189 research outputs found

    Downlink Frequency Reuse and Hopping for OFDMA femtocells

    Get PDF
    To prevent the Femto-to-Macro and Femto-to-Femto inter-cell interference, it is essential for the Femto Base Stations to perform interference management in its downlink. This paper exploits the distinct characteristics of OFDMA Femtocells and reveals the simple but effective mechanics for Femto BSs to mitigate the inter-cell interference when Macro BSs are performing fractional frequency reuse. The idea consists of frequency pattern counter-reusing and band-wide frequency hopping. Base on this idea, we then proposed a heuristic Frequency Reuse and Hopping scheme and the later simulation results proved that it can satisfactorily improve the system performance. By following the routines of low-cost low-complexity in design, the proposed scheme is grounded on realistic assumptions and easy to implement

    Power Minimization Based Resource Allocation for Interference Mitigation in OFDMA Femtocell Networks

    Get PDF
    [EN] With the introduction of femtocells, cellular networks are moving from the conventional centralized network architecture to a distributed one, where each network cell should make its own radio resource allocation decisions, while providing inter-cell interference mitigation. However, realizing such distributed network architecture is not a trivial task. In this paper, we first introduce a simple self-organization rule, based on minimizing cell transmit power, following which a distributed cellular network is able to converge into an efficient resource reuse pattern. Based on such self-organization rule and taking realistic resource allocation constraints into account, we also propose two novel resource allocation algorithms, being autonomous and coordinated, respectively. Performance of the proposed self-organization rule and resource allocation algorithms are evaluated using system-level simulations, and show that power efficiency is not necessarily in conflict with capacity improvements at the network level. The proposed resource allocation algorithms provide significant performance improvements in terms of user outages and network capacity over cutting-edge resource allocation algorithms proposed in the literature.This work was partially supported by the UK EPSRC Grant EP/H020268/1.López-Pérez, D.; Chu, X.; Vasilakos, AV.; Claussen, H. (2014). Power Minimization Based Resource Allocation for Interference Mitigation in OFDMA Femtocell Networks. IEEE Journal on Selected Areas in Communications. 32(2):333-344. https://doi.org/10.1109/JSAC.2014.14121333334432

    Models and optimisation methods for interference coordination in self-organising cellular networks

    Get PDF
    A thesis submitted for the degree of Doctor of PhilosophyWe are at that moment of network evolution when we have realised that our telecommunication systems should mimic features of human kind, e.g., the ability to understand the medium and take advantage of its changes. Looking towards the future, the mobile industry envisions the use of fully automatised cells able to self-organise all their parameters and procedures. A fully self-organised network is the one that is able to avoid human involvement and react to the fluctuations of network, traffic and channel through the automatic/autonomous nature of its functioning. Nowadays, the mobile community is far from this fully self-organised kind of network, but they are taken the first steps to achieve this target in the near future. This thesis hopes to contribute to the automatisation of cellular networks, providing models and tools to understand the behaviour of these networks, and algorithms and optimisation approaches to enhance their performance. This work focuses on the next generation of cellular networks, in more detail, in the DownLink (DL) of Orthogonal Frequency Division Multiple Access (OFDMA) based networks. Within this type of cellular system, attention is paid to interference mitigation in self-organising macrocell scenarios and femtocell deployments. Moreover, this thesis investigates the interference issues that arise when these two cell types are jointly deployed, complementing each other in what is currently known as a two-tier network. This thesis also provides new practical approaches to the inter-cell interference problem in both macro cell and femtocell OFDMA systems as well as in two-tier networks by means of the design of a novel framework and the use of mathematical optimisation. Special attention is paid to the formulation of optimisation problems and the development of well-performing solving methods (accurate and fast)

    Proposed Multi-Mode Home Node-B Air Interface Protocol Stack Architecture

    Get PDF
    A Multi-mode Home NodeB (MHNB) is a system that can offer cellular service(s) to more than one different generation technology. The Universal Mobile Telecommunication System (UMTS) technology using NodeB as its transceiver station was developed to offer a high frequency range of 5MHz and because of this, the signal from the NodeB dilutes faster once reaching indoor. Studies showed that the idea of Home NodeB system by Third Generation Partnership Project (3GPP) came as a means to boost the diluted indoor signals. The challenge with this system is that it can only accommodate small number of subscribers as its Close Subscriber Group (CSG) without allowance for expansion. This study seeks to address the small capacity issue of the existing HNB by proposing a system that will accommodate wider capacity range and also, modify its operation from a single network mode to a Multi network mode technology. This will also offer great benefit to developing countries through extension of their GSM coverage and will also create a uniform platform for all cellular generation technologies. Keywords: Home NodeB, Multi-mode Home NodeB, Third Generation Partnership Project and Close Subscriber Group                                                                                                                        

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks
    corecore