Piezoelectric Nanogenerators for Self-Powered Nanodevices

Abstract

©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.Although nanodevices fabricated using nanomaterials such as nanotubes or nanowires offer low power consumption, powering them can still be challenging. Adding a battery could sufficiently increase their size to inhibit their application. Developing miniature power packages and self-powering methods will be key to their use in a variety of applications, including those for wireless sensing; in-vivo, real-time, and implantable biological devices; environmental monitoring; and personal electronics. Consequently, researchers are developing innovative nanotechnologies to convert various forms of energy (such as solar energy) into electric energy for low-power nanodevices. In our own work, we’ve used piezoelectric zinc-oxide nanowire (ZnO NW) arrays to demonstrate a novel approach for converting nanoscale mechanical energy into electric energy. Here, we review the fundamental principle behind the nanogenerator, present an approach for improving its performance, and discuss some of the challenges we face in pushing this technology to reach its potential

    Similar works