2 research outputs found

    Algoritam alokacije resursa s dinamičkim pridruživanjem podnosioca u bežičnim mrežama zasnovanim na OFDMA-u

    Get PDF
    The allocation of available resources is one of the main issues in multi-user systems. Dependence of system capacity on radio link quality is an additional obstacle of efficient resource allocation in wireless networks. Combinations of two opposite approaches -- fair resource allocation and system capacity maximization are used to solve this problem in practice.This paper proposes a resource allocation method that is primarily based on assigning almost an equal bandwidth to all users. System capacity maximization is achieved by selecting the subcarriers with the best SNR values. This algorithm was developed for orthogonal frequency division multiple access (OFDMA) wireless systems. Resource allocation is done at the subcarrier level according to the weight factor that had been calculated for each user. Frequency hopping was used to increase frequency diversity and to make the system more robust to disturbance. Frequency hopping pattern is determined dynamically on the basis of SNR value of each subcarrier.The results of the proposed algorithm are compared with the water filling (WF) and proportional fairness (PF) methods. The influence of various data traffic classes on system throughput and resource allocation is also described.U sustavima s više korisnika jedno od glavnih pitanja je kako podijeliti raspoložive resurse. Kod radio mreža dodatni otežavajući faktor predstavlja promjenjivost kapaciteta sustava ovisno o kvaliteti radio veze. U praksi se za raspodjelu resursaobično koriste algoritmi koji su kombinacija dvaju oprečnih pristupa, fer raspodjele resursa i maksimizacije kapaciteta sustava.U ovom radu predložena je metoda primarno bazirana na fer raspodjeli resursa. Maksimizacija kapaciteta sustava ostvarena je odabirom podnosilaca s najboljim mogućim SNR-om. Algoritam je razvijen za sustave bazirane na OFDMA. Dodjela resursa korisnicima vrši se na razini pojedinog podnosioca prema izračunatom težinskom faktoru za svakog korisnika posebno. Kako bi se povećao frekvencijski diverziti i sustav učinio otpornijim na smetnje, uvedeno je frekvencijsko skakanje prema dinamički određenom predlošku. Predložak se formira na osnovu SNRvrijednosti određene po svakom podnosiocu. Rezultati predloženog algoritma uspoređeni su s WF (water filling) i PF(proportional fairness) algoritmima. Prikazan je utjecaj različitih klasa prometa na prijenosni kapacitet i raspodjelu resursa sustava

    A Method for Dynamically Selecting the Best Frequency Hopping Technique in Industrial Wireless Sensor Network Applications

    Get PDF
    Industrial wireless applications often share the communication channel with other wireless technologies and communication protocols. This coexistence produces interferences and transmission errors which require appropriate mechanisms to manage retransmissions. Nevertheless, these mechanisms increase the network latency and overhead due to the retransmissions. Thus, the loss of data packets and the measures to handle them produce an undesirable drop in the QoS and hinder the overall robustness and energy efficiency of the network. Interference avoidance mechanisms, such as frequency hopping techniques, reduce the need for retransmissions due to interferences but they are often tailored to specific scenarios and are not easily adapted to other use cases. On the other hand, the total absence of interference avoidance mechanisms introduces a security risk because the communication channel may be intentionally attacked and interfered with to hinder or totally block it. In this paper we propose a method for supporting the design of communication solutions under dynamic channel interference conditions and we implement dynamic management policies for frequency hopping technique and channel selection at runtime. The method considers several standard frequency hopping techniques and quality metrics, and the quality and status of the available frequency channels to propose the best combined solution to minimize the side effects of interferences. A simulation tool has been developed and used in this work to validate the method.Research partially supported by the European Union's Seventh Framework Programme for research, technological development and demonstration under Grant Agreement Number FP7-SEC-2013-1/607292 ZONeSEC-Towards a EU framework for the security of Widezones, in the scope of the activities related to develop technologies that foster the Plug, Play&Forget paradigm. Also partially supported by the Department of Education, Universities and Research of the Basque Government under Grant IT980-16 and the Spanish Research Council, under grant TIN2016-79897-P
    corecore