25,197 research outputs found

    One-Component Regular Variation and Graphical Modeling of Extremes

    Full text link
    The problem of inferring the distribution of a random vector given that its norm is large requires modeling a homogeneous limiting density. We suggest an approach based on graphical models which is suitable for high-dimensional vectors. We introduce the notion of one-component regular variation to describe a function that is regularly varying in its first component. We extend the representation and Karamata's theorem to one-component regularly varying functions, probability distributions and densities, and explain why these results are fundamental in multivariate extreme-value theory. We then generalize Hammersley-Clifford theorem to relate asymptotic conditional independence to a factorization of the limiting density, and use it to model multivariate tails

    Another look at principal curves and surfaces

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Principal curves have been defined as smooth curves passing through the “middle” of a multidimensional data set. They are nonlinear generalizations of the first principal component, a characterization of which is the basis of the definition of principal curves. We establish a new characterization of the first principal component and base our new definition of a principal curve on this property. We introduce the notion of principal oriented points and we prove the existence of principal curves passing through these points. We extend the definition of principal curves to multivariate data sets and propose an algorithm to find them. The new notions lead us to generalize the definition of total variance. Successive principal curves are recursively defined from this generalization. The new methods are illustrated on simulated and real data sets.Peer ReviewedPostprint (author's final draft

    Bayesian Networks for Max-linear Models

    Full text link
    We study Bayesian networks based on max-linear structural equations as introduced in Gissibl and Kl\"uppelberg [16] and provide a summary of their independence properties. In particular we emphasize that distributions for such networks are generally not faithful to the independence model determined by their associated directed acyclic graph. In addition, we consider some of the basic issues of estimation and discuss generalized maximum likelihood estimation of the coefficients, using the concept of a generalized likelihood ratio for non-dominated families as introduced by Kiefer and Wolfowitz [21]. Finally we argue that the structure of a minimal network asymptotically can be identified completely from observational data.Comment: 18 page

    Conditional Asset Allocation under Non-Normality: How Costly is the Mean-Variance Criterion?

    Get PDF
    We evaluate how departure from normality may affect the conditional allocation of wealth. The expected utility function is approximated by a forth-order Taylor expansion that allows for non-normal returns. Market returns are characterized by a joint model that captures the time dependency and the shape of the distribution. We show that under large departure from normality, the mean-variance criterion can lead to portfolio weights that differ signifficantly from those obtained using the optimal strategy accounting for non-normality. In addition, the opportunity cost for a risk-adverse investor to use the sub- optimal mean-variance criterion can be very large.Volatility; Skewness; Kurtosis; GARCH model; Multivariate skewed Student-t distribution; Stock returns; Asset allocation; Emerging markets

    A two-step approach to model precipitation extremes in California based on max-stable and marginal point processes

    Full text link
    In modeling spatial extremes, the dependence structure is classically inferred by assuming that block maxima derive from max-stable processes. Weather stations provide daily records rather than just block maxima. The point process approach for univariate extreme value analysis, which uses more historical data and is preferred by some practitioners, does not adapt easily to the spatial setting. We propose a two-step approach with a composite likelihood that utilizes site-wise daily records in addition to block maxima. The procedure separates the estimation of marginal parameters and dependence parameters into two steps. The first step estimates the marginal parameters with an independence likelihood from the point process approach using daily records. Given the marginal parameter estimates, the second step estimates the dependence parameters with a pairwise likelihood using block maxima. In a simulation study, the two-step approach was found to be more efficient than the pairwise likelihood approach using only block maxima. The method was applied to study the effect of El Ni\~{n}o-Southern Oscillation on extreme precipitation in California with maximum daily winter precipitation from 35 sites over 55 years. Using site-specific generalized extreme value models, the two-step approach led to more sites detected with the El Ni\~{n}o effect, narrower confidence intervals for return levels and tighter confidence regions for risk measures of jointly defined events.Comment: Published at http://dx.doi.org/10.1214/14-AOAS804 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore