22,345 research outputs found

    Self-Tuning Wireless Network Power Management

    Full text link
    Current wireless network power management often substantially degrades performance and may even increase overall energy usage when used with latency-sensitive applications. We propose self-tuning power management (STPM) that adapts its behavior to the access patterns and intent of applications, the characteristics of the network interface, and the energy usage of the platform. We have implemented STPM as a Linux kernel module—our results show substantial benefits for distributed file systems, streaming audio, and thin-client applications. Compared to default 802.11b power management, STPM reduces the total energy usage of an iPAQ running the Coda distributed file system by 21% while also reducing interactive file system delay by 80%. Further, STPM adapts to diverse operating conditions: it yields good results on both laptops and handhelds, supports 802.11b network interfaces with substantially different characteristics, and performs well across a range of application network access patterns.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41365/1/11276_2005_Article_1768.pd

    Distributed and Load-Adaptive Self Configuration in Sensor Networks

    Get PDF
    Proactive self-configuration is crucial for MANETs such as sensor networks, as these are often deployed in hostile environments and are ad hoc in nature. The dynamic architecture of the network is monitored by exchanging so-called Network State Beacons (NSBs) between key network nodes. The Beacon Exchange rate and the network state define both the time and nature of a proactive action to combat network performance degradation at a time of crisis. It is thus essential to optimize these parameters for the dynamic load profile of the network. This paper presents a novel distributed adaptive optimization Beacon Exchange selection model which considers distributed network load for energy efficient monitoring and proactive reconfiguration of the network. The results show an improvement of 70% in throughput, while maintaining a guaranteed quality-of- service for a small control-traffic overhead

    Deep Q-Learning for Self-Organizing Networks Fault Management and Radio Performance Improvement

    Full text link
    We propose an algorithm to automate fault management in an outdoor cellular network using deep reinforcement learning (RL) against wireless impairments. This algorithm enables the cellular network cluster to self-heal by allowing RL to learn how to improve the downlink signal to interference plus noise ratio through exploration and exploitation of various alarm corrective actions. The main contributions of this paper are to 1) introduce a deep RL-based fault handling algorithm which self-organizing networks can implement in a polynomial runtime and 2) show that this fault management method can improve the radio link performance in a realistic network setup. Simulation results show that our proposed algorithm learns an action sequence to clear alarms and improve the performance in the cellular cluster better than existing algorithms, even against the randomness of the network fault occurrences and user movements.Comment: (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Insights into dynamic tuning of magnetic-resonant wireless power transfer receivers based on switch-mode gyrators

    Get PDF
    Magnetic-resonant wireless power transfer (WPT) has become a reliable contactless source of power for a wide range of applications. WPT spans different power levels ranging from low-power implantable devices up to high-power electric vehicles (EV) battery charging. The transmission range and efficiency of WPT have been reasonably enhanced by resonating the transmitter and receiver coils at a common frequency. Nevertheless, matching between resonance in the transmitter and receiver is quite cumbersome, particularly in single-transmitter multi-receiver systems. The resonance frequency in transmitter and receiver tank circuits has to be perfectly matched, otherwise power transfer capability is greatly degraded. This paper discusses the mistuning effect of parallel-compensated receivers, and thereof a novel dynamic frequency tuning method and related circuit topology and control is proposed and characterized in the system application. The proposed method is based on the concept of switch-mode gyrator emulating variable lossless inductors oriented to enable self-tunability in WPT receiversPeer ReviewedPostprint (published version

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing
    • …
    corecore