8 research outputs found

    Semantic barbs: what's in an observation? (talk)

    No full text
    Talk given at ECS, Soton on 6.12.0

    On convergence-sensitive bisimulation and the embedding of CCS in timed CCS

    Get PDF
    We propose a notion of convergence-sensitive bisimulation that is built just over the notions of (internal) reduction and of (static) context. In the framework of timed CCS, we characterise this notion of `contextual' bisimulation via the usual labelled transition system. We also remark that it provides a suitable semantic framework for a fully abstract embedding of untimed processes into timed ones. Finally, we show that the notion can be refined to include sensitivity to divergence

    Deriving Barbed Bisimulations for Bigraphical Reactive Systems

    Get PDF
    We study the definition of a general abstract notion of barbed bisimilarity for reactive systems on bigraphs. More precisely, given a bigraphical reactive system, we define the corresponding barbs from the contextual labels given by the IPO construction, in a general and systematic way. These barbs correspond to observe which names on the interface are actually involved in reactions (and how). As examples, we apply this construction to the (bigraphical representation of the) pi-calculus and of Mobile Ambients, and compare the resulting barbed equivalences with those previously known for these calculi

    On Barbs and Labels in Reactive Systems

    Get PDF
    Reactive systems (RSs) represent a meta-framework aimed at deriving behavioral congruences for those computational formalisms whose operational semantics is provided by reduction rules. RSs proved a flexible specification device, yet so far most of the efforts dealing with their behavioural semantics focused on idem pushouts (IPOs) and saturated (also known as dynamic) bisimulations. In this paper we introduce a novel, intermediate behavioural equivalence: L-bisimilarity, which is able to recast both its IPO and saturated counterparts. The equivalence is parametric with respect to a set L of RSs labels, and it is shown that under mild conditions on L it is indeed a congruence. Furthermore, L-bisimilarity can also recast the notion of barbed semantics for RSs, proposed by the same authors in a previous paper. In order to provide a suitable test-bed, we instantiate our proposal by addressing the semantics of (asynchronous) CCS and of the calculus of mobile ambients

    Adequacy Issues in Reactive Systems: Barbed Semantics for Mobile Ambients

    Get PDF
    Reactive systems represent a meta-framework aimed at deriving behavioral congruences for those specification formalisms whose operational semantics is provided by rewriting rules. The aim of this thesis is to address one of the main issues of the framework, concerning the adequacy of the standard observational semantics (the IPO and the saturated one) in modelling the concrete semantics of actual formalisms. The problem is that IPO-bisimilarity (obtained considering only minimal labels) is often too discriminating, while the saturated one (via all labels) may be too coarse, and intermediate proposals should then be put forward. We then introduce a more expressive semantics for reactive systems which, thanks to its flexibility, allows for recasting a wide variety of observational, bisimulation-based equivalences. In particular, we propose suitable notions of barbed and weak barbed semantics for reactive systems, and an efficient characterization of them through the IPO-transition systems. We also propose a novel, more general behavioural equivalence: L-bisimilarity, which is able to recast both its IPO and saturated counterparts, as well as the barbed one. The equivalence is parametric with respect to a set L of reactive systems labels, and it is shown that under mild conditions on L it is a congruence. In order to provide a suitable test-bed, we instantiate our proposal over the asynchronous CCS and, most importantly, over the mobile ambients calculus, whose semantics is still in a flux

    Semantic Barbs and Biorthogonality

    No full text
    We use the framework of biorthogonality to introduce a novel semantic definition of the concept of barb (basic observable) for process calculi. We develop a uniform basic theory of barbs and demonstrate its robustness by showing that it gives rise to the correct observables in specific process calculi which model synchronous, asynchronous and broadcast communication regimes

    Semantic Barbs and Biorthogonality

    No full text
    Abstract. We use the framework of biorthogonality to introduce a novel semantic definition of the concept of barb (basic observable) for process calculi. We develop a uniform basic theory of barbs and demonstrate its robustness by showing that it gives rise to the correct observables in specific process calculi which model synchronous, asynchronous and broadcast communication regimes.
    corecore