14,130 research outputs found

    Visual re-ranking with natural language understanding for text spotting

    Get PDF
    The final publication is available at link.springer.comMany scene text recognition approaches are based on purely visual information and ignore the semantic relation between scene and text. In this paper, we tackle this problem from natural language processing perspective to fill the gap between language and vision. We propose a post processing approach to improve scene text recognition accuracy by using occurrence probabilities of words (unigram language model), and the semantic correlation between scene and text. For this, we initially rely on an off-the-shelf deep neural network, already trained with large amount of data, which provides a series of text hypotheses per input image. These hypotheses are then re-ranked using word frequencies and semantic relatedness with objects or scenes in the image. As a result of this combination, the performance of the original network is boosted with almost no additional cost. We validate our approach on ICDAR'17 dataset.Peer ReviewedPostprint (author's final draft

    Fine-graind Image Classification via Combining Vision and Language

    Full text link
    Fine-grained image classification is a challenging task due to the large intra-class variance and small inter-class variance, aiming at recognizing hundreds of sub-categories belonging to the same basic-level category. Most existing fine-grained image classification methods generally learn part detection models to obtain the semantic parts for better classification accuracy. Despite achieving promising results, these methods mainly have two limitations: (1) not all the parts which obtained through the part detection models are beneficial and indispensable for classification, and (2) fine-grained image classification requires more detailed visual descriptions which could not be provided by the part locations or attribute annotations. For addressing the above two limitations, this paper proposes the two-stream model combining vision and language (CVL) for learning latent semantic representations. The vision stream learns deep representations from the original visual information via deep convolutional neural network. The language stream utilizes the natural language descriptions which could point out the discriminative parts or characteristics for each image, and provides a flexible and compact way of encoding the salient visual aspects for distinguishing sub-categories. Since the two streams are complementary, combining the two streams can further achieves better classification accuracy. Comparing with 12 state-of-the-art methods on the widely used CUB-200-2011 dataset for fine-grained image classification, the experimental results demonstrate our CVL approach achieves the best performance.Comment: 9 pages, to appear in CVPR 201

    Visual Re-ranking with Natural Language Understanding for Text Spotting

    Get PDF
    Many scene text recognition approaches are based on purely visual information and ignore the semantic relation between scene and text. In this paper, we tackle this problem from natural language processing perspective to fill the gap between language and vision. We propose a post-processing approach to improve scene text recognition accuracy by using occurrence probabilities of words (unigram language model), and the semantic correlation between scene and text. For this, we initially rely on an off-the-shelf deep neural network, already trained with a large amount of data, which provides a series of text hypotheses per input image. These hypotheses are then re-ranked using word frequencies and semantic relatedness with objects or scenes in the image. As a result of this combination, the performance of the original network is boosted with almost no additional cost. We validate our approach on ICDAR'17 dataset.Comment: Accepted by ACCV 2018. arXiv admin note: substantial text overlap with arXiv:1810.0977

    Context-Dependent Diffusion Network for Visual Relationship Detection

    Full text link
    Visual relationship detection can bridge the gap between computer vision and natural language for scene understanding of images. Different from pure object recognition tasks, the relation triplets of subject-predicate-object lie on an extreme diversity space, such as \textit{person-behind-person} and \textit{car-behind-building}, while suffering from the problem of combinatorial explosion. In this paper, we propose a context-dependent diffusion network (CDDN) framework to deal with visual relationship detection. To capture the interactions of different object instances, two types of graphs, word semantic graph and visual scene graph, are constructed to encode global context interdependency. The semantic graph is built through language priors to model semantic correlations across objects, whilst the visual scene graph defines the connections of scene objects so as to utilize the surrounding scene information. For the graph-structured data, we design a diffusion network to adaptively aggregate information from contexts, which can effectively learn latent representations of visual relationships and well cater to visual relationship detection in view of its isomorphic invariance to graphs. Experiments on two widely-used datasets demonstrate that our proposed method is more effective and achieves the state-of-the-art performance.Comment: 8 pages, 3 figures, 2018 ACM Multimedia Conference (MM'18
    corecore