4 research outputs found

    Inherent global stabilization of unstable local behavior in coupled map lattices

    Full text link
    The behavior of two-dimensional coupled map lattices is studied with respect to the global stabilization of unstable local fixed points without external control. It is numerically shown under which circumstances such inherent global stabilization can be achieved for both synchronous and asynchronous updating. Two necessary conditions for inherent global stabilization are derived analytically.Comment: 17 pages, 10 figures, accepted for publication in Int.J.Bif.Chao

    Coupled map gas: structure formation and dynamics of interacting motile elements with internal dynamics

    Full text link
    A model of interacting motile chaotic elements is proposed. The chaotic elements are distributed in space and interact with each other through interactions depending on their positions and their internal states. As the value of a governing parameter is changed, the model exhibits successive phase changes with novel pattern dynamics, including spatial clustering, fusion and fission of clusters and intermittent diffusion of elements. We explain the manner in which the interplay between internal dynamics and interaction leads to this behavior by employing certain quantities characterizing diffusion, correlation, and the information cascade of synchronization. Keywords: collective motion, coupled map system, interacting motile elementsComment: 27 pages, 12 figures; submitted to Physica
    corecore