3 research outputs found

    NMDA-based pattern discrimination in a modeled cortical neuron

    Get PDF
    Compartmental simulations of an anatomically characterized cortical pyramidal cell were carried out to study the integrative behavior of a complex dendritic tree. Previous theoretical (Feldman and Ballard 1982; Durbin and Rumelhart 1989; Mel 1990; Mel and Koch 1990; Poggio and Girosi 1990) and compartmental modeling (Koch et al. 1983; Shepherd et al. 1985; Koch and Poggio 1987; Rall and Segev 1987; Shepherd and Brayton 1987; Shepherd et al. 1989; Brown et al. 1991) work had suggested that multiplicative interactions among groups of neighboring synapses could greatly enhance the processing power of a neuron relative to a unit with only a single global firing threshold. This issue was investigated here, with a particular focus on the role of voltage-dependent N-methyl-D-asparate (NMDA) channels in the generation of cell responses. First, it was found that when a large proportion of the excitatory synaptic input to dendritic spines is carried by NMDA channels, the pyramidal cell responds preferentially to spatially clustered, rather than random, distributions of activated synapses. Second, based on this mechanism, the NMDA-rich neuron is shown to be capable of solving a nonlinear pattern discrimination task. We propose that manipulation of the spatial ordering of afferent synaptic connections onto the dendritic arbor is a possible biological strategy for pattern information storage during learning

    The Clusteron: Toward a Simple Abstraction for a Complex Neuron

    Get PDF
    Are single neocortical neurons as powerful as multi-layered networks? A recent compartmental modeling study has shown that voltage-dependent membrane nonlinearities present in a complex dendritic tree can provide a virtual layer of local nonlinear processing elements between synaptic inputs and the final output at the cell body, analogous to a hidden layer in a multi-layer network. In this paper, an abstract model neuron is introduced, called a clusteron, which incorporates aspects of the dendritic "cluster-sensitivity" phenomenon seen in these detailed biophysical modeling studies. It is shown, using a clusteron, that a Hebb-type learning rule can be used to extract higher-order statistics from a set of training patterns, by manipulating the spatial ordering of synaptic connections onto the dendritic tree. The potential neurobiological relevance of these higher-order statistics for nonlinear pattern discrimination is then studied within a full compartmental model of a neocortical pyramidal cell, using a training set of 1000 high-dimensional sparse random patterns
    corecore