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Abstract. Many scene text recognition approaches are based on purely
visual information and ignore the semantic relation between scene and
text. In this paper, we tackle this problem from natural language process-
ing perspective to fill the gap between language and vision. We propose a
post processing approach to improve scene text recognition accuracy by
using occurrence probabilities of words (unigram language model), and
the semantic correlation between scene and text. For this, we initially
rely on an off-the-shelf deep neural network, already trained with large
amount of data, which provides a series of text hypotheses per input
image. These hypotheses are then re-ranked using word frequencies and
semantic relatedness with objects or scenes in the image. As a result
of this combination, the performance of the original network is boosted
with almost no additional cost. We validate our approach on ICDAR’17
dataset.

1 Introduction

Machine reading has shown a remarkable progress in Optical Character Recog-
nition systems (OCR). However, the success of most OCR systems is restricted
to simple-background and properly aligned documents, while text in many real
images is affected by a number of artifacts including partial occlusion, distorted
perspective and complex backgrounds. In short, developing OCR systems able
to read text in the wild is still an open problem. In the computer vision com-
munity, this problem is known as Text Spotting. However, while state-of-the-art
computer vision algorithms have shown remarkable results in recognizing object
instances in these images, understanding and recognizing the included text in a
robust manner is far from being considered a solved problem.

Text spotting pipelines address the end-to-end problem of detecting and rec-
ognizing text in unrestricted images (traffic signs, advertisements, brands in
clothing, etc.). The problem is usually split in two phases: 1) text detection stage,
to estimate the bounding box around the candidate word in the image and 2) text
recognition stage, to identify the text inside the bounding boxes. In this paper
we focus on the second stage, an introduce a simple but efficient post-processing
approach based on Natural Language Processing (NLP) techniques.
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Fig. 1. Overview of the system pipeline. A re-ranking post-process using visual
context information to re-rank the potential word based on the semantic relat-
edness with the context in the image where the text is located. In the example
of the figure, the word bike has been re-ranked thanks to the detected visuals
(wc) unicycle, street, highway.

There exist two main approaches to perform text recognition in the wild.
First, lexicon-based methods, where the system learns to recognize words in a
pre-defined dictionary. Second, lexicon-free, unconstrained recognition methods,
that aim at predicting character sequences.

In this paper we propose an approach that intends to fill the gap between
language and vision for the scene text recognition problem. Most recent state-
of-the-art works focus on automatically detecting and recognizing text in un-
restricted images from a purely computer vision perspective. In this work, we
tackle the same problem but also leveraging on NLP techniques. Our approach
seeks to integrate prior information to the text spotting pipeline. This prior
information biases the initial ranking of candidate words suggested by a deep
neural network, either lexicon based or not. The final re-ranking is based on the
word frequency and on the semantic relatedness between the candidate words
and the information in the image.

Figure 1 shows an example where the candidate word bike is re-ranked thanks
to the visual context informations unicycle, street, highway detected by a visual
classifier. This is a clear example that illustrates the main idea of our approach.

Our main contributions include several post-processing methods based on
NLP techniques such as word frequencies and semantic relatedness which are
typically exploited in NLP problems but less common in computer vision ones.
We show that by introducing a candidate re-ranker based on word frequencies
and semantic distance between candidate words and objects in the image, the
performance of an off-the-shelf deep neural network can be improved without
the need to perform additional training or tuning. In addition, thanks to the
inclusion of the unigram probabilities, we overcome the baseline limitation of
false detection of short words of [1,2].

The rest of the paper is organized as follows: Sections 2 and 3 describe related
work and our proposed pipeline. Sections 4 and 5 introduce the external prior
knowledge we use, and how it is combined. Section 6 presents experimental
validation of our approach on a publicly available standard dataset. Finally,
Sections 7 and 8 summarize the result and specifies future work.
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2 Related Work

Text spotting (or end-to-end text recognition), refers to the problem of auto-
matically detecting and recognizing text in images in the wild. Text spotting
may be tackled by either a lexicon-based or a lexicon-free perspective. Lexicon-
based recognition methods use a pre-defined dictionary as a reference to guide
the recognition. Lexicon-free methods (or unconstrained recognition techniques),
predict character sequences without relying on any dictionary. The first lexicon-
free text spotting system was proposed by [3]. The system extracted charac-
ter candidates via maximally stable extremal regions (MSER) and eliminated
non-textual ones through a trained classifier. The remaining candidates were
fed into a character recognition module, trained using a large amount of syn-
thetic data. More recently, several deep learning alternatives have been proposed.
For instance, PhotoOCR [4] uses a Deep Neural Network (DNN) that performs
end-to-end text spotting using histograms of oriented gradients as input of the
network. It is a lexicon-free system able to read characters in uncontrolled condi-
tions. The final word re-ranking is performed by means of two language models,
namely a character and an N -gram language model. This approach combined
two language models, a character based bi-gram model with compact 8-gram
and 4-gram word-level model. Another approach employed language model for
final word re-ranking [5]. The top-down integration can tolerate the error in text
detection or mis-recognition.

Another DNN based approach is introduced by [1], which applies a sliding
window over Convolutional Neural Network (CNN) features that use a fixed-
lexicon based dictionary. This is further extended in [6], through a deep ar-
chitecture that allows feature sharing. In [7] the problem is addressed using
a Recurrent CNN, a novel lexicon-free neural network architecture that inte-
grates Convolutional and Recurrent Neural Networks for image based sequence
recognition. Another sequence recognition approach [2] that uses LSTM with
visual attention mechanism for character prediction. Although this method is
lexicon-free, it includes a language model to improve the accuracy. Finally most
recently, [8] introduced a CNN with connectionist temporal classification (CTC)
[9] to generate the final label sequence without a sequence model such as LSTM.
This approach use stacked convolutional to capture the dependencies of the in-
put sequence. This algorithm can be integrated with either lexicon-based or
lexicon-free recognition.

However, deep learning methods –either lexicon-based or lexicon-free– have
drawbacks: Lexicon-based approaches need a large dictionary to perform the
final recognition. Thus, their accuracy will depend on the quality and coverage
of this lexicon, which makes this approach unpractical for real world applications
where the domain may be different to that the system was trained on. On the
other hand, lexicon-free recognition methods rely on sequence models to predict
character sequences, and thus they may generate likely sentences that do not
correspond to actual language words. In both cases, these techniques rely on
the availability of large datasets to train and validate, which may not be always
available for the target domain.
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Fig. 2. Scheme of the proposed visual context information pipeline integration
into the text spotting system. Our approach uses the language model and a
semantic relatedness measure to re-rank the word hypothesis. The re-ranked
word quarters is semantically related with the top ranked visual parking. See
more examples in Figure 3.

The work of [10] also uses visual prior information to improve the text spot-
ting task, through a new lexicon built with Latent Dirichlet Allocation (LDA)
[11]. The topic modeling learns the relation between text and images. However,
this approach relies on captions describing the images rather than using the main
key words semantically related to the images to generate the lexicon re-ranking.
Thus, the lexicon generation can be inaccurate in some cases due to the short
length of captions. In this work, we consider a direct semantic relation between
scene text and its visual information. Also, unlike [10] that only uses visual in-
formation over word frequency count to re-rank the most probable word, our
approach combines both methods by leveraging also on a frequency count based
language model.

3 General Description of our Approach

Text recognition approaches can be divided in two categories: (a) character based
methods that rely on a single character classifier plus some kind of sequence
modeling (e.g. n-gram models or LSTMs), and (b) lexicon-based approaches
that intend to classify the image as a whole word.

In both cases, the system can be configured to predict the k most likely
words given the input image. Our approach focuses on re-ranking that list using
language information such as word frequencies, or semantic relatedness with
objects in the image (or visual context) in which the text was located.

3.1 Baseline Systems

We used two different off-the-shelf baseline models: First, a CNN [1] with fixed
lexicon based recognition. It uses a fixed dictionary containing around 90K word
forms. Second, we considered a LSTM architecture with a visual attention model
[2]. The LSTM generates the final output words as character sequences, without
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relying on any lexicon. Both models are trained on a synthetic dataset [12]. The
output of both models is a vector of softmax probabilities for candidate words.
For each text image the baseline provides a series of k text hypotheses, that is
fed to our model. Let us denote the baseline probability of any of the k most
likely words (wj , 1 ≤ j ≤ k) produced by the baseline as follows:

PBL(wj) = softmax(wj , BL)
(1)

3.2 Object Classifier

Next, we will use out-of-the-box state-of-the-art visual object classifiers to ex-
tract the image context information that will be used to re-rank candidate words
according to their semantic relatedness with the context.

We considered three pre-trained CNN classifiers: ResNet [13], GoogLeNet
[14] and Inception-Resnet-v2 [15]. The output of these classifiers is a 1000-
dimensional vector with the probabilities of 1000 object instances. In this work
we consider a threshold of most likely objects of the context predicted by the
classifier. Additionally, we use a threshold to filter out the probability predictions
when the object classifier is not confident enough.

3.3 Scene Classifier

Additionally, we considered a scene classifier [16] to extract scene information
from each image. We used a pre-trained scene classifier Places365-ResNet3 to
extract scene categories.

According to the authors of Places365-ResNet the network achieved good
result in top-5 accuracy, which make it ideal for multiple visual context extrac-
tion. The output from this classifier is a 365 scene categories. Also, we consider
a threshold to extract most likely classes in the images, and eliminate low con-
fidence predictions.

3.4 Semantic Similarity

We aim to re-rank the baseline output using the visual context information, i.e.
the semantic relation between the candidate words and the objects in the image.
We use a pre-trained visual classifier to detect objects-scenes in the image and
devise a strategy to reward candidate words that are semantically related to
them. As shown in the example of Figure 2 the top position of the re-ranking
yields quarters as the most semantically related with the top position re-ranked
object in the image parking.

Once the objects-scene in the image have been detected, we compute their
semantic relatedness with the candidate words based on their word-embeddings
[17]. Specifically, let us denote by w and c the word-embeddings of a candidate

3 http://places2.csail.mit.edu/

http://places2.csail.mit.edu/


6 Ahmed Sabir, Francesc Moreno-Noguer and Llúıs Padró

word w and the most likely object c detected in the image. We then compute
their similarity using the cosine of the embeddings:

sim(w, c) =
w · c
|w| · |c| (2)

4 Re-ranking Word Hypothesis

In this section we describe the different re-rankers we devised for the list of
candidate words produced by the baseline DNN of Sect. 3.1.

4.1 Unigram Language Model (ULM)

The first and simpler re-ranker we introduce is based on a word Unigram Lan-
guage Model (ULM). The probabilities of the unigram model are computed from
a the Opensubtitles4 [18] and Google book n-gram5 text corpora. The main goal
of ULM is to increase the probability of the most common words proposed by
the baseline.

PULM (w) =
count(wj)∑
w∈C count(w)

(3)

It is worth mentioning that the language model is very simple to build, train,
and adapt to new domains, which opens the possibility of improving baseline
performance for specific applications.

4.2 Semantic Relatedness with Word Embedding (SWE)

This re-ranker relies on the similarity between the candidate word and objects-
scenes detected in the image. We compute (SWE) in the following steps: First,
we use a threshold β to eliminate lower probabilities from the visual classifier
(objects, scenes). Secondly, we compute the similarity of each visual with the
candidate word. Thirdly, we take the max-highest similarity score, most seman-
tically related, to the candidate word Cmax as :

Cmax = argmax
ci∈Image
P (ci)≥β

sim(w, ci) (4)

Finally, following [19] with confirmation assumption p(w|c) > p(w), we com-
pute the conditional probability from similarity as:

PSWE(w|cmax) = P (w)α where α =
(

1−sim(w,cmax)
1+sim(w,cmax)

)1−P (cmax)

(5)

where P (w) is the probability of the word in general language (obtained from
the unigram model), and P (cmax) is the probability of the most semantically

4 https://opensubtitles.org
5 https://books.google.com/ngrams

https://opensubtitles.org
https://books.google.com/ngrams


Visual Reranking with Natural Language Understanding for Text Spotting 7

related context object or places to the spotted text (obtained from the visual
classifier).

Note that Equation 5 already includes frequency information from the ULM,
so it is taking into account not only the semantic relatedness, but also the word
frequency information used in the ULM reranker above. Also, the ULM act alone
in case there is not visual context information.

4.3 Estimating Relatedness from Training Data Probabilities
(TDP)

A second possibility to compute semantic relatedness is to estimate it from
training data. This should overcome the word embedding limitation when the
candidate word and the image objects are not semantically related in general
text, but are on real world. For instance, as shown in the top-left example of
Figure 3, the sports TV channel kt and the object racket have no semantic
relation according to the word embedding model, but they are found paired
multiple times in the training dataset, which implies they do have a relation.
For this, we use training data to estimate the conditional probability PTDP (w|c)
of a word w given that objectc appears in the image:

PTDP (w|c) =
count(w, c)

count(c)
(6)

Where count(w, c) is the number of training images where w appears as the gold
standard annotation for recognized text, and the object classifier detects objectc
in the image. Similarly, count(c) is the number of training images where the
object classifier detects object c.

4.4 Semantic Relatedness with Word Embedding (revisited) (TWE)

This re-ranker builds upon a word embedding, as the SWE re-ranker above,
but the embeddings are learnt from the training dataset (considering two-word
“sentences”: the target word and the object in the image). The embeddings can
be computed from scratch, using only the training dataset information (TWE)
or initialized with a general embeddings model that is then biased using the
training data (TWE*).

In this case, we convert the similarity produced by the embeddings to prob-
abilities using:

PTWE(w|c) =
tanh(sim(w, c)) + 1

2P (c)
(7)

Note that this re-ranker does not take into account word frequency information
as in the case of the SWE re-ranker.

5 Combining Re-rankers

Our re-ranking approach consists in taking the softmax probabilities computed
by the baseline DNN and combine them with the probabilities produced by the
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re-ranker methods described in Section 4. We combine them by simple multi-
plication, which allows us to combine any number of re-rankers in cascade. We
evaluated the following combinations:

1. The baseline output is re-ranked by the unigram language model:

P1(w) = PBL(w)× PULM (w) (8)

2. The baseline output is re-ranked by the general word-embedding model
(SWE). Note that this reranker also includes the ULM information.

P2(w, c) = PBL(w)× PSWE(w|c) (9)

3. The baseline output is re-ranked by the relatedness estimated from the train-
ing dataset as conditional probabilities (TDP).

P3(w, c) = PBL(w)× PTDP (w|c) (10)

4. The baseline output is re-ranked by the word-embedding model trained en-
tirely on training data (TWE) or a general model tuned using the training
data (TWE*):

P4(w, c) = PBL(w)× PTWE(w|c) (11)

5. We also apply SWE and TDP re-rankers combined:

P5(w, c) = PBL(w)× PSWE(w|c)× PTDP (w|c) (12)

6. The combination of TDP and TWE:

P6(w, c) = PBL(w)× PTDP (w|c)× PTWE(w|c) (13)

7. Finally, we combine all re-rankers together:

P7(w, c) = PBL(w) × PSWE(w|c) × PTDP (w|c)× PTWE(w|c) (14)

6 Experiments and Results

In this section we evaluate the performance of the proposed approaches in the
ICDAR-2017-Task3 (end-to-end) [20] dataset. This dataset is based on
Microsoft COCO [21] (Common Objects in Context), which consists of 63,686
images, and 173,589 text instances (annotations of the images). COCO-Text was
not collected with text recognition in mind, therefore, not all images contain
textual annotations. The ICDAR-2017 Task3 aims for end-to-end text spotting
(i.e. both detection and recognition). Thus, this dataset includes whole images,
and the texts in them may appear rotated, distorted, or partially occluded. Since
we focus only on text recognition, we use the ground truth detection as a golden
detector to extract the bounding boxes from the full image. The dataset consists
of 43,686 full images with 145,859 text instances, and for training 10,000 images
and 27,550 instances for validation. We evaluate our approach on a subset of the
validation containing 10,000 images with associated bounding boxes.
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6.1 Preliminaries

For evaluation, we used a more restrictive protocol than the standard proposed
by [22] and adopted in most state-of-the-art benchmarks, which does not consider
words with less than three characters or with non-alphanumerical characters.
This protocol was introduced to overcome the false positives on short words that
most current state-of-the-art struggle with, including our Baseline. However, we
overcome this limitation by introducing the language model re-ranker. Thus, we
consider all cases in the dataset, and words with less than three characters are
also evaluated.

In all cases, we use two pre-trained deep models, CNN [1] and LSTM [2] as a
baseline (BL) to extract the initial list of word hypotheses. Since these BLs need
to be fed with the cropped words, when evaluating on the ICDAR-2017-Task3
dataset we will use the ground truth bounding boxes of the words.

6.2 Experiments with Language Model

As a proof of concept, we trained our unigram language model on two different
copora. The first ULM was trained on Opensubtitles, a large database of subtitles
for movies containing around 3 million word types, including numbers and other
alphanumeric combinations that make it well suited for our task. Secondly, we
trained another model with Google book n-gram, that contains 5 million word
types from American-British literature books. However, since the test dataset
contains numbers, the accuracy was lower than that obtained using the Open-
subtitles corpus. We also evaluate a model trained on the union of both corpora,
that contains around 7 million word types.

In this experiment, we extract the k = 2, . . . , 9 most likely words –and their
probabilities– from the baselines. Although the sequential nature of the LSTM
baseline captures a character-based language model, our post-process uses word-
level probabilities to re-rank the word as a whole. Note that since our baselines
work on cropped words, we do not evaluate the whole end-to-end but only the
influence of adding external knowledge.

The first baseline is a CNN [1] with fixed-lexicon recognition, which is not
able to recognize any word outside its dictionary. The results are reported in
Table 1. We present two different accuracy metrics: full columns correspond
to the accuracy on the whole dataset, while dictionary columns correspond to
the accuracy over the solvable cases (i.e. those where the target word is among
the 90K-words of the CNN dictionary, which correspond to 43.3% of the whole
dataset). We also provide the results using different numbers of k-best candi-
dates. Table 1 top row shows the performance of the CNN baseline, and the
second row reports the influence of the ULM. The best result is obtained with
k = 3, which improved the baseline model in 0.9%, up to 22% full, and 2.7%, up
to 61.3% dictionary.

The second baseline we consider is an LSTM [2] with visual soft-attention
mechanism, performing unconstrained text recognition without relying on a lex-
icon. The first row in Table 2 reports the LSTM baseline result on this dataset,
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Table 1. Results of re-ranking the k-best (k = 2 . . . 9) hypotheses of the CNN
baseline on ICDAR-2017-Task3 dataset (%)

Model k = 2 k = 3 k = 5 k = 9

full dict full dict full dict full dict

CNN baseline1 full: 21.1 dictionary: 58.6

CNN+ULM7M 21.8 60.6 22.0 61.3 21.6 60.1 21.0 58.5

CNN+SWEobject 22.3 62.1 22.6 63.0 22.8 63.4 22.6 62.9

CNN+SWEplace 22.1 61.4 22.5 62.5 22.6 62.6 22.6 62.8

CNN+TDP 22.2 61.7 22.7 63.3 22.7 63.2 22.6 62.8

CNN+SWEobject+TDP 22.4 62.2 22.9 63.6 23.0 64.0 22.9 63.7

CNN+SWEplace+TDP 22.1 61.6 22.6 62.7 22.8 63.4 22.8 63.4

CNN+TWE 22.3 61.9 22.6 62.9 22.6 62.8 22.7 63.0

CNN+TDP+TWE* 22.3 62.1 22.8 63.4 22.9 63.8 23.0 64.0

CNN+SWEobject+TDE+TWE* 22.3 62.1 22.7 63.2 22.9 63.6 22.7 63.3

CNN+SWEplace+TDE+TWE* 22.2 61.8 22.7 63.1 22.8 63.4 22.6 63.0

and the second row shows the results after the ULM re-ranking. The best results
are obtained by considering k = 3 which improves the baseline in 0.7%, from
18.72% to 19.42%.

In summary, the lexicon-based baseline CNN performs better than the un-
constrained approach LSTM, since the character sequences prediction generation
that may lead up to random words, which the ULM may be unable to re-rank.

6.3 Experiments with Visual Context Information

The main contribution of this paper consists in re-ranking the k most likely
hypotheses candidate word using the visual context information. Thus, we use
ICDAR-2017-Task3 dataset to evaluate our approach, re-ranking the baseline
output using the semantic relation between the spotted text in the image and
its visual context. As in the language model experiment, we used ground-truth
bounding boxes as input to the BL. However, in this case, the whole image is
used as input to the visual classifier.

In order to extract the visual context information we considered two different
pre-trained state-of-the-art visual classifiers: object and scene classifiers. For
image classification we rely on three pre-traind network: ResNet [13], GoogLeNet
[14] and Inception-ResNet-v2 [15], all of them able to detect pre-defined list of
1,000 object classes. However, for testing we considered only Inception-ResNet-
v2 due to better top-5 accuracy. For scene classification we use places classifier
Place365-ResNet152 [16] that able to detect 365 scene categories.

Although the visual classifiers use a softmax to produces only one probable
object hypotheses per image, we use threshold to extract a number of object-
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Table 2. Results of re-ranking the k-best (k = 2 . . . 9) hypotheses of the LSTM
baseline on ICDAR-2017-Task3 dataset (%)

Model k = 2 k = 3 k = 5 k = 9

full dict full dict full dict full dict

LSTM baseline2 18.7

LSTM+ULM7M 19.3 - 19.4 - 19.1 - 18.7 -

LSTM+SWEobject 19.3 - 19.8 - 20.0 - 20.1 -

LSTM+SWEplace 19.3 - 19.7 - 20.1 - 20.0 -

LSTM+TDP 19.0 - 19.3 - 19.5 - 20.0 -

LSTM+SWEobject+TDP 19.4 - 20.0 - 20.3 - 20.6 -

LSTM+SWEplace+TDP 19.4 - 19.9 - 20.3 - 20.4 -

LSTM+TWE 19.5 - 20.0 - 20.1 - 20.3 -

LSTM+TDP+TWE* 19.5 - 20.0 - 20.3 - 20.8 -

LSTM+SWEobject+TDP+TWE* 19.4 - 19.8 20.3 20.4 -

LSTM+SWEplace+TDP+TWE* 19.4 - 20.0 - 20.3 - 20.3 -

scene hypotheses, and eliminate low-confidence results. Then, we compute the
semantic relatedness for each object-scene hypotheses with the spotted text.
Finally, we take the most related visual context.

In this experiment we re-rank the baseline k-best hypotheses based on their
relatedness with the objects in the image. We try two approaches for that: 1)
semantic similarity computed using word embeddings [17] and 2) Correlation
based on co-ocurrence of text and image object in the training data.

First, we re-rank the words based on their word embedding: semantic relat-
edness with multiple visual context from general text : 1) object (SWEobject)
and 2) scene (SWEplace). For instance, the top-right example in Figure 3 shows
that the strong semantic similarity between scene information parking and pay
re-ranked that word from 3rd to 1st position. We tested three pre-trained models
trained on general text as baseline 1) word2vec model with 100 billion tokens 2)
glove model with 840 billion tokens [23] and 3) fastText with 600 billion tokens
[24]. However, we adopt glove as baseline, due to a better similarity score.

Secondly, we use the training data to compute the conditional probabilities
between text image and object in the image happen together (TDP). We also
combined both relatedness measures as described in Equation 12, obtaining a
higher accuracy improvement on both baselines, as can be seen in Table 1 and
2, (SWE+TDP) boosted the accuracy for both baseline. The LSTM accuracy
improved up to 1.9% . In other hand, the CNN, with 90k fixed lexicon, accuracy
is boosted up to 1.9% on full dataset and 5.4% dictionary. For example, as
shown in Figure 3 top-left example, text image kt (sport channel) happens often
with visual context racket, something that can not be captured by general word
embedding models. Also, scene classifier SWEplace+TDP boost the baseline 1.7%
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Table 3. Examples of P (word|object) for each re-ranker. TDP and TWE capture
relevant information to improve the baseline for pairs word-object/scene that
appear in the training dataset. The TPD overcome word-embedding limitation
in samples happen in training datasets.

Word Visual SWE TDP TWE TWE*

delta airliner 0.0028 0.0398 0.0003 0.00029
kt racket 0.0004 0.0187 0.0002 0.00006
plate moving 0.0129 0.00050 0.326 0.00098
way street 0.1740 0.02165 0.177 0.17493

full and 4.8% dictionary. The scene classifier SWEplace perform better than the
object classifier in instance outdoor. For instance, the spotted text in a signboard
way is more semantically related with downtown than a man holding an umbrella
in the image.

Finally, we trained a word embedding model using the training dataset
(TWE). Due to the dataset is too small, we use skip-gram model with one
window, and without any word filtering. In addition, we initialized the model
weight with the baseline (SWE) that trained on general text, we call it TWE*.
The result is 300-dimension vector for about 10K words. Also, we initialized the
weight randomly but when we combined the re-rankers the pre-trained initialized
model is slightly better. The result in both Table 1 and 2 button two rows shows
that (TWE) outperform the accuracy of SWE model that trained on general
text.

The result in Table 1 CNN shows that the combination model TDP+TWE
also significantly boost the accuracy up to 5.4% dictionary and 1.9% all. Also, in
Table 2, the second baseline LSTM accuracy boosted up to 2.1%. Not to mention
that TDP+TWE model only rely on the visual context information, computed
by Equation 7.

7 Discussion

The visual context information re-ranks potential candidate words based on the
semantic relatedness with its visual information (SWE). However, there are some
cases when there is no direct semantic correlation between the visual context and
the potential word. Thus we proposed TDP to address this limitation by learning
correlations from the training dataset. However, there are still cases unseen in
the training dataset, for instance, as shown in Figure 3 bottom-left text image
copyrighting and its visual context ski slop, snowfield have neither semantic
correlation nor were seen in the training dataset. There are also cases where is
no relation at all, as in Figure 3 the brand name zara and the visual context
crosswalk or plaza. The results we have presented show that our approach is a
simple way to boost accuracy of text recognition deep learning models, or to
adapt them to particular domains, with a very low re-training/tuning cost. The
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Reranking list:

Reranking list:

Reranking list:

Reranking list:

w2: zara

w3: vara

w1: yard

Visual:

w1: kr
w2: kt

w3: rt

w3: pay

w1: posy
w2: spay

w1: convicting

w2: copyrighting

w3: cognizingly

Visual:

Visual:

   c1: parking c1: racket 

Visual:

c1: crosswalkc1: ski slop
c2: plaza

c2: grass

c2: snowfield

     c2: igloo 

Fig. 3. Some examples of visual context re-ranker. The top-two examples are
successful results of the visual context re-ranker. The top-left example is a re-
ranking results based on the relation between text and its visuals happen to-
gether in the training dataset. The top-right is a re-ranking result based on
semantic relatedness between the text image and its visual. The bottom two
cases are examples of words either has no semantic correlation with the visual
or exist in the training dataset. Not to mention that the top ranking visual c1
is the most semantically related visual context to the spotted text. (Bold font
words indicate the ground truth)

proposed post-processing approach can be used as a drop-in complement for
any text-spotting algorithm (either deep-learning based or not) that outputs a
ranking of word hypotheses. In addition, our approach overcomes some of the
limitations that current state-of-the-art deep model struggle to solve in complex
background text spotting scenarios, such as short words.

One limitation of this approach is that when the language model re-ranker
is strong the visual context re-ranker is unable to re-rank the correct candidate
word. For instance, the word ohh has a large frequency count in general text.
This problem can be tackled by adjusting the weight of uncommon short words
in the language model.

8 Conclusion

In this paper we have proposed a simple post processing approach, a hypothesis
re-ranker based on visual context information, to improve the accuracy of any
pre-trained text spotting system. We also show that by integrating a language
model re-ranker as a prior to the visual re-ranker, the performance of the vi-
sual context re-ranker can be improved. We have shown that the accuracy of
two state-of-the-art deep network architectures, a lexicon-based and lexicon-free
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recognition, can be boosted up to 2 percentage-points on standard benchmarks.
In the future work, we plan to explore end-to-end based fusion schemes that
can automatically discover more proper priors in one shot deep model fusion
architecture.
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