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Abstract 

Are single neocortical neurons as powerful as multi-layered networks? A 
recent compartmental modeling study has shown that voltage-dependent 
membrane nonlinearities present in a complex dendritic tree can provide 
a virtual layer of local nonlinear processing elements between synaptic in­
puts and the final output at the cell body, analogous to a hidden layer 
in a multi-layer network. In this paper, an abstract model neuron is in­
troduced, called a clusteron, which incorporates aspects of the dendritic 
"cluster-sensitivity" phenomenon seen in these detailed biophysical mod­
eling studies. It is shown, using a clusteron, that a Hebb-type learning 
rule can be used to extract higher-order statistics from a set of train­
ing patterns, by manipulating the spatial ordering of synaptic connections 
onto the dendritic tree. The potential neurobiological relevance of these 
higher-order statistics for nonlinear pattern discrimination is then studied 
within a full compartmental model of a neocortical pyramidal cell, using 
a training set of 1000 high-dimensional sparse random patterns. 

1 INTRODUCTION 

The nature of information processing in complex dendritic trees has remained an 
open question since the origin of the neuron doctrine 100 years ago. With respect 
to learning, for example, it is not known whether a neuron is best modeled as 
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a pseudo-linear unit, equivalent in power to a simple Perceptron, or as a general 
nonlinear learning device, equivalent in power to a multi-layered network. In an at­
tempt to characterize the input-output behavior of a whole dendritic tree containing 
voltage-dependent membrane mechanisms, a recent compartmental modeling study 
in an anatomically reconstructed neocortical pyramidal cell (anatomical data from 
Douglas et al., 1991; "NEURON" simulation package provided by Michael Hines 
and John Moore) showed that a dendritic tree rich in NMDA-type synaptic chan­
nels is selectively responsive to spatially clustered, as opposed to diffuse, pattens 
of synaptic activation (Mel, 1992). For example, 100 synapses which were simulta­
neously activated at 100 randomly chosen locations about the dendritic arbor were 
less effective at firing the cell than 100 synapses activated in groups of 5, at each of 
20 randomly chosen dendritic locations. The cooperativity among the synapses in 
each group is due to the voltage dependence of the NMDA channel: Each activated 
NMDA synapse becomes up to three times more effective at injecting synaptic cur­
rent when the post-synaptic membrane is locally depolarized by 30-40 m V from the 
resting potential. When synapses are activated in a group, the depolarizing effects 
of each helps the others (and itself) to move into this more efficient voltage range. 

This work suggested that the spatial ordering of afferent synaptic connections onto 
the dendritic tree may be a crucial determinant of cell responses to specific input 
patterns. The nonlinear interactions among neighboring synaptic inputs further lent 
support to the idea that two or more afferents that form closely grouped synaptic 
connections on a dendritic tree may be viewed as encoding higher-order input-space 
"features" to which the dendrite is sensitive (Feldman & Ballard, 1982; Mel, 1990; 
Durbin & Rumelhart, 1990). The more such higher-order features are present in 
a given input pattern, the more the spatial distribution of active synapses will 
be clustered, and hence the more the post-synaptic cell will be inclined to fire in 
response. In a demonstration of this idea through direct manipulation of synaptic 
ordering, dendritic cluster-sensitivity was shown to allow the model neocortical 
pyramidal cell to reliably discriminate 50 training images of natural scenes from 
untrained control images (see Mel, 1992). Since all presented patterns activated the 
same number of synapses of the same strength, and with no systematic variation 
in their dendritic locations, the underlying dendritic "discriminant function" was 
necessarily nonlinear. 

A crucial question remains as to whether other, e.g. non-synaptic, membrane non­
linearities, such as voltage-dependent calcium channels in the dendritic shaft mem­
brane, could enhance, abolish, or otherwise alter the dendritic cluster-sensitivity 
phenomenon seen in the NMDA-only case. Some of the simulations presented in 
the remainder of this paper include voltage-dependent calcium channels and/or an 
anomalous rectification in the dendritic membrane. However, detailed discussions 
of these channels and their effects will be presented elsewhere. 

2 THE CLUSTERON 

2.1 MOTIVATION 

This paper deals primarily with an important extension to the compartmental mod­
eling experiments and the hand-tuned demonstrations of nonlinear pattern discrimi-
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Figure 1: The Clusteron. Active inputs lines are designated by arrows; shading of 
synapses reflects synaptic activation ai when Xi E {O, 1} and weights are set to 1. 

nation capacity presented in (Mel, 1992). If the manipulation of synaptic ordering is 
necessary for neurons to make effective use of their cluster-sensitive dendrites, then 
a learning mechanism capable of appropriately manipulating synaptic ordering must 
also be present in these neurons. An abstract model neuron called a clusteron is 
presented here, whose input-output relation was inspired by the idea of dendritic 
cluster-sensitivity, and whose learning rule is a variant of simple Hebbian learning. 
The clusteron is a far simpler and more convenient model for the study of cluster­
sensitive learning than the full-scale compartmental model described in (Mel, 1992), 
whose solutions under varying stimulus conditions are computed through numerical 
integration of a system of several hundred coupled nonlinear differential equations 
(Hines, 1989). However, once the basic mathematical and algorithmic issues have 
been better understood, more biophysically detailed models of this type of learning 
in dendritic trees, as has been reported in (Brown et al., 1990), will be needed. 

2.2 INPUT-OUTPUT BEHAVIOR 

The c1usteron is a particular second-order generalization of the thresholded linear 
unit (TLU), exemplified by the common Perceptron. It consists of a "cell body" 
where the globally thresholded output of the unit is computed, and a dendritic tree, 
which for present purposes will be visualized as a single long branch attached to the 
cell body (fig. 1). The dendritic tree receives a set of N weighted synaptic contacts 
from a set of afferent "axons". All synaptic contacts are excitatory. The output of 
the clusteron is given by 

(1) 
i=l 

where ai is the net excitatory input at synapse i and g is a thresholding nonlinearity. 
Unlike the TLU, in which the net input due to a single input line i is WiXi, the net 
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input at a clusteron synapse i with weight Wi is given by, 

ai = WiXi( I:: WjXj), (2) 
jE'D; 

where Xi is the direct input stimulus intensity at synapse i, as for the TLU, and 
Vi = {i - r, ... i, ... , i + r} represents the neighborhood of radius r around synapse 
i. It may be noted that the weight on each second-order term is constrained to 
be the product of elemental weights WiWj, such that the clusteron has only N 
underlying degrees of freedom as compared to N2 possible in a full second-order 
model. For the simplest case of Xi E {O,l} and all weights set to 1, equation 2 
says that the excitatory contribution of each active synapse is equal to the number 
of coactive synapses within its neighborhood. A synapse that is activated alone 
in its neighborhood thus provides a net excitatory input of ai = 1; two synapses 
activated near to each other each provide a net excitatory input of ai = aj = 2, 
etc. The biophysical inspiration for the "multiplicative" relation in (2) is that, 
the net injected current through a region of voltage-dependent dendritic membrane 
can, under many circumstances, grow faster than linearly with increasing synaptic 
input to that region. Unlike the dendritic membrane modeled at the biophysical 
level, however, the clusteron in its current definition does not contain any saturating 
nonlinearities in the dendrites. 

2.3 THE LEARNING PROBLEM 

The learning problem of present interest is that of two-category classification. A 
pattern is a sparse N-element vector, where each component is a boolean random 
variable equal to 1 with probability p, and 0 otherwise. Let T = {tl' t2, ... , tp} be 
a training set consisting of P randomly chosen patterns. The goal of the classifier 
is to respond with y = 1 to any pattern in T, and y = 0 to all other "control" 
patterns with the same average bit density p. Performance at this task is measured 
by the probability of correct classification on a test set consisting of equal numbers 
of training and control patterns. 

2.4 THE LEARNING RULE 

Learning in the clusteron is the process by which the ordering of synaptic connec­
tions onto the dendrite is manipulated. Second-order features that are statistically 
prominent in the training set, i.e. pairs of pattern components that are coactivated 
in the training set more often than average, can become encoded in the clusteron 
as pairs of synaptic connections within the same dendritic neighborhood. 

Learning proceeds as follows. Each pattern in T is presented once to the clusteron 
in a random sequence, constituting one training epoch. At the completion of each 
training epoch, each synapse i whose activation averaged over the training set 

1 p 

< ai >= P I:: a~p) 
p=l 

falls below threshold (), is switched with another randomly chosen subthreshold 
synapse. The threshold can, for example, be chosen as () = }.; L~l < aj >, i.e. 
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Figure 2: Distribution of 100 active synapses for a trained pattern (A) vs. a random 
control pattern (B); synapse locations are designated by black dots. Layout A is 
statistically more "clustery" than B, as evidenced by the presence of several clusters 
of 5 or more active synapses not found in B. While the total synaptic conductance 
activated in layout A was 20% less than that in layout B (linked to local variations in 
input-resistance), layout A generated 5 spikes at the soma, while layout B generated 
none. 

the averaged synaptic activation across all synapses and training patterns. Each 
synapse whose average activation exceeds threshold 0 is left undisturbed . Thus, 
if a synapse is often coactivated with its neighbors during learning, its average 
activation is high, and its connection is stabilized. If it is only rarely coactivated 
with its neighbors during learning, it loses its current connection, and is given the 
opportunity to stabilize a new connection at a new location. 

The dynamics of clusteron learning may be caricatured as follows. At the start 
of learning, each "poor performing" synaptic connection improves its average ac­
tivation level when switched to a new dendritic location where, by definition, it is 
expected to be an "average performer". The average global response y to training 
patterns is thus also expected to increase during early training epochs. The average 
response to random controls remains unchanged, however, since there is no sys­
tematic structure in the ordering of synaptic connections relevant to any untrained 
pattern. This relative shift in the mean responses to training vs. control patterns 
is the basis for discrimination between them. The learning process approaches its 
asymptote as each pair of synapses switched, on average, disturbs the optimized 
clusteron neighborhood structure as much as it improves it. 
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3 RESULTS 

The clusteron learning rule leads to a permutation of synaptic input connections 
having the property that the distribution of activated synapses in the dendritic 
tree associated with the presentation of a typical training pattern is statistically 
more "clustery" than the distribution of activated synapses associated with the 
presentation of a random control pattern. 

For a given training set size, however, it is crucial to establish that the clustery 
distributions of active synapses associated with training patterns are in fact of a 
type that can be reliably discriminated-within the detailed biophysical mode/­
from diffuse stimulation of the dendritic tree corresponding to unfamiliar stimulus 
patterns. In order to investigate this question, a clusteron with 17,000 synapses was 
trained with 1000 training patterns. This number of synapses was chosen in order 
that a direct map exist between clusteron synapses and dendritic spines, which 
were assumed to lie at 1 pm intervals along the approximately 17,000 pm of total 
dendritic length of the model neocortical neuron (from Douglas et al., 1991). In 
these runs, exactly 100 of the 17,000 bits were randomly set in each of the training 
and control patterns, such that every pattern activated exactly 100 synapses. After 
200 training epochs, 100 training patterns and 100 control patterns were selected as 
a test set. For each test pattern, the locations of its 100 active clusteron synapses 
were mapped onto the dendritic tree in the biophysical model by traversing the 
latter in depth-first order. For example, training pattern #36 activated synapses 
as shown in fig. 2A, with synapse locations indicated by black dots. The layout in 
B was due to a control pattern. It may be perceived that layout A contains several 
clear groupings of 5 or more synapses that are not observed in layout B. 

Within in the biophysical model, the conductance of each synapse, containing both 
NMDA and non-NMDA components, was scaled inversely with the input resistance 
measured locally at the dendritic spine head. Membrane parameters were similar 
to those used in (Mel, 1992); a high-threshold non-inactivating calcium conduc­
tance and an anomalous rectifier were used in these experiments as well, and were 
uniformly distributed over most of the dendritic tree. In the simulation run for 
each pattern, each of the 100 activated synapses was driven at 100 Hz for 100 ms, 
asynchronously, and the number of action potentials generated at the soma was 
counted. The total activated synaptic conductance in fig. 2A was 20% less than 
that activated by control layout B. However, layout A generated 5 somatic spikes 
while layout B generated none. 

Fig. 3 shows the cell responses averaged over training patterns, four types of de­
graded training patterns, and control patterns. Most saliently, the average spike 
count in response to a training pattern was 3 times the average response to a con­
trol pattern. Not surprisingly, degraded training patterns gave rise to degraded 
responses. It is crucial to reiterate that all patterns, regardless of category, acti­
vated an identical number of synapses, with no average difference in their synap­
tic strengths or in dendritic eccentricity. Only the spatial distributions of active 
synapses were different among categories. 
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Figure 3: Average cell responses to training patterns, degraded training patterns, 
and control patterns. Categories designated T/T and T/T/T represented feature 
composites of 2 or 3 training patterns, respectively. Degraded responses to these 
categories of stimulus patterns was evidence for the underlying nonlinearity of the 
dendritic discriminant function. 

4 CONCLUSION 

These experiments within the clusteron model neuron have shown that the assump­
tion of (1) dendritic cluster-sensitivity, (2) a combinatorially rich interface structure 
that allows every afferent axon potential access to many dendritic loci, and (3) a 
local Hebb-type learning rule for stabilizing newly formed synapses, are sufficient in 
principle to allow the learning of nonlinear input-ouput relations with a single den­
dritic tree. The massive rearrangement of synapses seen in these computational ex­
periments is not strictly necessary; much of the work could be done instead through 
standard Hebbian synaptic potentiation, if a larger set of post-synaptic neurons is 
assumed to be available to each afferent instead of a single neuron as used here. 
Architectural issues relevant to this issue have been discussed at length in (Mel, 
1990; Mel & Koch, 1990). 

An analysis of the storage capacity of the clusteron will be presented elsewhere. 
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