4 research outputs found

    Piezoelectric Nanogenerators for Self-Powered Nanodevices

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.Although nanodevices fabricated using nanomaterials such as nanotubes or nanowires offer low power consumption, powering them can still be challenging. Adding a battery could sufficiently increase their size to inhibit their application. Developing miniature power packages and self-powering methods will be key to their use in a variety of applications, including those for wireless sensing; in-vivo, real-time, and implantable biological devices; environmental monitoring; and personal electronics. Consequently, researchers are developing innovative nanotechnologies to convert various forms of energy (such as solar energy) into electric energy for low-power nanodevices. In our own work, we’ve used piezoelectric zinc-oxide nanowire (ZnO NW) arrays to demonstrate a novel approach for converting nanoscale mechanical energy into electric energy. Here, we review the fundamental principle behind the nanogenerator, present an approach for improving its performance, and discuss some of the challenges we face in pushing this technology to reach its potential

    Physical Aspects of VLSI Design with a Focus on Three-Dimensional Integrated Circuit Applications

    Get PDF
    This work is on three-dimensional integration (3DI), and physical problems and aspects of VLSI design. Miniaturization and highly complex integrated systems in microelectronics have led to the 3DI development as a promising technological approach. 3DI offers numerous advantages: Size, power consumption, hybrid integration etc., with more thermal problems and physical complexity as trade-offs. We open this work by presenting the design and testing of an example 3DI system, to our knowledge the first self-powering system in a three-dimensional SOI technology. The system uses ambient optical energy harvested by a photodiode array and stored in an integrated capacitor. An on-chip metal interconnect network, beyond its designed role, behaves as a parasitic load vulnerable to electromagnetic coupling. We have developed a spatially-dependent, transient Green's Function based method of calculating the response of an interconnect network to noise. This efficient method can model network delays and noise sensitivity, which are involved problems in both planar and especially in 3DICs. Three-dimensional systems are more susceptible to thermal problems, which also affect VLSI with high power densities, of complex systems and under extreme temperatures. We analytically and experimentally investigate thermal effects in ICs. We study the effects of non-uniform, non-isotropic thermal conductivity of the typically complex IC material system, with a simulator we developed including this complexity. Through our simulations, verified by experiments, we propose a method of cooling or directionally heating IC regions. 3DICs are suited for developing wireless sensor networks, commonly referred to as ``smart dust.'' The ideal smart dust node includes RF communication circuits with on-chip passive components. We present an experimental study of on-chip inductors and transformers as integrated passives. We also demonstrate the performance improvement in 3DI with its lower capacitive loads. 3DI technology is just one example of the intense development in today's electronics, which maintains the need for educational methods to assist student recruitment into technology, to prepare students for a demanding technological landscape, and to raise societal awareness of technology. We conclude this work by presenting three electrical engineering curricula we designed and implemented, targeting these needs among others

    Um novo modelo de conceito para implantes ortopédicos instrumentados ativos

    Get PDF
    Doutoramento em Engenharia MecânicaTotal hip replacement (THR) is one of the most performed surgical procedures around the world. Millions of THR are carried out worldwide each year. Currently, THR revision rates can be higher than 10%. A significant increase of the number of primary and revision THRs, mainly among patients less than 65 years old (including those under 45 years old) has been predicted for the forthcoming years. A worldwide increase in the use of uncemented fixation has also been reported, incidence caused mainly by the significant increase of more active and/or younger patients. Besides the significant breakthroughs for uncemented fixations, they have not been able to ensure long-term implant survival. Up to date, current implant models have shown evidences of their inability to avoid revision procedures. The performance of implants will be optimized if they are designed to perform an effective control over the osseointegration process. To pursue this goal, improved surgical techniques and rehabilitation protocols, innovative bioactive coatings (including those for controlled delivery of drugs and/or other bio-agents in the bone-implant interface), the concepts of Passive Instrumented Implant and Active Instrumented Implant have been proposed. However, there are no conclusive demonstrations of the effectiveness of such methodologies. The main goal of this thesis is to propose a new concept model for instrumented implants to optimize the bone-implant integration: the self-powered instrumented active implant with ability to deliver controlled and personalized biophysical stimuli to target tissue areas. The need of such a new model is demonstrated by optimality analyses conducted to study the performance of instrumented and non-instrumented orthopaedic implants. Promising results on the potential of a therapeutic actuation driven by cosurface-based capacitive stimulation were achieved, as well as for self-powering instrumented active implants by magnetic levitation-based electromagnetic energy harvesting.A artroplastia total da anca (THR) é um dos procedimentos cirúrgicos mais realizados à escala global. Milhões de THRs são realizadas todos os anos em todo o mundo. Atualmente, as taxas de revisão destas artroplastias podem ser superiores a 10%. O número de THRs primárias e de revisão têm aumentado e estima-se que cresçam acentuadamente nos próximos anos, principalmente em pacientes com idades inferiores a 65 anos (incluindo aqueles com menos de 45 anos). Também se tem verificado uma tendência generalizada para o uso de fixações não cimentadas, incidência principalmente causada pelo aumento significativo de pacientes mais jovens e/ou activos. Embora se tenham realizado avanços científicos no projeto de implantes não cimentados, têm-se verificado o seu insucesso a longo-prazo. Encontram-se evidências da ineficácia dos modelos de implantes que têm sido desenvolvidos para evitar procedimentos de revisão. O desempenho dos implantes será otimizado se estes foram projetados para controlarem eficazmente o processo de osseointegração. Para se alcançar este objetivo, têm sido propostas a melhoria das técnicas cirúrgicas e dos protocolos de reabilitação, a inovação dos revestimentos (onde se incluem os revestimentos ativos projetados para a libertação controlada de fármacos e/ou outros bio-agentes) e os conceitos de Implante Instrumentado Passivo e Implante Instrumentado Ativo. Contudo, não existem demonstrações conclusivas da eficácia de tais metodologias. O principal objetivo desta tese é propor um novo modelo de conceito para implantes instrumentados para se otimizar a integração osso-implante: o implante instrumentado ativo, energeticamente auto-suficiente, com capacidade de aplicar estímulos biofísicos em tecidos-alvo de forma controlada e personalizada. A necessidade de um novo modelo é demonstrada através da realização de análises de otimalidade ao desempenho dos implantes instrumentados e não-instrumentados. Foram encontrados resultados promissores para o controlo otimizado da osseointegração usando este novo modelo, através da atuação terapêutica baseada na estimulação capacitiva com arquitetura em co-superfície, assim como para fornecer energia elétrica de forma autónoma por mecanismos de transdução baseados em indução eletromagnética usando configurações baseadas na levitação magnética
    corecore