face

detector (Hsu, Abdel-Mottaleb, & Jain, 2002) which locates the position of the face from

the boundaries in the image.

2  Chapter 1 – Introduction

FIGURE 1-3: This face detector uses boundary detection to identify the position of the face.
Reproduced from Hsu et al. (2002)

One of the most widely-used methods for object model reconstruction is visual hull

carving. This technique takes multiple images of the object from many different views,

and then uses those views to sculpt the object out of a cube. The boundary map for each

view is used as a stencil for the carving process – it determines where the algorithm

should carve the cube. Figure 1-4 illustrates a system that does this (Furukawa & Ponce,

2009).

FIGURE 1-4: The object shown in the left image was sculpted into a visual hull (right) using
boundary detection. Reproduced from Furukawa and Ponce (2009).

Drummond and Cipolla (2002) developed an efficient and robust method of 3D object

model tracking which involves tracking only the boundaries of the object. What makes

it so efficient is that boundaries are one-dimensional, which means that tracking only

boundaries reduces the number of degrees of freedom substantially. This is illustrated

below in Figure 1-5.

Chapter 1 – Introduction  3

FIGURE 1-5: This object tracking technique works by comparing the boundaries of a known
object model with the actual boundaries of the image, found using a boundary detector

(Drummond & Cipolla, 2002).

Figure 1-6 below illustrates a technique for object recognition which uses boundary

detection (Shotton, Blake, & Cipolla, 2008). Obviously, objects are often made up of

characteristic shapes, and so boundary detection is needed because it reveals the shapes

in an image.

FIGURE 1-6: This system has recognised a horse object (lef t) from a collection of learnt
boundary fragments (right). Reproduced from Shotton et al. (2008).

Inpainting, or object removal, involves painting over an object in order to make it look

like the object was never in the image. Boundary detection can determine automatically

where the inpainting should occur. Figure 1-7 shows a technique (Whyte, Sivic, &

Zisserman, 2009) that has removed an object, given its boundaries.

4  Chapter 1 – Introduction

FIGURE 1-7: Boundary detection can be used to identify where inpainting should occur .
Reproduced from Whyte et al. (2009)

The above examples have shown that boundary detection is a key step to many

computer vision applications such as robot navigation, face detection and recognition,

object model reconstruction, object tracking, object recognition and object removal.

That is why any improvements to boundary detection are very useful.

1.2 BOUNDARY DETECTION WITHOUT TEXTURE

Most boundary detectors rely on one basic assumption: a boundary exists wherever

there is significant change in the image (Sobel & Feldman, 1973). The problem here is,

when is the change significant?

Early attempts at boundary detection assumed that any large changes were significant.

The well-known Canny edge detector (Canny, 1986) is a good example of an algorithm

that follows this decision rule. Sometimes, this does not work very well:

Chapter 1 – Introduction  5

FIGURE 1-8: The Canny edge detector is applied to an image of a mandrill (left), producing a
boundary map (right).

In Figure 1-8, there are great variations in colour within the fur of the mandrill. The

Canny edge detector has identified each of these variations as a boundary. This has

meant that the important boundaries, particularly the ones which separate the nose,

cheeks and eyes, have become lost in the sea of unimportant boundaries.

Ideally, what a boundary detector should produce is something like the boundaries

illustrated in Figure 1-9:

FIGURE 1-9: The Variance Ridge Detector, proposed by this thesis, produces this boundary map
from the image in Figure 1-8.

Figure 1-9 above was produced by the Variance Ridge Detector, which is one of the

primary contributions of this thesis. Notice, the Variance Ridge Detector has strongly

detected the important inter-texture boundaries in the image, and suppressed the

unimportant intra-texture variations.

6  Chapter 1 – Introduction

More generally, texture is a large obstacle to high-quality boundary detection. Texture

can be defined as variations in an image that repeat with a pattern (Malik, Belongie, Shi,

& Leung, 1999). The mandrill’s fur is one example of texture. As was stated previously,

boundary detectors work by detecting areas of significant change in the image. By

definition, texture introduces change into an image. That means, a boundary detector

that does not account for texture can easily confuse changes due to texture as significant

changes.

Texture is very common in the real world – almost everything is covered with some

form of texture. Obvious examples include grass, trees with leaves, clouds, clothing or

the windows on the sides of buildings to name a few. So, for a boundary detector to be

useful to computer vision algorithms in practice, it is important that it accounts for

texture.

1.3 THE PROBLEM WITH EXISTING TEXTURE-BOUNDARY DETECTORS

A boundary detector that attempts to suppress the variations in texture while detecting

boundaries is called a texture-boundary detector. Existing texture-boundary detectors

can be divided into two categories – real-time and non-real-time.

Normally, texture analysis is a computationally-intensive operation, and so almost all of

the state-of-the-art texture-boundary detectors cannot run in real-time (see chapter 4

for examples of this). This is highly unfortunate, because it means real-time computer

vision applications cannot benefit from the state-of-the-art in texture-boundary

detection.

On the other hand, the few texture-boundary detectors that are capable of running in

real-time produce low-quality results (see chapter 5 for examples of this).

There is a need for a boundary detector that both (a) produces high-quality boundaries

and (b) runs in real-time.

1.4 RESEARCH OBJECTIVES

The primary goal of this research is to develop a real-time texture-boundary detector

which produces high-quality results. The scope of each part of this goal must be defined.

Real-time

The definition of “real-time” depends very much on the application. The aim of this

research is to investigate boundary detectors which could be used for interactive real-

Chapter 1 – Introduction  7

time applications, which means speeds of approximately ten frames per second would

be needed. This is similar to how other researchers have defined “real-time.” (Kisačanin,

Pavlović, & Huang, 2005; Brown & Terzopoulos, 1994; Ranganathan, 2009; Taylor &

Cowley, 2009). However, depending on the application, speeds of at least one frame per

second could still be considered fast enough for real-time interaction.

This research will focus on achieving real-time speeds with a single CPU – that means it

will not investigate how to speed up boundary detection by adding more hardware, but

will instead focus on achieving fast boundary detection through faster algorithms.

Texture

Texture will be defined as it is in section 1.2 – variations in an image that repeat with a

pattern.

Boundary detector

A boundary detector will be defined as it is at the start of chapter 1: an algorithm which

detects the borders that divide different parts of the same image.

Some boundary detectors are required to divide an image into segments (Shi & Malik,

2000; Comaniciu & Meer, 2002) – implying that they have a requirement that all

boundaries must form closed loops. This research focuses on boundary detection

without the closed loop constraint. Suggestions for achieving the closed-loop constraint

will be discussed in the future work section (see section 10.2).

High-quality

Publicly-available image datasets and benchmarks will be used to compare the results of

this research against existing work. Both these benchmarks and visual inspection will

determine whether the proposed boundary detectors are high-quality.

1.5 THE CONTRIBUTION OF THIS THESIS

This thesis has two primary contributions:

1. The Variance Ridge Detector.

2. The Texton Ridge Detector.

Both of these are high-quality texture-boundary detectors that, unlike most texture-

boundary detectors, are able to run in real-time. Each one of these algorithms takes a

slightly different approach. The Variance Ridge Detector is faster, while the Texton

Ridge Detector produces higher-quality boundaries.

8  Chapter 1 – Introduction

This thesis will present experimental results which have shown that the Variance Ridge

Detector and the Texton Ridge Detector both outperform all existing texture-boundary

detectors on either speed or quality.

This thesis has also made two secondary contributions:

 A new, fast ridge detection algorithm is proposed. This ridge detection algorithm

has been used as part of both the Variance Ridge Detector and the Texton Ridge

Detector.

 A new adaptive background modelling algorithm was developed. This algorithm

was used to validate the quality of the Variance Ridge Detector and Texton Ridge

Detector.

1.6 THESIS OUTLINE

Chapter 2 lays out the fundamental concepts used throughout this thesis by introducing

them in the context of edge detection. Originally, the field of boundary detection began

as edge detection, and so its basic concepts provide a useful conceptual foundation for

the rest of this thesis.

Chapter 3 introduces the mechanics of distinguishing texture from boundaries in the

context of edge-preserving smoothing filters. Many texture-boundary detectors,

including the proposed Variance Ridge Detector, were built from edge-preserving

smoothing filters. Consequently, the techniques used in this chapter will be revisited

throughout this thesis.

Chapter 4 examines the field of non-real-time texture-boundary detectors. Most real-

time texture-boundary detectors are approximations of non-real-time counterparts.

This chapter also demonstrates the complexity of the texture-boundary detection

problem, justifying why most texture-boundary detectors cannot run in real-time.

Chapter 5 discusses real-time texture-boundary detectors, highlighting their

shortcomings.

Chapter 6 proposes the Variance Ridge Detector to overcome those shortcomings.

Chapter 7 proposes the Texton Ridge Detector, which improves the quality of the

Variance Ridge Detector at the cost of speed. It uses textons, which are widely used in

non-real-time texture boundary detectors.

Chapter 8 discusses the methods used to evaluate the performance of the proposed

boundary detectors.

Chapter 1 – Introduction  9

Chapter 9 presents the experimental results which, as a whole, show that the proposed

detectors outperform all previous texture-boundary detectors on either quality or

speed.

Finally, chapter 10 concludes the thesis and discusses future directions.

10  Chapter 2 – Edge detection

2 EDGE DETECTION

As section 1.2 described, a boundary detector identifies a boundary by identifying a

“significant change” in the image. Most of this thesis will discuss texture-boundary

detectors, which define “significant change” as a change in texture. This particular

chapter however, will discuss edge detectors, which consider any large change in

brightness significant. Figure 2-1 illustrates the difference:

FIGURE 2-1: An image (left), its edge map (middle) and its boundary map (right). The edge map
was generated using the Canny edge detector (section 2.4), and the boundary map was

generated using the Variance Ridge Detector (proposed in chapter 6).

Essentially, texture-boundary detection is a more constrained and more complex

version of edge detection. For that reason, edge detection and texture-boundary

detection share much of the same conceptual foundation. The purpose of this chapter is

not to go into detail about the classical field of edge detection, but to use edge

detection’s simple algorithms to describe the fundamental building blocks that will be

seen in the more complex texture-boundary detectors. This will include techniques such

as: gradients, convolution, sliding windows, thresholding and thinning.

This chapter ends by describing an early approach to texture-suppressing edge

detection. This will give an indication of how texture-boundary detectors work – a topic

which is developed through the rest of this thesis.

2.1 MATHEMATICAL CONVENTIONS

This thesis will use mathematical symbols to express ideas. This section covers the

general mathematical conventions used throughout this thesis.

2.1.1 IMAGES

This thesis will represent images as functions over the spatial domain. For example, the

pixel value at position in image , with x-coordinate and y-coordinate , would be

referred to as follows:

Chapter 2 – Edge detection  11

 (2.1)

Many computer vision algorithms work by calculating each pixel individually. As a

convention, the term will be used to denote the spatial location of the pixel that is

currently being calculated. Often, the calculation of is influenced by the values of its

neighbours. The symbol will denote the spatial offset of the neighbour that is

currently being considered. So, the following expression will return the value of a pixel

that is offset from by :

 (2.2)

2.1.2 VECTORS

Vectors, such as , will be rendered in bold.

The L1 and L2 metrics calculate the magnitude of a vector in different ways:

 (2.3)

(2.4)

The L2 metric is used often because it calculates the length of the vector if it existed in a

multidimensional space. The L1 metric is the sum of the absolute value of all the

elements in a vector, and so has other specific uses.

The dot product of two vectors and is defined as follows:

 (2.5)

If and are unit vectors (their length is 1), then will return 1 if the two vectors

are facing the same direction, 0 if they are perpendicular, or -1 if they are facing

opposite directions. Essentially, the dot product can be used to calculate how much the

two vectors agree in terms of direction.

2.1.3 SETS

Sets have a few special symbols associated with them.

12  Chapter 2 – Edge detection

An expression like is a conditional subset expression. This example

generates the subset of all elements in set which match the condition

stated after the colon.

The cardinality (size) of a set will be denoted .

2.1.4 OPERATORS

Sometimes conditional expressions such as these will be used:

 (2.6)

In this expression, the notation is a function that evaluates to 1 if the contained

expression is true, or evaluates to 0 if the contained expression is false.

The positive bounding operator constrains values to zero or above:

 (2.7)

The positive bounding operation is sometimes called “half-wave rectification.”

All other mathematical terminology will be introduced as needed.

2.2 SOBEL OPERATOR

The Sobel operator (Sobel & Feldman, 1973) measures the change in brightness at

around a particular pixel. The assumption is, the greater the change, the greater the

likelihood of an edge.

It does this by performing convolution on the image with two specially-designed

kernels:

FIGURE 2-2: The Sobel kernels.

The left kernel is the horizontal Sobel kernel, which measures the change in the

horizontal direction. The right kernel is the vertical Sobel kernel, which measures the

change in the vertical direction. The image is convolved with both of these kernels, using

the process explained next.

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

Chapter 2 – Edge detection  13

2.2.1 CONVOLUTION

The convolution of image with kernel , denoted , can be defined as

follows:

(2.8)

Equation (2.8) above states that, for each pixel , convolution returns the weighted sum

of the pixels in the local neighbourhood. The weights of the weighted sum are

determined by the kernel. for any values of which are outside the range of

the kernel.

The next subsection illustrates convolution with the Sobel kernel.

2.2.2 APPLYING CONVOLUTION TO SOBEL

Let the horizontal Sobel kernel (shown earlier in section 2.2) be represented by the

function , and let the vertical Sobel kernel be represented by the function

 . The origin point of both Sobel kernels is the central element.

Given these definitions, the Sobel operator can be used to calculate the image gradient

 :

(2.9)

This calculates the two-dimensional gradient for each pixel in the image . The

word gradient is used because it simply means the rate of change. Other definitions of

the gradient exist, these will be discussed later.

An image and its gradient magnitude according to the Sobel operator are shown below

in Figure 2-3:

14  Chapter 2 – Edge detection

FIGURE 2-3: The result of applying Sobel operator (right) to an image (lef t).

So why does the Sobel operator calculate the gradient? Consider the horizontal Sobel

kernel in Figure 2-2. The left side of the Sobel kernel is entirely negative, and the right

side is entirely positive. So when an image is convolved by this kernel, the pixels on the

left side are subtracted from the pixels on the right side – effectively measuring the

difference between them. Clearly, this estimates the rate of change at each pixel, which is

really just another name for the gradient.

2.2.3 SLIDING WINDOWS

It is necessary to define the term sliding window for future reference. When calculating

the result for a particular pixel , the term window is used to describe the rectangle of

pixels that are considered in order to calculate . For example, the Sobel operator would

evaluate a window centered on . Normally, the windows are evaluated starting

from the top left pixel , then moving one pixel right to , and then moving one

pixel right to and so on. Due to the way the window is sliding through the image,

sometimes this is called a sliding window.

2.3 BINARISING SOBEL

Sometimes it is useful for the edge detector to categorise each pixel into one of two

states: edge or non-edge. The Sobel operator generates a continuous range of gradient

values. Thresholding is a common way to map the range of gradients produced by Sobel

onto these two states.

2.3.1 THRESHOLDING

The function calculates the binary version of image , at position , by

thresholding it at level as follows:

Chapter 2 – Edge detection  15

 (2.10)

After thresholding, any pixel which is greater than or equal to is set to 1, and any pixel

less than is set to 0. The resulting image is called a binary image because each one of

its pixels can only be in one of two states.

2.3.2 APPLYING THRESHOLDING TO GRADIENTS

The function below determines whether pixel is an edge or not by

identifying whether the magnitude of its gradient exceeds a threshold . In this case, the

gradient has been calculated by the Sobel operator, although this would still apply if

the gradient was calculated by some other method.

 (2.11)

As equation (2.11) shows, the gradient magnitude is calculated by the L2 norm of the

gradient . Figure 2-4 shows the effect of a threshold operation.

FIGURE 2-4: The unthresholded (left) and thresholded (right) results of the Sobel operator on
the elephant image. The threshold was chosen to be the mean gradient magnitude in the image.

The choice of the threshold level is critical to successful thresholding. If the threshold

level is too high, no edges will exceed the threshold. If the threshold level is too low,

some non-edges would exceed the threshold. This sensitivity to parameters is the

primary drawback of using thresholding.

After thresholding, it is likely that the edges will be many pixels wide, which can make it

difficult for an algorithm to pinpoint the exact location of the edge. Morphological

thinning, described next, can be used to “thin” the edges so that they are always one-

pixel wide.

16  Chapter 2 – Edge detection

2.3.3 MORPHOLOGICAL THINNING

Let be a function that performs morphological thinning on the binary

image by using successive of morphological operations.

Morphological operations are simple operations that calculate a new value for each pixel

based on each pixel’s local neighbourhood. The two operations used by morphological

thinning are called erosion and hit-and-miss. Both of these will now be explained.

Erosion takes an input image, and considers the 3 by 3 sliding window centered on each

pixel. Erosion replaces each pixel with the minimum value in its 3 by 3 neighbourhood.

When an image is eroded repeatedly, thick lines will become thinner and thinner, until

they disappear completely. So to stop the lines from disappearing once they reach one

pixel wide, the hit-and-miss operator is used.

The hit-and-miss operator takes an input image, and attempts to match each pixel’s local

window to a set of exact-match templates. If there is a match, then that pixel is replaced

with a one, otherwise that pixel is replaced with a zero. So for morphological thinning,

the hit-and-miss operator is used with templates that contain all possible structures of a

one-pixel-wide line, allowing any thinned lines to be detected and preserved.

Using these two operations, the image is repeatedly eroded until the entire image

becomes filled with zeroes. Before each erosion, the hit-and-miss operator is run, and

the results are accumulated into a separate image. Once this process is complete, the

accumulated image will contain only the one-pixel wide lines of all the edges in the

image. This accumulated image is returned by the function . Figure 2-5

illustrates the effect of morphological thinning:

FIGURE 2-5: The unthinned (left) and thinned (right) results of the Sobel operator on the
elephant image.

Using morphological thinning, the edges generated by the Sobel operator can be

thinned, allowing each edge to be localised.

Chapter 2 – Edge detection  17

The Sobel operator runs very fast, but its main problem is it is not robust. It is very

sensitive to noise – even a single noisy pixel will show up clearly in a Sobel edge map. Its

thresholding stage is also very sensitive and prone to error – it is will normally remove

some true edges or include some of the false edges. The next section describes the Canny

edge detector, which is much more robust than Sobel.

2.4 CANNY EDGE DETECTOR

Even though it was published in 1986, the Canny edge detector (Canny, 1986) is still

widely used today.

2.4.1 GRADIENT ESTIMATION

The Canny edge detector calculates its gradients by convolving the image with the first-

derivative of the Gaussian. The first-derivative of Gaussian kernel is a lot like Sobel’s

kernel, except it considers more pixels and so is more robust to noise.

The Gaussian kernel with scale can be defined as follows:

(2.12)

Conventionally, the symbol will be used as a normalisation divisor throughout this

thesis, as it has been used here.

Taking the derivative of in the direction yields the Gaussian derivative kernel:

(2.13)

The following figure illustrates what the Gaussian derivative kernel looks like:

18  Chapter 2 – Edge detection

FIGURE 2-6: The Gaussian derivative function, for and

 .

From Figure 2-6, notice that on one side, the Gaussian-derivative kernel is positive, and

on the other side it is negative. This is the same structure as the Sobel kernel, which is

why the Gaussian-derivative kernel can be used to estimate gradient. Also notice that

the Gaussian-derivative kernel is oriented and is not isotropic (the same in all

directions). The parameter in the Gaussian-derivative kernel function

determines the orientation of the kernel. Finally, notice that at the limits of the graph,

where x and y approach , the Gaussian-derivative kernel almost reaches zero. This is

intuitive because the standard deviation was set to 1, and it is a well-known fact that

the Gaussian function almost reaches zero at 3 standard deviations away from the mean.

Gradients can be calculated using the Gaussian derivative in the same way as with the

Sobel kernel in equation (2.9):

(2.14)

With Sobel, the gradient was postprocessed with a threshold and then thinning. The

next steps of the Canny edge detector are ridge detection and hysteresis. Ridge detection

is like a generalisation of thinning, and hysteresis is an improvement to normal

thresholding. So in effect, the Canny edge detector improves on the same process.

2.4.2 RIDGE DETECTION

The Canny edge detector uses a specially-designed ridge detection method to ensure it

only detects one-pixel-wide edges.

-3

0

3

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-3 -2 -1 0 1 2 3

Chapter 2 – Edge detection  19

First, the gradient orientation is calculated:

 (2.15)

The Canny edge detector performs ridge detection by doing the following two steps for

each pixel . First, it rounds the gradient orientation to the nearest multiple of

45 . Second, it checks the two gradients on either side of pixel , where “either side”

depends on the orientation (see Figure 2-7 below). The pixel is only a ridge if it has a

stronger gradient than the other two pixels:

FIGURE 2-7: The Canny edge detector’s ridge detection stage.

If a pixel is not a ridge, then its gradient is set to zero. This allows the Canny edge

detector to produce one-pixel-wide edges very fast.

2.4.3 HYSTERESIS

The purpose of the hysteresis stage is to classify each pixel as either edge or non-edge.

To do this, the Canny edge detector first thresholds the gradient image with a high

threshold. The high threshold ensures that only the most likely edges are kept. The

trouble is, a high threshold will eliminate some of the weaker edges as well. To solve

this, the Canny edge detector uses thresholding with hysteresis.

Hysteresis means the Canny edge detector traces each of the edges that was detected

with the high threshold, searching for connected sections of the edge curves which were

too weak to pass the high threshold. Any gradients which are both, (a) connected to a

known edge and (b) stronger than another, lower threshold, will be recovered by this

process.

The result of this is a binary edge map which can be used as the starting point for many

other applications. Figure 2-8 below shows the results of the Canny edge detector:

If the central pixel’s edge is oriented this way

…then that pixel is a ridge if and only if

…its gradient is stronger than the

two pixels on either side

20  Chapter 2 – Edge detection

FIGURE 2-8: The result of the Canny edge detector on the elephant image. The left image has its
high threshold set to 0.25, while the middle image has its high threshold set to 0.5. The low
threshold has been set to one quarter of the high threshold in both cases. The image on the

right is the Variance Ridge Detector, which will be proposed by this thesis later on, shown for
comparison. The red circles indicate the boundaries which have been lost by the Canny, yet

have been preserved by the Variance Ridge Detector.

Canny’s approach to edge detection is much more robust than Sobel’s approach for a

couple of reasons. Its gradient stage integrates information from a much larger window,

making it less sensitive to noise, and its hysteresis stage attempts to recover edges that

are normally lost by thresholding.

Even with these improvements though, texture is still a problem for the Canny edge

detector. Notice in Figure 2-8 above that Canny’s approach cannot suppress the intra-

texture edges without suppressing some of the inter-texture boundaries. This is because

it does not explicitly account for texture as part of its algorithm. The result of the

Variance Ridge Detector, which will be proposed later by this thesis, is also shown in

Figure 2-8 to highlight this. The next section describes an algorithm which makes some

attempt to overcome this problem.

2.5 EDGE DETECTION WITH VARIANCE THRESHOLDING

One of the earliest forays into intra-texture-edge suppression was developed by Ahmad

and Choi (1999). Their edge detector was divided into two stages. The first stage was

just traditional edge detection. The way this was done is not important, in essence it was

not much different from Sobel or Canny. The second stage is the most interesting stage.

The second stage would only preserve the edges that had high variance in their local

sliding window. All other edges would be suppressed. Figure 2-9 presents some results

of this algorithm.

Chapter 2 – Edge detection  21

FIGURE 2-9: An image (left), its edge map (middle) and its edge map with variance
thresholding applied (right). Notice some intra-texture edges have been suppressed.

Reproduced from Ahmed and Choi (1999).

This algorithm works because the variance between two different textures is normally

much greater than the variance within a texture. Therefore, variance can be used to

suppress intra-texture edges. Although Ahmad and Choi’s work uses this technique to

some level of success, Figure 2-9 clearly shows that their resulting edge maps are quite

noisy, and so there is still much room for improvement. Later, this thesis will propose

the Variance Ridge Detector (in chapter 6), which expands on some of Ahmad and Choi’s

ideas.

2.6 CHAPTER SUMMARY

This chapter presented three edge detectors – the Sobel operator, the Canny edge

detector, and Ahmad and Choi’s detector.

The Sobel operator suffers from the problem of being sensitive to noise because of its

small sliding window and sensitive thresholding stage. The Canny edge detector

overcomes this with its larger Gaussian-weighted sliding window and its hysteresis

stage, but it cannot distinguish between intra-texture edges and inter-texture edges.

Unlike Canny’s approach, Ahmad and Choi’s detector makes some distinction between

intra-texture edges and inter-texture edges. Unfortunately, its results suffer from being

quite noisy. So there is still a need for a detector that both suppresses noise and can

distinguish between intra-texture and inter-texture boundaries. Chapter 4 will present

some techniques for achieving this, but first, the next chapter will discuss some of the

mechanisms required by those techniques in the context of edge-preserving smoothing

filters.

22  Chapter 3 – Edge-preserving smoothing filters

3 EDGE-PRESERVING SMOOTHING FILTERS

The problem with normal methods of smoothing (such as Gaussian smoothing) is that

they will normally smooth out both salient image features as well as noise. An edge-

preserving smoothing filter attempts to solve this problem by preserving the edges

while smoothing other areas. Some of the more recently developed edge-preserving

smoothing filters can do even better than this – they can smooth out texture as well as

noise while maintaining texture boundaries.

Intuitively, an edge-preserving smoothing filter must know, at least implicitly, where the

edges or texture boundaries are, and so many of the mechanisms behind boundary

detection originally came from edge-preserving smoothing. This chapter will introduce

these mechanisms in the context of edge-preserving smoothing, and the chapters

following will expand these mechanisms into texture-boundary detectors.

This chapter will first briefly explain the motivation for edge-preserving smoothing by

illustrating the problems with non-edge-preserving smoothing. Then, five edge-

preserving smoothing filters will be discussed: the bilateral filter, the Nitzberg operator,

the Kuwahara filter, the Papari filter and the mean-shift filter.

3.1 NON-EDGE-PRESERVING SMOOTHING

All smoothing methods involve some type of weighted average.

The simplest and fastest method of smoothing is to weight all elements of the sliding

window equally. This is often known as a box blur. Let be the box blur of

image at pixel position , where is the sliding window radius:

(3.1)

The Gaussian blur generates a more natural looking smooth as the sliding window

weights are determined by the Gaussian function:

(3.2)

The Gaussian kernel in the expression above was already defined previously in

equation (2.12). The parameter determines the scale of the Gaussian blur. Figure 3-1

below illustrates these two different methods of smoothing.

Chapter 3 – Edge-preserving smoothing filters  23

FIGURE 3-1: An image (left), its box blur (middle) and its Gaussian blur (right). Both of these
forms of blurring will smooth important image features as well as unimportant ones.

Notice in Figure 3-1 above that both these smoothing methods have smoothed out the

useful edges. That is why edge-preserving smoothing is needed.

Edge-preserving smoothing generally also uses a weighted average like the smoothing

methods above. The difference is, the weighting given to each pixel is modified for each

pixel according to some function. The next section introduces this concept with the

simplest possible edge-preserving weighting function.

3.2 BILATERAL FILTER

Typically, pixels that are separated by a boundary tend to be different from each other.

So, if the weighted average applies more weight to more similar pixels, then it is unlikely

that the image will be smoothed across boundaries. The bilateral filter (Tomasi &

Manduchi, 1998) is built on this concept. Let be a function that

evaluates the bilateral filter of image at pixel position .

(3.3)

The weighting function above calculates the weight by combining some function

of the spatial distance and some function of the chromatic distance .

Intuitively, these distance functions are designed to give higher weight to those pixels

that are more similar to the pixel being smoothed. See Tomasi and Manduchi’s paper

(1998) for example definitions of and .

24  Chapter 3 – Edge-preserving smoothing filters

FIGURE 3-2: The bilateral filter (right) applied to an image (left).

In Figure 3-2 above, the bilateral filter has smoothed out some of the texture, such as the

grass and the elephant’s skin. At the same time, the boundaries between the sky, the

elephant, and the grass, remain very sharp. This demonstrates the usefulness of the

bilateral filter.

Due to this texture-suppressing ability, sometimes the bilateral filter is used to reduce

the texture in an image before applying the Canny edge detector or Sobel operator

(Kiranyaz, Ferreira, & Gabbouj, 2008). This helps to reduce the number of detected

edges in textured regions. Unfortunately, the bilateral filter must evaluate a large

number of pixel pairs and so this is not a real-time solution.

The bilateral filter cannot smooth out all types of texture. Particularly, it does not work

well when textures have both large variations and a large wavelength. This is illustrated

in Figure 3-2 by the fact that the wrinkles on the elephant’s trunk and ears have not

been smoothed away. This problem occurs because the bilateral filter only considers

each pair of pixels in isolation – it does not analyse the influence of all pixels in the

sliding window as a whole. The Nitzberg operator, which will be described next,

attempts to overcome this problem.

3.3 NITZBERG OPERATOR

The gradient is an obvious choice for edge-preserving smoothing, because as shown in

chapter 2, the gradient can be used to detect edges. The Nitzberg operator (Nitzberg &

Shiota, 1992) reshapes and displaces a Gaussian smoothing kernel so that it avoids

smoothing the local gradients. The Nitzberg operator is important because it was later

redeveloped into a real-time texture-boundary detector called Konishi’s detector

(section 5.1).

The next few sections will discuss kernel reshaping and kernel displacement.

Chapter 3 – Edge-preserving smoothing filters  25

3.3.1 KERNEL DISPLACEMENT

Since gradients indicate likely positions of boundaries, when near gradients, the

Nitzberg operator shifts the smoothing window so that it can avoid smoothing those

gradients.

The kernel displacement vector for pixel is calculated as follows:

(3.4)

As equation (3.4) states, to calculate the displacement for a particular pixel , the

Nitzberg operator considers all the gradients in the vicinity of . Each gradient votes to

push the kernel to one side of the boundary orientation it represents. If a boundary were

vertically oriented, this would mean the kernel could be pushed either left or right to

avoid smoothing that boundary. The Nitzberg operator always chooses to push the

kernel away from the boundary and towards the pixel under consideration using the

 coefficient. If this was not done, the pixels on the right side could

take on values from the left side of the boundary, and vice versa. This would mix the

pixels on either side of the boundary and so would smooth out the boundary instead of

preserving it.

To allow the Nitzberg operator to avoid smoothing boundaries even better, the kernel is

reshaped as well as displaced.

3.3.2 KERNEL RESHAPING

When it is near gradients, the Nitzberg operator reshapes the Gaussian kernel from its

normal, circular shape into a more elliptical one so that it can avoid smoothing those

gradients. The elliptical shape is constructed so that its major axis runs parallel to the

average gradient orientation. This allows it to avoid the gradient as much as possible, as

illustrated in Figure 3-3.

26  Chapter 3 – Edge-preserving smoothing filters

FIGURE 3-3: In the left image, there is a gradient (strong line) and a kernel (circle) which has
been displaced from the current pixel (cross). Notice that the kernel is smoothing over part of
the boundary. The right image is the same, except the kernel has been reshaped into an ellipse.

Notice that the kernel now avoids smoothing the boundary. This illustrates the purpose of
kernel reshaping.

The kernel reshaping is done using a technique called structure tensors.

3.3.2.1 STRUCTURE TENSORS

A structure tensor is a way of representing orientations (Bigun & Granlund, 1987;

Knutsson, 1989). The structure tensor of a vector

 can be calculated by the function

 :

(3.5)

The key characteristic of a structure tensor is that it wraps around at 180°. That means,

two vectors with opposite directions will generate the same structure tensor:

FIGURE 3-4: Structure tensors wrap around at 180°, which is why they are so useful.

An edge oriented at 0° is the same as an edge oriented at 180°, and so structure tensors

provide a way to represent orientations like this in a mathematically sound manner.

Structure tensors as transformations

A structure tensor is actually a linear transformation matrix. That means that, when a

point is multiplied by a structure tensor, that point will be transformed in a particularly

useful way. Under the right conditions, the transformation will reveal what orientation

the structure tensor represents.

Chapter 3 – Edge-preserving smoothing filters  27

Given a structure tensor that represents an unknown orientation, the best way to

visually identify its orientation is to use the structure tensor to transform the points on a

circle centered on the origin:

FIGURE 3-5: The circle on the left is transformed with the structure tensor of the vecto r
specified in the brackets, producing the line on the right.

If a structure tensor represents one orientation, then its transformation will project all

points onto a line of that orientation. Figure 3-5 shows how all the points on the circle

have been projected (squashed) onto a single line. Most importantly though, the

orientation of the projected line reveals the orientation represented by the structure

tensor.

Any number of structure tensors can be added or averaged together, and the resulting

structure tensor will represent an average of all the orientations contained within the

input structure tensors.

FIGURE 3-6: The circle on the left is transformed with the sum of two structure tensors,
producing the ellipse on the right.

Figure 3-6 shows another example transformation with the sum of two structure

tensors made from two different orientations. Notice that the circle is transformed into

an ellipse, and that the major axis of the ellipse matches the average orientation of two

orientations. As a rule, a structure tensor will always transform a circle into an ellipse,

and the major axis of the ellipse will always be oriented according to the average

orientation.

The minor axis of the ellipse will have different widths depending on the input. Figure

3-5 is simply a special case where the minor axis had zero-width, unlike Figure 3-6. The

width of the minor axis holds some useful information.

φ() φ() + × =

φ() × =

28  Chapter 3 – Edge-preserving smoothing filters

The width of the minor axis

The width of the minor axis reveals how coherent the average orientation is. If a

structure tensor is averaged from many input orientations that are quite similar, the

ellipse will have a narrow minor axis. In fact, if all input orientations agree perfectly,

meaning if they are all exactly the same, then the ellipse will have a zero-width minor

axis, as illustrated in Figure 3-5. Conversely, if the input orientations are highly

dissimilar, the ellipse will have a wide minor axis. In fact, if the input orientations all

maximally dissimilar – for example, if two perpendicular orientations were input – then

the major and minor axis will be equivalent in length. In other words, there will be no

major or minor axis, because ellipse will actually be a circle. This makes sense, because if

the input orientations are maximally dissimilar, then there is no average orientation.

Coherence

The ratio of the major axis to the minor axis indicates the level of coherence – how

much the input orientations agree. This ratio is very important and has many

applications. Konishi’s detector uses this for boundary detection (section 5.1), and it is

also used to detect corners (Harris & Stephens, 1988). Coherence will be discussed in

more detail later.

3.3.2.2 KERNEL RESHAPING WITH STRUCTURE TENSORS

To know how the kernel needs to be reshaped, the Nitzberg operator calculates the local

gradient orientation at pixel as a structure tensor:

(3.6)

The function was defined for an image in equation (3.2). It is used

here to average the gradient orientations surrounding each image position . Using this,

the Gaussian kernel is reshaped:

(3.7)

Basically, equation (3.7) states that the normally circular Gaussian kernel is reshaped

into an ellipse depending on the local gradient orientations. This is exactly the same as

the circles being transformed into ellipses in the previous section.

In a sliding window where no boundary is present, the gradients will generally be

randomly oriented, and so the Gaussian will approximately retain its normal circular

shape. However, if a boundary is present, generally all the gradients in the local area will

conform to a particular orientation, causing the circular Gaussian kernel to be

Chapter 3 – Edge-preserving smoothing filters  29

transformed into an ellipsoidal shape like in Figure 3-6. The major axis of the ellipsoidal

shape will match the orientation of the local gradients, which, with displacement, allows

the smoothing kernel to better avoid boundaries.

It turns out that the structure tensor has some level of texture-

suppressing ability. Konishi’s detector, which will be described later in this thesis

(section 5.1), takes advantage of this.

3.3.3 COMBINING RESHAPING AND DISPLACEMENT

Together, the Nitzberg operator works as follows:

(3.8)

Notice that the Nitzberg operator has a similar form to the standard convolution

equation (2.8), except the kernel that is used is the reshaped gaussian, and the

displacement term has been added.

 produces the final result of the Nitzberg operator.

FIGURE 3-7: The Nitzberg operator (right), applied to an image (left). These images are
greyscale, but it is possible to use the Nitzberg operator on colour images as well.

Unlike the bilateral filter, the Nitzberg operator considers the entire sliding window as a

whole when deciding how an area should be smoothed, which is why it is better at

smoothing out texture, as shown in Figure 3-7. However, it has also smoothed out some

of the texture-boundaries slightly. This occurs because the intra-texture gradients

introduce distractions to the displacement process, sometimes causing it to smooth over

boundaries. The Kuwahara filter, introduced next, is able to keep all boundaries sharp,

unlike the Nitzberg operator.

30  Chapter 3 – Edge-preserving smoothing filters

3.4 KUWAHARA FILTER

The Kuwahara filter (Kuwahara, Hachimura, Ehiu, & Kinoshita, 1976) uses variance to

detect and avoid boundaries. Many filters have been developed based upon its original

concept. In particular, the Papari filter (described next in section 3.5) was developed

based on Kuwahara et al.’s work. In turn, the Variance Ridge Detector, which will be

proposed by this thesis, was developed based on the Papari filter. This makes the

Kuwahara filter quite important.

The Kuwahara kernel has this structure:

FIGURE 3-8: The Kuwahara kernel.

The Kuwahara filter considers each pixel p individually. The kernel center is first placed

on pixel p. Then the filter calculates the total variance in each of the neighbouring

regions r0, r1, r2 and r4 (see Figure 3-8), and out of these four regions, it selects the

region that has the lowest variance. The output for pixel p is the average colour in

region .

FIGURE 3-9: The Kuwahara filter (right) applied to an image (left). These images are greyscale,
but it is possible to use the Kuwahara filter on colour images too.

The reason the Kuwahara filter works is that, an edge or boundary by definition will

introduce variance into the image. By intentionally selecting the region of lowest

variance, the Kuwahara filter avoids smoothing over boundaries.

Figure 3-9 shows that the Kuwahara has left the boundaries sharp, unlike the Nitzberg

operator. However, it has also introduced smoothing artefacts throughout the image,

Chapter 3 – Edge-preserving smoothing filters  31

due to its hard-selection process. This can be seen by the way the image now appears to

be made of many coloured patches. This occurs because the Kuwahara filter hard-

assigns each pixel into one of the four regions of its kernel, and so when neighbouring

pixels are assigned to different regions, a sharp change is introduced. The Papari filter,

which will be introduced next, tries to avoid this by using soft-assignment.

3.5 PAPARI FILTER

The Papari filter (Papari, Petkov, & Campisi, 2007) is similar to the Kuwahara filter,

except for two major differences. First, its kernel is circular:

FIGURE 3-10: Papari’s circular kernel.

Kuwahara’s square-shaped kernel has the tendency to distort shapes, which is not useful

for some computer vision applications such as object recognition for example. Papari et

al.’s circular kernel is isotropic, meaning it will not distort shapes.

Secondly, instead of hard-assigning each pixel to one region only, the Papari filter takes

a weighted average of all regions. The regions with higher variance are given smaller

weights, which stops the filter from smoothing over boundaries. If no boundaries are

present and variance is approximately the same in all directions, all regions will be given

approximately equal weight. This means no artefacts will be introduced from an

arbitrary hard-assignment of a pixel to one particular region.

3.5.1 FORMULATION

Let the Papari kernel have sectors, where is a user-defined parameter. Let the

function return 1 if the vector belongs to the angle owned by sector .

r0

r1 r2

r3

r4

r5 r6

r7

32  Chapter 3 – Edge-preserving smoothing filters

(3.9)

Papari et al. chose to use Gaussian weights for their filter, and so each sector has its

own slice
 of the Gaussian kernel :

(3.10)

Using
 , the mean and variance for each sector can be calculated at

each pixel as follows:

(3.11)

For each pixel , the weighting of each sector is inversely related to the variance

of that sector:

(3.12)

The value is an external parameter, set by the user. The larger the value of , the more

the sectors of large variance are avoided. Using the weights, the Papari filter can be

defined as the weighted average of the sectors:

(3.13)

3.5.2 IMAGE RESULTS

Figure 3-11 below illustrates some results of the Papari filter:

Chapter 3 – Edge-preserving smoothing filters  33

FIGURE 3-11: The Papari filter (right) run on a textured image (left). Reproduced from
Papari et al. (2009)

Unlike the Kuwahara filter, the Papari filter does not introduce artefacts into the image

because it does not hard-assign pixels to single regions. Figure 3-11 illustrates this. Also

notice that the Papari filter is able to smooth out all the grass and water textures while

clearly retaining strong inter-texture boundaries.

The Papari filter can distinguish between texture boundaries and texture because,

within the same texture, variance tends to be approximately equal. This will cause all the

sectors of the Papari filter to have the same weight, and so the texture will be smoothed.

When an inter-texture boundary is present, the boundary will introduce high variance

into some of the sectors, causing them to be excluded from the smoothing. The Variance

Ridge Detector, which is proposed later in this thesis, functions based on a similar

mechanism to this.

Despite the excellent results of the Papari filter, its results can still be improved on some

textures. For example, in Figure 3-11, the tree leaf textures have not been smoothed

away completely. This occurs because the smoothing kernel is not large enough in this

case. A larger smoothing kernel can handle textures of larger wavelengths, but the

problem is, it will make the boundaries coarser and less accurate. The mean-shift filter,

introduced next, can smooth out larger scale texture without the boundaries becoming

coarser and less accurate.

3.6 MEAN-SHIFT FILTER

Like the bilateral filter, the mean-shift filter (Comaniciu & Meer, 2002) uses similarity as

part of its edge-preserving smoothing process.

The mean-shift filter is important because it has been developed into a texture-

boundary detector called mean-shift segmentation (section 3). In turn, mean-shift

segmentation lays down the concept of how the real-time texture-boundary detector

34  Chapter 3 – Edge-preserving smoothing filters

called Randomised Hashing (later in section 5.5) works. On top of all this, the mean-shift

filter will be used to introduce the concept of clustering – an important concept which

powers most texture boundaries today.

Mean-shift clustering

Clustering is simply grouping similar observations together. The mean-shift filter works

by grouping pixels that are similar (both chromatically and spatially), and then replacing

each pixel’s value with the average of its cluster. The mean-shift filter uses mean-shift

clustering to achieve this.

In mean-shift clustering, each pixel becomes a point in five-dimensional (space.

Those five dimensions are made up of two dimensions for the spatial coordinates (x and

y), and three dimensions for the colour coordinates (for example, red, green and blue).

An imaginative way to understand mean-shift clustering is to imagine that each of the

 points have gravity. Over time, the points will fall towards each other, and eventually

clouds of points will collapse to a singularity – that is when an entire cloud has collapsed

to occupy the same position in space. Fortunately, images will normally consist of

multiple point clouds which will each collapse to separate singularities. Each one of

these point clouds is a natural cluster of the data. Once the mean-shift clustering process

has run, the clusters can be found by identifying the singularities that have formed.

Using clusters for smoothing

Now that the clusters of pixels have been found, each pixel is simply replaced with the

average colour of its cluster. Figure 3-12 shows an example of what this looks like:

FIGURE 3-12: The mean-shift filter (right) run on the mandrill image (left). Images from
Comaniciu and Meer (2002).

One of the biggest difficulties about the mandrill image in Figure 3-12 is that the eye

regions are small in comparison to the nose, cheek and fur regions. If the Papari filter

Chapter 3 – Edge-preserving smoothing filters  35

were to be used, this means its scale would have to be set small enough so that the eyes

would not be smoothed out, which in turn limits the amount the other, larger-scale

textures can be smoothed. Unlike the Papari filter, the mean-shift filter can function well

on images where the regions are not similarly-sized, as illustrated in Figure 3-12.

The mean-shift filter’s excellent ability to both smooth unequal-sized texture regions

while preserving texture boundaries makes it one of the best edge-preserving

smoothing filters. Its mechanism has been developed into a texture-boundary detector

called mean-shift segmentation.

3.7 CHAPTER SUMMARY

This chapter has investigated five edge-preserving filters, each of which have some

relationship to texture-boundary detection.

Section 3.2 introduced the bilateral filter, which is sometimes used with the Canny edge

detector for non-real-time texture-boundary detection.

Section 3.3 introduced the Nitzberg operator, which is the core of Konishi’s detector,

discussed later in section 5.1.

Section 3.4 introduced the Kuwahara filter, which was built on by the Papari filter in

section 3.5, which in turn was the inspiration for the Variance Ridge Detector in chapter

6.

Section 3.6 introduced the mean-shift filter, which is the core of mean-shift

segmentation (section 4.2) which in turn has inspired boundary detection via

Randomised Hashing (section 5.5).

Other edge-preserving smoothing filters exist which have not been discussed as they are

not related to texture-boundary detection. In particular, Perona and Malik’s (1990)

anisotropic diffusion has not been discussed here.

The next two chapters will investigate how these techniques, and others, have been used

in the field of texture-boundary detection.

36  Chapter 4 – Non-real-time texture-boundary detection

4 NON-REAL-TIME TEXTURE-BOUNDARY DETECTION

Almost all texture-boundary detectors cannot run in real-time because boundary

detection is far too complex a problem. The few real-time texture-boundary detectors

that exist are mostly approximations of non-real-time algorithms. The purpose of this

chapter is to outline the non-real-time algorithms which will be approximated in the

next few chapters. Five non-real-time texture-boundary detectors will be introduced:

normalised cut segmentation, mean-shift segmentation, TextonBoost, the probability of

boundary (Pb) detector and the global probability of boundary (gPb) detector. In

addition to these algorithms, section 4.3 will discuss textons, which is a technique used

by TextonBoost, Pb and gPb, as well as a few of the real-time detectors.

4.1 NORMALISED CUT SEGMENTATION

Shi and Malik (2000) developed normalised cut segmentation by first defining an

objective function which identifies what good boundary detection would look like. They

then developed an algorithm that would optimally solve this objective function. This

section will first discuss the objective function, and then discuss how it is solved. It will

conclude with some image results.

Normalised cut segmentation will only be described briefly here, so see Shi and Malik’s

original paper for a more detailed explanation.

4.1.1 OBJECTIVE FUNCTION

Let be the set of all pixel positions in image , where . The

goal of the normalised cut is to divide into two disjoint subsets, and , so that the cut

simultaneously meets the following two criteria:

 Minimum external similarity – the pixels in each subset must be as different as

possible from the pixels in the other subset.

 Maximum internal similarity – the pixels in each subset must all be as similar as

possible to each other.

The two constraints and mean that the two subsets and

together form a two-class segmentation of the image. This section will describe how the

two criteria can be formulated into two objective functions so that the optimal

segmentation can be found.

Chapter 4 – Non-real-time texture-boundary detection  37

Let be the similarity score between pixels and . Many different scoring

functions can be used – these will be discussed later. Without loss of generality, this

thesis will assume the similarity score is always in the range [0, 1].

Let the subset similarity . This calculates the similarity not

just between pixels, but between two entire subsets and . Let the normalised

similarity from subset to subset be defined as:

(4.1)

This calculates the similarity from to as a proportion of the total similarity score

that belongs . Note that this is not commutative: . This

normalisation is important because each pixel has a positive similarity score, and so

without this normalisation, simply adding more pixels to a subset increases its

similarity. Normalisation eliminates the dependence on the subset size.

Now the objective functions can be defined as follows:

(4.2)

The goal is to find the segmentation of into so that is

minimised and is maximised. Shi and Malik showed that if the

equations are rearranged, ,

which means that these two goals are the same. That means that either objective

function can be optimised and the result will be identical.

4.1.2 SIMILARITY SCORES

The similarity score function can be calculated in many ways. This section will

describe the simplest method – maximum intervening gradient (Leung & Malik,

1998).

Let be the maximum intervening gradient between pixels and . The

process for this is straightforward. Initially, the gradient magnitude at every pixel is

estimated using any method, for example, the Sobel operator (section 2.2). Now

 is defined as the maximum of all of the gradient magnitudes that lie on the line

between and . From here, the similarity score can be defined as:

38  Chapter 4 – Non-real-time texture-boundary detection

(4.3)

In equation (4.3), is a user-defined scaling parameter, which Leung and Malik set to

the standard deviation of the image’s gradient magnitudes. The Figure 4-1 shows what

this might look like for a particular pixel :

FIGURE 4-1: The Sobel gradient magnitude (left) of an image (middle). The function is

equal to the maximum gradient magnitude between p i and p j as illustrated in the left image. The
right image shows the similarity scores of all pixels in the image from pixel p i. Brighter means

more similar. Reproduced from Leung and Malik (1998).

Now that the similarity function has been defined, the objective function is ready to be

solved.

4.1.3 SOLVING THE OBJECTIVE

Let the solution vector be denoted , where equals when

pixel belongs to subset , or when it belongs to subset . There is a process for

finding an approximate optimal solution vector which maximises the objective

function . This subsection will briefly summarise this process,

see Shi and Malik (2000) for full details.

Shi and Malik rearranged the objective function into this:

(4.4)

Now the objective is to minimise to find the optimal solution

 , and then can be extracted from . This rearrangement of the objective function is

pi

pj

Chapter 4 – Non-real-time texture-boundary detection  39

a Rayleigh quotient, which already has a proven solution process if the problem is

relaxed and is allowed to take real values. It can be shown that the eigenvector of the

matrix that has the second-smallest eigenvalue is equal to the optimal real-

valued solution of . The reason it is the second smallest and not the first is because the

first eigenvector will be entirely ones, which is not useful.

So once is found using an eigensolver (the Lanczos eigensolver algorithm is well-

suited to this case), the optimal real-valued solution has been found.

4.1.4 BINARISING THE SOLUTION

Normally, the optimal solution vector is not extracted from the optimal vector as

 already indicates the optimal solution sufficiently. This can be seen on some example

images by reshaping back into an image shape:

FIGURE 4-2: An image (left) and its optimal solution eigenvector (right) reshaped into the
image’s shape. Reproduced from Shi and Malik (2000).

Figure 4-2 clearly shows that the solution eigenvector is a real-valued vector. To

convert into a two-class segmentation, is simply thresholded. Normally, the

threshold level is found by trying many different levels, and the threshold level that best

satisfies the dual objective functions is taken.

4.1.5 SUBDIVIDING FURTHER

Running the process just described will divide the image into two segments. This

process can be repeated to further subdivide those segments. One particular problem

with this is that it is slow to run the entire normalised cut algorithm multiple times in

order to subdivide the image further. There is a way to speed this up.

Section 4.1.3 stated that if the eigenvectors are sorted by ascending eigenvalue, the first

eigenvector is not useful, while the second eigenvector represents the optimal real-

valued solution. It turns out that the third eigenvector and above also contain some

information about further subdivisions in the image, although the eigenvectors get less

and less accurate as the eigenvalues increase. In their paper, Shi and Malik describe a

40  Chapter 4 – Non-real-time texture-boundary detection

way to use these higher eigenvalues to achieve a slightly approximated solution in order

to achieve greater speeds.

4.1.6 IMAGE RESULTS

These are some results from running normalised cut segmentation (Barnard, Duygulu,

Guru, Gabbur, & Forsyth, 2003):

FIGURE 4-3: The normalised cut on some images. Reproduced from Barnard et al. (2003)

As the normalised cut is always looking for a global solution, it generally is not

distracted by intra-texture edges, as Figure 4-3 shows. It has two major problems

though.

First, it is not able to run in real-time, due to its intensive high-dimensional eigensolver

stage.

Second, normalised cut segmentation suffers from the “broken sky” problem. Take the

example of the sky, shown in three of the images above. The sky smoothly changes from

dark to light, and vice versa, throughout the image. That means, some parts of the sky

are quite dissimilar to other parts of the same sky, and so it is optimal for normalised cut

segmentation to cut the sky into pieces to in order to achieve maximum internal

similarity.

Mean-shift segmentation, which will be introduced next, does not suffer from the

“broken sky” problem.

4.2 MEAN-SHIFT SEGMENTATION

Previously, section 3.6 already described the mean-shift filter, which is the basis of

mean-shift segmentation (Comaniciu & Meer, 2002). Mean-shift segmentation first

takes the mean-shift filtered image, and splits it into a number of initial regions. Initially,

each spatially-contiguous island of equally-coloured pixels becomes one region. A

boundary is detected at all positions where two neighbouring pixels belong to a

different region.

Chapter 4 – Non-real-time texture-boundary detection  41

Unfortunately, using the initial regions directly from the mean-shift filter is not useful.

Recall that mean-shift filtering works by clustering pixels together. As there is no

requirement that a cluster must be spatially-contiguous, the initial regions will consist of

many, small, disconnected, interwoven regions. This is illustrated in Figure 4-4:

FIGURE 4-4: This is the top-right section of the mean-shift filtered mandrill image that was
originally shown in Figure 3-12. Adapted from Comaniciu and Meer (2002).

There are five different clusters represented in Figure 4-4, yet because they all overlap

and are not required to be spatially-contiguous, there are probably around one hundred

separate regions of pixels, most of them only a few pixels large.

To deal with this, mean-shift segmentation imposes a minimum region size. Any regions

smaller than the minimum region size are simply combined to the neighbouring region

of most similar colour. The regions are repeatedly combined until all regions meet the

minimum region size requirement. At that point, mean-shift segmentation has finished,

and a boundary is detected wherever two neighbouring pixels belong to different

regions.

4.2.1 IMAGE RESULTS

The minimum region size requirement of mean-shift segmentation gives it a certain

amount of ability to ignore intra-texture boundaries, as illustrated in Figure 4-5 below:

42  Chapter 4 – Non-real-time texture-boundary detection

FIGURE 4-5: Mean-shift segmentation on example images. Reproduced from Comaniciu and
Meer (2002).

As the above figure shows, mean-shift segmentation is an excellent texture-boundary

detector. However it has two problems. First, it is not able to run in real-time, because

its clustering process must iterate over the image many times in order to converge.

Second, it subdivides some textured areas, introducing boundaries in places where they

should not exist. In Figure 4-5 this is illustrated in some of the grass and tree textures.

This occurs because mean-shift segmentation has no explicit understanding of texture,

and so it cannot see that differently-shaded grass areas are all actually the same texture

and so should not be subdivided. The next section presents textons, which allow an

algorithm to explicitly model texture and overcome this problem.

4.3 TEXTONS

Many state-of-the-art texture-boundary detectors use textons to recognise or

distinguish between textures. The purpose of this section is to detail the texton

technique as it will be used by most of the remaining boundary detectors in this thesis.

4.3.1 THEORY: AUTOCORRELATION

Central to the idea of textons is the idea of that texture is autocorrelated. That means,

within a texture, there is normally some mathematical relationship between each pixel

and other nearby pixels. By definition, texture repeats with a particular pattern, and so

Chapter 4 – Non-real-time texture-boundary detection  43

of course the value of each pixel cannot be entirely random and independent of its

neighbours.

Every texture has its own unique autocorrelation pattern, which can be used to

distinguish it from all other textures.

Example of an autocorrelation pattern

The following example has been adapted from Varma and Zisserman’s (2003) paper.

Three samples of texture are shown in the Figure 4-6. Two of the samples are of the

same texture.

FIGURE 4-6: Three samples of textures. Samples B1 and B2 are different samples of the same
texture. Adapted from Varma and Zisserman (2003).

The graph below plots two features against each other: (1) the brightness value of each

pixel , and (2) the brightness of an offset pixel where . In

words, this means that each pixel is plotted against another pixel which is two pixels

right and two pixels down. Each sample of texture has been plotted separately in a

different colour in order to illustrate how they can be differentiated.

Sample A Sample B1 Sample B2

44  Chapter 4 – Non-real-time texture-boundary detection

FIGURE 4-7: A plot of offset brightness values in all three samples of texture . Adapted from
Varma and Zisserman (2003).

What is most obvious in Figure 4-7 is that there are two separate clusters of data.

Sample A has clustered to the lower-left part of the graph, while samples B1 and B2 have

both clustered to the upper-right part of the graph. The fact that the data has formed

clusters indicates that the two features are not independent, but are actually correlated.

If they were independent, there would be no obvious pattern between the two features.

Furthermore, since two features are both extracted from the same texture, this says that

these textures are correlated with themselves. That is, they are autocorrelated.

So each texture class will form clusters in different parts of the feature space. The word

“clusters” is plural here because often the same texture will generate multiple clusters at

different places in the feature space. In the context of texture, one of these clusters is

called a texton.

Different samples of the same texture class will form the same textons, while samples

from the different texture classes will form different textons. In other words, each

texture class has its own characteristic set of textons, like a fingerprint. Each texture’s

“fingerprint” is different, which means textures can be recognised and distinguished.

This is the basis of the texton technique.

Sample A

Sample B1

Sample B2

0

128

255

0 128 255

Chapter 4 – Non-real-time texture-boundary detection  45

4.3.2 FEATURES

Let the function calculate the feature vector for pixel . In the previous section,

 would have been defined like this:

(4.5)

There are many ways to extract features; this method above is only simple illustrative

example. In practice, two simple features like this do not have enough information to

distinguish between textures. That is why, more commonly, convolution is used for

feature extraction. In this approach, the algorithm will have a filter bank

 , that consists of a number of convolution kernels . Now, the feature

vector will be calculated by convolving the image with all the kernels in the filter bank:

(4.6)

TextonBoost (Shotton J. , Winn, Rother, & Criminisi, 2009), one of the best texture-

boundary detectors today, uses the Winn-Criminisi-Minka filter bank (2005):

FIGURE 4-8: In reading order, the Winn-Criminisi-Minka (2005) filter bank consists of four
scales of Laplacian of Gaussian kernels, three scales of Gaussian kernels, and fo ur scales of

Gaussian first derivative kernels. These kernels have had their values scaled to the [0,1] range
so they could be viewed.

One thing to notice about the Winn-Criminisi-Minka filter bank is that, the same filters

are repeated at different scales. This ensures that textures will be able to be

distinguished, regardless of their scale.

In general, any filter bank will be comprised of two categories of filters – comparison

filters and averaging filters.

46  Chapter 4 – Non-real-time texture-boundary detection

Comparison filters

Comparison filters compare one part of the texture to another, similar to the example in

section 4.3.1.

In the Winn-Criminisi-Minka filter bank, the Gaussian first-derivative and Laplacian

kernels belong to this category. For each sliding window, the Gaussian first-derivative

compares one side of to the other, while the Laplacian compares the inside to the

outside. Naturally, some textures will cluster more uniquely with the Gaussian first-

derivative while others will cluster more uniquely with the Laplacian, so it is good to

have both.

Averaging filters

Averaging filters extract the average colours that comprise a texture. Obviously, textures

often have a normal colour – grass is usually green, while the sky is usually blue for

example. So extracting average colour information is useful for distinguishing between

textures.

In the Winn-Criminisi-Minka filter bank, the averaging filters are the three Gaussian

kernels. They extract a Gaussian-weighted average of the local colour around each pixel

at various different scales. Naturally, if a texture has a usual colour or colours, then its

average colour values will cluster in a characteristic way, enabling it to be recognised.

4.3.3 LEARNING TEXTONS WITH K-MEANS CLUSTERING

The texton technique must first learn textons in a training stage before they can be used.

This is done from a set of training images.

Initially, a large set of features are extracted from a training set of images using the

previously-defined feature-extraction function . Let this training feature set be

denoted , where each is a feature vector sampled from a

training image. Now, the textons are simply the clusters in the training set . Normally,

k-means clustering (Lloyd, 1982) is used to find these clusters.

K-means clustering

K-means clustering is a method to automatically find exactly clusters (or more

specifically, textons) in the set of feature points . The number of clusters is set as an

external parameter to the clustering algorithm. This is different to other clustering

algorithms, such as mean-shift clustering (section 3.6), where the number of clusters

Chapter 4 – Non-real-time texture-boundary detection  47

arises organically. In the case of textons, previous researchers have set to values as

low as and as high as .

In k-means clustering, a cluster is defined by its central point . Let

be the set of cluster centers. As the feature points exist in space, where is the

number of features in a feature vector, each cluster center is also an point in the

feature space.

From here, the cluster of a feature point can be determined by :

(4.7)

Basically, a feature always belongs to its closest cluster. The function only

returns the index of the cluster, while returns the actual cluster center. Given

these definitions, k-means clustering proceeds as follows:

ALGORITHM 4-1

1. Initialise to be a set of random of cluster centers.

2. Let . In words, is the set of training features that

belong to cluster .

3. Let for all . In words, move each cluster to the mean of the

features in the cluster.

4. If the clusters moved a total distance less than , a final set of clusters has been

found, so return . The parameter should be set to a small value.

5. Go back to step 2

To ensure a good result, Algorithm 4-1 is run multiple times from multiple different

random starting clusters, and the most compact set of clusters is chosen. Compactness

can be measured as follows:

(4.8)

Now that the clusters are known, it is possible to textonise images.

48  Chapter 4 – Non-real-time texture-boundary detection

4.3.4 TEXTONISING IMAGES

Textonising is the process of transforming an image into a texton map . A

texton map is an image which describes which texton each pixel has been assigned to.

The textonisation of pixel in image is defined as:

(4.9)

Basically, the above equation states that each pixel in the image is assigned to its nearest

texton. The textons will have already been decided through clustering, as described in

the previous section.

Notice that the texton map consists of the texton indices. So if there are

 , then each pixel in the textonised image will be an integer in the

range [1, 100].

4.3.5 IMAGE RESULTS

Many texton-based algorithms exist. Figure 4-9 shows three texton map examples from

three different algorithms.

FIGURE 4-9: Texton map examples taken from some existing algorithms. Top left pair is from
TextonBoost (section 4.4), which uses textons. Bottom left pair is from the Texton

Ridge Detector (proposed in chapter 7), which uses textons. The right pair is from the
probability of boundary detector (section 4.5), which uses textons. The texton maps

have been false-coloured – each texton is rendered in a different colour.

The key point to notice is that each texture is made up of a different distribution of

textons. This is particular noticeable in the tiger image (bottom left of Figure 4-9), where

the tiger itself and the water surrounding the tiger have clearly different texton

distributions, even if they share some textons.

Different algorithms use the texton map in different ways. The next sections will discuss

the two main approaches by introducing three different algorithms:

Chapter 4 – Non-real-time texture-boundary detection  49

 TextonBoost (section 4.4) tries to learn how to recognise textures from the

texton map. It does extremely well at this problem, but suffers from being

inflexible because it always must be trained on a limited number of textures.

 The probability of boundary detector (section 4.5) takes a flexible approach

which can work with an unlimited number of textures, but unlike TextonBoost, it

does not attempt to find a globally-optimal solution.

 The global probability of boundary detector (section 4.6) improves the

probability of boundary detector so that it attempts to find a globally-optimal

solution.

4.4 TEXTONBOOST

TextonBoost (Shotton J. , Winn, Rother, & Criminisi, 2009) is one of the most influential

texture-boundary detectors. Both real-time and non-real-time texture-boundary

detectors have been based on its concepts.

In the 2009 paper, TextonBoost was trained to recognise 23 different textures. It does

this by learning from human-labelled training images such as the ones below in Figure

4-10:

FIGURE 4-10: TextonBoost learns from human-labelled images like these. Reproduced from
Shotton et al. (2009)

TextonBoost simultaneously tries to achieve not only pixel-perfect boundary detection,

but also texture recognition, as shown in Figure 4-11:

50  Chapter 4 – Non-real-time texture-boundary detection

FIGURE 4-11: The result of applying TextonBoost to some images. Notice its high -quality
boundaries. Reproduced from Shotton et al. (2009)

TextonBoost has a number of parts to it. First, it has a training phase, where it learns to

recognise textures from textons. Second, it has a recognition phase, where it classifies

new images using the model that it has learnt. The recognition phase can be split into

two parts:

1. Soft-assignment. TextonBoost maps textons to textures using a technique

called texture-layout filters. Soft-assignment means that each pixel is not

assigned to a single texture class yet. Instead, the soft-assignment for a pixel

consists of the likelihoods of it belonging to each of the textures.

2. Hard-assignment. From there, TextonBoost uses an alpha-expansion graph

cut to hard-assign the pixels to texture based on what appears to be globally

optimal.

Each of these parts will be discussed individually.

4.4.1 TEXTON FEATURES

Before any texture processing can occur, the images must first be textonised. This is

done in the same way as described in section 4.3, using the Winn-Criminisi-Minka filter

bank (2005) shown in Figure 4-8. TextonBoost was trained with textons in its

original paper.

Chapter 4 – Non-real-time texture-boundary detection  51

4.4.2 TEXTURE-LAYOUT FILTERS

The soft-assignment of pixels to textures is done using texture-layout filters.

A texture-layout filter generates a response equal to the frequency of a texton within a

particular offset rectangle, as illustrated in Figure 4-12:

FIGURE 4-12: (a) An image. (b) One example of a texture layout filter. (c) The texture layout
filter, applied to different areas of the image. Reproduced from Shotton et al. (2009)

The texture-layout filter shown in Figure 4-12 generates a response for the pixel

denoted by the yellow cross by counting the frequency of texton within the offset

rectangle . Figure 4-12(c) shows three representative placements of the texture-layout

filter:

 At position , the texture-layout filter will generate a 0% response, as texton

does not occur in the offset rectangle .

 At position , the response will be approximately 100%, as texton occurs at

almost every pixel in the offset rectangle .

 At position , the response will be approximately 50%, as texton occurs in

approximately 50% of the offset rectangle .

TextonBoost will transform this filter response into a vote for one or more textures. The

strength of the vote will be proportional to the response. The votes from an ensemble of

texture-layout filters are tallied together to find each pixel’s soft-assignment.

TextonBoost also uses other visual cues – namely colour and pixel location – to cast

votes for textures as well. However, these cues are secondary to the texture-layout

filters, and so will not be discussed here.

Learning the texture-layout filters

Before any textures can be recognised, TextonBoost must first learn the ensemble of

texture-layout filters in its training stage. It does this using a machine learning technique

called boosting.

(a) (b) (c)

52  Chapter 4 – Non-real-time texture-boundary detection

Shotton et al. (2009) trained TextonBoost with two thousand texture-layout filters so

that it could recognise 23 different textures. Boosting is made up of many rounds, where

each round of boosting trains one additional texture-layout filter. Consequently, this

would have required two thousand rounds of boosting.

In the case of TextonBoost, each boosting round is a random search algorithm. That is, in

each round, a large number of random candidate texture-layout filters are tried, and the

“best” one is chosen. The “best” texture-layout filter is basically the most accurate one –

that is, the one that votes for the correct texture the highest proportion of the time. The

exact details of how boosting works in TextonBoost can be seen in the TextonBoost

paper.

Once the soft-assignments have been generated by the texture-layout filters, the pixels

must then be hard-assigned to textures. This is done using an alpha-expansion graph

cut. The next section (section 4.4.3) will explain why an alpha-expansion graph cut is

needed at all. This section is important because two of the real-time texture boundary

detectors attempt to remove the alpha-expansion graph cut stage, to varying levels of

success. The section after that (section 4.4.4) will discuss the minimum cut, which forms

the basis of the alpha-expansion graph cut (section 4.4.5).

4.4.3 WHY NOT JUST HARD-ASSIGN A PIXEL TO ITS MODAL TEXTURE?

Whenever texture is involved, the local soft-assignments must be combined with the

local context in order to make a high-quality hard-assignment of pixels to textures. If

this is not done, the resulting boundary map will be very noisy. Consequently, simply

assigning a pixel to its most likely texture (its modal texture) will produce a low-quality

boundary map because it does not consider any local context. One of the best examples

of this is in the results of a texture-boundary detector developed by He, Zemel and

Carreira-Perpinan (2004), shown in Figure 4-13.

Chapter 4 – Non-real-time texture-boundary detection  53

FIGURE 4-13: The effect of post-processing on He et al .’s (2004) texture-boundary detector.
Columns from left to right: (1) the original image, (2) the human -assigned ground truth, (3) the
output of the algorithm when each pixel is hard-assigned to its modal texture, (4) the output of
the algorithm when hard-assignment is done with an alpha-expansion graph cut. Adapted from

He et al. (2004)

He et al. were the original proponents of using an alpha-expansion graph cut to smooth

the textures calculated by a texture-boundary detector, and their results in Figure 4-13

clearly show how much difference this makes. The unsmoothed results are highly noisy,

while the smoothed results are substantially more accurate.

The reason why smoothing is so necessary is as follows. Texture potentials are

calculated from local features, and so they are heavily subject to local pixel variations.

This makes it absolutely necessary to integrate these local features with their local

context to produce a good image-level interpretation of the textures in the image. The

alpha-expansion graph cut, used by TextonBoost, does exactly this.

4.4.4 THE MINIMUM CUT

Understanding the alpha-expansion graph cut first requires understanding its most

essential component – the minimum cut.

Image Ground truth Modal texture Postprocessed

54  Chapter 4 – Non-real-time texture-boundary detection

The purpose of minimum cut segmentation (Ford & Fulkerson, 1956; Greig, Porteous, &

Seheult, 1989) is to divide an image into two separate classes. This section will explain

the minimum cut with a graphical example, using the image below:

FIGURE 4-14: This image is made up of both dark and light pixels. The numbers overlaid
on each pixel are the pixel brightness values, where all brightnesses are in th e range [0, 1]. The

minimum cut will be demonstrated on this image.

The above example image has two classes of pixels – dark and light. In this example, the

goal of minimum-cut segmentation is to find the cut which best separates the dark class

from the light class. This is not straightforward because there is some intra-class

variation.

Converting the image to a graph

The minimum cut algorithm first converts an image into a graph, as illustrated on the

example image below:

FIGURE 4-15: The example image, converted to a graph. The large nodes on the left and right
side are class nodes, while the nine nodes in the middle are the pixel nodes – one for each pixel.

In the image graph, each pixel is represented as a pixel node. Additionally two class

nodes are created for each of the two classes. In Figure 4-15, the dark class is

0.9

0.8

0.9

0.3

0.4

0.9

0.9

0.2

0.8 1.0

0.8

0.5

0.9

0.7

0.8

0.7

0.9

0.9

0.1 0.2

0.3 1.0

0.2 0.8

0.9

0.9

0.7

Chapter 4 – Non-real-time texture-boundary detection  55

represented by the large dark node on the left, while the light class is represented by the

large light node on the right.

An arc connects each of the pixel nodes to its neighbours. Also, the pixels on the sides

have been connected to the class nodes. Normally, each class node would be connected

to every pixel node in the entire image. This has not been done to make the example

look clearer. Without loss of generality, this example has been engineered so that the

result will still be the same with this simplification.

The minimum cut algorithm requires all the arcs of the graph to be given a weight,

where the weight is a similarity score. This similarity score can be calculated in a

multitude of ways. The example will use the simplest ways possible.

In this example, the similarity of two pixel nodes can be defined as follows. First the

difference in their brightness values is taken, and then the difference is subtracted from

the maximum brightness value to make it a similarity score and not a difference score. If

the two pixels are denoted by and , then the similarity score between them is

defined as: . The in this equation is used because it is the maximum

brightness value.

The similarity of a pixel node to a class node will be calculated by simple colour

similarity in this example. Therefore, the similarity of a pixel to the dark class node

will be: . Likewise, the similarity of a pixel to the light class node will be:

 .

The similarity scores of the example image according to these calculations can be seen

above in Figure 4-15 where each arc has been given a weight equal to its similarity

score.

Finding the minimum cut

In graph theory, a cut is defined as a set of arcs which, when removed (or “cut”), divide

the graph into two disjoint subsets. In this context, each cut will have a cost, where the

cost is the sum of the weights of the arcs that are cut. The minimum cut is the cut which

has the minimum cost. In this case, the cut of minimum cost is equivalent to the cut of

maximum dissimilarity, which makes it useful for boundary detection.

The minimum cut can be found exactly by applying a simple algorithm (Ford &

Fulkerson, 1956):

56  Chapter 4 – Non-real-time texture-boundary detection

ALGORITHM 4-2: The minimum cut algorithm.

1. Find the shortest path p between the class nodes.

1.1. If no path exists, the minimum cut has been found, so stop.

2. Let m = the minimum value of all arcs on path p.

3. Subtract m from all arcs on that path p.

4. Cut any arcs that are now equal to zero.

5. Go back to step 1.

The following series of figures show how the minimum cut algorithm listed in Algorithm

4-2 will eventually progress to the optimal solution.

FIGURE 4-16: The shortest path is found (shown in red), and its minimum value is subtracted
from all arcs on the path. One of the arcs becomes zero, and so it is cut (shown in the next

figure).

0.9

0.8

0.9

0.1

0.4

0.9

0.9

0.0

0.8 1.0

0.8

0.3

0.9

0.5

0.8

0.5

0.9

0.9

Chapter 4 – Non-real-time texture-boundary detection  57

FIGURE 4-17: One of the arcs has been cut (dotted blue line). The algorithm repeats. The
shortest path (in red) cannot cross the arc that was just cut, so that is why the shortest path has

changed. Again, the minimum is subtracted from the shortest path. One of the ar cs becomes
zero, and so it is cut (shown in the next figure).

FIGURE 4-18: Two arcs have now been cut. The algorithm repeats, and another arc is cut
(shown in next figure).

FIGURE 4-19: Now three arcs have been cut. The algorithm repeats and cuts another arc
(shown in next figure).

0.6

0.8

0.9

0.0

0.8

0.5

0.8 1.0

0.8

0.6

0.4

0.4

0.2

0.8

0.5

0.6

0.8

0.9

0.4

0.8

0.9

0.8 1.0

0.8

0.0

0.6

0.4

0.8

0.2

0.8

0.9

0.9

0.8

0.9

0.0

0.4

0.8

0.9

0.8 1.0

0.8

0.3

0.9

0.4

0.8

0.5

0.8

0.9

58  Chapter 4 – Non-real-time texture-boundary detection

FIGURE 4-20: Now four arcs have been cut. Now no path exists between the two class nodes, so
the algorithm has finished. The minimum cut is shown as a thick blue line.

Figure 4-20 above shows the final result of the algorithm on the example initially shown

in Figure 4-14. Notice that the minimum cut algorithm has perfectly separated the dark

pixels from the light pixels. The class of a particular pixel can be found by tracing the

graph to find out which of the class nodes it is connected to. This illustrates one of the

most important characteristics of minimum-cut segmentation – it always finds the

optimal solution.

As its similarity scoring functions are fully customisable, it is possible to use the

minimum cut to solve a much more complicated texture-based boundary detection

problem. The problem is though, the minimum cut algorithm can only ever separate two

classes. TextonBoost needs to be able to separate between many more than two classes

in order to be useful. For this reason, the alpha-expansion graph cut was developed.

4.4.5 ALPHA-EXPANSION GRAPH CUTS

Alpha-expansion graph cuts (Boykov & Jolly, 2001) are a workaround to the problem of

a graph cut only being able to separate two classes.

Initially, TextonBoost begins with a simple solution, where each pixel is assigned to its

most likely texture. TextonBoost then repeatedly uses an alpha-expansion graph cut to

improve the solution. When the solution stops improving, TextonBoost stops and

returns that solution as the final hard-assignment.

An alpha-expansion graph cut works like this. Let the set of all textures be denoted

 . TextonBoost chooses one of the textures and calls it , where

 . Now each pixel must now make a decision to either:

1. Remain as its current texture , or

0.6

0.8

0.9

0.8

0.5

0.8 1.0

0.8

0.6

0.4

0.4

0.2

0.8

0.5

Chapter 4 – Non-real-time texture-boundary detection  59

2. Switch to the new texture

Clearly, the alpha-expansion graph cut problem has two classes, and so it can be solved

optimally using the minimum cut. The weights of the graph can be calculated easily

because each pixel’s affinity to each of the textures is already known from the soft-

assignment stage.

The alpha-expansion graph cut is applied repeatedly in this manner. To ensure there is

no bias in the results, each texture in should get a chance to be an equal number of

times over the course of the hard-assignment stage. Eventually, this process will

converge on a strong local maximum, and this is the final result of TextonBoost.

4.4.6 IMAGE RESULTS

Figure 4-21 shows some examples of how TextonBoost performs.

60  Chapter 4 – Non-real-time texture-boundary detection

FIGURE 4-21: Some example results of TextonBoost. Reproduced from Shotton et al. (2009)

As Figure 4-21 shows, TextonBoost produces excellent boundaries and can recognise

texture well. It has two problems though. First, it is unable to run in real-time, primarily

because of its iterative alpha-expansion graph cut stage. Second, it is always limited to

the textures that it is trained to recognise, which limits its practical applications to

Chapter 4 – Non-real-time texture-boundary detection  61

controlled conditions. The probability of boundary detector, introduced next, does not

have this problem.

4.5 PB: THE PROBABILITY OF BOUNDARY DETECTOR

Like TextonBoost, the probability of boundary (Pb) detector (Martin, Fowlkes, & Malik,

2004) uses textons to find boundaries. However, it takes a very different approach from

TextonBoost. The Pb detector calculates the local change in texton distributions as the

texton gradient. It then performs ridge detection on the texton gradient (called

localisation in the original paper). Finally, a logistic regression model combines the

texton ridges with some other visual cues to produce a boundary map. Each of these

stages will be discussed individually.

4.5.1 TEXTON FEATURES

The Pb detector uses 13 filters to extract features for textonisation. This filter bank is

illustrated below in Figure 4-22:

FIGURE 4-22: The filter bank used by the Pb detector. Reproduced from Martin et al. (2004)

This is different from the Winn-Criminisi-Minka (2005) filter bank shown in Figure 4-8

in a three main of ways. Firstly, there is only one scale of filters. Martin et al. (2004)

found that multiscale integration was not necessary when the textons are combined

with other visual cues. Secondly, all filters are oriented, except for the center-surround

filter. This allows it to distinguish between different orientations of the same texture.

Thirdly, there are no averaging filters (described in section 4.3.2), which means textons

do not depend on colour. Instead, Pb integrates colour separately.

In the original paper, Pb was trained with textons, using the k-means clustering

algorithm as normal.

62  Chapter 4 – Non-real-time texture-boundary detection

4.5.2 TEXTON GRADIENTS

Pb calculates texton gradients using a circular kernel split into two half-discs:

FIGURE 4-23: The Pb kernel, used to calculate gradients, shown at two orientations. The left
one calculates horizontal gradients, the right one calculates vertical gradients.

As Figure 4-23 shows, the circular kernel can be oriented in different ways. At any

particular orientation , the kernel is split into two regions, which will be denoted

and
 .

The texton gradient for pixel and orientation is calculated by the following process.

The kernel is centered on pixel , which establishes which of the surrounding pixels

belong to
 and

 . Now the frequency of each texton is counted in both regions. This

generates two texton histograms,
 and

 , one each for regions
 and

respectively. The texton gradient is equal to the chi-squared distance

between the two histograms:

(4.10)

The texton gradients are calculated at orientations. Martin et al. chose to use

orientations in their original paper.

4.5.3 RIDGE DETECTION

Normally, the texton gradient process will produce large, spatially-extended responses

for each boundary. This is because texton gradients are built from a large area of

support, and so a single texture boundary will influence a wide area. Ridge detection is

needed to “thin” the responses so that they are better localised.

Ridges in the texton gradient are detected within each orientation

separately, using this formulation:

Chapter 4 – Non-real-time texture-boundary detection  63

(4.11)

In equation (4.11) above, the function is the texton gradient for one

particular orientation . This has been defined to make the equations simpler.

The function estimates the distance to the nearest ridge. The general concept is,

dividing the texton gradient by the distance should cause the texton gradient

to be emphasised infinitely on ridges, where .

In practice, a few modifications have to be made to the formulation presented in (4.11):

 (4.12)

In equation (4.12) above, a small value is added to the to ensure computational

divide-by-zero errors do not occur. Also, as is merely a ridge estimate, some ridges

may exist where , and so ensures these are still detected as ridges.

The smoothed texton gradient is used in equation (4.12) to avoid the double

response phenomenon. That is, it is normally a boundary causes two gradients, one on

either side, instead of a single response on the actual boundary. Smoothing allows the

response to occur directly on the boundary itself.

The function , can be calculated by using a Gaussian blur (section 3.1) of . The

function can be calculated by convolving with the Gaussian derivative

(section 2.4.1). Convolving again with another Gaussian derivative will yield

 . In their original paper, Martin et al. calculated , and by

fitting a parabola, but they also stated that the Gaussian method described here

generated similar results.

After this, the Pb detector combines the texton ridges with other visual cues to

improve the detection further.

4.5.4 COMBINING WITH OTHER VISUAL CUES

The texton gradient does not detect changes in colour, just texture. This can cause it to

miss some important boundaries. For this reason, Pb also calculates a colour gradient,

and combines it with the texton gradient.

64  Chapter 4 – Non-real-time texture-boundary detection

Colour gradient

The colour gradient is calculated in the same way as the texton gradient, except

colour histograms, not texton histograms, are constructed. Like the texton gradient, the

colour gradient is also equal to the chi-squared distance between the histograms.

Martin et al. also experimented with ridge detection on the colour gradient, but found it

did not make any difference. Consequently, ridge detection is only performed on the

texton gradient.

Logistic regression model

The texton gradient and colour gradient are combined using a logistic regression model.

A logistic regression model takes a weighted sum of its inputs, then transforms them

using a logistic function:

(4.13)

This model is illustrated in Figure 4-24:

FIGURE 4-24: An illustration of Pb’s logistic regression model.

The logistic function in particular has been chosen because it works as a soft-threshold

function – it does not hard-assign input values to either zero or one, but instead will

soft-assign them to a real number between zero and one. Figure 4-25 illustrates this

with a plot of for various values of .

Texton gradient

Colour gradient

1

Output

Logistic function

wt

wc

w0

Chapter 4 – Non-real-time texture-boundary detection  65

FIGURE 4-25: The logistic function.

Notice in Figure 4-25 above, the logistic function is almost zero for , and it is

almost one for . In the area close to , the logistic function gradually changes

from zero to one. This behaviour makes the logistic function work like a soft-threshold

function.

As Figure 4-14 shows, the logistic regression model used by the Pb detector takes three

inputs: the texton gradient, the colour gradient, and a constant value of 1. The weighted

constant input is needed because it allows the threshold level of the logistic function to

be set.

The Pb detector first learns the optimal logistic function model from the 200 training

images of Berkeley dataset (which will be detailed later in section 8.1). Learning is

possible because each image in the Berkeley dataset has a human-defined ground truth.

In the training stage, the texton and colour gradients are first calculated on each of the

training images. Then, using these as inputs, the weights of the logistic regression model

are optimised so that the output of the model best matches the ground truth. Newton-

Raphson’s method is used for the optimisation process.

The output of the logistic regression model is the final boundary map for the image.

4.5.5 IMAGE EXAMPLES

The Pb detector produces results such as the ones in Figure 4-26:

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

L
o

g
is

ti
c(

x
)

x

66  Chapter 4 – Non-real-time texture-boundary detection

FIGURE 4-26: A series of results from the probability of boundary (Pb) detector. Original
images are on the left, and their boundary maps are on the right. Original images are from the

Berkeley dataset (Martin et al. , 2001).

The images above in Figure 4-26 show that the Pb detector is able to suppress most of

the smaller scale textures (such as grass), but it still struggles with some of the larger

scale textures (such as the zebra stripes). This is because, unlike normalised cut

segmentation, mean-shift segmentation and TextonBoost, the Pb detector only

interprets the image at the local level, as opposed to the image level. The next section

will discuss the global probability of boundary detector, which integrates the

normalised cut with the Pb detector so that it can handle these larger-scale textures as

well.

Another problem with the Pb detector is that it cannot run in real-time. It requires

thirteen convolutions for each of the thirteen filters in its filter bank, and then its ridge

Chapter 4 – Non-real-time texture-boundary detection  67

detection stage requires three convolutions per orientation. Any algorithm with this

many convolutions simply cannot run in real-time.

4.6 GPB: THE GLOBAL PROBABILITY OF BOUNDARY DETECTOR

The global probability of boundary (gPb) detector (Maire, Arbelaez, Fowlkes, & Malik,

2008) is essentially a modified normalised cut (section 4.1), with two differences.

The normalised cut traditionally uses gradient magnitude for its similarity score (as

described in section 4.1.2). The gPb detector instead uses the result of the probability of

boundary detector. This gives the normalised cut algorithm texture-awareness.

Also, the normalised cut traditionally splits the image into only two segments because it

only uses the information from one of the eigenvectors. The gPb detector modifies this

stage so that more than two segments can be detected. It does this by taking the gradient

magnitudes for the first eigenvectors, and summing them together. This works

because as section 4.1.5 stated, the higher eigenvectors contain information on further

subdivisions of the image. Maire et al. set the parameter in their original paper.

The gradient magnitude is used because it avoids hard-assigning each pixel into two

classes like the traditional binarising process. The gradients can be calculated by

convolving with Gaussian derivatives (already explained in 2.4.1).

All other stages of the gPb detector are identical to the normalised cut.

4.6.1 IMAGE EXAMPLES

The gPb detector produces results such as shown in Figure 4-27 on some example

images:

68  Chapter 4 – Non-real-time texture-boundary detection

FIGURE 4-27: The gPb detector (right) versus the Pb detector (middle) on some example

images (left). Original images are from the Berkeley dataset (Martin et al., 2001).

Notice in the images above that the global probability of boundary detector has

produced a much higher-quality image interpretation because it integrates the

information at a global scale.

The global probability of boundary detector is one of the best boundary detectors

currently. It has the highest score of all algorithms on the Berkeley benchmark

(described later in section 8.1). Unfortunately, as gPb is a combination of two already

non-real-time algorithms – normalised cut segmentation and the Pb detector, it is not

possible for it to run in real-time.

4.7 CHAPTER SUMMARY

This chapter has discussed the inner workings of five excellent texture-boundary

detectors: normalised cut segmentation, mean-shift segmentation, TextonBoost, the

probability of boundary detector, and the global probability of boundary detector.

Normalised cut segmentation produces optimal results according to an objective

function, but it suffers from the “broken sky” problem.

Mean-shift segmentation avoids the “broken sky” problem, but it sometimes finds intra-

texture boundaries as opposed to inter-texture boundaries because it has no explicit

understanding of texture.

TextonBoost explicitly learns and models texture, but it is always limited to the textures

it is trained on, and so can only really be used in controlled conditions.

Chapter 4 – Non-real-time texture-boundary detection  69

The probability of boundary detector does not have this limitation, but it does not

integrate information at the image level and so cannot handle large-wavelength

textures.

The global probability of boundary detector combines the normalised cut with the

probability of boundary detector to make the highest-quality boundary detector

according to the Berkeley benchmark (section 8.1).

Unfortunately, none of these high-quality approaches can run in real-time. This shows

that texture-boundary detection as a whole is a difficult problem, and it is best solved

without time constraints. Consequently, very few texture-boundary detectors are able to

run in real-time. This is a problem because it means real-time applications cannot

benefit from the state-of-the-art in texture-boundary detection. The next chapter will

investigate five real-time texture-boundary detectors which attempt to bring texture-

boundary detection to real-time.

70  Chapter 5 – Real-time texture-boundary detection

5 REAL-TIME TEXTURE-BOUNDARY DETECTION

This chapter will investigate five existing real-time texture boundary detectors:

 Konishi’s detector (section 5.1)

 Surround Suppression (section 5.2)

 TextonRML (section 5.3)

 Semantic Texton Forests (section 5.4)

 Randomised Hashing (section 5.5)

These detectors are relevant for two reasons. Firstly, the detectors that will be proposed

later by this thesis use similar processes to some of these other real-time detectors.

Secondly, each of the existing real-time detectors has its problems, which provides a

motivation for the development of new real-time texture-boundary detectors.

5.1 KONISHI’S DETECTOR

Konishi’s detector (Konishi, Yuille, & Coughlan, 2002) is the boundary detector

counterpart of the Nitzberg operator, previously introduced in section 3.3. It works by

detecting a boundary wherever the local gradients are all similarly oriented, or in other

words, wherever they are highly coherent. This detects boundaries quite accurately,

and is able to suppress intra-texture boundaries to some level of success.

Recall from section 3.3.2.2 that Nitzberg’s operator calculates the average local gradient

orientation at each pixel according to equation (3.6).

Konishi’s detector calculates the local coherence from the result of that function. This is

possible because returns a structure tensor.

The rest of this section will explain how coherence can be calculated, using a

pedagogical example.

Example definition

Normally, there would be many gradients of varying strengths in the local sliding

window, but for this example let there be only two gradients of equal strength in the

local neighbourhood of pixel :

Chapter 5 – Real-time texture-boundary detection  71

FIGURE 5-1: Two example gradient orientations.

Now the average gradient orientation will be equal to the

average structure tensor of these two gradients.

(5.1)

Previously, section 3.3.2.1 showed that a structure tensor would transform a circle into

an ellipse, where the ellipse’s major axis will be parallel to the average orientation, and

the ratio of the major and minor axis of the transformed ellipse will measure coherence.

Structure tensor will transform a circle of radius 1 into the ellipse in Figure 5-2:

FIGURE 5-2: The transformed ellipse from structure tensor A.

As expected, the orientation of the ellipse in Figure 5-2 above is equal to the average

orientation of the two vectors illustrated in Figure 5-1. Coherence requires that the

lengths of the major and minor axis of this ellipse be calculated. This can be done by

calculating the eigenvectors of the structure tensor .

Eigenvectors

A structure tensor is a transformation matrix. A transformation matrix can have zero or

more eigenvectors. An eigenvector is a vector that will not change direction under that

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Gradient B: Gradient A:

72  Chapter 5 – Real-time texture-boundary detection

particular transformation. It is a fact that, for a particular structure tensor, the only

places eigenvectors can occur are on the major and minor axes of the transformed

ellipse. This makes sense, as all other vectors will change direction. See Figure 5-3 below

for an illustration of this.

FIGURE 5-3: The outer circle (of radius 1) is transformed to the inner ellipse by a structure
tensor. Notice that the vectors on the major and minor axes do not change direction – that

means they are eigenvectors.

So finding the eigenvectors of a matrix and finding the axes of an ellipse are equivalent

problems.

Eigenvalues

Coherence is only interested in the lengths of the major and minor axes, which means

the actual eigenvectors are not required. That means, only the eigenvalues need to be

calculated.

Eigenvectors are not allowed to change direction, but they are allowed to change in

length. The factor at which an eigenvector will be scaled by a particular transformation

is called its eigenvalue. As a structure tensor is a linear transformation, all eigenvectors

on the same axis will be scaled by the same amount – that is, they will all have the same

eigenvalue. That means, the major axis will have one eigenvalue, and the minor axis will

have another eigenvalue. So the axial lengths of the ellipse are proportional to the

eigenvalues.

If a circle of radius 1 is transformed by a structure tensor, then it will generate an ellipse

with axial lengths equal to the eigenvalues because 1 is the multiplicative identity. So,

for simplicity, a circle of radius 1 is always used. Now the coherence is simply the ratio

of the eigenvalues of the structure tensor.

Eigenvalues of the example structure tensor

An eigenvalue of transformation matrix is a value that satisfies the condition:

Eigenvectors: direction unchanged

Non-eigenvectors: direction changed

Chapter 5 – Real-time texture-boundary detection  73

(5.2)

In the above equation, is the identity matrix, and is the determinant of a matrix.

Now the eigenvalues for structure tensor can be found by solving equation (5.2). First

the equation is rearranged into a quadratic:

(5.3)

Now it can be solved with the quadratic formula:

(5.4)

Now the two eigenvalues of the structure tensor are known. Another way of seeing this

is, if structure tensor were to transform a circle of radius 1, the resulting ellipse would

have a major axis length of and a minor axis length of . These values can

now be used to calculate coherence.

Coherence

Given a structure tensor , which has two eigenvalues and , the normalised

coherence measure (Weickert J. , 1999) is defined as:

(5.5)

The function will always return values in the range [0, 1].

Eigenvalues to boundaries

Instead of actually calculating coherence itself, Konishi’s detector works directly on the

eigenvalues of . The detector is essentially a classifier which,

for each pixel, takes the two eigenvalues as input and then outputs either “boundary” or

“non-boundary”. The most recent implementation of Konishi’s detector (Martin,

Fowlkes, & Malik, 2004) used a logistic regression model as the classifier. This classifier

74  Chapter 5 – Real-time texture-boundary detection

was trained from a training set of human-labelled images in the same way as it was for

the Pb detector (see section 4.5.4).

5.1.1 IMAGE RESULTS

Some results of Konishi’s detector are shown below in Figure 5-4:

FIGURE 5-4: Some results of Konishi’s detector. Original images are from the Berkeley dataset
(Martin et al. , 2001).

5.1.2 CRITIQUE

Although Konishi’s detector generally detects boundaries well, it has limited texture-

suppressing ability, as it can only suppress the textures that have low coherence. This

works well for textures such as grass, but not for strongly-oriented textures like zebra

stripes, as illustrated in Figure 5-4. The reason for this is, by definition, strongly-

oriented textures will consist of highly coherent gradients. This leaves much room for

Chapter 5 – Real-time texture-boundary detection  75

improvement. Surround Suppression, which will be introduced next, does not have this

problem.

5.2 SURROUND SUPPRESSION

Surround Suppression (Grigorescu, Petkov, & Westenberg, 2003; 2004) is a modification

to the Canny edge detector that attempts to remove intra-texture edges. This section will

describe the most basic version of Grigorescu et al.’s Surround Suppression algorithm.

Other variations of the Surround Suppression algorithm exist, but all of them are based

on the same concept.

The concept is quite simple. An intra-texture edge is likely to be surrounded by many

other intra-texture edges of the same strength, simply because of the fact that texture is

a pattern that repeats itself. So, if a gradient is of similar strength to its surrounding

gradients then it should be suppressed.

5.2.1 FORMULATION

For the most part, Grigorescu et al.’s algorithm is exactly the same as the Canny edge

detector (already described in section 2.4), except a new step called “Surround

Suppression” has been added.

Let the Surround Suppression kernel be defined as follows:

(5.6)

The function is the Gaussian function with scale , as defined previously in

equation (3.2). The scale is an external parameter which is set by the user.

The Surround Suppression kernel can be used to find a weighted average of the

surrounding region. It is used to calculate the surround potential , which is then

subtracted from the gradient magnitude to generate the edge potential :

(5.7)

The algorithm then proceeds in exactly the same way as the Canny edge detector, except

now it finds ridges in the edge potential instead of the gradient magnitude

 .

76  Chapter 5 – Real-time texture-boundary detection

At the conceptual level, Surround Suppression works exactly as its name implies. Each

gradient is suppressed by the average surrounding gradient. The result is that some

intra-texture edges are suppressed.

5.2.2 IMAGE RESULTS

Grigorescu et al.’s 2004 paper shows some good results, reproduced in Figure 5-5:

FIGURE 5-5: Surround Suppression (right) versus the Canny edge detector (middle) on some
example images (left). Adapted from Grigorescu et al. (2004).

5.2.3 CRITIQUE

Surround Suppression is extremely fast and suppresses most texture edges. It is not

confused by strongly-oriented textures like Konishi’s detector is. In fact, Grigorescu et

al.’s original paper (2003) presents some modifications to Surround Suppression that

are specifically designed to handle strongly-oriented textures well.

Unfortunately, Surround Suppression still has some problems. As Figure 5-5 shows,

Surround Suppression sometimes produces fragmented boundaries, and the grass

texture has not been completely suppressed. These problems occur because Surround

Suppression is based on edge detection, and so it focuses on the low-level interpretation

of the image. The next section describes TextonRML, a method which uses high-level

analysis in an attempt to avoid these problems.

Image Canny Surround Suppression

Chapter 5 – Real-time texture-boundary detection  77

5.3 TEXTONRML

Section 4.5.4 described logistic regression models in the context of the probability of

boundary detector. A logistic regression model is useful because it is fast, but its main

problem is it can only distinguish between two classes. Multinomial logit is an

extension of logistic regression to more than two classes. Random multinomial logit

(RML) is a way to combine an ensemble of multinomial logit models together to improve

classification accuracy. Ranganathan (2009) replaced the boosting stage in TextonBoost

with random multinomial logit, making it much faster. This new algorithm will be

referred to as TextonRML throughout this thesis.

In this context, the term classifier refers to the algorithm used to soft-assign pixels to

textures – in this section the classifier will either be boosting (for TextonBoost) or

random multinomial logit (for TextonRML).

In the same way as TextonBoost, TextonRML uses texture-layout filters as input to the

classifier. Also in the same way as TextonBoost, after the classifier generates a soft-

assignment of pixels to textures, the hard-assignment is found using alpha-expansion

graph cuts. The only difference between TextonBoost and TextonRML is the classifier.

Intuitively, because the classifiers are different, the training stages are also different.

Each of these points will be discussed in turn.

5.3.1 RANDOM MULTINOMIAL LOGIT

Like all classifiers, random multinomial logit takes a number of features as inputs, and

then outputs the predicted class for those inputs. Similar to logistic regression, the

inputs are combined using weighted sums, and so a weight must be learnt for each input

feature during the training process. The weights can be learnt from a training set using

well-known gradient descent methods. This is all that is necessary to understand

random multinomial logit at a high level, see Ranganathan’s (2009) paper for details.

5.3.2 FEATURE SELECTION

Like TextonBoost, TextonRML must learn a good set of texture-layout filters to use as

input features to the classifier. Let be the number of features that need to be learnt by

the training process. Both boosting and random multinomial logit divide their training

process into rounds. However, what they do in each round is different.

78  Chapter 5 – Real-time texture-boundary detection

As section 4.4.2 described, one round of boosting will generate one additional texture-

layout filter to classifier, and so rounds of boosting will generate texture-layout

filters.

In contrast, random multinomial logit initially begins with a random set of features.

Each round of RML training will incrementally improve this random set.

At the beginning of each round, one of the texture-layout filters is chosen to be replaced

by a new randomly-generated texture-layout filter. A new random multinomial logit

model is now trained on the new set of features. The accuracy of this new classifier is

compared to the previous classifier, and only the classifier of highest accuracy is kept.

Choosing which filter to replace in each round is an important process, and it works as

follows. If some of the texture-layout filters have small weights, then that means they do

not contribute much, and so one of them will be replaced. However, if none of the

texture-layout filters have small weights, then a random one will be chosen to be

replaced.

Eventually after many rounds, this yields an accurate random multinomial logit

classifier which can be used to soft-assign pixels to the textures. All other parts of

TextonBoost’s algorithm remain the same, so see section 4.4 for more details.

5.3.3 IMAGE RESULTS

Ranganathan’s 2009 paper publishes some results of TextonRML, reproduced in Figure

5-6 below.

FIGURE 5-6: TextonRML applied to some images, both with and without alpha -expansion graph
cuts (denoted GC). Reproduced from Ranganathan (2009).

Notice from Figure 5-6 the clear improvement in results when an alpha-expansion graph

cut is used.

Im
ag

e
W

it
h

o
u

t
G

C

W
it

h
 G

C

Chapter 5 – Real-time texture-boundary detection  79

5.3.4 CRITIQUE

When the alpha-expansion graph cut is used, TextonRML produces excellent results.

This is because it is generating an image-level interpretation of the image, unlike

Surround Suppression and Konishi’s detector.

Unfortunately, TextonRML can only run in real-time when the alpha-expansion graph

cut stage is omitted. As Figure 5-6 shows, when the graph cut is omitted, the pixel

classifications are generally correct, but the boundaries between them are quite noisy.

The reasoning for this is the same as it was for TextonBoost – texture needs to be

smoothed for the boundaries to be useful. This was already described fully in the section

titled “Why not just hard-assign a pixel to its modal texture?” (section 4.4.3). Without an

alpha-expansion graph cut stage, TextonRML’s real-time boundary maps are inadequate.

Semantic Texton Forest segmentation, described next, is another algorithm that

interprets the image at the image level, but instead of omitting the alpha-expansion

graph cut stage entirely like TextonRML, it substitutes it with a real-time approximation.

5.4 SEMANTIC TEXTON FORESTS

The Semantic Texton Forests (Shotton J. , Winn, Rother, & Criminisi, 2009) algorithm

was developed by the same research group as TextonBoost (section 4.4) and is

considered to be its successor. Semantic Texton Forests (STF) segmentation achieves

the same purpose as TextonBoost – that is, it performs simultaneous segmentation and

texture recognition, but its approach is quite different. STF segmentation can be divided

into three major stages:

1. Textonisation using Semantic Texton Forests. This replaces TextonBoost’s

textonisation stage, which used convolution and k-means clustering (section

4.3.4).

2. Texture classification. At this stage, the pixels are soft-assigned to textures. This

is almost identical to TextonBoost’s boosting stage (section 4.4.2) except the

classifier is different.

3. Improving boundary detection with image categorisation. This replaces

TextonBoost’s alpha-expansion graph cut stage (section 4.4.5).

Each of these stages will be discussed separately.

80  Chapter 5 – Real-time texture-boundary detection

5.4.1 TEXTONISATION WITH DECISION FORESTS

Semantic textons are different from the normal concept of textons introduced in

section 4.3, but ultimately they fill the same purpose. Semantic textons are calculated

using decision forests. This section will describe how this is done.

Decision forests

A decision tree is a classifier that soft-assigns observations to classes based on simple

decisions. In Figure 5-7, a decision tree is used to determine the class a pixel belongs to.

FIGURE 5-7: A decision tree. Each node represents one simple decision, where an observation
will choose to proceed to either the left or right node based on some simple cri teria. The

histograms at the bottom indicate the soft-assignments given to observations which reach each
of the respective leaf nodes.

To train a decision tree, first there must be a training set of classified observations. Next,

a wide range of random decision rules are tried, and the decision which splits the

training set in the “most informative” way is chosen. Normally, the “most informative”

decision rule is the one that creates the purest split between the classes. The pureness of

a split can be measured using Shannon entropy.

The chosen decision rule will split the data into two subsets. Now, each subset is

subdivided with the same process. The algorithm stops subdividing when a desired level

of classification accuracy is reached. Once the decision tree is constructed, the soft-

assignment for each leaf-node can be determined by running every training observation

through the decision tree, and then counting the mixture of classes that ends up at each

leaf node.

A decision forest is simply an ensemble of decision trees. Each tree in a decision forest is

trained on a different subset of the training data, which helps avoid overfitting.

Chapter 5 – Real-time texture-boundary detection  81

Semantic textons forests

A semantic texton forest is just a decision tree that has specifically been trained to

classify a sliding window to one of many classes of texture. Semantic Texton Forests are

trained from the same human-labelled training input as TextonBoost (see section 4.4).

Each decision node in a Semantic Texton Forest will compare one of four different

features against a decision threshold. The four features are: (1) the colour of one of the

pixels in the sliding window, or (2) the sum, (3) difference, or (4) absolute difference

between two pixels in the sliding window. There are many random variations on these

four decision formats, which allows highly-discriminative decision trees to be

constructed.

Semantic textons

A semantic texton is one of the nodes in the decision tree. That means, each sliding

window can be described by a set of many semantic textons, instead of just one texton

like in the normal texton approach (discussed previously in section 4.3). So for example,

if there are ten decision trees, each ten levels deep, then every sliding window can be

described by one hundred semantic textons. This makes semantic textons quite different

from normal textons, but at the same time, both semantic textons and normal textons

achieve the same purpose. That is, they provide the information required to distinguish

between textures.

5.4.2 SEGMENTATION

To perform boundary detection, STF segmentation begins by calculating the semantic

textons for every sliding window. From here, the next step is to recognise the textures

from those textons.

Even though the Semantic Texton Forests are already capable of soft-assigning each

pixel to a texture, STF segmentation works by using the same texture-layout filters used

by TextonBoost (described in section 4.4.2). The reason for this is, the Semantic Texton

Forests used to classify each sliding window only work at the low-level, using local

information. Using texture-layout filters adds some mid-level context to the soft-

assignment process, making STF segmentation more accurate.

The texture-layout filters work exactly the same way as with TextonBoost, except the

boosting classifier is replaced with a decision forest classifier – similar to how boosting

was replaced with random multinomial logit in section 5.3.

82  Chapter 5 – Real-time texture-boundary detection

This generates a soft-assignment of pixels to textures. Next, the hard-assignment must

be calculated.

5.4.3 IMAGE CATEGORISATION

TextonBoost uses alpha-expansion graph cuts to hard-assign each pixel to a texture. As

section 4.4.5 described, the reason this is needed is that, if the modal texture were

simply taken, then the result would be noisy and the resulting boundary detection

would not be useful.

The problem is that alpha-expansion graph cuts are slow, and definitely cannot run in

real-time. So, STF segmentation applies something called an image category prior. This

will be described next.

Theory

Different categories of images contain different textures. For example, outdoor images

are likely to contain trees and grass, while indoor images are likely to contain desks and

chairs. Therefore, if the image category is known, then it can be used to suppress the

unlikely textures. It turns out that this makes the modal texture much more useable,

albeit not as good as an alpha-expansion graph cut. However, some loss in quality must

be expected for an algorithm that is constrained to real-time.

Automatic image categorisation algorithm

A classifier is used to recognise an image’s category from its semantic texton histogram.

Generating the semantic texton histogram is straightforward – it is simply the

frequencies of each semantic texton tallied over the entire image. The most difficult part

of this stage is the classifier. Shotton et al. chose to use a multi-class support vector

machine, which will not be described here as it is beyond the scope of this thesis. The

end result though, is that the system can automatically determine what category an

image belongs to.

So, in the training stage, STF segmentation will count the frequencies of each texture for

each image category from the training set. Then in the online stage, it will modify the

soft-assignment for each pixel so that the unlikely textures for an image’s category are

suppressed. This allows each pixel to be hard-assigned to its modal texture with

adequate results.

Chapter 5 – Real-time texture-boundary detection  83

5.4.4 IMAGE RESULTS

STF segmentation can only run in real-time when it does not have to evaluate every

possible sliding window in the image. Instead, the algorithm is only run on the cells of a

grid, where each grid cell is pixels large. This generates a downsampled

boundary map, as shown in Figure 5-8:

FIGURE 5-8: The results of Semantic Texton Forest segmentation. Reproduced from
Shotton et al. (2009).

5.4.5 CRITIQUE

As Figure 5-8 shows, STF segmentation produces excellent real-time image labelings.

However, the focus of this thesis is on boundary detection. STF segmentation can only

generate low-resolution boundary maps in real-time. This is inadequate for most real-

time applications. For example, in the context of face recognition, different faces look the

same at low resolution. Or in real-time tracking, the trajectory of the object cannot be

predicted at such a low resolution.

Boundary detection via Randomised Hashing, which will be introduced next, generates

full-resolution boundary maps unlike STF segmentation. It also generates a high-level

interpretation of the image, unlike Konishi’s detector and Surround Suppression.

5.5 RANDOMISED HASHING

Boundary detection via Randomised Hashing (Taylor & Cowley, 2009) is similar in spirit

to mean-shift segmentation (section 4.2) in that it finds boundaries by clustering the

pixels in the image. Mean-shift segmentation however, is highly iterative and so is

unable to run in real-time. Randomised Hashing has been designed so that its clustering

is non-iterative which makes it able to run in real-time.

84  Chapter 5 – Real-time texture-boundary detection

5.5.1 ALGORITHM

Randomised Hashing begins by extracting a feature vector from each pixel .

Taylor and Cowley (2009) chose to use the RGB values as the feature vector for a pixel.

The feature space is subdivided by randomly-chosen hyperplanes, where is a user-

specified parameter. These hyperplanes will subdivide the feature space into at most

partitions.

Each partition is given a unique binary partition code of length , where each bit of the

code is determined by a different hyperplane. A hyperplane’s bit will be set to either

zero or one, depending on which side of the hyperplane the partition lays. For example,

consider the partition labelled “0110” in Figure 5-9. Its first bit is “0” because the

partition is on the right side of the first hyperplane . Its second bit is “1” because the

partition is on the left side of the second hyperplane . The other bits are calculated in a

similar way.

FIGURE 5-9: This diagram represents a hypothetical two-dimensional feature space. Each point
represents the feature vector for a particular pixel. The feature space has bee n subdivided by
hyperplanes, and a partition code has been assigned to each partition. Diagram adapted from

Taylor and Cowley (2009).

The neighbours of each partition can be found using the partition codes. A partition is

considered to be a neighbour of another partition if their partition codes differ by at

most bits. Now, clustering can begin.

Randomised Hashing will count how many of an image’s feature points have been

assigned to each of the partitions. Naturally, some partitions will have more feature

1100

1000

0000

0001

0011
0111

1111

1110

0100

0010 0110

s0 s1

s2

s4

Chapter 5 – Real-time texture-boundary detection  85

points than its neighbours. In Randomised Hashing, each partition is assigned to its most

popular neighbour – that is the neighbour that has the most feature points in it. A cluster

in Randomised Hashing is made up of a partition and all of the other partitions that are

assigned to it by this process.

Each pixel is assigned to the cluster that its feature vector belongs to. A possible

example of this is shown in Figure 5-10.

FIGURE 5-10: In this 3 by 3 image, each pixel has been assigned a partition code, depending on
where its feature vector falls in the feature space.

A boundary is detected at all points where neighbouring pixels belong to different

clusters.

5.5.2 IMAGE RESULTS

Running Randomised Hashing on some example images from the Berkeley dataset (see

section 8.1) yields the results shown in Figure 5-11 below.

0110 0110 1100

0110 1100 1100

1100 1100 1100

86  Chapter 5 – Real-time texture-boundary detection

FIGURE 5-11: The results of Randomised Hashing on some images. Each colour is a different
cluster. Adapted from Taylor and Cowley (2009).

5.5.3 CRITIQUE

In some of the example images in Figure 5-11 above, Randomised Hashing has

subdivided areas of very similar colour. This can particularly be seen on the deer’s back

(b), and on the elephants (g). This happens because the clustering process is forced to

introduce hard splits to the feature space in some way, and so sometimes similar feature

points can be hard-assigned to entirely different clusters. Unfortunately in this case, this

causes Randomised Hashing to introduce phantom boundaries – boundaries that exist

where they should not. This is the main problem with Randomised Hashing.

5.6 CHAPTER SUMMARY

This chapter has explored the inner workings of five real-time texture boundary

detectors. Each of these has its problems:

 Konishi’s detector (section 5.1) is good at detecting boundaries, but oriented

textures (like zebra stripes) cannot be suppressed by Konishi’s detector.

 Surround Suppression (section 5.1) is fast and produces good results, but it is

based on an edge detector, making it heavily focused on low-level information.

This means it is prone to generating fragmented boundaries and also means it

Im
ag

e
O

u
tp

u
t

(g) (f) (h) (i) (j)

Im
ag

e
O

u
tp

u
t

(b) (a) (c) (d) (e)

Chapter 5 – Real-time texture-boundary detection  87

cannot suppress the textures that can only be detected via higher-level

interpretation.

 TextonRML (section 5.3) is able to generate pixelwise texture classifications

which are generally correct, and so is useful for some real-time applications.

However, the only reason why it can run in real-time is because it avoids doing

the necessary alpha-expansion graph cut stage. Without it, TextonRML produces

low-quality boundary maps.

 Semantic Texton Forests segmentation (section 5.4) attempts to overcome the

need for the slow alpha-expansion graph cut stage by lowering the boundary

map resolution and involving an image categorisation algorithm. This allows it to

generate high-quality texture classifications in real-time, but unfortunately the

low-resolution boundary maps leave much room for improvement.

 Boundary detection via Randomised Hashing (section 5.5) finds boundaries

using real-time clustering. Unfortunately, the clustering process introduces non-

existent “phantom” boundaries.

The next two chapters will propose two new texture-boundary detectors which

overcome all the above problems, and most importantly, are able to run in real-time.

88  Chapter 6 – Proposal: the Variance Ridge Detector

6 PROPOSAL: THE VARIANCE RIDGE DETECTOR

This chapter proposes the Variance Ridge Detector, a texture-boundary detector that

overcomes the shortfalls of all previous methods.

6.1 RATIONALE

The Variance Ridge Detector is built on a single principal axiom, which is that ridges in

the variance space are likely positions of texture boundaries. This is true for two reasons.

Firstly, consider a sliding window of pixels in an image. If only one texture is contained

within this window, then the variance of this window only has to encapsulate the intra-

class variation of the texture. Now, if the window is moved so that it now contains two

textures, then the variance must now represent the inter-class variation between the

textures in addition to the intra-class variation. For this reason, variance is likely to peak

whenever two textures meet. Since a boundary is defined as the frontier at which two

textures meet, variance is likely to form a ridge on a boundary.

Secondly, for different areas of the same texture, variance tends to be approximately

uniform (Papari, Petkov, & Campisi, 2007). This occurs because different windows of the

same texture are simply different samples from the same distribution. This uniformity of

variance within texture means that it is unlikely that variance ridges will occur inside a

texture.

The combination of the two above reasons enables variance to be an excellent choice for

boundary detection. In addition to this, variance can be calculated significantly faster

than most other features of texture (such as textons), which makes it ideal for

constructing a real-time texture-boundary detector.

Based on this premise, the Variance Ridge Detector was developed. The steps of this

algorithm can be divided into two phases. The first phase calculates the local variance at

each pixel. The second phase detects ridges in the variance space. These two phases will

be detailed into further steps in this chapter.

6.2 VARIANCE IN PREVIOUS WORK

Variance has been used for texture some notable previous work.

The most relevant work is the edge-preserving smoothing filter developed by Papari,

Petkov and Campisi (2007), introduced in section 3.5. The heart of the Variance Ridge

Chapter 6 – Proposal: the Variance Ridge Detector  89

Detector was inspired by their work. The Papari filter does not explicitly detect

boundaries, but it does have an indirect mechanism for determining where the

boundaries are so that it can avoid smoothing them. The Variance Ridge Detector was

inspired by this mechanism. Having said that, Papari et al. did not intend for their filter

to run in real-time, and so they used slower techniques such as convolution and non-

rectangular smoothing, which meant many changes had to be made to adapt their work

to the Variance Ridge Detector.

Another relevant work is the edge detector developed by Ahmad and Choi (1999),

introduced in section 2.5. Their edge detector first detects edges in the image, as all

traditional edge detectors do, but then it improves the result by only including the edges

that occur on areas of high variance. Although they did not connect this to the concept of

texture, it is likely that the reason this worked so well was because of the fact that

variance peaks at texture boundaries, as was stated previously. Suppressing edges in

areas of low variance would have removed many unimportant texture edges. In some

ways, Ahmad and Choi’s edge detector is like an early predecessor of the Variance Ridge

Detector.

Tuzel, Porikli and Meer (2006) interestingly used covariance to recognise textures from

the Brodatz texture dataset. Their covariance-based features achieve a recognition rate

of 97.7%, which actually outperforms all texton-based methods that it was compared

against.

The covariance-based features used by Tuzel et al.’s are much more complicated than

simple variance, which is used by the Variance Ridge Detector. No texture-boundary

detector based on this feature exists yet, and so that is a direction for future research.

Sharon and Brandt (2000) proposed a non-real-time segmentation algorithm which

handles texture implicitly. The algorithm iteratively combines pixels into segments, and

then combines those segments into bigger segments. This process is continued until the

entire image is one big segment.

The segments are combined based on a similarity measure. If desired, variance can be

used as part of this similarity measure. Their algorithm appears to produce good results,

which can be seen in their paper. However, the algorithm cannot run in real-time, and it

also does not take advantage of the critically useful fact that variance peaks at

boundaries.

90  Chapter 6 – Proposal: the Variance Ridge Detector

Overall, variance has been used for texture in some instances, but it appears that, unlike

the Variance Ridge Detector, no method so far has taken advantage of the fact that it

forms ridges on boundaries.

6.3 ALGORITHM OVERVIEW

The Variance Ridge Detector takes an input image , and it transforms the image

through five major stages:

1. Convert to CIELab: . Described in section 6.4.

2. Variance transform: . Described in section 6.5.

3. Gradient transform: . Described in section 6.6.

4. Ridge transform: . Described in section 6.7.

5. Gradient magnitude subtraction: . Described in section 6.8.

The final result of the algorithm is the boundary map .

Parameters

The proposed algorithm takes only one parameter – the window radius r. The choice of r

should depend on the wavelength of textures in the image.

If r is much smaller than the texture wavelength, then the texture will not repeat within

the algorithm’s sliding window, meaning it will not look like texture to the algorithm, so

it cannot be suppressed. On the other hand, if r is too large, then the boundary map will

be coarser, and will not include the finer details. In essence, r is a scaling parameter.

Ideally, r should match the general texture wavelength seen in the image. However, in

practice r is not a sensitive parameter, and so it does not need to be chosen precisely.

Example images

The progress of the various stages of the algorithm will be illustrated with three

example images, shown in Figure 6-1.

Chapter 6 – Proposal: the Variance Ridge Detector  91

FIGURE 6-1: The various stages of the Variance Ridge Detector will be demonstrated on these
images. Mandrill image (left) taken from Comaniciu and Meer (2002). Tiger and starfish images

(right) taken from Berkeley segmentation dataset (Martin et al., 2001).

The goal for the Variance Ridge Detector is to detect the boundaries, and suppress the

edges within the most obvious textures in these example images. The most obvious

textures are: the mandrill’s fur (left picture), the tiger’s stripes and the water (top right

picture), and finally the scales on the starfish (bottom right picture). To achieve this, the

parameter r has been set to r = 6 pixels, in order to match the general texture

wavelength.

The Canny edge detector has been run on each of these images to show how difficult

texture-boundary detection is on these images, as shown in Figure 6-2:

92  Chapter 6 – Proposal: the Variance Ridge Detector

FIGURE 6-2: The results of running the Canny edge detector on the example images.

The Canny edge detector reveals that there is plenty of texture in the example images.

The goal of the Variance Ridge Detector is to ignore this texture entirely and detect only

the important boundaries.

6.4 CONVERT TO CIELAB COLOUR SPACE

The image is first converted from the RGB colour model to the CIELab colour model:

 (6.1)

It is very common for boundary detection to use the CIELab colour space – most of the

detectors introduced in chapters 4 and 5 use CIELab. This is because the CIELab colour

space was designed to match experimental measurements of human colour perception.

Therefore, using CIELab allows an algorithm to better approach human performance.

To convert a colour from RGB to CIELab, the RGB model must first be converted to

CIEXYZ, and then to CIELab, using this algorithm (OpenCV, 2008; Poynton, 2006):

Chapter 6 – Proposal: the Variance Ridge Detector  93

(6.2)

This algorithm is used to convert the image to CIELab space.

6.5 VARIANCE TRANSFORM

As its name suggests, the key to the Variance Ridge Detector is variance. The variance

transform calculates the local variance for every pixel :

(6.3)

The smoothing function is defined as , which was defined

previously in equation (3.1). Unless otherwise noted, the box blur will always be used as

the smoothing function throughout this chapter.

 calculates the variance separately in each of the three colour channels, and then

combines the channels together using the L2 norm.

6.5.1 IMAGE EXAMPLES

Running the variance transform on the example images yields this:

94  Chapter 6 – Proposal: the Variance Ridge Detector

FIGURE 6-3: The variance transform on the example images.

Notice that the two important points stated in section 6.1 can both be seen in these

images:

1. Variance peaks at the texture boundaries.

2. Within a texture, variance tends to be approximately the same.

These two facts provide a platform to run the rest of the Variance Ridge Detector.

6.5.2 JUSTIFICATION FOR THE REARRANGED VARIANCE EQUATION

 calculates the variance for a window surrounding pixel by using a well-known

rearrangement of the standard variance formula, as derived below:

(6.4)

(6.5)

The rearrangement stated in equation (6.5) states that variance is equal to the squared

mean minus the mean squared. The variance transform uses this equation, employing

the smoothing function to calculate the mean and squared mean. The rearranged

variance equation (6.5) is used instead of the standard variance equation (6.4) simply

because it is faster. This can be explained as follows.

The rearranged variance equation requires two means to be calculated. The mean of a

sliding window is equal to its sum divided by its size. Calculating the sum of a sliding

Chapter 6 – Proposal: the Variance Ridge Detector  95

window can be done quickly because information can be shared, as illustrated in Figure

6-4:

FIGURE 6-4: When calculating the sum of a sliding window, some calculations can be reused as
the window slides. Normally the sliding direction will be either horizontal or vertical, this

diagram just slides it in a slightly off-vertical direction to make the diagram clearer.

If the standard variance equation (6.4) were to be used, then no calculations could be

reused. For a sliding window centered on pixel , the standard variance equation must

calculate the difference between each pixel and the mean of that particular

window . The mean of each window is different, which means two different

windows cannot share any calculations. Hence it is faster for the algorithm to use the

rearranged variance equation (6.5).

6.5.3 JUSTIFICATION FOR SQUARE-SHAPED SLIDING WINDOWS

The Variance Ridge Detector calculates variance in a square-shaped sliding window.

Doing this means the pixels on the perimeter of the window are not equidistant from the

center pixel, which introduces a bias into the variance transform.

The obvious solution to this is to use a circular sliding window. This can be done by

changing the box blur into a circular blur:

(6.6)

The only difference between above and in equation

(3.1), is that the L2 norm is used instead of the L1 norm.

Doing this yields results such as these:

subtract

add

reuse
Slide window in

this direction

96  Chapter 6 – Proposal: the Variance Ridge Detector

FIGURE 6-5: The variance transform on the example images, when using a circular sliding
window instead of the proposed square window.

Comparing the results in Figure 6-5 to those shown in Figure 6-3 illustrates the effect of

using a circular window versus a square window respectively. Notice that in Figure 6-3,

the peaks look jagged – indicative of the bias introduced by using square-shaped sliding

windows. This bias is not present when using circular windows, as shown in Figure 6-5.

The reason why square-shaped windows have been chosen is because they are faster.

Even though it degrades the quality of the variance transform slightly, the result is a

similar enough approximation that the high-quality results (presented in chapter 9) can

still be achieved.

The reason they are faster is because they allow more calculations to be reused, as

illustrated in Figure 6-6:

Chapter 6 – Proposal: the Variance Ridge Detector  97

FIGURE 6-6: The reason why square-shaped sliding windows are faster.

That is why square-shaped sliding windows have been used.

6.5.4 JUSTIFICATION FOR AN EQUALLY-WEIGHTED WINDOW

Interestingly, Papari, Petkov and Campisi (2007) chose to calculate variance using a

Gaussian-weighted window. That means that each pixel contributes to the variance with

a different weight. This was tested with the Variance Ridge Detector, but ultimately it

was found that not only did this produce lower-quality results, but it also runs slower.

There are some clear reasons for this.

Calculating a Gaussian-weighted variance is clearly more complex than a uniformly-

weighted variance, which is why it is more computationally-intensive and slower.

The lower-quality results can also be explained. Using a Gaussian-weight distorts the

texture and introduces false boundaries, as illustrated in the Figure 6-7:

Two different square windows can share

some calculations because the rows are

the same length.

Two different circular windows cannot

share calculations (as easily) because the

rows are different lengths.

98  Chapter 6 – Proposal: the Variance Ridge Detector

FIGURE 6-7: Using a Gaussian weighting distorts texture like a lens would, making it non -
uniform.

The distortion of the texture makes it look non-uniform, which makes its variance non-

uniform. Ultimately, this means intra-texture boundaries are detected when they should

instead be suppressed. Texture needs to be uniform in order to be suppressed

effectively.

This can be explained as follows. A seemingly non-uniform texture has non-uniform

variance. To be able to be non-uniform, there must be peaks and troughs in the variance.

The Variance Ridge Detector identifies peaks as boundaries, and so false peaks means

false boundaries. Therefore using a Gaussian-weighted variance produces lower-quality

results.

6.6 GRADIENT TRANSFORM

The gradient transform calculates the gradient at each pixel. The reasons for having this

stage are twofold.

Firstly, variance is approximately equal for different areas of the same texture. This

means that textured areas will have very little gradient in the variance space, which

enables the variations in texture to be suppressed.

Secondly, the gradient transform will allow variance ridges to be detected in the next

stage.

6.6.1 VISUALISATION

One way to visualise the gradient transform is shown in Figure 6-8:

1D Texture:

Gaussian weighting considers
central pixels more important:

So it is as if the texture has
been distorted into this:

Chapter 6 – Proposal: the Variance Ridge Detector  99

FIGURE 6-8: An illustration of how the gradient transform works.

Figure 6-8(a) and Figure 6-8(b) illustrate what normally happens near a boundary.

Boundaries introduce strong variance into the image, and so they introduce strong

gradients in the variance space. Figure 6-8(c) and Figure 6-8(d) illustrate that within a

texture and away from boundaries, the gradient cancels itself out. The fact that the

gradient transform responds differently to each situation is the core reason why the

Variance Ridge Detector can handle texture.

6.6.2 FORMULATION

The gradient transform function calculates the gradient vector for the pixel at

position . The term “gradient vector” is used because both the gradient strength and

direction are calculated. This can be formulated as follows:

(b) The attraction forces are all summed

together to find the overall gradient for

that pixel.

(a) Each pixel is “attracted” towards

different directions, where each the

attraction force is proportional to the

variance in that direction.

(c) Variance is about the same

throughout texture, which means

the attraction forces are

approximately equal

(d) That means texture (almost)

cancels itself out.

100  Chapter 6 – Proposal: the Variance Ridge Detector

(6.7)

The high-level view of the equations above is this. calculates the gradient

strength at pixel for a particular direction . uses to calculate the

gradient over total directions, taking the vector sum over all of the directions.

The parameter defines the number of directions to use. A small value of means

lower-quality results, while a high value of slows down the algorithm. Throughout

this thesis, has implicitly been set to 8 as this has allows for both good results and

speed.

The function calculates unit vectors for directions and will be reused

throughout this chapter and the next one.

6.6.3 JUSTIFICATION FOR SMOOTHED VARIANCE

The gradient calculation only samples the variance at a small number of points

and so is prone to sampling errors. Using the smoothed variance in the gradient

calculation is a fast method to reduce noise and make the gradient calculation robust.

It is possible to achieve a similar result by simply doubling the window size that is used

for variance transform. However, it was found that this approach runs faster, due to the

greater locality of reference when using smaller windows.

6.6.4 IMAGE EXAMPLES

The gradient transform produces the images shown in Figure 6-9:

Chapter 6 – Proposal: the Variance Ridge Detector  101

FIGURE 6-9: The gradient transform on the example images. Hue represents gradient
orientation.

There are two points to take note of in Figure 6-9:

 As stated before, textured areas do not have much gradient in their variance, so

much of the texture has been eliminated from the algorithm. Particularly, notice

the mandrill’s fur and the tiger’s stripes are almost all gone.

 The gradients indicate where the variance ridges, and therefore boundaries are.

More specifically, the boundaries are surrounded by a particular pattern of

gradients. This fact is utilised by the next stage to detect boundaries.

6.7 RIDGE TRANSFORM

In one dimension, a peak will produce a double response in the gradient space – a

positive gradient on one side, and a negative gradient on the other. This is illustrated in

Figure 6-10.

FIGURE 6-10: A peak has a positive gradient on one side, and a negative gradient on the other.

Positive gradient Negative gradient

102  Chapter 6 – Proposal: the Variance Ridge Detector

In two dimensions, gradients point inwards towards the ridge, for the same reasons as

the one-dimensional case:

FIGURE 6-11: A ridge can be detected because the surrounding gradients will point inwards
towards it.

The pattern described in Figure 6-10 can be seen in the gradient transform of the

example images (Figure 6-9). In the figure, it can be seen that each boundary has

opposite hues on either side of it. This occurs because, the gradient direction is

represented by hue, and when the gradients face inwards, one side of the boundary

must face an opposite direction to the other.

The purpose of the ridge transform is to detect these inward-facing gradient responses

as ridges.

6.7.1 FORMULATION

The ridge transform can be expressed by the following equations:

(6.8)

Optionally, the ridge normal can be calculated as well:

(6.9)

The high-level view of the above equations is this. calculates the strength of a

single ridge orientation . uses to find the maximum ridge strength over

 possible ridge orientations.

Chapter 6 – Proposal: the Variance Ridge Detector  103

FIGURE 6-12: Variance (vertical axis) at different spatial offsets (horizontal axis) from image
position p on a cross section along direction d. The ridge strength at p is calculated by

combining the variance gradients on either side of p.

The ridge strength function measures how strongly the pixel matches the

pattern of having a negative gradient on one side, and a positive gradient on the other. In

practice, this looks like two gradients pointing towards each other, as shown in Figure

6-11. The ridge strength function linearly combines two different methods for

this:
 , which is similar to the geometric mean, and

 , which is

similar to the arithmetic mean. In these functions, is used to ensure that only

gradients pointing inwards are considered, but otherwise it is identical to .

The heart of the
 function calculates the negated dot product of the two

gradients on either side. This will produce a strong positive response only when the

gradients are pointing towards each other. Combining the dot product with a square

root essentially makes the function work like a geometric mean – that means, the

function will only produce the maximum response when both gradients on either side

are of similar strength. This minimises the occurrence of false positives.

In contrast, the
 simply subtracts the gradient on one side from the gradient

on the other. If the gradients are facing towards each other, this will generate a large

response. This response is divided by two, which makes the function work like the

arithmetic mean. Unlike the geometric mean, this means a gradient can be one-sided and

still produce a response. This ensures some ridges are not eliminated prematurely.

 then linearly combines
 and

 with equal weight.

6.7.2 RIDGE STRENGTH APPROXIMATION

In practice, the ridge strength is calculated with an approximation:

(6.10)

104  Chapter 6 – Proposal: the Variance Ridge Detector

Equation (6.10) above and the original equations proposed in (6.9) have a couple of

differences worth noting.

Instead of comparing the gradients to each other directly, these functions first compare

the gradients to the direction , by using the dot product , and then they

compare those dot products to each other using the geometric or arithmetic mean, in the

same way as the original equations (6.9).

This produces a similar result, but is much faster due to a number of reasons:

1. The values of can be precalculated for all pixels , and their cost

amortised over multiple usages. In fact, for a particular pixel , will be

reused four times over the course of the ridge transform stage, which

significantly reduces computation.

2. The
 and

 functions now only have to work with scalars

instead of vectors, due to the fact that produces scalar values. This

halves the number of operations required.

3. Calculating the vector magnitude in the original
 equation (6.9) is a

costly process, involving multiple operations. Now that only scalars are used

instead of vectors, this process reduces to just a single subtraction operation.

4. The function is not necessary anymore, instead it has been replaced

with positive bounding operators . This is faster because the positive

bounding operator takes a single CPU instruction, while involved a dot

product and so required many more CPU instructions.

5. Another difference between the approximation (6.10) and the original equations

(6.9) is,
 no longer involves a division. It was found that this division

did not make much difference to the results, and so removing it means one less

operation.

These approximations allow the Variance Ridge Detector to better achieve real-time.

6.7.3 IMAGE EXAMPLES

The ridge transform produces the following on the example images shown in Figure

6-13:

Chapter 6 – Proposal: the Variance Ridge Detector  105

FIGURE 6-13: The ridge transform on the example images. Hue represents ridge orientation.

In Figure 6-13, notice that all the boundaries have been detected, and the textures have

been suppressed. Although, this could be the final output of the algorithm, the results

are further improved when Variance Ridge Detector performs one last stage, described

later in section 6.8.

6.7.4 ALTERNATIVE APPROACH: OPPOSITES FILTER

Several alternative methods to the standard ridge transform have been developed. One

of them was called the “opposites filter,” which convolves the image with kernels that

look like similar to the one shown in Figure 6-14:

FIGURE 6-14: The opposites filter uses convolution kernels like these.

106  Chapter 6 – Proposal: the Variance Ridge Detector

Figure 6-14 shows a kernel made up of vectors. All the vectors are pointing inwards

towards a dividing line. This arrangement of vectors mimics the inward pattern of

gradients on either side of a boundary, as explained earlier. This type of kernel will

produce the maximum response on a boundary, as that is where the gradients will

match this pattern.

The kernel is produced using the following equations:

(6.11)

The Gaussian kernel was already defined previously in equation (2.12). The

Gaussian scaling parameter is normally set to to ensure that the Gaussian

approaches zero near the edges of a sliding window of radius . In the above equations,

the function generates the value of the kernel for direction at

position . The vectors in the kernel are weighted according to the Gaussian function.

Now the ridge transform can be defined as follows:

(6.12)

Although this produces a more robust response than the standard ridge transform, it is

much slower because it must use convolution. It was found that this slowdown was not

necessary to achieve high-quality results, and so the opposites filter is merely presented

here as an interesting alternative approach and is not proposed as part of the Variance

Ridge Detector.

6.7.5 ALTERNATIVE APPROACH: STRUCTURE TENSORS

Another alternative approach to the standard ridge transform is to use structure

tensors, in the same way that Konishi’s detector does (see section 5.1). In this approach,

each gradient in the local area votes for a boundary orientation, and the coherence of the

votes is taken.

 (6.13)

Chapter 6 – Proposal: the Variance Ridge Detector  107

The and functions were already defined in equations (3.5) and

(5.5) respectively.

There are two problems with this approach.

Firstly, this approach is slower than the standard ridge detection approach. One of the

primary reasons for this is that it accesses more pixels. Notice that the standard ridge

transform in equation (6.8) will only access two pixels per direction, while the structure

tensor approach in equation (6.13) above must access every pixel in the sliding window.

Memory access is the slowest operation of all, and so this slows down the algorithm

substantially.

Secondly, this approach does not try to compare whether there are opposing gradients

on either side of the boundary. The gradients can be positioned anywhere and still

contribute equally to the average boundary orientation. This tends to introduce false-

positives.

The combination of these two problems is why the structure tensor approach to the

ridge transform is only presented here as an interesting approach, and is not proposed

as part of the variance ridge transform.

6.8 GRADIENT MAGNITUDE SUBTRACTION

The ridge transform is effective at identifying ridges, but it turns out that ridges are

often over-detected in the ridge transform. That means, often they appear thicker than

they actually are, particularly around corners. This occurs because the ridge transform

only takes an extremely small sample of two points for each ridge orientation.

One solution to this would be to increase the sample size. However, this would slow

down the algorithm. This section proposes a much faster solution which achieves the

same purpose.

As its name suggests, the gradient magnitude subtraction simply subtracts the gradient

magnitude from the ridge transform. This produces the boundary map, which is the final

result of the algorithm. This can be formulated as follows:

 (6.14)

This is useful because a ridge can only exist between two gradients – a positive gradient

on one side, and a negative gradient on the other. Therefore, if a ridge occurs at the same

location as a gradient, instead of between gradients, then it is unlikely to be a true ridge.

This stage subtracts the gradient magnitude from the ridge transform, which means that

108  Chapter 6 – Proposal: the Variance Ridge Detector

any ridges that exist at the same location as a gradient will be removed. This results in

thinner, more accurate ridges. These ridges are output as the final result of the detector.

6.8.1 IMAGE EXAMPLES

The final result of the Variance Ridge Detector on the example images is shown in Figure

6-15:

FIGURE 6-15: The final result of the Variance Ridge Detector on the example images. Hue
represents boundary orientation.

Chapter 6 – Proposal: the Variance Ridge Detector  109

Comparing this output (Figure 6-15) to those of the previous stage (Figure 6-13) shows

that the gradient magnitude subtraction process makes the boundary map much clearer

and better localised. More results will be presented in chapter 9.

6.8.2 ALTERNATIVE APPROACH: ANISOTROPIC SUBTRACTION

The method that was just presented is called isotropic gradient magnitude subtraction.

The word isotropic here means that the subtraction is always the same, regardless of

direction. This can sometimes cause problems, as illustrated in Figure 6-16:

FIGURE 6-16: The problem with isotropic gradient magnitude subtraction.

The problem is, when at a junction where multiple boundaries meet, the gradients of

one boundary might overlap another valid boundary. A simple isotropic subtraction will

therefore remove some valid boundaries.

One possible solution to this relies on gradients always being perpendicular to their

boundaries. So, if a boundary and gradient appear at the same position, the subtraction

should only occur if they are perpendicular. This can be formulated into the anisotropic

gradient subtraction equation:

 (6.15)

 was defined in equation (6.9) to return the ridge normal, or in other words, the

boundary normal. The boundary normal is already perpendicular to the boundary,

which makes the calculation quite simple. The dot product of the unit boundary normal

Stro
n

g b
o

u
n

d
ary

Weak boundary

Gradients of the strong boundary

overlap the weak boundary

110  Chapter 6 – Proposal: the Variance Ridge Detector

and the gradient is found. Effectively this weights the amount of gradient subtraction so

that the full gradient magnitude is only subtracted when the boundary is perpendicular

to the gradient.

Doing this produces interesting results, as illustrated in Figure 6-17.

FIGURE 6-17: Anisotropic gradient magnitude subtraction applied to the example images.

Unfortunately, anisotropic gradient magnitude subtraction introduces some unwanted

artefacts into the boundary map. In Figure 6-17, this can be seen around the mandrill’s

eyes (left image), as well as at various corners throughout the other images.

The non-homogeneous subtraction of gradient magnitude leaves artefacts when it does

not completely subtract away all unwanted boundaries. This particularly happens

around corners, where the boundary orientation is ambiguous.

At this point, isotropic gradient magnitude subtraction produces better results, and so

anisotropic gradient magnitude subtraction is simply presented here as an interesting

alternative approach, and is not proposed as part of the variance transform.

6.9 COMPARISON WITH OTHER RIDGE DETECTION APPROACHES

The gradient transform (section 6.6), ridge transform (section 6.7) and gradient

magnitude subtraction (section 6.8) stages are all part of the proposed ridge detection

method. Previous approaches to ridge detection include: morphological thinning,

Canny’s non-maximum suppression and convolution thinning. However, these

approaches were inadequate for the Variance Ridge Detector, for the following reasons.

Chapter 6 – Proposal: the Variance Ridge Detector  111

As described in section 2.3.3, morphological thinning requires a binary image as input.

Normally, thresholding would be used to convert an image into a binary image. Doing

the threshold before the ridge detection means there is a strong possibility that

thresholding might eliminate useful information, or introduce artefacts into the

boundary detection. Hence morphological thinning was not used.

In contrast, section 2.4.2 described the non-maximum suppression algorithm used by

the Canny edge detector. This approach performs ridge detection first before

thresholding. This is a better approach, as reduces the chance that thresholding will

eliminate ridges or introduce artefacts.

The problem with Canny’s ridge detection is that it has no substitute for the proposed

gradient transform of the Variance Ridge Detector (section 6.6). As mentioned earlier,

the gradient transform eliminates texture by taking advantage of the fact that within a

texture, variance is approximately uniform. Canny’s ridge detection does not use this

fact, and so would not perform as well as the proposed ridge detection method. In other

words, Canny’s ridge detection is good at detecting ridges, but it has no method for

suppressing false positives like the proposed ridge detection method does.

Section 4.5.3 described convolution thinning, which is used as part of the state-of-the-art

probability of boundary detector. In this case, convolution is unnecessarily

computationally expensive – the proposed ridge detection method already produces an

satisfactory result with much less computation.

All other ridge detection methods were inadequate for this situation, that is why a new

ridge detection method was proposed.

6.10 IMPLEMENTATION

The Variance Ridge Detector was implemented so that its speed and quality could be

measured. The results of this are presented in chapter 9. There were a number of issues

with implementing the algorithm, and the purpose of this section is to detail these

issues.

6.10.1 EXPANDING THE IMAGE

Whenever a sliding window partially lies outside the bounds of the image, the pixel

values are interpolated by mirroring the image at the image bounds.

112  Chapter 6 – Proposal: the Variance Ridge Detector

FIGURE 6-18: Illustration of how missing pixels are interpolated.

An alternative to mirroring at the image boundaries would be to just use a solid colour

such as white or black beyond beyond the image boundaries. This was not done because

it would be likely to introduce strong variance and thus reduce the reliability of the

results near the image extremities.

6.10.2 DISCRETISATION

Often an expression such as has been used. In this expression, could

potentially refer to a non-integral pixel position in the gradient image . In the

implementation, would be rounded to the nearest integral position.

6.10.3 SLIDING WINDOWS

Many expressions, such as the box blur in equation (3.1) have a window term such as

 . This ensures that only pixels within the window radius have an effect on

the calculation – other pixels are zeroed out by this term. Naturally, the implementation

does not waste time on values outside of the window – it does not calculate them only to

zero them out.

6.10.4 IMPLEMENTATION RESOURCES

The Variance Ridge Detector was implemented as a highly-optimised single-threaded

C++ program. Images were represented as 32-bit floating-point numbers. The

implementation utilised OpenCV and SSE instructions.

OpenCV (the Open Computer Vision library) is an open-source computer vision library

which contains common image processing functions and algorithms. OpenCV 1.1 was

used for this implementation.

SSE stands for Streaming SIMD Extensions, where SIMD stands for Single-Input Multiple

Data. The SSE instruction set is a special collection of CPU instructions which allows the

CPU to process multiple pieces of data at a time. For example, the SSE add instruction

This window exceeds the

bounds of the image.

Interpolate missing pixels by

mirroring image.

Chapter 6 – Proposal: the Variance Ridge Detector  113

can add four pairs of floating point numbers in one operation. A normal add instruction

would only add one pair of numbers. Intuitively, this allows an algorithm to run up to

four times faster. Instructions from SSE, SSE2 and SSE3 were used for this

implementation.

6.10.5 USING SSE INSTRUCTIONS

OpenCV 1.1 is highly optimised, but does not utilise SSE instructions even though they

are widely available on modern CPUs. For that reason, only a few of OpenCV’s functions

were used, and most of the operations were separately coded so that they could be

accelerated with SSE instructions.

There were three cases in particular where OpenCV’s implementation was faster than

our SSE implementation, and so in those cases, OpenCV’s implementation was used.

These cases included the averaging function , the conversion from RGB to CIELab,

and the mirroring of the image at image bounds. SSE instructions were used in all other

cases.

One of the cases where using SSE was not straightforward was the three-channel sum

algorithm, which is needed in the variance transform. This case provides an interesting

insight into how the Variance Ridge Detector was optimised, and will be detailed in the

next section.

6.11 THE THREE-CHANNEL SUM ALGORITHM

The variance transform calculates the variance separately in each colour channel, and

then combines them using the L2 norm. As described in section 2.1, the L2 norm simply

squares each channel, sums the channels together, and then takes the square root. The

three-channel sum operation required some thought to be able to implement it with SSE.

The purpose of having this section is not so much to explain the solution, but to provide

an insight into what was involved in making the Variance Ridge Detector run at

maximum speed.

What makes it difficult?

In a three-channel image, each pixel is a tuple of three values, one value for each colour

channel. Floating-point SSE works with tuples of four values. This mismatch of tuple

sizes makes using SSE difficult.

The memory layout of an image can be visualised like in Figure 6-19:

114  Chapter 6 – Proposal: the Variance Ridge Detector

FIGURE 6-19: SSE’s grouping of the image data is different from how the pixels should be
grouped, making the three-channel sum difficult.

SSE groups the numbers differently, and in the process, it groups different pixels into the

same tuple. This makes it difficult to perform a three-channel sum with SSE instructions.

One solution would be to rearrange the memory layout to make it easier for SSE to work.

This is possible, but would be slow. There is a better solution, which will be described

next.

Introducing the SSE instructions

There are a few instructions in the SSE instruction set that can be used to solve this

three-channel sum problem.

The SSE add instruction is obviously useful when calculating sums. Figure 6-20

illustrates what it does:

FIGURE 6-20: The SSE add operation adds each pair in two different tuples together.

Another instruction, horizontal add will add neighbouring pairs together:

A1 A2 A3 A4 B1 B2 B3 B4

A1+B1 A2+B2 A3+B3 A4+B4

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 Actual:
(1 pixel = 3-tuple)

SSE sees:
(4-tuples)

Chapter 6 – Proposal: the Variance Ridge Detector  115

FIGURE 6-21: The SSE horizontal add operation.

Shuffle extracts 4 out of the 8 elements in two input 4-tuples, producing a resultant 4-

tuple. Any 4 elements can be extracted, subject to some conditions.

The first 2 elements in the resultant tuple must always come from the first input 4-tuple.

In the same way, the last 2 elements in the resultant tuple must always come from the

second input 4-tuple. Consequently, it is not possible to, for example, take three

elements from the first 4-tuple and only one element from the second 4-tuple. This

restriction is the basis for certain design decisions presented later.

The SSE three-channel sum algorithm

The SSE three-channel sum algorithm has two halves. The first half sums two out of the

three channels in each pixel. The second half adds the remaining channel.

Figure 6-22 below outlines the first half of the algorithm.

FIGURE 6-22: The first half of the three-channel sum algorithm. Each cell represents one value
in the image. The cells are numbered according to which pixel they come from. The cell colours

represent what sums they contain.

The SSE three-channel sum algorithm operates on groups of eight pixels at a time, one of

which is represented at the top of Figure 6-22. The image has three channels of colour,

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8

1 2 3 4 5 6 7 8

4 3

1 2 3 4 5 6 7 8

1. Horizontal add

2. Shuffle

3. Shuffle

 6 5

A1 A2 A3 A4 B1 B2 B3 B4

A1+A2 A3+A4 B1+B2 B3+B4

116  Chapter 6 – Proposal: the Variance Ridge Detector

in this case, red, green and blue. Each cell has been coloured according to which of these

channels it belongs to.

From here, the three-channel sum algorithm proceeds as follows. In step 1, horizontal

adds are used to add two out of the three channels in each pixel, forming partial sums.

Some of the add operations will have summed channels from different pixels, which is

not useful. The diagram marks the useless sums as a white square with an X drawn

through them. The useful sums are rendered in the combined colour. Intuitively, adding

red and green cells results in a yellow cell, and adding green and blue cells results in a

cyan cell.

Steps 2 and 3 then rearrange the partial sums into the correct order. This cannot be

done in one step because of the restrictions of the shuffle operation discussed

previously.

Figure 6-23 below outlines the second half of the algorithm:

FIGURE 6-23: The second half of the three-channel sum algorithm.

The second half of the algorithm extracts the remaining unsummed values using a

shuffle (step 4), and then adds them to the partial sums previous calculated (step 5) to

generate the final three-channel sums. As the sums are already in the correct order, they

can simply be stored into the image directly with no further manipulation or reordering.

Advantages of the SSE three-channel sum algorithm

Performing a three-channel sum for one pixel without SSE would require:

 Three load operations, one for each channel.

 Two addition operations. For example, involves two additions.

 One store operation, to store the result.

That is six total operations per pixel.

The SSE three-channel sum requires the following operations for eight pixels:

 Six SSE load operations, to load the image data.

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8

1 2 3 4 5 6 7 8

4. Shuffle

5. Add

 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Chapter 6 – Proposal: the Variance Ridge Detector  117

 Three horizontal add operations (for step 1).

 Six shuffle operations (for steps 2-4).

 Two addition operations (for step 5).

 Two SSE store operations, to store the results.

That comes to a total of twelve operations for eight pixels. For comparison, if the non-

SSE three-channel sum were run on eight pixels, it would take 48 operations (6

operations/pixel × 8 pixels). This is four times the number of operations as the SSE

version. Hence, the SSE three-channel sum is much faster.

6.12 CHAPTER SUMMARY

This chapter proposed the Variance Ridge Detector, a novel texture-boundary detector

that is both capable of detecting texture boundaries, and is also able to run in real-time.

The next chapter explains further modifications that can be made to the Variance Ridge

Detector algorithm to enable it to generate even higher quality results.

118  Chapter 7 – Proposal: the Texton Ridge Detector

7 PROPOSAL: THE TEXTON RIDGE DETECTOR

Textons have already been introduced as state-of-the-art (section 4.3), and some

authors have managed to calculate them in real-time (Ranganathan, 2009; Shotton,

Johnson, & Cipolla, 2008). However, all real-time texton-based boundary detectors have

had their problems. This chapter proposes a way to overcome these problems by

improving the Variance Ridge Detector with textons.

7.1 RATIONALE

The Variance Ridge Detector relies on the fact that variance will peak at boundaries. The

Texton Ridge Detector is based on a similar idea, except instead of variance, a texton

gradient is used. The magnitude of the texton gradient will peak at boundaries. The

texton gradient can be explained as follows.

Section 4.3 stated that each texture has its own characteristic distribution of textons.

Consider then, what happens at a texture boundary. The two different textures on either

side of the boundary will have vastly different distributions of textons. In contrast,

consider a non-boundary pixel. As the textures on both sides of this pixel are the same,

the texton distributions on either side will be similar.

The texton gradient is simply the distance between the texton distributions on either

side of a pixel. This distance will peak at texture boundaries, forming the texton ridges

underlying the Texton Ridge Detector.

7.2 ALGORITHM OVERVIEW

The Texton Ridge Detector is effectively a real-time version of the Pb (probability of

boundary) detector (Martin, Fowlkes, & Malik, 2004), described in section 4.5. Both of

these algorithms generally follow this procedure:

1. Extract features for textons. Pb convolves with a filter bank for this, whereas

the Texton Ridge Detector extracts brightness gradients.

2. Textonise the image. Pb matches a feature vector to its nearest texton using

linear search, whereas the Texton Ridge Detector proposes the use of an

approximate nearest neighbour algorithm.

3. Calculate the texton gradient as the distance between sliding window

histograms. Pb uses semicircle shaped-sliding windows for this, while the

Chapter 7 – Proposal: the Texton Ridge Detector  119

Texton Ridge Detector uses square-shaped sliding windows. Both algorithms

measure the histogram distance using the chi-squared distance measure.

4. Combine the texton gradient with other information. Pb uses a logistic

regression model to combine the texton gradient with colour information. The

Texton Ridge Detector combines the texton gradient with variance by

multiplying them together.

5. Perform ridge detection. Pb uses convolution thinning for this. The Texton

Ridge Detector uses the same ridge detection method used by the Variance Ridge

Detector.

Both Pb and the Texton Ridge Detector have an offline training phase. In this stage, both

algorithms must find the textons via k-means clustering (see chapter 4.3). The Texton

Ridge Detector also must train its approximate nearest neighbour model during this

stage.

The remaining sections in this chapter will describe the stages of the Texton Ridge

Detector in more detail.

7.3 TEXTURE FEATURES

The Texton Ridge Detector uses brightness gradients as texture features. The brightness

gradients are calculated at a scale determined by the user-defined window radius

parameter . This parameter is the same as the one already introduced in the previous

chapter (in section 6.3).

Section 4.3 explained that textons work because each texture has its own characteristic

autocorrelation pattern. As long as is somewhat similar to the texture wavelength,

simple brightness gradients are enough to make the autocorrelation pattern evident,

making textures distinguishable. Section 6.3 already stated that the parameter should

already be approximately similar to the texture wavelength, and so the reuse of for this

purpose is ideal.

7.3.1 FORMULATION

The brightness gradients are calculated in greyscale. Using the same mathematical

conventions as the previous chapter (see section 2.1), the conversion of a CIELab image

 into a greyscale image can be expressed as follows:

120  Chapter 7 – Proposal: the Texton Ridge Detector

 (7.1)

This simply extracts the L (luminosity) channel from the CIELab image .

The features are then extracted by the function :

(7.2)

The high-level view of the above equations is this. calculates the brightness

gradient in direction from pixel by comparing the means of two offset windows. The

function concatenates the brightness gradients in directions from that pixel to

form a feature vector (also known as a feature point). The number of directions has

implicitly been set to 2 in all cases throughout this thesis as this produces adequate

results while maintaining speed.

The features extracted by are then used as input for the textonisation stage.

7.4 APPROXIMATE TEXTONISATION

As stated previously in section 4.3, a texton is a cluster of feature points. Most texton-

based algorithms assign feature points to their nearest texton. This section proposes

approximate textonisation, meaning that feature points will be assigned to a near texton,

not necessarily the nearest. This allows for greater speeds at some cost to the

textonisation quality.

The approximate textonisation algorithm has many similarities to Randomised Hashing,

which was discussed in section 5.5, and so many of the terms and symbols from that

section will be reused.

7.4.1 VISUALISATION

The novel approximate textonisation algorithm partitions the feature space by splitting

it with a number of hyperplanes, as illustrated in Figure 7-1:

Chapter 7 – Proposal: the Texton Ridge Detector  121

FIGURE 7-1: A diagram representing a feature space, with each feature point coloured
according to the texton it belongs to. The dotted lines represent the separating hyperplanes in

the feature space.

The separating hyperplanes split the feature space into a number of isolated cells. The

word partition refers to one of these cells.

The task of finding the approximate texton for a given feature point is called querying.

When querying, the approximate textonisation algorithm finds which partition the

feature point belongs to, and then returns the modal (most common) texton for that

partition.

The approximate textonisation algorithm needs to be trained before it can perform any

querying. Once textons have already been found using the standard k-means clustering

method (previously described in section 4.3.3), training involves generating a good set

of separating hyperplanes which can be used to approximate the textons.

Querying and training are described in more detail in the next few sections.

7.4.2 QUERYING

Let the set of separating hyperplanes . In this subsection, S will

sometimes be expressed implicitly in equations because it is fixed during querying. For

example, a function may be defined as , but since is fixed during querying, this

will sometimes be written as to make the equations easier to read.

Each hyperplane is defined as a binary function which takes a feature point and

returns either 0 or 1 depending on which side of the hyperplane the feature is on:

122  Chapter 7 – Proposal: the Texton Ridge Detector

 (7.3)

Let the feature points exist in an feature space, where is the number of features in

a feature vector. In this function, is an unit vector that determines the orientation

of the hyperplane, and determines the offset of the hyperplane from the origin.

Given this information, the algorithm can calculate which side a feature point lays for all

of the hyperplanes in . It is useful to collapse these values into a single number, called

the partition code:

 (7.4)

In the above equation, the partition code can be thought of as a binary number,

where each hyperplane in contributes its respective bit of the partition code. The the

partition code is important because all the points in the same partition will be assigned

the same partition code, and points which do not belong to the same partition will be

assigned to different codes. Effectively, the partition code is an ID number of each

partition, and is a fast method of calculating which partition ID a feature point

belongs to. This concept is identical to the partition code used by Randomised Hashing

(section 5.5.1).

Let be a function that approximately assigns feature point to a nearby texton.

Let be a function that returns the modal texton for partition . This allows

 to be defined as follows:

 (7.5)

In practice, is precalculated for all , where is the set of all possible

partition codes:

 (7.6)

That means, the modal texton of every partition is precalculated and stored in a lookup

table, so that once the partition code for a feature point is calculated by , the

modal texton can be found with a single memory access. This allows the approximate

textonisation algorithm to run extremely fast.

Finally, let the function denote the textonisation of the image :

 (7.7)

Chapter 7 – Proposal: the Texton Ridge Detector  123

In the above equation is the feature extraction function defined previously in

equation (7.2). That is how an image is textonised by the Texton Ridge Detector.

7.4.3 TRAINING

The quality of the approximate textonisation algorithm depends on the quality of the

hyperplane set. The task is to find the set , the set of separating hyperplanes that

maximises the objective function . This section will first construct the

objective function. Then an algorithm that attempts to maximise the objective function

will be introduced.

Training data

Let the training data be contained in the set . is a set of

feature points. As per the normal texton-learning process (already described in section

4.3.3), the training feature points are first clustered using k-means clustering (Lloyd,

1982). This process can be sped up using the k-means++ optimisation (Arthur &

Vassilvitskii, 2007). The output of k-means clustering is the function , which

returns the texton to which feature point belongs to. The function was already

defined previously in equation (4.9) in section 4.3.4.

The objective function

Let be the number of textons. Let , which means is the set

of all training features in which belong to texton .

The function defined below is a histogram consisting of the training frequencies

of each texton in one partition, identified by its partition code :

(7.8)

The histogram is more useful if it is normalised. That is, if the total of all its bins equals

one. The normalised texton histogram for a partition, , is defined as:

124  Chapter 7 – Proposal: the Texton Ridge Detector

(7.9)

In the above equations, equals the number of training feature points that have

been assigned to partition .

Using the histogram, the modal texton of partition can be found:

 (7.10)

If there is a tie for the modal texton, then one of the modal textons is chosen arbitrarily.

The querying function defined in equation (7.5) states that, when querying for the

texton for any feature point in partition , the modal texton is returned.

Knowing this, the accuracy of hyperplanes on the training set can be determined as

follows:

 (7.11)

The function is equal to the probability that a random feature point from

the training set will be assigned correctly by the approximate textonisation algorithm.

Defining this way allows it to be used as the objective function, which

provides a framework for the training algorithm to run.

Training algorithm

Repeated random-restart hill climbing (Russell & Norvig, 2009; Jacobson & Yücesan,

2004) is used to find a good set of hyperplanes according to the objective function.

Hill climbing works like this. First, a random solution is taken. The algorithm then

searches neighbouring solutions, looking for one which improves the current solution.

After many iterations of this, eventually the solution will reach a local maximum and will

therefore be unable to be improved by just hill climbing. To be able to find the global

maximum, random-restart hill climbing runs hill climbing from many random starting

points, taking the best out of all runs.

The training algorithm takes a number of parameters:

 specifies how many separating hyperplanes are to be found.

Chapter 7 – Proposal: the Texton Ridge Detector  125

 specifies the number of random-restart hill climbing iterations.

 specifies the probability that the hill climbing will be restarted from a

new random starting solution.

 specifies the maximum amount to adjust each value by when hill climbing.

Effectively, this determines how far a “neighbouring solution” can be from the

current solution.

 specifies the maximum offset from the origin for a separating hyperplane.

The training stage is described in Algorithm 7-1:

ALGORITHM 7-1: Training stage of the approximate textonisation algorithm

1. Initialise as an empty set:

2. Use random-restart hill climbing to find the best new hyperplane

3. Store the new hyperplane:

4. If , go back to step 2

5. Return

The random-restart hill climbing step, which is step 2 of Algorithm 7-1, can be

subdivided further into the steps listed in Algorithm 7-2:

126  Chapter 7 – Proposal: the Texton Ridge Detector

ALGORITHM 7-2: The random-restart hill climbing stage of the approximate textonisation
algorithm

Let be a function that randomly chooses a real number between

and inclusive, with all numbers in that range having equal probability. Given this,

random-restart hill climbing does the following steps to find the best new hyperplane

 :

1. Initialise the best new hyperplane

2. Initialise the number of iterations

3. Randomly generate to be a random hyperplane, with the orientation and

offset :

3.1. Let
 for all , where is the number of

dimensions in the feature space.

3.2. Let

4. Improve by hill climbing

4.1. Let be a random adjustment of , where is a hyperplane with

orientation and offset :

4.1.1. Let

 for all , where is the

number of dimensions in the feature space.

4.1.2. Normalise

4.1.3. Let

4.2. If then:

4.2.1. Update

4.3. Increment

4.4. With a probability of , go back to step 4.1

5. If or then:

5.1. Update

6. If then go back to step 3

7. Return

Chapter 7 – Proposal: the Texton Ridge Detector  127

7.4.4 TRAINING PARAMETERS

Unless otherwise stated, whenever results of the Texton Ridge Detector are discussed in

this thesis, the following parameters were used for training:

 textons.

 K-means++ clustering is run 1000 times.

 = 1 000 000 feature points were used for training, sampled from the

Berkeley dataset (described later in section 8.1).

 = 20 separating hyperplanes.

 = 100 000 iterations for random-restart hill climbing.

 = 5% chance of random restart.

 = 5% random adjustment for the separating hyperplanes.

 maximum separating hyperplane offset from the origin.

This particular value of was chosen for the following reasons. A hyperplane has the

form . In that equation, is a unit vector describing the orientation of the

hyperplane, while is the offset of the hyperplane from the origin. The value

determines the maximum valid range of . This valid range can be determined as

follows:

(1) The L channel, which is the brightness channel in CIELab, has the range .

(2) The function calculates a feature as the difference between two

brightness values.

(3) Because of (1) and (2), each element in a feature vector generated by

can be in the range .

(4) Section 7.3.1 stated that a feature vector has two elements – it is .

(5) The hyperplane orientation must be a unit vector.

(6) Because of (4) and (5), it is known that the value of which generates the

maximum is

 . This is because for this value, is at maximum.

(7) A hyperplane has the form .

(8) Therefore, can be found by substituting the maximal values of and ,

known in (3) and (6), into the hyperplane equation (7).

128  Chapter 7 – Proposal: the Texton Ridge Detector

If the feature vector generated by was different, then would be different.

Training using these parameters took approximately ten hours. The trained set of

separating hyperplanes had an accuracy score of .

More textons or more features?

Different versions of the Texton Ridge Detector with up to 128 textons and an feature

vector, but none of them improved the results, even though they did slow down the

algorithm. The parameters stated here are the smallest parameters required to make the

algorithm run fast while still achieving the high-quality results presented in chapter 9.

7.4.5 TEXTONISATION IMAGE EXAMPLES

The figure below demonstrates what the texton maps of the example images (used in the

previous chapter) look like:

FIGURE 7-2: The texton maps of the example images. A different colour has been ass igned to
each texton. The scale .

The texton maps are difficult for a human to fully interpret because it is difficult to

visualise the distribution of textons at different places in the image. However, some

interesting points can be seen. For example, it is clear that the water in the tiger’s image

(top right) has a much different texton distribution to the tiger itself.

Once the approximate textonisation algorithm is trained, the Texton Ridge Detector can

textonise images using the function , which was defined previously in equation

(7.7). Next, the texton gradient is calculated from this texton map.

Chapter 7 – Proposal: the Texton Ridge Detector  129

7.5 TEXTON GRADIENT

The Pb algorithm calculates the magnitude of the texton gradient by comparing the

texton histograms of two semicircle-shaped windows using the chi-squared distance.

The Texton Ridge Detector does the same, except it uses square-shaped windows,

allowing for faster speeds.

7.5.1 FORMULATION

Given a pixel position , a texton histogram of the square-shaped window centered on

can be calculated by the function :

(7.12)

The texton gradient magnitude can then be calculated by the function :

(7.13)

The high-level view of the above equations is this. calculates the texton

gradient for direction at pixel using the chi-squared distance , which was already

defined for the probability of boundary detector in section 4.5.2 equation (4.10).

 takes the maximum over directions to find the magnitude of the

texton gradient. The direction of the texton gradient is not important, so to

maximise computational speed, only the magnitude is calculated. Throughout

this thesis, has been set to 2 as this produces good results while maintaining speed.

7.5.2 TEXTON GRADIENT IMAGE EXAMPLES

The texton gradient magnitudes of the example images are shown in Figure 7-3:

130  Chapter 7 – Proposal: the Texton Ridge Detector

FIGURE 7-3: The texton gradient magnitude of the example images.

The texton gradient magnitude (Figure 7-3 above) is very different from the variance,

shown previously in Figure 6-3. The boundaries of the tiger (top right) are detected

much more clearly than with variance. However, the boundaries of the starfish (bottom

right) are detected less clearly. Later, section 7.6 describes how both texton gradients

and variance can be combined two allow to further improve this result.

7.5.3 JUSTIFICATION FOR THE DOUBLED SCALE

The equations (7.12) and (7.13) show that the texton gradient is calculated at the scale

 instead of just . This was found to produce higher-quality results. One possible

reason for this is suggested here.

The features chosen in section 7.3 involve smoothing with scale , which causes each

pixel to influence all other pixels within radius . That means pixels that are closer than

 tend to be assigned to the same texton.

Figure 7-4 demonstrates how “nearby” textons tend to be same, where “nearby” means

“closer than the scale r.” The two images in Figure 7-4 are texton maps of the “starfish”

example image (see Figure 6-1). In the left image, . In the right image, .

Chapter 7 – Proposal: the Texton Ridge Detector  131

FIGURE 7-4: Pixels that are closer than r tend to be assigned to the same texton.

Notice that, in the right image where the scale is four times bigger, there are large blobs

of equal colour where many nearby pixels have been assigned to the same texton. This is

also happening in the left image, but at a much smaller scale. Indeed, it is clear that when

pixels are closer than r, they have the tendency to be assigned to the same texton.

Due to this phenomenon, if the texton distribution is also calculated at scale r, then the

distribution will be locally biased and will not represent the texture well. Doubling the

scale for the texton distribution alleviates this problem.

7.5.4 IMPLEMENTATION DETAILS

The slowest part of the Texton Ridge Detector is the part that calculates the texton

histogram for all sliding windows on the image. To ensure maximum speed, this

stage was optimised as much as possible using a number of techniques.

Square-shaped windows

Square-shaped windows are used instead of the semicircle shape used by the Pb

detector because they are much faster, for the reasons already stated in section 6.5.

132  Chapter 7 – Proposal: the Texton Ridge Detector

Rolling sum

The histogram is accumulated using a rolling sum algorithm. A rolling sum can be

demonstrated with an example problem:

5 10 17 6 3 12 8 10 4 2

This problem concerns an array of numbers, like the one illustrated above. The sum of

the first sliding window is known (highlighted above), where in this example, the

window is six elements wide. Now the window is slid one place to the right (highlighted

below).

5 10 17 6 3 12 8 10 4 2

The fastest way to calculate the new sum given the sum of the previous window is to

first take the known total of elements 1-6, then subtract element 1 and add element 7.

This gives the desired sum for elements 2-7. Only two operations need to be performed

even though the sliding window contains six numbers.

Rolling sums for two dimensions

Calculating the rolling sum in two-dimensions is done as follows. First the rolling sums

are calculated vertically for each column using a vertical window of size . Then, on

the resulting vertical sums, the rolling sums are calculated horizontally for each row

using a horizontal window of size . This gives the sums for a window of size .

Figure 7-5 illustrates why this works:

FIGURE 7-5: Vertical sums followed by a horizontal sum can be used to find the total of a two -
dimensional sliding window.

5 7 9 3

10 19 12 7

3 4 15 2

8 6 4 11

26 36 40 23

125

Chapter 7 – Proposal: the Texton Ridge Detector  133

Using rolling sums for texton histograms

Equation (7.12) requires the texton histograms to be calculated. The rolling sum

technique can easily be applied to this situation. The only change is that, textons are

added and subtracted from a histogram instead of just a sum. The rest of the rolling sum

technique remains the same.

Summing order

Memory is linear but an image is two-dimensional, and so some mapping must occur

between the two spaces. The conventional way to unravel a two-dimensional image for

storage in memory is “rows-first”. That is, in this order:

FIGURE 7-6: Images needs to be stored linearly in memory. They are conventionally stored in
“row-first” order, which stores an image row by row.

Assuming the conventional image-memory layout, it is faster to calculate the rolling sum

is vertically first, and then horizontally. The reason for this is as follows.

The first rolling sum can be calculated by reading data directly from the texton map.

Each pixel in the texton map only contains one value – the ID of the texton that pixel

belongs to.

The input to the second rolling sum is the output of the first rolling sum – this is an

image where each pixel is a texton histogram. Section 7.4.4 suggests that 32 textons be

used, implying that each histogram will have 32 values in it. This means that the second

rolling sum must read 32 times more data than the first rolling sum, and so its memory

access pattern is much more important to the speed of the algorithm.

Choosing to do the second rolling sum horizontally ensures greater locality of reference,

because the histograms that need to be added/subtracted for the rolling sum will always

be right next to each other in memory. This increases the chance that they will be stored

on the same memory page, and also allows for better hardware caching. Hence, choosing

to calculate the rolling sum vertically first and horizontally second allows the Texton

Ridge Detector to run faster.

134  Chapter 7 – Proposal: the Texton Ridge Detector

SSE acceleration

The SSE instruction set was also used wherever possible to improve the speed of

calculating the histograms. In particular, it was found that having a multiple of 32

textons is most efficient. This is because there are eight SSE registers, each storing four

values each, and 8 registers × 4 values each = 32 values in total. That is why 32 textons

were recommended in section 7.4.4.

The texton gradient is useful for boundary detection, but it needs to be combined with

other information to produce robust results. This is explained in the next section.

7.6 COMBINING VISUAL CUES

Using texton ridges in isolation for boundary detection is not an optimal solution for the

following reasons. Firstly, some boundaries will change the brightness or colour of an

image greatly, but will not change its texture, and so cannot be recognised by a texton

ridge. Secondly, texton ridges can appear where no boundaries exist because of the way

similar pixels might be binned to entirely different textons – something section 5.5.3

called “phantom boundaries.” For these reasons, it is necessary to combine the texton

gradient with another visual cue to ensure optimal results.

The previous chapter demonstrated the power of variance as a visual cue. It is fast, and

it has the important characteristic that it peaks at boundaries. That is why the Texton

Ridge Detector combines the texton gradient with variance. The combination of the two

will be called the boundary potential :

 (7.14)

There are two reasons why the two visual cues are multiplied together in the above

equation, instead of adding them.

Firstly, if the two visual cues were simply added, then the variance would not suppress

the phantom boundaries. Those phantom boundaries would still be added into the

image from the texton gradient.

Secondly, the variance by itself already makes an excellent boundary detector.

Multiplying variance with the texton gradient effectively suppresses variance ridges

from occurring where there is no change in the texture. Doing this removes boundaries

which would have been detected inaccurately by the Variance Ridge Detector, while

preserving the other high-quality boundaries.

Chapter 7 – Proposal: the Texton Ridge Detector  135

7.6.1 IMAGE EXAMPLES

The boundary potentials of the example images, calculated by combining the texton

gradients and variances, are shown in Figure 7-7.

FIGURE 7-7: The combined texton gradient and variance (right) of the example images, versus
just variance (left).

The example images above show that when the variance is combined with the texton

gradient, more texture is suppressed. For example, the mandrill’s fur (bottom row) is

suppressed almost entirely when using the texton gradient, whereas it can still be seen

in the variance. The water in the tiger’s image (top row) is also suppressed when using

textons.

136  Chapter 7 – Proposal: the Texton Ridge Detector

7.7 RIDGE DETECTION

Once the boundary potentials are calculated, ridge detection is performed to find

boundaries. This proceeds in exactly the same way as with the Variance Ridge Detector,

see sections 6.6 to 6.8 for the details.

7.8 IMAGE EXAMPLES

Applying the Texton Ridge Detector to the example images yields the results shown in

Figure 7-8:

Chapter 7 – Proposal: the Texton Ridge Detector  137

FIGURE 7-8: The Variance Ridge Detector (left column) versus the Texton Ridge Detector (right
column). Hue represents boundary orientation. All images have been brightened to make the

subtle differences easier to see.

The example results above are similar for both the Variance Ridge Detector and the

Texton Ridge Detector. The Texton Ridge Detector has suppressed a few more intra-

texture boundaries, but has also suppressed some inter-texture boundaries. Generally

speaking, the Variance Ridge Detector focuses on detecting all texture boundaries, while

the Texton Ridge Detector focuses on detecting only the boundaries with a high

confidence. It is up to the user to choose which algorithm is best for their situation.

138  Chapter 7 – Proposal: the Texton Ridge Detector

7.9 COMPARISON TO PREVIOUS WORK

The proposed Texton Ridge Detector differs from previous work in certain key ways.

This subsection will explore what these differences are, and the reasons why these

differences improve the algorithm for this situation.

Locality-sensitive hashing

The proposed approximate textonisation algorithm is a type of approximate nearest

neighbour search algorithm which uses locality-sensitive hashing (LSH) (Indyk &

Motwani, 1998; Gionis, Indyk, & Motwani, 1999). Generally, all LSH methods partition

the feature space with a set of separating hyperplanes in the same way as the proposed

approximate textonisation algorithm. However, the proposed approximate textonisation

algorithm differs in a two substantial ways.

Most approximate nearest neighbour algorithms are designed to find the nearest

neighbour out of hundreds of thousands of candidate points. That is why LSH algorithms

normally have multiple candidates per partition, meaning once the partition is found,

some further searching has to occur, and sometimes some backtracking, to produce a

suitable result. In this case, there are much fewer candidate points; in fact section 7.4.4

recommended there be only 32 textons. Having so much fewer candidate points means

that it is feasible for each partition to only have one candidate, which made it possible

for the lookup table optimisation to be used (described in section 7.4.2).

Additionally, LSH algorithms use random hyperplanes, whereas this approximate

textonisation algorithm attempts to find the best set of hyperplanes using machine

learning techniques.

These optimisations make this approximate textonisation algorithm much more suited

to this problem than traditional LSH algorithms.

Boundary detection via Randomised Hashing

Boundary detection via Randomised Hashing (Taylor & Cowley, 2009), introduced in

section 5.5, is also based on locality-sensitive hashing, and so it shows some similarities

to the Texton Ridge Detector.

Both algorithms use hyperplane splits of the feature space. In Randomised Hashing, the

hyperplanes are random, whereas with the Texton Ridge Detector, they are learnt from

a training set. Intuitively, randomness makes no guarantee of quality, which is one

drawback of Randomised Hashing.

Chapter 7 – Proposal: the Texton Ridge Detector  139

Both algorithms have the potential to introduce phantom boundaries because they

quantise features. The Texton Ridge Detector uses variance to eliminate these phantom

boundaries, whereas Randomised Hashing does not have any method for dealing with

this problem.

Also, the Texton Ridge Detector calculates texton histograms, which allows it to

integrate texture information at a higher level. Randomised Hashing does not explicitly

do anything beyond low-level processing, which means its results are noisier because it

is sensitive to the low-level variations in the image.

Boundary detection via Semantic Texton Forests

Semantic Texton Forest segmentation (Shotton, Johnson, & Cipolla, 2008), introduced in

section 5.4, uses a decision forest to transform an image into textons. This textonisation

approach is quite different from the proposed approximate textonisation approach.

One reason why decision forests can produce such high-quality results is that, each

decision node in each of the decision trees uses the most discriminant feature possible.

The problem is, when there are thousands of decisions in the decision forest, there will

be thousands of different features. This is the primary reason why decision trees are

slow.

Consider an image being textonised using Semantic Texton Forests. Each pixel must

follow a different path down each decision tree, which means different features must be

calculated for each pixel. This creates an unpredictable memory access pattern. This is a

problem because a memory fetch operation is normally 10-100 times slower than a

normal CPU operation, and so the inefficient memory access of Semantic Texton Forests

slows it down dramatically.

Unlike Semantic Texton Forests, the proposed Texton Ridge Detector uses a limited,

fixed set of features. Additionally, every pixel is analysed with the same set of decisions

(in this case, each hyperplane is one decision). This creates a predictable memory access

pattern, allowing the Texton Ridge Detector run much faster than Semantic Texton

Forests. Consequently, unlike Semantic Texton Forests, the proposed Texton Ridge

Detector can run at full resolution in real-time.

7.10 CHAPTER SUMMARY

This chapter proposed the Texton Ridge Detector, a texture-boundary detector. It uses

the existing state-of-the-art texton approach and applies it to real-time. The next two

140  Chapter 7 – Proposal: the Texton Ridge Detector

chapters will evaluate the proposed boundary detectors against the prior real-time

boundary detectors.

Chapter 8 – Validation methods  141

8 VALIDATION METHODS

The purpose of this chapter is to introduce three methods which were used in the

experiments to compare the proposed detectors with existing work:

 Section 8.1 discusses the Berkeley segmentation dataset and benchmark, which

will be used to compare the quality of the proposed boundary detectors against

other boundary detectors.

 Section 8.2 discusses the Microsoft Research Cambridge 9-class dataset, which

will be used to compare the speed of the proposed boundary detectors against

other boundary detectors.

 Section 8.3 discusses an adaptive background learning method, which was used

to evaluate the speed of one of the stages of TextonBoost.

The experiments in which these methods are used will be described in the next chapter.

8.1 BERKELEY SEGMENTATION DATASET AND BENCHMARK

The Berkeley segmentation dataset (BSDS) and benchmark (Martin D. , Fowlkes, Tal, &

Malik, 2001) is a publicly-available method for objectively measuring the performance

of a boundary detector. It will be used in the next chapter to validate the proposed

boundary detectors, and compare their performance to other boundary detectors.

The benchmark consists of three hundred 481 by 321 images, separated into a training

set of two hundred images and a test set of one hundred images. In addition, every

image has several sets of human-labelled boundaries, produced by twelve human

subjects. These human-labelled boundary maps form the ground truth which boundary

detectors should strive for.

Benchmarking a boundary detector using the Berkeley benchmark produces a precision-

recall curve (van Rijsbergen, 1979; Baeza-Yates & Ribeiro-Neto, 1999), which shows

how the algorithm performs at different levels of trade-off between precision and recall

(this will be explained in section 8.1.5). An algorithm’s entire precision-recall curve can

be summarised in one value called the F-measure – a number between 0 and 1, where a

higher number is better. Both the precision-recall curve and the F-measure will be used

to compare the performance of different algorithms.

The authors of the benchmark have run two informative tests to show the range of

useful values of the F-measure. First, a random number generator scores . So

142  Chapter 8 – Validation methods

this is the lower bound of what a boundary detector should score. Second, humans score

 . The reason humans do not score is because boundaries are subjective,

and so different humans do not agree exactly as to where the boundaries should be

placed. This means, if a boundary detector scored equal to or above this value, it has

achieved human performance.

8.1.1 BENCHMARKING ALGORITHM OVERVIEW

The BSDS benchmark rates machine-generated boundary maps by comparing them to

the human-labelled boundary maps. Given one machine boundary map and a set of

human boundary maps for the same image, the benchmark is calculated via the

following algorithm:

ALGORITHM 8-1: The Berkeley benchmarking algorithm for one machine -generated image.

1. Threshold the boundary map at thirty different thresholds to generate thirty

different binary boundary maps.

2. For each thresholded boundary map:

a. Thin the boundary map, using morphological thinning.

b. Match the machine boundary map with each human boundary map by

solving an assignment problem.

c. Calculate the precision, the recall and the F-measure from the number of

matched and unmatched boundaries.

3. Return the precision-recall curve and the maximum F-measure as the final result

for that image.

After this algorithm has been run on each image, the Berkeley benchmark averages all

the results over all images to calculate the overall precision-recall and overall F-measure

for that boundary detector.

The remaining subsections in this section will examine the Berkeley benchmark

algorithm in more detail.

8.1.2 THRESHOLDING

The benchmark only functions on binary images, and so thresholding is applied to

convert a boundary map into a binary image. The BSDS benchmark thresholds the

boundary map at thirty evenly-spaced levels. Each of these threshold levels will become

Chapter 8 – Validation methods  143

one point on the precision-recall curve. Thresholding was already been described in

section 2.3.1.

8.1.3 THINNING

Next, morphological thinning is applied to each binary boundary map. Thinning is

needed because it allows for a simple one-to-one matching with the human-labelled

boundary maps. Morphological thinning was already described in section 2.3.3.

8.1.4 MATCHING

The most important part of the Berkeley benchmark is matching stage. This stage takes

the machine boundary map and one of the human boundary maps, and compares how

close they are. This is repeated for all of the human boundary maps, and the results are

combined in the next stage.

It is highly unlikely the two boundary maps will be exactly the same, and so the Berkeley

benchmark finds the lowest-cost bipartite matching between the two boundary maps, as

illustrated in Figure 8-1:

FIGURE 8-1: The machine boundaries are matched to the human boundaries by solving an
assignment problem

A bipartite matching is a matching where each of the machine boundary pixels (found

from the previous stage) is matched to exactly one of the human boundary pixels. Some

of the boundary pixels will be left unmatched. The proportion of boundary pixels that

were able to be matched is a measure of the machine’s performance on the Berkeley

benchmark.

The optimal bipartite matching is found by solving an assignment problem.

Machine boundary

Human boundary

Matching

144  Chapter 8 – Validation methods

8.1.4.1 SOLVING THE ASSIGNMENT PROBLEM

In the assignment problem, there are a number of workers and a number of tasks. The

problem is to assign each worker to a task so that the total cost of the assignments is

minimised. The Hungarian method, sometimes known as the Kuhn-Munkres algorithm

(Kuhn, 1955; Munkres, 1957), is a polynomial-time algorithm for solving the assignment

problem optimally. This algorithm will be illustrated with an example.

In this example, there are four workers – A, B, C and D – and four tasks – W, X, Y and Z.

Each possible assignment has a different cost, as shown in the cost matrix:

 W X Y Z

A 164 140 80 180

B 100 40 30 140

C 150 80 64 200

D 126 60 52 150

There are six steps to the Kuhn-Munkres algorithm.

Step 1: Subtract the row minimum from each row

Subtract the minimum of each row from each cell in the row:

 W X Y Z

A 84 60 0 100

B 70 10 0 110

C 86 16 0 136

D 74 8 0 98

Step 2: Subtract the column minimum from each column

Subtract the minimum of each column from each cell in the column:

 W X Y Z

A 14 52 0 2

B 0 2 0 12

C 16 8 0 38

D 4 0 0 0

Chapter 8 – Validation methods  145

Step 3: Assign greedily

Assign each worker (row) to the first available task (column) that has a zero in it. No

task can be assigned to two workers, so a task becomes unavailable once it has been

assigned. The assignments are shown in blue:

 W X Y Z

A 14 52 0 2

B 0 2 0 12

C 16 8 0 38

D 4 0 0 0

If all workers have been assigned to a task, then the optimal solution has been found – so

the algorithm stops. In this case, worker C could not be assigned to a task, so further

processing is required.

Step 4: Assign optimally

Greedy assignment does not find the optimal all-zeroes assignment. For this reason,

another step is required to improve the greedy assignment. However, at this point in the

example, the greedy assignment cannot be improved, and so this step will be revisited

later.

Step 5: Minimum cover

(a) Mark all unassigned rows (shown in red):

 W X Y Z

A 14 52 0 2

B 0 2 0 12

C 16 8 0 38

D 4 0 0 0

(b) Mark all the unmarked columns that have a zero in the rows just marked:

146  Chapter 8 – Validation methods

 W X Y Z

A 14 52 0 2

B 0 2 0 12

C 16 8 0 38

D 4 0 0 0

(c) Find all the assignments in the columns just marked, and mark those rows:

 W X Y Z

A 14 52 0 2

B 0 2 0 12

C 16 8 0 38

D 4 0 0 0

(d) Keep repeating from step (b) until no additional rows or columns get marked.

In this example, no further rows or columns get marked when repeating these

steps.

(e) Draw lines over all unmarked rows and all marked columns:

 W X Y Z

A 14 52 0 2

B 0 2 0 12

C 16 8 0 38

D 4 0 0 0

The drawn lines will cover all of the assignments, as shown. This is called the minimum

cover because it covers all of the assignments with the minimal amount of lines.

Step 6: Reweight matrix

Find the minimum uncovered value. Subtract this minimum from all uncovered

elements, and add this minimum to all intersections (where the minimum cover lines

cross).

Chapter 8 – Validation methods  147

 W X Y Z

A 12 50 0 0

B 0 2 2 12

C 14 6 0 36

D 4 0 2 0

The result of this is a new matrix to be solved. Now the algorithm goes back to step 3

with this new matrix.

Back to step 4: Assign optimally

Step 3 was run, and the following greedy assignment was found:

 W X Y Z

A 12 50 0 0

B 0 2 2 12

C 14 6 0 36

D 4 0 2 0

This assignment can be improved, and that is the purpose of the previously unexplained

step 4. The assignment is improved by finding alternating paths. This is best illustrated

by reimagining the assignments in the above matrix as a graph:

FIGURE 8-2: In this graph, the workers are the nodes on the left, and the tasks are the nodes on
the right. The greedy assignments are illustrated on this graph. The strong thick lines are the

chosen assignments (transferred from the matrix), the weak grey lines are the possible
assignments (the zeroes in the matrix).

An alternating path is a path that traverses the arcs of the graph in an alternating

fashion: unassigned, assigned, unassigned, assigned, unassigned… and so on. The path

must always begin and end with an unassigned arc. There is only one alternating path in

this example, highlighted in Figure 8-3:

A

B

C

D

W

X

Y

Z

148  Chapter 8 – Validation methods

FIGURE 8-3: The only alternating path in this example is highlighted in purple.

Alternating paths can be found by running a breadth-first search algorithm, starting

from one of the unassigned workers. When an alternating path is found, the algorithm

flips all assignments along the path. As all alternating paths must both start and end on

an unassigned arc, all alternating paths will have more unassigned arcs than assigned

arcs, and so flipping all assignments along the path will always cause a net increase to

the number of assignments – improving the solution. The algorithm repeats this process

until no further alternating paths can be found.

Flipping the assignments along the alternating path has the following effect on the

example:

 W X Y Z

A 12 50 0 0

B 0 2 2 12

C 14 6 0 36

D 4 0 2 0

In the above table, the elements along the alternating path have been shown with a

purple border.

At this point, no further alternating paths can be found, and so the optimal all-zeroes

assignment has been found. If some workers were still left unassigned, the algorithm

would proceed to step 5. However, in this case, all workers have been assigned, and so

the optimal solution has been found, so the algorithm stops here.

8.1.4.2 APPLYING THE ASSIGNMENT PROBLEM TO BERKELEY BENCHMARK

A few steps must be taken to apply the assignment problem to find a bipartite matching

of the boundary maps.

A

B

C

D

W

X

Y

Z

Chapter 8 – Validation methods  149

First, each boundary pixel in the machine boundary map becomes a “worker” and each

boundary pixel in the human boundary map becomes a “task.” With these changes, now

the assignment problem will find the lowest-cost matching between the machine

boundaries and the human boundaries.

Second, the cost of assigning a machine boundary pixel to a human boundary pixel is set

so that it is equal to the distance between their positions. The Berkeley benchmark only

allows matching between pixels that are at most two pixels apart, and so any possible

assignment between boundaries greater than two pixels apart is set to infinite cost.

Third, a high-cost dummy assignment is created for every boundary pixel (human or

machine), so if the algorithm cannot find a suitable matching for that boundary, then the

boundary will be assigned to this dummy assignment. If a boundary pixel is assigned to

this high-cost dummy assignment instead of an actual matching, then that means it was

unable to be matched. This is important, because this allows for every boundary pixel in

both the human and machine boundary maps to be put into one of two states: matched

or unmatched. These two states provide all the information required to calculate the

precision/recall, explained in the next section.

8.1.5 CALCULATING PRECISION/RECALL

Precision measures the fraction of machine boundaries that were correct (van

Rijsbergen, 1979; Martin D. , Fowlkes, Tal, & Malik, 2001):

The Berkeley benchmark has multiple human boundary maps for each image. If a

machine boundary matched a human boundary from at least one of the human

boundary maps, then it is considered correct, and so it will contribute to the precision

score.

Recall measures the fraction of true boundaries that were found:

If a human boundary did not match a machine boundary, then it was not successfully

recalled, and so is not counted in the recall score. This statistic is calculated individually

for each of the human boundary maps, and then the average is taken. That means a

machine boundary map must be able to explain the boundaries of all human subjects in

150  Chapter 8 – Validation methods

order to achieve a perfect score. This is different from precision – precision only

requires one human subject’s boundaries to match each of the machine boundaries.

The precision/recall values are calculated individually for each of the thirty threshold

levels using the aforementioned process, resulting in thirty precision/recall pairs for

each image. These thirty pairs form the precision-recall curve.

8.1.6 THE F-MEASURE

The F-measure(van Rijsbergen, 1979) summarises the precision/recall in one number.

It is calculated as follows:

The F-measure can be modified to consider either precision or recall more important by

changing the value of . The Berkeley benchmark considers both to be equally

important, and so it sets .

The Berkeley benchmark calculates the F-measure for each of the threshold levels using

the precision/recall values calculated previously. The F-measure of a boundary detector

on a particular image is equal to its maximum F-measure over all threshold levels for

that image. Furthermore, the average F-measure can be calculated over all images in the

Berkeley benchmark to indicate the overall performance of a boundary detector.

8.1.7 RESULTS OF THE BERKELEY BENCHMARK

The previous sections described how a boundary detector would be scored on a single

image using the Berkeley benchmark. A boundary detector’s overall performance over

all images in the benchmark can be measured in two ways. First, the average F-measure

over all images is used as an overall score for each boundary detector. Second, a

precision-recall curve over all images can be constructed by taking the average

precision/recall values for each threshold over all images. Both of these forms of results

will be used in the next chapter to illustrate the performance of various boundary

detectors.

8.2 THE MSRC-9 DATASET

The publicly available Microsoft Research Cambridge 9-class dataset contains 240

images, where each image is comprised of up to nine classes of objects: cow, horse,

sheep, tree, building, aeroplane, face, car or bike. There are also two non-object classes:

Chapter 8 – Validation methods  151

sky and grass. This dataset will be used in the next chapter to validate the speed of

various boundary detectors. Figure 8-4 shows a selection of images from this dataset.

FIGURE 8-4: A random selection of images from the MSRC-9 dataset

This dataset was chosen because of a number of reasons:

1. It is publicly available, and so it provides a platform for other researchers to

compare their results.

2. Every image has a human-labelled ground truth, which labels each pixel

according to which of the nine classes it belongs to. Without this information,

some algorithms such as TextonBoost, Semantic Texton Forests and TextonRML,

would not be able to be tested against this dataset.

3. It has a comparatively small number of classes when compared to other common

options such as the MSRC-21 dataset or PASCAL VOC2008 dataset. The argument

is that real-time applications are likely to be trained on fewer classes, enabling

less computational demands and higher speeds. With fewer classes, the MSRC-9

dataset meets this requirement.

4. The image size is 320 by 213, which slightly smaller than the commonly-used

camera resolution of 320 by 240, and so the results are indicative of how these

algorithms might perform when using real-time input from a camera.

All of the above reasons meant the MSRC-9 dataset was a good choice to measure

boundary detector speed. It would have been useful to also use the Berkeley dataset for

this purpose, but that is not possible because the Berkeley dataset does not provide

class-labelled ground truths which TextonBoost requires.

The use of the MSRC-9 dataset will be seen in the next chapter.

8.3 ADAPTIVE BACKGROUND LEARNING

An adaptive background learning algorithm will be used in the next chapter to test the

speed of the minimum cut – a critical part of TextonBoost. The adaptive background

152  Chapter 8 – Validation methods

algorithm that will be used was actually a novel innovation developed as a side-project

during the course of this research.

The novel part about this adaptive background learning algorithm is that it learns each

pixel at a different rate, depending on a novel concept called stability.

8.3.1 OVERVIEW

The adaptive background learning algorithm takes a single frame of input and a

learning rate parameter , and returns an error image . is the difference

between the frame and the background .

8.3.2 STABILITY

The most important concept in this adaptive background learning algorithm is stability.

Stability is dependent on the temporal variance of the error image . This is

illustrated in Figure 8-5:

FIGURE 8-5: This diagram is an illustration of how the error of a pixel would change when a
new object is added into the background.

Figure 8-5 illustrates how the error of a pixel would change when a new object is added

into the background. There are three phases, each indicated in Figure 8-5 by its number:

1. Initially, when there is no movement in the frame, the error will be low and the

variance of the error will also be low.

Time

 – error of a single pixel over time

1. No foreground

movement

2. Moving foreground object –

learning rate should slow down.

3. Foreground object stops moving –

learning rate should speed up.

Chapter 8 – Validation methods  153

2. When there is foreground movement, there will be high temporal variance in the

error, as the pixel will be constantly changing as the object moves through the

image.

3. Finally, the foreground object stops moving and it becomes part of the

background. This causes the temporal variance of the error to become low again.

So the likelihood of a pixel being part of the background depends on the temporal

variance of the error. Stability is a calculation that transforms the variance of the error

to a score in the [0, 1] range. The formula for stability will be introduced later.

8.3.3 BACKGROUND MODEL

On each invocation, the algorithm updates a number of variables, which store the

current model of the background.

Two images are stored in order to keep track of the background mean and standard

deviation:

 is the mean background.

 is the mean of the squared background.

Two more images are stored in order to keep track of each pixel’s stability:

 is the mean error.

 is the mean of the squared error.

Storing the squares of both the background and the error means that the standard

deviation of both the background and the error can be calculated at all times. Initially, all

four variables above are initialised with zero-filled images at the start of the algorithm.

8.3.4 ALGORITHM

On each new captured frame , the adaptive background model is learnt using the

Algorithm 8-2:

154  Chapter 8 – Validation methods

ALGORITHM 8-2: The adaptive background subtraction algorithm for a single new frame .

1. Let the background standard deviation

2. Calculate the frame error

3. Calculate the stability image by performing the following steps:

3.1. Update average error

3.2. Update average square error

3.3. Let the error standard deviation

3.4. Calculate stability image

4. Update the background model using the stability matrix:

4.1. Update average background:

4.2. Update average square background:

5. Return the frame error image

As indicates the likelihood of pixel belonging to the foreground, a minimum cut

can be used on to separate the foreground from the background. This is how this

algorithm is used in the next chapter.

Chapter 9 – Experimental results  155

9 EXPERIMENTAL RESULTS

This thesis proposes two texture boundary detectors – the Variance Ridge Detector and

the Texton Ridge Detector. This chapter will compare the proposed detectors against

other existing texture-boundary detectors.

9.1 OVERVIEW OF THE EXPERIMENTS

The first group of experiments validates whether the proposed detectors can be

considered real-time, while the second group investigates the quality.

Real-time

The speed of the two proposed boundary detectors was measured with two

experiments. First, the proposed detectors processed the real-time input from a camera.

Second, the proposed detectors processed images from the publicly-available Microsoft

Research Cambridge 9-class (MSRC-9) database. These two experiments will determine

whether the proposed boundary detectors are capable of running in real-time.

For comparison, the speeds of the gPb detector and TextonBoost were both measured

on the same MSRC-9 database as the proposed detectors. This will investigate whether it

is true that these state-of-the-art detectors cannot run in real-time.

Speed measurements were not taken on the existing real-time texture-boundary

detectors as their authors have already shown them to run in real-time.

Quality

The quality of the two proposed boundary detectors was measured on the publicly-

available Berkeley segmentation dataset (BSDS), using the benchmarking algorithm

provided with the dataset. This benchmark compares the output of a boundary detector

against a database of human-segmented images. The purpose of this experiment is to

objectively measure the quality of boundary maps produced by the proposed boundary

detectors.

For comparison, the qualities of the Konishi detector and Surround Suppression have

also both been measured on the Berkeley segmentation dataset and benchmark. These

results will investigate whether the proposed detectors produce higher quality results

than these other real-time algorithms.

The remaining real-time detectors – TextonRML (section 5.3), Semantic Texton Forests

(section 5.4) and Randomised Hashing (section 5.5) – were not able to be benchmarked

156  Chapter 9 – Experimental results

on the Berkeley benchmark. Chapter 5 already showed that these algorithms cannot

produce high-quality boundary detections.

The combination of all of the above results will show whether the two boundary

detectors proposed by this thesis outperform other established texture-boundary

detectors.

9.2 APPARATUS

The experiments were run on three separate machines.

The first machine had an Intel Core 2 Duo E6750 2.66 Ghz 32-bit CPU, 2 GB of RAM and

used Windows XP Professional with service pack 3. This machine was used for all of the

speed measurements. Even though this machine has two CPU cores, all speed

measurements were executed as single-threaded applications and so only one CPU core

was used in those cases.

The second machine was identical to the first, except it ran Fedora Core 8 instead of

Windows XP. This machine was used to run the Berkeley benchmark, as the Berkeley

benchmark required a Linux environment.

The third machine was a server which had sixteen Intel Xeon MP 2.70 Ghz CPUs, each

with one CPU core only, and 32 GB of RAM. It ran Windows Server 2003 Enterprise

edition with service pack 2. This machine was used for training classifiers, as its many

CPUs and large memory size sped up the training time significantly.

Whenever real-time camera input was needed, a Logitech QuickCam 5000 was used,

connected via USB.

The C++ programs used by the experiments were all compiled using Visual C++ 2008.

When speed was being measured, the programs were compiled with maximum code

optimisation and linked with whole program optimisation.

Some of the Boost C++ libraries1 (version 1.38) were used in the C++ implementations,

particularly the smart pointers, the filesystem libraries and timer library.

OpenCV2 1.1 was used for most experiments, but OpenCV 2.0 was used in some cases.

This was because OpenCV 2.0 only became available more recently. Not all functions in

OpenCV 1.1 were used as they are not SSE-accelerated (see section 6.10.5), and so

1 http://www.boost.org/

2 http://www.opencv.org/

http://www.boost.org/
http://www.opencv.org/

Chapter 9 – Experimental results  157

separate SSE-accelerated functions were implemented. The functions in OpenCV 2.0 are

generally already SSE-accelerated, and so they were used directly.

OpenMP3 was used to create multithreaded implementations of some of the detectors.

However, this was only used to speed up training – only a single thread was used when

performing boundary detection. This was done to ensure that if a boundary detector

was found to achieve real-time, it would be because of the algorithm’s design and not

because of the number of CPUs it was running on.

MATLAB R2007b was used to run the Berkeley benchmark and the normalised cut

algorithm. Although MATLAB itself is slower than C++, the most computationally

intensive parts of the MATLAB applications were implemented in other languages. The

eigenvectors were solved using the ARPACK library4, compiled natively from Fortran90,

and C was used for all other computationally-intensive parts.

Finally, one of the programs was implemented using C++/CLI, compiled with Visual C++

2008. Essentially, this language allows a programmer to write both native code (in a C++

manner) and managed code (in a .NET) manner together in the same program. As

expected, the managed code is slower than the native code. However, this language was

not used in any of the cases where speed was being measured.

9.3 SPEED OF PROPOSED DETECTORS ON REAL-TIME CAMERA INPUT

The proposed detectors are intended to be used on real-time camera input. This

experiment measures the speed of the proposed detectors in that intended setup, and

will investigate whether the detectors are capable of running in real-time.

9.3.1 APPARATUS

This experiment was run on the Windows Intel Core 2 Duo 2.66 Ghz machine using a

Logitech Quickcam 5000, both of which were previously introduced in greater detail in

section 9.2.

9.3.2 METHOD

The Variance Ridge Detector and the Texton Ridge Detector were implemented as

described in chapters 6 and 7. They were compiled with Visual C++ 2008, using OpenCV

3 http://www.openmp.org/

4 http://people.sc.fsu.edu/~burkardt/m_src/arpack/arpack.html

http://www.openmp.org/
http://people.sc.fsu.edu/~burkardt/m_src/arpack/arpack.html

158  Chapter 9 – Experimental results

1.1 and some of the Boost C++ libraries. SSE instructions were used wherever possible

to speed up the implementations.

The Texton Ridge Detector was trained with 32 textons, using 20 hyperplane splits. The

training data was 200-image training set from the Berkeley benchmark. Training took

approximately eight hours, by which time the approximate textonisation algorithm had

achieved an accuracy of 91%.

The average execution speed of the detectors was measured over 100 000 frames,

captured in real-time from the camera. This was repeated using two different frame

sizes: 320 by 240 pixels, and 640 by 480 pixels. For 320 by 240 pixels, the scaling

parameter was set to , as this generates the highest-quality results on the Berkeley

benchmark. For 640 by 480 pixels, the scaling parameter was doubled to .

Only the time spent processing images was included. That means the time capturing the

images from the camera was not included in the execution time, as this is not part of the

algorithm. The Boost timer library was used to measure time. It was found that the CPU

only had a time granularity down to steps of approximately 0.015 seconds. So to

measure the speed accurately, each frame was captured and the detector was run on it

repeatedly until the elapsed time was at least one second, and the speed measured over

that time period. This ensured the time granularity would not introduce errors into the

results.

9.3.3 RESULTS

The speed of the proposed detectors on 320 by 240 images is shown in Table 9-1, while

the speed of the proposed detectors on 640 by 480 images is shown in Table 9-2.

Detector Seconds per frame Frames per second

Variance Ridge Detector 0.021 47.9

Texton Ridge Detector 0.094 10.6

TABLE 9-1: The speed results of the proposed detectors on 320 by 240 images

Detector Seconds per frame Frames per second

Variance Ridge Detector 0.12 8.12

Texton Ridge Detector 0.46 2.19

TABLE 9-2: The speed results of the proposed detectors on 640 by 480 images

Chapter 9 – Experimental results  159

9.3.4 DISCUSSION

Clearly, the proposed detectors are able to run in real-time for the 320 by 240 images.

For the 640 by 480 images, the detectors run between one and ten frames per second,

and so could still be considered real-time depending on the application.

The Texton Ridge Detector is approximately 4.5 times slower than the Variance Ridge

Detector. This is understandable as it not only has to run the Variance Ridge Detector

itself, but it also must textonise the images and calculate their texton gradient.

When the resolution was doubled, the Variance Ridge Detector slowed down by a factor

of 5.9, while the Texton Ridge Detector slowed down by a factor of 4.8. Part of this can

be explained by the fact that doubling the resolution from increases the number of pixels

by four times. The remainder of the slowdown factor is likely to be due to the fact that

the scale parameter was doubled, which quadrupled the size of the sliding window.

This does not cause a further quadrupling of the slowdown factor though because

rolling sums (described section 7.5.4) were used throughout the implementations.

9.4 SPEED MEASUREMENTS ON MSRC-9 DATABASE

The speed of TextonBoost (section 4.4) and the Pb detector (section 4.5) were both

measured on the MSRC-9 dataset. The purpose of this was to investigate whether these

state-of-the-art algorithms are capable of running in real-time. For comparison, the

results of the proposed boundary detectors on this dataset have also been measured.

9.4.1 APPARATUS

All speed measurements were made on the Windows Intel Core 2 Duo 2.66 Ghz, which

was already introduced in section 9.2. Some of the training was done on the sixteen-CPU

server machine, also introduced in section 9.2. The MSRC-9 dataset (described in section

8.2) was used for testing.

9.4.2 METHOD

The same implementations of the Variance Ridge Detector and Texton Ridge Detector

were reused from the previous experiment (section 9.3), they were just adapted so that

they could take input from files. The Texton Ridge Detector was not retrained from the

previous experiment, the same one was used. The scale parameter was set to 3 for

both of the proposed detectors.

160  Chapter 9 – Experimental results

The rest of this section will describe how the implementations used for the probability

of boundary detector and TextonBoost, and then will finally describe how the speed

benchmark was run.

The probability of boundary detector

Two versions of the probability of boundary (Pb) detector were used. First, a MATLAB

implementation of the Pb detector, which was made publicly available by its authors,

was used. Second, a C++ implementation of part of the Pb detector was developed.

The C++ implementation of Pb was compiled with Visual C++ 2008, using the libraries

OpenCV 2.0.0a and some of the Boost C++ libraries. It only included the two core parts of

Pb – the texton extraction stage and the texture gradient calculation stage. All possible

optimisations were used:

 The feature extraction stage was implemented using OpenCV’s filter2D method,

which uses the discrete Fourier transform over different tiles throughout the

image to achieve maximum speed.

 The textonisation stage uses a kd-tree, implemented with the Fast Library for

Approximate Nearest Neighbours (FLANN) included with OpenCV 2.0.

 The texton frequencies for oriented half-discs is calculated by first counting

the texton frequencies over slices of the disc, and then taking the rolling sum

over the slices.

 The slices themselves are calculated by using precalculated slice masks for the

first column, and then difference masks for the remaining columns.

All of the above points mean that this C++ implementation will demonstrate a lower

bound for the speed of the Pb detector.

All parameters were set to the optimal values presented in Pb’s 2004 paper. That is,

 orientations were used, and all scales were set to 2% of the image diagonal except

for the brightness gradient, which was set to 1% of the image diagonal. Both

implementations were trained on the Berkeley 200-image dataset. See section 4.5 for

further details on the Pb algorithm.

TextonBoost

Two implementations of TextonBoost were also used. First, a C# implementation of

TextonBoost, provided by its authors, was used. Second, a C++ implementation of part of

the TextonBoost algorithm was developed.

Chapter 9 – Experimental results  161

The C# implementation did not include the alpha-expansion graph cut stage, which

means it runs slightly faster than it would normally.

The C++ implementation of TextonBoost was compiled with Visual C++ 2008, using the

libraries OpenCV 2.0.0a and some of the Boost C++ libraries. It only included the two

core parts of TextonBoost – the texton extraction stage and the texture-layout filter

stage. All possible optimisations were used:

 TextonBoost’s feature extraction stage happens to use linearly separable

kernels. This allowed them to be applied separately in turn for each dimension –

first across the rows and then across the columns – which is much faster than

having to use a two-dimensional sliding window.

 Convolution is commutative, which means that applying the Laplacian of the

Gaussian kernel to an image is the same as applying the Gaussian kernel to an

image, and then applying the Laplacian operator to the Gaussian-filtered image.

For this reason, the image was only filtered with Gaussian kernels, and then the

Laplacian was applied afterwards. The same was done for the first-derivative of

the Gaussian, where the derivative was calculated on the Gaussian-filtered image

using the Sobel filter. This reduced the number of convolutions threefold,

allowing for greater speeds.

 The textonisation stage uses a kd-tree, implemented with the Fast Library for

Approximate Nearest Neighbours (FLANN) included with OpenCV 2.0.

 As the original TextonBoost paper prescribed, integral images were calculated

for each texton to maximise the speed of the texture-layout filters.

All of the above points mean that this C++ implementation will demonstrate a lower

bound for the speed of the TextonBoost detector.

Both implementations of TextonBoost were as trained with two sets of parameters.

The first set of parameters was 100 textons and 500 texture-layout filters. These

parameters have been chosen to be the identical to Ranganathan’s work (2009).

Ranganathan’s TextonRML was intended for real-time segmentation, and so their choice

of parameters would have been optimised for real-time.

The second set of parameters was 400 textons and 5000 texture-layout filters. These

parameters were the same as in TextonBoost’s 2009 paper (Shotton J. , Winn, Rother, &

Criminisi, 2009). When the C# implementation was trained with these parameters, it

only produced 760 texture-layout filters because it could not improve its accuracy after

162  Chapter 9 – Experimental results

this point. Consequently, the C++ implementation was restricted to 1000 texture-layout

filters in order to allow for effective speed comparisons to be made. It is likely that the

C++ implementation could achieve more texture-layout filters because it was trained on

the much more powerful sixteen-CPU server and so higher quality settings were used

for its training.

TextonBoost should run faster (but less accurately) for the first set of parameters as

they are smaller. Having both of these sets of parameters is useful as it demonstrates the

performance of TextonBoost when either speed or quality is emphasised.

Both implementations were trained on a 48-image subset of the MSRC-9 dataset. Both

implementations subsampled the training data by a factor of 5 in order to achieve

acceptable training times.

Speed benchmark

Each of the algorithms was run ten times on each image in the MSRC-9 dataset, and the

average speed was taken. In all cases, only the time spent processing images was

included. That means the time loading the images from disk was not included in the

execution time, as this is not a part of the algorithms. All measurements were taken on

the Windows Intel Core 2 Duo 2.66 Ghz machine which was already described in section

9.2.

9.4.3 RESULTS

The results are presented in the table below:

Detector
Seconds
per frame

Frames per
second Notes

Variance Ridge Detector 0.023 43.6 Proposed

Texton Ridge Detector 0.094 10.7 Proposed

Pb (C++) 2.78 0.36

TextonBoost (C++)
(100 textons, 500 texture-layout filters)

4.37 0.23

TextonBoost (C++)
(400 textons, 1000 texture-layout filters)

8.59 0.012

Pb (MATLAB) 12.6 0.079

TextonBoost (C#)
(100 textons, 500 texture-layout filters)

24.9 0.040

TextonBoost (C#)
 (400 textons, 760 texture-layout filters)

44.2 0.022

TABLE 9-3: The speed results of various algorithms on the MSRC-9 dataset

Chapter 9 – Experimental results  163

Image results

Although this experiment was only measuring speed, for interest, some of the image

results are presented below in Figure 9-1.

FIGURE 9-1: From left to right: the original image, the Variance Ridge Detector (proposed), the
Texton Ridge Detector (proposed), TextonBoost (100 textons, 500 texture -layout filters),

TextonBoost (400 textons, 760 texture-layout filters). These are the output of the C#
implementation of TextonBoost, and so they do not include an alpha -expansion graph cut.

Original images all from the MSRC-9 image database.

9.4.4 DISCUSSION

Clearly the results show that both TextonBoost and the Pb detector cannot run in real-

time, even when only the core parts of the algorithms are implemented optimally. The

results also clearly show that the Variance Ridge Detector and Texton Ridge Detector

can clearly achieve real-time.

Interestingly, the Variance Ridge Detector is slightly slower here than when running on

camera input as in the last experiment, even though the images in the MSRC-9 dataset

are smaller. The experiment has been rerun and this pattern has been confirmed

consistently. It is not clear why this is. Perhaps the image is cached differently when it

comes from the camera as opposed to the hard drive. The Texton Ridge Detector does

run slightly faster in this case though, as expected.

Image VR TR TB (small) TB (large)

164  Chapter 9 – Experimental results

The C++ implementations of TextonBoost and Pb show large speedups over their C# or

MATLAB counterparts, with Pb running 4.5 times faster, and TextonBoost running about

6 times faster. A significant part of this would be due to the fact that the C++

implementations do not include all stages of the algorithms. However, the fact that even

these highly optimised stripped-down versions of the detectors cannot run in real-time

shows that there is no way any version of TextonBoost or Pb can run in real-time.

TextonBoost also shows that it slows down linearly with the number of texture-layout

filters, as expected. The results show that when the number of texture-layout filters

were approximately doubled, the execution time approximately doubled as well.

Another important point is that, in Figure 9-1 it can be seen that TextonBoost produces

extremely low-quality boundaries without its alpha-expansion graph cut stage. This is

significant, because some texton-based algorithms claim they can achieve real-time

execution by simply not running the graph cut stage, clearly with substantially lower

results. This observation was discussed further in section 4.4.3.

These results show that the state-of-the-art texture-boundary detectors Pb and

TextonBoost cannot run in real-time, as they take well over one second per frame. By

contrast, the results have also shown that the proposed detectors can run in real-time.

9.5 ESTIMATING THE SPEED OF GPB

The global probability of boundary detector (gPb) was introduced as a state-of-the-art

non-real-time texture-boundary detector in section 4.6. This section presents an

experiment which will investigate whether it is possible for gPb to run in real-time.

The gPb algorithm consists of two halves. The first half of the algorithm is the same as

the probability of boundary detector (Pb). The second half improves the boundary map

by using global information. Section 9.4 already showed that Pb detector, which was the

first half, cannot run in real-time. The purpose of this experiment is to show that the

second half also cannot run in real-time.

The code for the gPb algorithm was not made publicly available. So instead of running

the whole of gPb itself, this experiment runs only the most computationally-expensive

part of the second half of gPb – the part where the eigenvectors are calculated. This will

strongly indicate whether it is possible to run the second half of gPb in real-time.

Chapter 9 – Experimental results  165

9.5.1 APPARATUS

This experiment was run on the Fedora Core Intel Core 2 Duo 2.66 Ghz machine that

was introduced in section 9.2.

9.5.2 METHOD

The normalised cut (Shi & Malik, 2000) is very similar to the second half of gPb – it

involves calculating eigenvectors in the same way. Shi and Malik made their MATLAB

implementation of the normalised cut publicly-available, and so this code was taken and

modified to simulate eigenvector part of gPb.

Traditionally, the first three steps of the normalised cut are as follows:

1. Calculate the gradients

2. Construct the affinity matrix

3. Find eigenvectors in the affinity matrix

This is identical to gPb, except gPb replaces step 1 with the Pb detector. So, the code of

the normalised cut was modified so that step 1 would in fact use the Pb detector. This

was possible because the code for Pb had been made available by its authors. Making

these modifications meant the code was identical to gPb up to the eigenvector stage. The

gPb detector does further postprocessing after this stage, but these parts were not

coded for this experiment. That means this experiments will only provide a lower bound

of what the speed of gPb could be, which is acceptable for this purpose. The full details

about the gPb algorithm can be found in section 4.6.

In this experiment, the partial gPb algorithm that was described above was run ten

times on each image in the MSRC-9 dataset (explained in section 9.4), and the average

speed of the eigenvector stage only (that is step 3 only, above) was taken. That means

the time spent loading the images from disk or performing steps 1 or 2 above was not

included in the execution time.

It was considered acceptable to use a MATLAB implementation for this speed test

because the eigenvector stage, which is the only stage that is speed tested, calls natively

compiled Fortran90 code.

9.5.3 RESULTS

Running the experiment showed that it would take an average of 30.0 seconds for gPb to

calculate the eigenvectors for the images in the MSRC-9 dataset.

166  Chapter 9 – Experimental results

9.5.4 DISCUSSION

Thirty seconds is clearly slower than real-time, and so this experiment shows that gPb

cannot run in real-time. This long execution time makes sense, as the solver must

consider an extremely large number of pixel pairs. As the Pb algorithm, which

constitutes the first half of gPb, was also shown to be non-real-time in section 9.4, this

shows that running the entire gPb algorithm in real-time is impossible.

9.6 ESTIMATING THE SPEED OF ALPHA-EXPANSION GRAPH CUTS

Section 9.4 measured the speed of only part of TextonBoost. This section presents an

experiment that attempts to indicate whether the remaining part of TextonBoost – the

alpha-expansion graph cut stage – could be run in real-time. This is important because if

alpha-expansion graph cuts can run in real-time, then they could be used with the real-

time algorithm TextonRML (introduced in section 5.3), allowing for extremely high-

quality boundary detection in real-time.

As shown in section 4.4.5, the alpha-expansion graph cut is simply a minimum cut with

special inputs. So to investigate whether alpha-expansion graph cuts can be solved in

real-time, this experiment will investigate whether it is possible to run multiple

minimum cuts in real-time.

9.6.1 APPARATUS

This experiment was run on the Windows Intel Core 2 Duo 2.66 Ghz machine using the

Logitech QuickCam camera, both of which were introduced previously in section 9.2.

9.6.2 METHOD

A system, involving a camera connected to a computer, was setup to watch a particular

scene. The scene was simply an outdoor scene at the University where this research was

undertaken, as shown in Figure 9-2. The scene contained a path, and people would

frequently walk through the scene along the path. The system would continually learn

the background of the scene using an adaptive background learning algorithm

(described in section 8.3).

Chapter 9 – Experimental results  167

FIGURE 9-2: A still frame of the scene that was used for this experiment.

Whenever the total difference from the background exceeded a certain high threshold,

the system would assume that a person had entered the scene, and so it would use a

minimum cut to separate the person from the learnt background. From this, the average

speed of the minimum cut algorithm was measured over a large number of frames. The

system was left running over the course of one day.

The minimum cut algorithm that was the Boost C++ graph library implementation of the

Kolgomorov algorithm (Boykov & Jolly, 2001; Boykov & Kolmogorov, 2004).

Kolmogorov’s algorithm was specifically designed with computer vision applications in

mind, and so is currently the fastest known minimum cut algorithm for this purpose.

Only the speed of the minimum cut was measured. That means, the time spent capturing

the image, learning the background or transforming the image into a graph was not

included in the execution time. The minimum cut would always run in its own thread,

while the rest of the program ran in another thread. This ensured the adaptive

background model was correct at all times. The two threads would not have interfered

with each other as the CPU had two separate cores.

9.6.3 RESULTS

Over eight hours of execution, the program ran the minimum cut over two thousand

different frames of movement. It was found that it took 0.61 seconds on average to run

the minimum cut algorithm.

9.6.4 DISCUSSION

An algorithm that uses alpha-expansion graph cuts, such as TextonBoost, must run the

minimum cut algorithm at least as many times as the number of classes. The MSRC-9

dataset contains eleven classes (nine of them are object classes), and so at least eleven

168  Chapter 9 – Experimental results

minimum cuts would need to be run. Given that each cut takes 0.61 seconds, this would

take approximately 6.71 seconds, which clearly cannot be considered real-time. Even if

only two classes were used, this process would take 1.2 seconds, which would be too

slow for most real-time applications.

Combining the results of this experiment with the fact that the first half of TextonBoost’s

algorithm also does not run in real-time (see section 9.4), this experiment shows that it

is impossible for an algorithm such as TextonBoost to run in real-time.

9.7 QUALITY MEASUREMENTS ON BERKELEY BENCHMARK

The quality of the proposed detectors, Konishi’s detector and Surround Suppression was

measured using the Berkeley segmentation dataset and benchmark (explained

previously in section 8.1). This is to show that the proposed detectors outperform both

of these state-of-the-art real-time texture-boundary detectors.

Code for other real-time texture-boundary detectors was not publicly available. So

instead, a visual comparison will be made in the next section. Together, this section and

the next section will investigate whether the proposed detectors outperform all other

real-time texture-boundary detectors in terms of quality.

9.7.1 APPARATUS

This experiment was run on the Fedora Core Intel Core 2 Duo 2.66 Ghz machine

introduced in section 9.2.

9.7.2 METHOD

The same implementations of the Variance Ridge Detector and Texton Ridge Detector

were reused from the experiment in section 9.3. The Texton Ridge Detector was not

retrained from that experiment, the same one was used. The scale parameter was set

to 3 for both of the proposed detectors.

This experiment used the MATLAB implementation for Konishi’s detector provided by

the authors of the Pb detector (Martin, Fowlkes, & Malik, 2004). Konishi’s detector was

already described in full in section 5.1.

Surround Suppression was implemented in C++/CLI using OpenCV functions. The scale

parameter, , was set to 2, which is what was used by Martin et al. (2004) for the

gradient magnitude operator. See section 5.1 for details of the Surround Suppression

algorithm.

Chapter 9 – Experimental results  169

9.7.3 RESULTS

The Berkeley benchmark was calculated in the way it was described in the previous

chapter (see section 8.1). The results over a wide selection of algorithms are as follows:

Detector F-measure Comments

Humans 0.79

gPb
(Maire, Arbelaez, Fowlkes, & Malik, 2008)

0.70 Non-real-time

Boosted edge learning
(Dollar, Tu, & Belongie, 2006)

0.66 Non-real-time

pB (colour)
(Martin, Fowlkes, & Malik, 2004)

0.65 Non-real-time

pB (greyscale)
(Martin, Fowlkes, & Malik, 2004)

0.63 Non-real-time

Texton Ridge Detector 0.63 Real-time, proposed

Variance Ridge Detector 0.62 Real-time, proposed

Surround Suppression
(Grigorescu, Petkov, & Westenberg, 2003)

0.58 Real-time

Konishi’s detector
(Konishi, Yuille, & Coughlan, 2002)

0.57 Real-time

Gradient magnitude 0.56 Real-time

Random 0.43

TABLE 9-4: The quality results of various algorithms on Berkeley segmentation dataset. Higher
is better.

The graph below in Figure 9-3 shows how the precision-recall curves of the proposed

detectors compare to other real-time texture-boundary detectors:

170  Chapter 9 – Experimental results

FIGURE 9-3: The precision-recall curves of the various real-time boundary detectors, including
the proposed detectors.

A detector’s precision-recall curve is better when it is closer to the top-right corner of

the graph – indicating it has higher precision and recall.

The graph below shows how the precision-recall curves of the proposed detectors

compare to non-real-time detectors:

FIGURE 9-4: The precision-recall curves of the proposed detectors versus non-real-time
boundary detectors.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Real-time texture boundary detectors

Gradient magnitude

Konishi's detector

Surround suppression

Variance ridge

Texton ridge

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Non-real-time texture boundary detectors

Variance ridge
Texton ridge
Pb (greyscale)
Pb (colour)
Boosted edge learning
gPb

Chapter 9 – Experimental results  171

Image results

FIGURE 9-5: From left to right: images from the Berkeley dataset, the Variance Ridge Detector,
and the Texton Ridge Detector. For the variance ridge and Texton Ridge Detectors, hue

represents boundary orientation.

(i)

(g)

(h)

(e)

(f)

(d)

(c)

Image Variance ridge Texton ridge

(a)

(b)

172  Chapter 9 – Experimental results

9.7.4 DISCUSSION

Table 9-4 shows that the proposed Variance Ridge Detector scores and the

Texton Ridge Detector scores . With these scores, the two proposed detectors

are the highest-quality out of all the real-time detectors listed.

The precision-recall curves in Figure 9-3 and Figure 9-4 show the usual inverse

relationship between precision and recall. This is expected, because as recall increases,

more true boundaries are detected as well as more false boundaries, meaning precision

will decrease.

Figure 9-3 confirms what the F-measures showed, with the precision-recall curves of the

proposed detectors outperforming all the other established real-time texture boundary

detectors in the graph. Figure 9-4 also shows that the results generated by the proposed

detectors are not far from the best non-real-time detectors, even though the non-real-

time detectors are many times slower.

Interestingly, the Texton Ridge Detector scores the same F-measure as the the greyscale

version of Pb, and their precision-recall curves are very close, although the Texton Ridge

Detector performs slightly worse at high recall. The Texton Ridge Detector is a real-time

approximation of the Pb detector, and so this might explain why they can generate

similar results.

A few interesting points can be seen from the example images in Figure 9-5.

Firstly, Figure 9-5 shows that the proposed detectors work well on small-scale texture.

This can be seen particularly in rows (a), (b) and (c), where the proposed detectors

produce little response to the grass, lizard and grain textures. Rows (g), (h) and (i) show

larger-scale textures which have not been suppressed as much. This might have been

able to be partially alleviated by increasing the scaling parameter , however, it was

found that any increases to would decrease the overall score of the detectors, even

though the score for some of the images increased. Perhaps future research could

include some form of automatic scale selection to alleviate this problem.

Secondly, the Texton Ridge Detector is slightly better at suppressing texture than the

Variance Ridge Detector. This can be seen in rows (b), (c) and (d), where the less

response is generated by the Texton Ridge Detector in textured areas.

This experiment has shown that the proposed boundary detectors are able to produce

higher-quality output than other established real-time boundary detectors.

Chapter 9 – Experimental results  173

9.8 COMPARISON TO THE REMAINING REAL-TIME DETECTORS

Chapter 5 introduced five real-time texture-boundary detectors. Two of these have

already been outperformed in the previous section using the Berkeley benchmark. The

remaining three algorithms – Semantic Texton Forests, TextonRML and Randomised

Hashing – could not be measured on the Berkeley benchmark. However, it is still clear

that the proposed detectors outperform these algorithms, simply because all of these

three algorithms produce low-quality boundary maps. Chapter 7 already discussed why

these low-quality results are produced by the algorithms. This section will discuss

further why the proposed detectors outperform these three algorithms.

Comparison with Semantic Texton Forests

Semantic Texton Forest segmentation (section 5.4) is only able to run in real-time

because it does not consider every pixel neighbourhood. Due to this, it produces a

boundary map at a resolution 21 times smaller than the image. This severe reduction in

resolution means a severe reduction in boundary quality. The proposed detectors

produce full-resolution boundary maps, which is why the proposed detectors

outperform Semantic Texton Forests. Section 5.4.5 goes into more detail about this.

Comparison with TextonRML

TextonRML (section 5.3) is able to run in real-time because it does not smooth its results

with alpha-expansion graph cuts. For the purpose of boundary detection, this is not

acceptable because unsmoothed texton approaches normally produce quite noisy class

labelings. Section 4.4.3 illustrated how unsmoothed results are inadequate for use as a

boundary map. Additionally, section 9.6 showed that adding a smoothing stage using

alpha-expansion graph cuts would clearly make it impossible for any algorithm to run in

real-time. For these reasons, the proposed detectors produce higher-quality results

when compared to TextonRML. However, in real-time, TextonRML is useful for other

purposes, such as solving the image labelling problem.

Comparison with Randomised Hashing

Like TextonRML, Randomised Hashing (section 5.5) also does not smooth its results,

which is one reason why it produces low-quality boundary maps. However, the biggest

problem with Randomised Hashing is its quantisation problem. Sometimes, similar

pixels are assigned to entirely separate textons. The sudden change from one texton to

another sometimes introduces phantom boundaries into the image. The proposed

detectors do not have this problem. For this reason, the proposed detectors outperform

Randomised Hashing. Section 5.5.3 goes into more detail about this.

174  Chapter 9 – Experimental results

This chapter has compared the two proposed detectors – the Variance Ridge Detector

and the Texton Ridge Detector – to seven algorithms, and shown that it outperforms all

of them on either quality or speed.

Chapter 10 – Conclusions  175

10 CONCLUSIONS

This thesis proposed two new methods for real-time texture-boundary detection,

namely, the Variance Ridge Detector and the Texton Ridge Detector. It was found that

the two proposed methods outperform the other established texture-boundary

detectors on either speed or quality.

10.1 SUMMARY OF RESULTS

The reasons why the proposed detectors outperform established texture-boundary

detectors will be summarised in this section.

Most texture-boundary detectors cannot run in real-time

Most texture-boundary detectors cannot run in real-time, simply because they are too

computationally intensive. This means they are not useful for real-time computer vision

applications.

Section 9.4 investigated the speeds of two established texture-boundary detectors –

TextonBoost and GPb – and found that, even if all the non-essential parts of the

algorithms are removed, both algorithms still could not run in real-time. This was made

clear by the fact that TextonBoost took 4.37 seconds per frame, and GPb took 2.78

seconds per frame. In practice, TextonBoost would also have to run an alpha-expansion

graph cut, and GPb would run its normalised cut algorithm, and so there is no chance for

texture-boundary detectors such as these to run in real-time.

Section 9.3 measured the speeds of the two proposed detectors and found that both are

capable of running in real-time. The Variance Ridge Detector ran at 47.9 frames per

second, while the Texton Ridge Detector ran at 10.6 frames per second. This shows that,

unlike most texture-boundary detectors, the proposed detectors are capable of real-time

execution, which means they can be used for real-time applications.

So given that the proposed detectors run in real-time, the question is, how do they

compare to other real-time boundary detectors? As the next two subsections will

discuss, all other real-time boundary detectors are either too low level, or they make

inadequate approximations of non-real-time counterparts.

Some real-time detectors are too low-level

Low-level computer vision algorithms normally run much faster than high-level

algorithms because, generally, they consider less information when making their

176  Chapter 10 – Conclusions

decisions. Consequently, some texture-boundary detectors are designed to only

interpret the image at a low level so that they can achieve the speed needed for real-time

execution. However, low-level often means low-quality boundaries.

Section 9.7 compared the proposed detectors against two real-time low-level texture-

boundary detectors using the Berkeley benchmark. The scores of the established

texture-boundary detectors were for Konishi’s detector, and for

Surround Suppression. The proposed detectors clearly outperform these two methods

with their scores of for the Variance Ridge Detector, and for the

Texton Ridge Detector. This happens because, unlike the two established methods, the

proposed detectors generate a higher-level interpretation of images.

Other real-time detectors make inadequate approximations

Many real-time texture boundary detectors were developed by approximating non-real-

time counterparts. By definition, every approximation involves some degradation in

quality in return for faster speeds. Section 9.8 investigated three established real-time

texture-boundary detectors – TextonRML, Semantic Texton Forests and Randomised

Hashing – each of which approximate a non-real-time method. It was shown that each

approximation had its own set of shortcomings.

TextonRML (section 5.3) is a real-time approximation of TextonBoost (section 4.4). Its

most important difference is that it removes the slow alpha-expansion graph cut stage,

allowing it to run in real-time. Unfortunately, the graph cut stage is what allows

TextonBoost to produce high-quality boundaries, and so without it, TextonRML can only

produce low-quality boundaries. This was elaborated further in section 4.4.3. Unlike

TextonRML, the proposed detectors produce high-quality boundaries.

Semantic Texton Forest segmentation (section 5.4) also approximates TextonBoost. It

removes the need for the slow alpha-expansion graph cut stage by calculating the

boundary map at a much lower resolution. Unfortunately, the lower resolution means

the boundary map is of much lower quality. Unlike Semantic Texton Forest

segmentation, the proposed detectors produce full-resolution boundary maps, and so

the proposed detectors outperform Semantic Texton Forests.

Randomised Hashing (section 5.5) is a real-time approximation of mean-shift

segmentation (section 4.1). It uses hashing instead of mean-shift clustering so that it can

achieve real-time. Unfortunately, the clustering process will sometimes assign similar

colours to separate clusters, which introduces boundaries into the image where they

should not exist. These phantom boundaries degrade the quality of its boundary maps.

Chapter 10 – Conclusions  177

Unlike Randomised Hashing, the proposed detectors do not suffer the problem of

phantom boundaries.

The primary goal of this research was to develop a real-time texture-boundary detector

that produces high-quality results. All of the above points show this goal has been

achieved.

10.2 FUTURE WORK

There are four areas in which future work will proceed from here. First, the texture-

suppressing abilities of the detectors can still be improved, as there are still some

textures which cannot be suppressed easily by the proposed detectors. Second, the

proposed detectors cannot guarantee closed boundary contours at present. This may be

useful in some applications and so is another area that could be improved. Third, the

boundary maps that are produced currently only involve mid-level information, and so

perhaps an image-level interpretation stage could be added to improve the boundary

detection quality. Fourth, the detectors themselves could be used to improve real-time

applications. Each of these areas will be discussed individually.

Improving texture-suppressing ability

It might be possible to improve the texture-suppressing ability of the proposed

detectors by using some form of covariance instead of just variance. Tuzel, Porikli and

Meer (2006) used covariance with great success for texture recognition, with their

results outperforming even the widely-used texton approach on the Brodatz texture

dataset. So perhaps covariance could be used for both fast and high-quality texture

boundary detection.

Perhaps it is possible to improve the Texton Ridge Detector by using different machine

learning methods to train its approximate textonisation stage. Techniques such as

simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983) or particle swarm optimisation

(Kennedy & Eberhart, 1995) could be appropriate choices for further investigation.

Finding closed boundary contours

Normally, non-real-time boundary detectors find closed boundary contours using

clustering or graph cuts. Many of the high-performance methods for this cannot run in

real-time, but perhaps approximations can be made. Juan and Boykov (2006) have

developed a minimum cut which can run fast when given a near solution to start with,

making it capable of running in real-time at least some of the time. Additionally,

Randomised Hashing (section 5.5) and the watershed algorithm (Beucher & Lantuéjoul,

178  Chapter 10 – Conclusions

1979) are able to perform some approximate forms of real-time clustering. Perhaps

these could be starting points for future solutions.

Image-level interpretation

The proposed Texton Ridge Detector has a real-time approximation of every stage of the

global probability of boundary detector (section 4.6), except for one – the normalised

cut stage. The normalised cut is important because it detects boundaries at the image-

level, but unfortunately it does not run in real-time. Future work could involve

investigating ways of bringing the normalised cut into real-time.

Alternatively, perhaps higher-level or domain-specific knowledge could be incorporated

into the algorithm. Achieving image-level interpretation of any kind though would be

quite difficult due to the time constraints on the algorithm.

Applications

Most importantly, future work could also include applying the proposed Variance Ridge

Detector and Texton Ridge Detector to other applications. As boundary detection is

such a low-level feature, there are many possible fields of application – robot navigation,

face recognition, object model reconstruction, object tracking, inpainting, and many

more.

To assist with developing applications, it would be useful to do an investigation into the

trade-off between speed and quality for the range of real-time texture-boundary

detectors. This would allow users to choose the texture-boundary detector that suits

their application best.

10.3 THESIS SUMMARY

In summary, objective measurements have shown that both the proposed Variance

Ridge Detector and the proposed Texton Ridge Detector outperform all previous work,

due to the following two reasons:

1. The proposed boundary detectors run in real-time, unlike most texture-

boundary detectors.

2. The proposed boundary detectors produce higher quality-results than the few

texture-boundary detectors that do run in real-time.

Boundary detection is an essential first step for many computer vision algorithms, and

so potentially, the improvement to boundary detection that was presented by this thesis

could induce improvements to a wide-range of applications throughout computer vision.

Bibliography  179

180  Bibliography

BIBLIOGRAPHY

Ahmad, M. B., & Choi, T. S. (1999). Local threshold and boolean function based edge
detection. International Conference on Consumer Electronics, 45, pp. 332-333.

Arbelaez, P. (2006). Boundary extraction in natural images using ultrametric contour
maps. IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops.

Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding. The
annual ACM-SIAM Symposium on Discrete Algorithms.

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern Information Retrieval. New York: ACM
Press, Addison-Wesley.

Barnard, K., Duygulu, P., Guru, R., Gabbur, P., & Forsyth, D. (2003). The effects of
segmentation and feature choice in a translation model of object recognition.
IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

Beucher, S., & Lantuéjoul, C. (1979). Use of watersheds in contour detection.
International workshop on image processing, real-time edge and motion detection.

Beucher, S., & Meyer, F. (1993). The morphological approach to segmentation: the
watershed transformation. In E. R. Dougherty (Ed.), Mathematical Morphology in
Image Processing (pp. 433-481).

Bigun, J., & Granlund, G. (1987). Optimal Orientation Detection of Linear Symmetry.
International Conference of Computer Vision. London.

Boost C++ libraries. (2009). Retrieved from http://www.boost.org/

Boykov, Y., & Jolly, M. P. (2001). Interactive graph cuts for optimal boundary and region
segmentation of objects in ND images. IEEE International Conference on
Computer Vision, 1.

Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE Transactions on Pattern
Analysis and Machine Intelligence , 26 (9).

Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence , 23
(11).

Brown, C. M., & Terzopoulos, D. (1994). Real-time computer vision. Cambridge University
Press.

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence , 8 (6), 679-698.

Comaniciu, D., & Meer, P. (2002). Mean Shift: A Robust Approach Toward Feature Space
Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence , 24 (5).

Crezee, D. (2007). Object Class Recognition and Localization using a Visual Vocabulary
Framework. Masters thesis, Universiteit van Amsterdam.

Bibliography  181

Csurka, G., & Perronnin, F. (2008). A simple high performance approach to semantic
segmentation. British Machine Vision Conference.

Dollar, P., Tu, Z., & Belongie, S. (2006). Supervised learning of edges and object
boundaries. IEEE Conference on Computer Vision and Pattern Recognition.

Drummond, T., & Cipolla, R. (2002). Real-time visual tracking of complex structures.
IEEE Transactions on Pattern Analysis and Machine Intelligence , 24 (7).

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2007). The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results.

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2008). The
PASCAL Visual Object Classes Challenge 2008 (VOC2008) Results.

Felzenszwalb, P., & McAllester, D. (2006). A min-cover approach for finding salient
curves. IEEE Conference on Computer Vision and Pattern Recognition Workshop,
(pp. 185-185).

Ford, L. R., & Fulkerson, D. R. (1956). Maximal flow through a network. Canadian Journal
of Mathematics , 8 (3).

Furukawa, Y., & Ponce, J. (2009). Carved Visual Hulls for Image-Based Modeling.
International Journal of Computer Vision , 81 (1), 53-67.

Gionis, A., Indyk, P., & Motwani, R. (1999). Similarity Search in High Dimensions via
Hashing. Proceedings of the 25th Very Large Database (VLDB) Conference .

Greig, D. M., Porteous, B. T., & Seheult, A. H. (1989). Exact maximum a posteriori
estimation for binary images. Journal of the Royal Statistical Society, Series B
(Methodological) , 51 (2).

Grigorescu, C., Petkov, N., & Westenberg, M. A. (2004). Contour and boundary detection
improved by surround suppression of texture edges. Image and Vision
Computing , 22 (8), 609-622.

Grigorescu, C., Petkov, N., & Westenberg, M. A. (2003). Contour detection based on
nonclassical receptive field inhibition. IEEE Transactions on Image Processing ,
12 (7), 729-739.

Gupta, L., & Das, S. (2006). Texture Edge Detection using Multi-resolution Features and
SOM. 18th International Conference on Pattern Recognition (ICPR'06) (pp. 199-
202). IEEE.

Harris, C., & Stephens, M. (1988). A combined corner and edge detector. Fourth Alvey
Vision Conference, pp, pp. 147-151.

He, X., Zemel, R., & Carreira-Perpinan, M. (2004). Multiscale conditional random fields
for image labeling. IEEE Conference on Computer Vision and Pattern Recognition,
(pp. 695-702).

Hidayat, R., & Green, R. (2009). Real-time texture boundary detection from ridges in the
standard deviation space. British Machine Vision Conference. London.

182  Bibliography

Hidayat, R., & Green, R. (2008). Texture-suppressing edge detection in real-time. Image
and Vision Computing New Zealand. Lincoln.

Hsu, R. L., Abdel-Mottaleb, M., & Jain, A. K. (2002). Face detection in color images. IEEE
Transactions on Pattern Analysis and Machine Intelligence , 24 (5).

Indyk, P., & Motwani, R. (1998). Approximate Nearest Neighbors: Towards Removing
the Curse of Dimensionality. Proceedings of 30th Symposium on Theory of
Computing .

Jacobson, S. H., & Yücesan, E. (2004). Analyzing the Performance of Generalized Hill
Climbing Algorithms. Journal of Heuristics , 10 (4).

Jamzad, R. R. (2005). Real time classification and tracking of multiple vehicles in
highways. Pattern Recognition Letters , 26 (10).

Johnson, M. A. (2008). Semantic Segmentation and Image Search. University of
Cambridge.

Juan, O., & Boykov, Y. (2006). Active graph cuts. IEEE Conference on Computer Vision and
Pattern Recognition.

Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. IEEE International
Conference on Neural Networks.

Kiranyaz, S., Ferreira, M., & Gabbouj, M. (2008). A generic shape/texture descriptor over
multiscale edge field: 2-D walking ant histogram. IEEE Transactions on Image
Processing , 17 (3), 377-91.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing.
Science , New Series 220 (4598), 671-680.

Kisačanin, B., Pavlović, V., & Huang, T. S. (2005). Real-time vision for human-computer
interaction. New York: Springer Science + Business Media, Inc.

Klappstein, J., Vaudrey, T., Rabe, C., Wedel, A., & Klette, R. (2009). Moving object
segmentation using optical flow and depth information. Lecture Notes in
Computer Science , 5414, 611-623.

Knutsson, H. (1989). Representing local structure using tensors. 6th Scandinavian Conf.
on Image Analysis. Oulu.

Konishi, S., Yuille, A. L., & Coughlan, J. (2002). Fundamental bounds on edge detection: an
information theoretic evaluation of different edge cues. IEEE Conference on
Computer Vision and Pattern Recognition.

Koschan, A., & Abidi, M. (2005). Detection and classification of edges in color images.
IEEE Signal Processing Magazine , 22 (1).

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval research
logistics quarterly , 2, pp. 83-97.

Kuhn, H. W. (1956). Variants of the Hungarian method for assignment problems. Naval
Research Logistics Quarterly .

Bibliography  183

Kuwahara, M., Hachimura, K., Ehiu, S., & Kinoshita, M. (1976). Processing of RI-
angiocardiographic images. Processing of Biomedical Images , 187-203.

Leung, T., & Malik, J. (1998). Contour continuity in region-based image segmentation.
European Conference on Computer Vision, (pp. 544-559).

Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transactions on Information
Theory , 28 (2), 129-137.

Maire, M., Arbelaez, P., Fowlkes, C., & Malik, J. (2008). Using contours to detect and
localize junctions in natural images. IEEE Conference on Computer Vision and
Pattern Recognition.

Majman, L., Couprie, M., & Bertrand, G. (2005). Watersheds, mosaics, and the emergence
paradigm. Discrete Applied Mathematics , 147 (2-3).

Malik, J., Belongie, S., Shi, J., & Leung, T. (1999). Textons, Contours and Regions: Cue
Integration in Image Segmentation. IEEE International Conference on Computer
Vision.

Martin, D. R., Fowlkes, C. C., & Malik, J. (2004). Learning to Detect Natural Image
Boundaries Using Local Brightness, Color, and Texture Cues. IEEE Transactions
on Pattern Analysis and Machine Intelligence , 26 (5), 530-549.

Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented
natural images and its application to evaluating segmentation algorithms and
measuring ecological statistics. IEEE International Conference on Computer
Vision.

Maxwell, B. A., & Brubaker, S. J. (2003). Texture edge detection using the compass
operator. British Machine Vision Conference.

Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics .

Nitzberg, M., & Shiota, T. (1992). Nonlinear image filtering with edge and corner
enhancement. IEEE Transactions on Pattern Analysis and Machine Intelligence ,
14 (8), 826-833.

OpenCV. (2008). OpenCV Documentation. Retrieved from
http://opencv.willowgarage.com/documentation/

Papari, G., Petkov, N., & Campisi, P. (2007). Artistic Edge and Corner Enhancing
Smoothing. IEEE Transactions on Image Processing , 16 (10), 2449-2462.

Paplinski, A. P., & Boyce, J. F. (1997). Segmentation of a class of ophthalmological images
using a directional variance operator and co-occurrence arrays. Optical
Engineering , 36 (11), 3140-3147.

Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion.
IEEE Transactions on Pattern Analysis and Machine Intelligence , 12 (7).

Poynton, C. (2006). Frequently asked questions about color. Retrieved 2009, from
http://www.poynton.com/PDFs/ColorFAQ.pdf

184  Bibliography

Puzicha, J., Rubner, Y., Tomasi, C., & Buhmann, J. (1999). Empirical evaluation of
dissimilarity measures for color and texture. IEEE International Conference on
Computer Vision, (p. 1165).

Randen, T., & Husøy, J. H. (1999). Filtering for Texture Classification: A Comparative
Study. IEEE Transaction on Pattern Analysis and Machine Intelligence , 21 (4).

Ranganathan, A. (2009). Semantic Scene Segmentation using Random Multinomial Logit.
British Machine Vision Conference.

Ren, X. (2008). Multi-scale improves boundary detection in natural images. European
Conference on Computer Vision.

Russell, S. J., & Norvig, P. (2009). Computer Vision and Information Technology: Advances
and Applications. Upper Saddle River, New Jersey: Prentice Hall.

Ruzon, M. A., & Tomasi, C. (2001). Edge, Junction, and Corner Detection Using Color
Distributions. IEEE Transaction on Pattern Analysis and Machine Intelligence , 23
(11).

Schroff, F., Criminisi, A., & Zisserman, A. (2008). Object class segmentation using random
forests. British Machine Vision Conference.

Shao, H., Ji, J., Kang, Y., & Zhao, H. (2009). Application Research of Homogeneous Texture
Descriptor in Content-Based Image Retrieval. International Conference on
Information Engineering and Computer Science. IEEE.

Sharon, E., & Brandt, A. (2000). Segmentation and Boundary Detection Using Multiscale
Intensity Measurements. IEEE Conference on Computer Vision and Pattern
Recognition.

Sharon, E., Brandt, A., & Basri, R. (2000). Fast multiscale image segmentation. IEEE
Conference on Computer Vision and Pattern Recognition.

Sharon, E., Galun, M., Sharon, D., Basri, R., & Brandt, A. (2006). Hierarchy and adaptivity
in segmenting visual scenes. Nature , 442 (7104), pp. 810-3.

Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence , 22 (8).

Shotton, J., Blake, A., & Cipolla, R. (2008). Multiscale categorical object recognition using
contour fragments. IEEE Transactions on Pattern Analysis and Machine
Intelligence , 30 (7), 1270-81.

Shotton, J., Johnson, M., & Cipolla, A. (2008). Semantic texton forests for image
categorization and segmentation. IEEE Conference on Computer Vision and
Pattern Recognition.

Shotton, J., Winn, J., Rother, C., & Criminisi, A. (2009). TextonBoost for Image
Understanding: Multi-Class Object Recognition and Segmentation by Jointly
Modeling Texture, Layout, and Context. International Journal of Computer Vision ,
81 (1).

Bibliography  185

Shotton, J., Winn, J., Rother, C., & Criminisi, A. (2006). Textonboost: Joint appearance,
shape and context modeling for multi-class object recognition. European
Conference on Computer Vision.

Smith, S. M., & Brady, J. M. (1997). SUSAN - A New Approach to Low Level Image
Processing. International Journal of Computer Vision , 23 (1).

Sobel, I., & Feldman, G. (1973). A 3x3 isotropic gradient operator for image processing.
In R. Duda, & P. Hart, Pattern Classification and Scene Analysis (pp. 271-272).
John Wiley and Sons.

Taylor, C. J., & Cowley, A. (2009). Fast Segmentation via Randomized Hashing. British
Machine Vision Conference.

Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and color images. IEEE
Conference on Computer Vision and Pattern Recognition.

Tuceryan, M. (1994). Moment-based texture segmentation. Pattern Recognition Letters ,
15 (7).

Tuzel, O., Porikli, F., & Meer, P. (2006). Region covariance: A fast descriptor for detection
and classification. European Conference on Computer Vision. 3952. Springer.

van Rijsbergen, C. (1979). Information Retrieval. London: Butterworth.

Varma, M., & Zisserman, A. (2003). Texture classification: are filter banks necessary?
IEEE Conference on Computer Vision and Pattern Recognition.

Vaudrey, T., Wedel, A., Rabe, C., Klappstein, J., & Klette, R. (2008). Evaluation of moving
object segmentation comparing 6D-vision and monocular motion constraints.
International Conference Image and Vision Computing New Zealand. IEEE.

Verbeek, J., & Triggs, B. (2007). Region Classification with Markov Field Aspect Models.
IEEE Conference on Computer Vision and Pattern Recognition.

Vincent, L., & Soille, P. (2002). Watersheds in digital spaces: an efficient algorithm based
on immersion simulations. IEEE Transactions on Pattern Analysis and Machine
Intelligence , 13 (6).

Weickert, J. (1999). Coherence-enhancing diffusion filtering. International Journal of
Computer Vision .

Weickert, J. (1999). Coherence-enhancing diffusion of colour images. Image and Vision
Computing.

Whyte, O., Sivic, J., & Zisserman, A. (2009). Get Out of my Picture! Internet-based
Inpainting. British Machine Vision Conference.

Winn, J., & Jojic, N. (2005). Locus: Learning object classes with unsupervised
segmentation. IEEE International Conference on Computer Vision, 1, pp. 756-763.

Winn, J., Criminisi, A., & Minka, T. (2005). Object Categorization by Learned Universal
Visual Dictionary. IEEE Conference on Computer Vision and Pattern Recognition.

186  Bibliography

Wu, Z., & Leahy, R. (1993). An optimal graph theoretic approach to data clustering:
theory and its application to image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence , 15 (11), 1101-1113.

Ye, Q., Gao, W., & Wang, W. (2003). A new texture-insensitive edge detection method.
International Conference on Information, Communications and Signal Processing.
2, pp. 768-772. IEEE.

	Publications
	Abstract
	Acknowledgements
	Table of Contents
	1 Introduction
	1.1 Applications of boundary detection
	1.2 Boundary detection without texture
	1.3 The problem with existing texture-boundary detectors
	1.4 Research objectives
	1.5 The contribution of this thesis
	1.6 Thesis outline

	2 Edge detection
	2.1 Mathematical conventions
	2.1.1 Images
	2.1.2 Vectors
	2.1.3 Sets
	2.1.4 Operators

	2.2 Sobel operator
	2.2.1 Convolution
	2.2.2 Applying convolution to Sobel
	2.2.3 Sliding windows

	2.3 Binarising sobel
	2.3.1 Thresholding
	2.3.2 Applying thresholding to gradients
	2.3.3 Morphological thinning

	2.4 Canny edge detector
	2.4.1 Gradient estimation
	2.4.2 Ridge detection
	2.4.3 Hysteresis

	2.5 Edge detection with variance thresholding
	2.6 Chapter summary

	3 Edge-preserving smoothing filters
	3.1 Non-edge-preserving smoothing
	3.2 Bilateral filter
	3.3 Nitzberg operator
	3.3.1 Kernel displacement
	3.3.2 Kernel reshaping
	3.3.2.1 Structure tensors
	3.3.2.2 Kernel reshaping with structure tensors

	3.3.3 Combining reshaping and displacement

	3.4 Kuwahara filter
	3.5 Papari filter
	3.5.1 Formulation
	3.5.2 Image results

	3.6 Mean-shift filter
	3.7 Chapter summary

	4 Non-real-time texture-boundary detection
	4.1 Normalised cut segmentation
	4.1.1 Objective function
	4.1.2 Similarity scores
	4.1.3 Solving the objective
	4.1.4 Binarising the solution
	4.1.5 Subdividing further
	4.1.6 Image results

	4.2 Mean-shift segmentation
	4.2.1 Image results

	4.3 Textons
	4.3.1 Theory: autocorrelation
	4.3.2 Features
	4.3.3 Learning textons with K-means clustering
	4.3.4 Textonising images
	4.3.5 Image results

	4.4 TextonBoost
	4.4.1 Texton features
	4.4.2 Texture-layout filters
	4.4.3 Why not just hard-assign a pixel to its modal texture?
	4.4.4 The minimum cut
	4.4.5 Alpha-expansion graph cuts
	4.4.6 Image results

	4.5 Pb: The probability of boundary detector
	4.5.1 Texton features
	4.5.2 Texton gradients
	4.5.3 Ridge detection
	4.5.4 Combining with other visual cues
	4.5.5 Image examples

	4.6 gPb: The global probability of boundary detector
	4.6.1 Image examples

	4.7 Chapter summary

	5 Real-time texture-boundary detection
	5.1 Konishi’s detector
	5.1.1 Image results
	5.1.2 Critique

	5.2 Surround Suppression
	5.2.1 Formulation
	5.2.2 Image results
	5.2.3 Critique

	5.3 TextonRML
	5.3.1 Random multinomial logit
	5.3.2 Feature selection
	5.3.3 Image results
	5.3.4 Critique

	5.4 Semantic Texton Forests
	5.4.1 Textonisation with decision forests
	5.4.2 Segmentation
	5.4.3 Image categorisation
	5.4.4 Image results
	5.4.5 Critique

	5.5 Randomised Hashing
	5.5.1 Algorithm
	5.5.2 Image results
	5.5.3 Critique

	5.6 Chapter summary

	6 Proposal: the Variance Ridge Detector
	6.1 Rationale
	6.2 Variance in previous work
	6.3 Algorithm overview
	6.4 Convert to CIELab colour space
	6.5 Variance transform
	6.5.1 Image examples
	6.5.2 Justification for the rearranged variance equation
	6.5.3 Justification for square-shaped sliding windows
	6.5.4 Justification for an equally-weighted window

	6.6 Gradient transform
	6.6.1 Visualisation
	6.6.2 Formulation
	6.6.3 Justification for smoothed variance
	6.6.4 Image examples

	6.7 Ridge transform
	6.7.1 Formulation
	6.7.2 Ridge strength approximation
	6.7.3 Image examples
	6.7.4 Alternative approach: opposites filter
	6.7.5 Alternative approach: structure tensors

	6.8 Gradient magnitude subtraction
	6.8.1 Image examples
	6.8.2 Alternative approach: anisotropic subtraction

	6.9 Comparison with other ridge detection approaches
	6.10 Implementation
	6.10.1 Expanding the image
	6.10.2 Discretisation
	6.10.3 Sliding windows
	6.10.4 Implementation resources
	6.10.5 Using SSE instructions

	6.11 The three-channel sum algorithm
	6.12 Chapter summary

	7 Proposal: the Texton Ridge Detector
	7.1 Rationale
	7.2 Algorithm overview
	7.3 Texture features
	7.3.1 Formulation

	7.4 Approximate textonisation
	7.4.1 Visualisation
	7.4.2 Querying
	7.4.3 Training
	7.4.4 Training parameters
	7.4.5 Textonisation image examples

	7.5 Texton gradient
	7.5.1 Formulation
	7.5.2 Texton gradient image examples
	7.5.3 Justification for the doubled scale
	7.5.4 Implementation details

	7.6 Combining visual cues
	7.6.1 Image examples

	7.7 Ridge detection
	7.8 Image examples
	7.9 Comparison to previous work
	7.10 Chapter summary

	8 Validation methods
	8.1 Berkeley segmentation dataset and benchmark
	8.1.1 Benchmarking algorithm overview
	8.1.2 Thresholding
	8.1.3 Thinning
	8.1.4 Matching
	8.1.4.1 Solving the assignment problem
	8.1.4.2 Applying the assignment problem to Berkeley benchmark

	8.1.5 Calculating precision/recall
	8.1.6 The F-measure
	8.1.7 Results of the Berkeley benchmark

	8.2 The MSRC-9 Dataset
	8.3 Adaptive background learning
	8.3.1 Overview
	8.3.2 Stability
	8.3.3 Background model
	8.3.4 Algorithm

	9 Experimental results
	9.1 Overview of the experiments
	9.2 Apparatus
	9.3 Speed of proposed detectors on real-time camera input
	9.3.1 Apparatus
	9.3.2 Method
	9.3.3 Results
	9.3.4 Discussion

	9.4 Speed measurements on MSRC-9 database
	9.4.1 Apparatus
	9.4.2 Method
	9.4.3 Results
	9.4.4 Discussion

	9.5 Estimating the speed of gPb
	9.5.1 Apparatus
	9.5.2 Method
	9.5.3 Results
	9.5.4 Discussion

	9.6 Estimating the speed of alpha-expansion graph cuts
	9.6.1 Apparatus
	9.6.2 Method
	9.6.3 Results
	9.6.4 Discussion

	9.7 Quality measurements on Berkeley benchmark
	9.7.1 Apparatus
	9.7.2 Method
	9.7.3 Results
	9.7.4 Discussion

	9.8 Comparison to the remaining real-time detectors

	10 Conclusions
	10.1 Summary of results
	10.2 Future work
	10.3 Thesis summary

	Bibliography

