3 research outputs found

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Neuromorphic perception for greenhouse technology using event-based sensors

    Get PDF
    Event-Based Cameras (EBCs), unlike conventional cameras, feature independent pixels that asynchronously generate outputs upon detecting changes in their field of view. Short calculations are performed on each event to mimic the brain. The output is a sparse sequence of events with high temporal precision. Conventional computer vision algorithms do not leverage these properties. Thus a new paradigm has been devised. While event cameras are very efficient in representing sparse sequences of events with high temporal precision, many approaches are challenged in applications where a large amount of spatially-temporally rich information must be processed in real-time. In reality, most tasks in everyday life take place in complex and uncontrollable environments, which require sophisticated models and intelligent reasoning. Typical hard problems in real-world scenes are detecting various non-uniform objects or navigation in an unknown and complex environment. In addition, colour perception is an essential fundamental property in distinguishing objects in natural scenes. Colour is a new aspect of event-based sensors, which work fundamentally differently from standard cameras, measuring per-pixel brightness changes per colour filter asynchronously rather than measuring “absolute” brightness at a constant rate. This thesis explores neuromorphic event-based processing methods for high-noise and cluttered environments with imbalanced classes. A fully event-driven processing pipeline was developed for agricultural applications to perform fruits detection and classification to unlock the outstanding properties of event cameras. The nature of features in such data was explored, and methods to represent and detect features were demonstrated. A framework for detecting and classifying features was developed and evaluated on the N-MNIST and Dynamic Vision Sensor (DVS) gesture datasets. The same network was evaluated on laboratory recorded and real-world data with various internal variations for fruits detection such as overlap, variation in size and appearance. In addition, a method to handle highly imbalanced data was developed. We examined the characteristics of spatio-temporal patterns for each colour filter to help expand our understanding of this novel data and explored their applications in classification tasks where colours were more relevant features than shapes and appearances. The results presented in this thesis demonstrate the potential and efficacy of event- based systems by demonstrating the applicability of colour event data and the viability of event-driven classification

    Self-timed vertacolor dichromatic vision sensor for low power pattern detection

    Full text link
    This paper proposes a simple focal plane pattern detector architecture using a novel pixel sensor based on the dichromatic vertacolor structure. Additionally, the sensor transfers dichromatic intensity values using a self-timed time-to- first-spike scheme, which provides high dynamic range imaging. The intensity information is transmitted using the address event representation protocol. The spectral information is sampled automatically at each intensity reading in a ratioed way that maintains high dynamic range. A test chip consisting of 20 pixels has been fabricated in 1.5 um 2P 2M CMOS and characterized. The combined pattern detector/ imager core consumes 45 uA at 5 V supply voltage
    corecore