2,259 research outputs found

    Effective Use of Dilated Convolutions for Segmenting Small Object Instances in Remote Sensing Imagery

    Full text link
    Thanks to recent advances in CNNs, solid improvements have been made in semantic segmentation of high resolution remote sensing imagery. However, most of the previous works have not fully taken into account the specific difficulties that exist in remote sensing tasks. One of such difficulties is that objects are small and crowded in remote sensing imagery. To tackle with this challenging task we have proposed a novel architecture called local feature extraction (LFE) module attached on top of dilated front-end module. The LFE module is based on our findings that aggressively increasing dilation factors fails to aggregate local features due to sparsity of the kernel, and detrimental to small objects. The proposed LFE module solves this problem by aggregating local features with decreasing dilation factor. We tested our network on three remote sensing datasets and acquired remarkably good results for all datasets especially for small objects

    Mapping solar array location, size, and capacity using deep learning and overhead imagery

    Full text link
    The effective integration of distributed solar photovoltaic (PV) arrays into existing power grids will require access to high quality data; the location, power capacity, and energy generation of individual solar PV installations. Unfortunately, existing methods for obtaining this data are limited in their spatial resolution and completeness. We propose a general framework for accurately and cheaply mapping individual PV arrays, and their capacities, over large geographic areas. At the core of this approach is a deep learning algorithm called SolarMapper - which we make publicly available - that can automatically map PV arrays in high resolution overhead imagery. We estimate the performance of SolarMapper on a large dataset of overhead imagery across three US cities in California. We also describe a procedure for deploying SolarMapper to new geographic regions, so that it can be utilized by others. We demonstrate the effectiveness of the proposed deployment procedure by using it to map solar arrays across the entire US state of Connecticut (CT). Using these results, we demonstrate that we achieve highly accurate estimates of total installed PV capacity within each of CT's 168 municipal regions

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Learning Aerial Image Segmentation from Online Maps

    Get PDF
    This study deals with semantic segmentation of high-resolution (aerial) images where a semantic class label is assigned to each pixel via supervised classification as a basis for automatic map generation. Recently, deep convolutional neural networks (CNNs) have shown impressive performance and have quickly become the de-facto standard for semantic segmentation, with the added benefit that task-specific feature design is no longer necessary. However, a major downside of deep learning methods is that they are extremely data-hungry, thus aggravating the perennial bottleneck of supervised classification, to obtain enough annotated training data. On the other hand, it has been observed that they are rather robust against noise in the training labels. This opens up the intriguing possibility to avoid annotating huge amounts of training data, and instead train the classifier from existing legacy data or crowd-sourced maps which can exhibit high levels of noise. The question addressed in this paper is: can training with large-scale, publicly available labels replace a substantial part of the manual labeling effort and still achieve sufficient performance? Such data will inevitably contain a significant portion of errors, but in return virtually unlimited quantities of it are available in larger parts of the world. We adapt a state-of-the-art CNN architecture for semantic segmentation of buildings and roads in aerial images, and compare its performance when using different training data sets, ranging from manually labeled, pixel-accurate ground truth of the same city to automatic training data derived from OpenStreetMap data from distant locations. We report our results that indicate that satisfying performance can be obtained with significantly less manual annotation effort, by exploiting noisy large-scale training data.Comment: Published in IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSIN
    • …
    corecore