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Abstract

Principal curves have been de�ned (Hastie and Stuetzle [16]) as smooth curves

passing through the middle of a multidimensional data set. They are nonlinear gen-

eralizations of the �rst principal component, a characterization of which is the basis

of the de�nition of principal curves.

We establish a new characterization of the �rst principal component and base

our new de�nition of a principal curve on this property. We introduce the notion of

principal oriented points and we prove the existence of principal curves passing through

these points. We extend the de�nition of principal curves to multivariate data sets

and propose an algorithm to �nd them. The new notions lead us to generalize the

de�nition of total variance. Successive principal curves are recursively de�ned from

this generalization. The new methods are illustrated on simulated and real data sets.

Key Words: Fixed points; Generalized Total Variance; nonlinear multivariate anal-

ysis; principal components; smoothing techniques.

�

The author is very grateful to Wilfredo Leiva-Maldonado for helpful conversations, suggestions and

theoretical support. Comments of A. Kohatsu, G. Lugosi and K. Udina were also very useful. This work

was partially supported by the Spanish DGES grant PB96-0300. Electronic address: delicado@upf.es,

http://www.econ.upf.es/%7Edelicado

1



1 Introduction

Consider a multivariate random variable X in IR

p

with density function f and a random

sample from X, namely X

1

; : : : ;X

n

. The �rst principal component can be viewed as the

straight line which best �ts the cloud of data (see, e.g., [17], pp. 386-387). When the

distribution of X is ellipsoidal the population �rst principal component is the main axis

of the ellipsoids of equal concentration.

In the last forty years many works have appeared proposing extensions of principal

components to distributions with nonlinear structure. We cite Shepard and Carroll [24],

Gnanadesikan and Wilk [13], Srivastava [27], Etezadi-Amoli and McDonald [10], Yohai,

Ackermann and Haigh [33], Koyak [19] and Gi� [12], among others. Some of them look

for nonlinear transformations of the observable variables into spaces admitting a usual

principal component analysis. Others postulate the existence of a nonlinear link function

between a latent lower dimensional linear space and the data space.

The work of Hastie and Stuetzle [16] opens a new way to look at the problem. Its

main distinguishing mark is that no parametric assumptions are made. The principal

curves (of a random variable X) de�ned at [16] (hereafter, HSPC) are one-dimensional

parameterized curves fx2 IR

p

:x=�(s); s2 I g (where I � IR is an interval and �: I ! IR

is di�erentiable), having the property of self-consistency: every point �(s) in the curve is

the mean (under the distribution of X) of the points x that project onto �(s). In this

sense, HSPC passes through the \middle" of the distribution. It is not guaranteed that

such a curve does exist. An appropriate de�nition of principal curves for data sets is also

given. Nonparametric algorithms are used to approximate them. Principal surfaces are

analogously de�ned.

In the 90's several works directly related with [16] have appeared. Ban�eld and Raftery

[1], mainly applied, modi�es the Hastie and Stuetzle's algorithm to reduce the estimation

bias. Tibshirani [32] provides a new de�nition of a principal curve such that if X is the

result of adding a noise to a random point over a one-dimensional curve �, then � is a

principal curve of X; HSPC does not have this property. LeBlanc and Tibshirani [20]

uses multivariate adaptive regression splines (see Friedman [11]) to develop estimation

procedures of principal curves and surfaces. Duchamp and Stuetzle ([7] [8] [9]) study

principal curves in the plane. They prove the existence of (many) principal curves crossing

each other for simple distributions and they state a negative result: in general, principal
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curves are critical points of the expected squared distance from the data, but they are

not extremal points of this functional. An application of HSPC in the clustering context

is made by Stanford and Raftery [28]. Tarpey and Flury [31] study in depth the self-

consistency concept and extend it to more general settings.

Other recent papers on nonlinear multivariate analysis do not follow directly the line

of [16]. K�egl, Krzy_zak, Linder and Zeger [18] introduce the concept of principal curves

with a �xed length. They prove the existence and uniqueness of that curve for theoreti-

cal distributions, give an algorithm to implement their proposals, and calculate rates of

convergence of the estimators. Related results can be found in Smola, Williamson and

Sch�olkopf [26] and Smola, Mika and Sch�olkopf [25]. Salinelli [23] studies nonlinear princi-

pal components as optimal transformations of the original variables, where the nonlinear

admissible transformations belong to a functional space verifying certain properties. In

the most recent years, several related works have appeared in the neural networks litera-

ture: Mulier and Cherkassky [21], Tan and Mavarovouniotis [30], Dong and McAvoy [6],

Bishop, Svens�en and Williams [3], among others.

In this paper we give a new de�nition of principal curves. It is based on a generalization

of a local property of principal components for a multivariate normal distribution X: the

total variance of the conditional distribution of X, given that X belongs to a hyperplane,

is minimal when the hyperplane is orthogonal to the �rst principal component. The

generalization of this result to nonlinear distributions leads us to de�ne principal oriented

points (as the �xed points of certain function from IR

p

to itself), and principal curves

of oriented points (one-dimensional curves visiting only principal oriented points). The

existence of principal oriented points is proved for theoretical distributions. It is also

guaranteed that there exists a principal curve passing through each one of these points.

Sample versions of these elements are introduced and illustrated with real and simulated

data examples.

The new de�nition suggests a natural generalization of total variance, providing a good

measure of the dispersion of a random variable distributed around a nonlinear principal

curve. The generalized total variance allows us to de�ne recursively local second (and

higher order) principal curves.

Our proposals are close to [16] in spirit: no parametric assumptions are made, smooth-

ing techniques are used in the proposed algorithms for estimation, and the conceptual idea
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of principal curve we have in mind is very similar to that introduced at [16]. Nevertheless,

there exist signi�cant di�erences in de�nitions (for instance, in the normal multivariate

case every principal component is a HSPC; however, only the �rst principal component

satis�es our de�nition) and in implemented algorithms. On the other hand, our approach

to second and higher order principal curves does not recall directly any of the previously

cited works. In addition to that, our de�nition of principal curves involves the notion of

principal oriented points, a concept with statistical interest in itself.

The structure of the rest of the paper is as follows. Section 2 presents principal oriented

points and principal curves of oriented points, as distributional concepts. The de�nition

of sample counterparts is postponed to section 3, where algorithmic aspects and some

examples are examined. The generalization of the total variance and the de�nitions of

local higher order principal curves are the core of section 4. Section 5 contains some

concluding remarks. Appendix I presents the formal versions of the algorithms presented

along the paper. The proofs of the results appearing in the paper are postponed to the

Appendix II.

2 De�nition of population principal curves

A well known property of the �rst principal component for normal distributions can be

stated as follows: the projection of the normal random variable onto the hyperplane or-

thogonal to the �rst principal component has the lowest total variance among all the pro-

jected variables onto any hyperplane. Furthermore, this is true not only for the marginal

distribution of the projected variable but also for its conditional distribution given any

value of the �rst principal component. Our de�nition of principal curves is based on this

property.

2.1 De�nitions

Let X be a p-dimensional random variable with density function f and �nite second

moments. Consider b 2 S

p�1

= fw 2 IR

p

: jjwjj = 1g and x 2 IR

p

. We call H(x; b) the

hyperplane orthogonal to b passing through x: H(x; b) = fy 2 IR

p

: (y � x)

t

b = 0g.

Given b 2 S

p�1

, it is possible to �nd vectors b

2

(b); : : : ; b

p

(b) such that T (b) = (b; b

2

(b);

: : : ; b

p

(b)) is an orthonormal basis for IR

p

. We de�ne b

?

as a (p � (p � 1)) matrix
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(b

2

(b); : : : ; b

p

(b)). The total variance of a random variable Y (i.e., the trace of the variance

matrix of Y ) is denoted by TV (Y ). A parameterized curve � in IR

p

, �: I ! IR

p

where I is

a possibly unbounded interval, is said to be parameterized by the arc length if the length of

the curve from �(s

1

) to �(s

2

) is js

2

� s

1

j. This is equivalent to saying that � is unit-speed

parameterized (i.e., jj�

0

(s)jj = 1 for all s) when it is di�erentiable. More properties about

curves in IR

p

can be found, for instance, in [14].

With these de�nitions we introduce

f

1

(x; b) =

Z

IR

p�1

f(x+ b

?

v)dv;

�(x; b) = E(XjX 2 H(x; b)) =

1

f

1

(x; b)

Z

IR

p�1

(x+ b

?

v)f(x+ b

?

v)dv;

and

�(x; b) = TV (XjX 2 H(x; b)) =

1

f

1

(x; b)

Z

IR

p�1

v

t

vf(x+ b

?

v)dv � �(x; b)

t

�(x; b);

for any x and b such that f

1

(x; b) > 0. Observe that E(XjX 2 H(x; b)) and TV (XjX 2

H(x; b)) do not depend on the choice of b

?

, but only on x and b. Therefore the functions

� and � are well de�ned. Notice also that �(x; b) = �(x;�b) and �(x; b) = �(x;�b). So

we de�ne in S

p�1

the equivalence relation � by: v � w () v = w or v = �w. Let S

p�1

�

be the quotient set. From now on, we write S

p�1

instead of S

p�1

�

even if we want to refer

to the quotient set.

Observe that the de�nitions of �(x; b) and �(x; b) are based on conditional expectations

where one is conditioning on a probability zero event (X lying in the hyperplane H(x; b)).

In general, as Proschan and Presnell [22] point out, conditional expectation is not well

de�ned when conditioning on probability zero events. For this reason we explicitly de�ne

�(x; b) and �(x; b) in terms of joint and marginal probability density functions. In the line

of the arguments presented at [22] and illustrated with their Figure 1, we can say that the

problem with conditioning on the zero probability event fX 2 H(x; b)g � f(X�x)

t

b = 0g

arises because this event can be approached in many di�erent ways by non-zero probability

events. For instance, events A

"

= f(X�x)

t

b � "g and B

"

= fcos(X�x; b) � "g approach

f(X � x)

t

b = 0g when " goes to zero, but conditional expectations E(XjX 2 A

"

) and

E(XjX 2 B

"

) converge to di�erent limits when " goes to zero. Our de�nition of �(x; b)

and �(x; b), based on density functions, are consistent with approaching fX 2 H(x; b)g

by A

"

, " going to zero.
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When the function � is continuous, the in�mum of �(x; b) over b is achieved be-

cause TV (X) is �nite and because S

p�1

is compact. We de�ne the correspondence

b

�

: IR

p

! S

p�1

by b

�

(x) = argmin

b2S

p�1
�(x; b). We say that each element of b

�

(x) is

a principal direction of x. Let �

�

(x) = �(x; b

�

(x)), be the minimum value. We also de�ne

the correspondence �

�

: IR

p

! IR

p

as �

�

(x) = �(x; b

�

(x)). Smoothness properties of �, �,

b

�

, �

�

and �

�

are in accordance with the smoothness of f . Proposition 3 in the Appendix

II summarizes these properties.

The result below formalizes the property we expressed at the beginning of the section.

It characterizes the points of the �rst principal component line in terms of �

�

and b

�

.

Proposition 1 Consider a p-dimensional normal random variable X with mean value �

and variance matrix �. Let �

1

be the largest eigenvalue of � and v

1

the corresponding

unit length eigenvector. The following properties are veri�ed.

(i) For any x

0

2 IR

p

the correspondence b

�

is in fact a function (i.e., the minimum of

�(x

0

; b) as a function of b is unique) and b

�

(x

0

) = v

1

, for all x

0

.

(ii) For any x

0

2 IR

p

, the point x

1

= �

�

(x

0

) belongs to the �rst principal component line

f�+ sv

1

: s 2 IRg.

(iii) A point x

1

2 IR

p

belongs to the �rst principal component line if and only if x

1

is a

�xed point of �

�

.

Observe that only local information around a point x

1

is needed to verify whether x

1

is a �xed point of �

�

or not. This result also provides a mechanism to �nd points in the

�rst principal component: the iteration of the function �

�

leads (in one step) from any

arbitrary point x

0

to a point x

1

on the �rst principal component line. In the rest of this

subsection we exploit this mechanism in order to generalize the �rst principal component

to non-normal distributions.

A comment on the adequacy of conditioning onH(x; b) is in order. As we are interested

in de�ning valid concepts for non-ellipsoidal distributions, random variables with non

convex support have to be considered. If the support of X is not convex, the intersection

of a �xed hyperplane with this support can be a non connected set. So for any x 2

Support(X) we de�ne H

c

(x; b) as the connected component of H(x; b)\Support(X) where

x lies in. It is more natural de�ning conditional concepts based onH

c

(x; b) than onH(x; b).
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Moreover, if H

c

(x; b) is convex then E(XjX 2 H

c

(x; b)) always belongs to H

c

(x; b) �

Support(X), and then �

�

maps Support(X) to itself. From now on, we condition always

on fX 2 H

c

(x; b)g.

We are ready to introduce the notion of principal oriented points and then state our

de�nition of principal curves.

De�nition 1 We de�ne the set �(X) of principal oriented points (POP) of X as the set

of �xed points of �

�

: �(X) = fx 2 IR

p

: x 2 �

�

(x)g.

De�nition 2 Consider a curve � from I to IR

p

, where I is an interval in R and � is

continuous and parameterized by the arc length. � is a principal curve of oriented points

(PCOP or just principal curve) of X if f�(s) : s 2 Ig � �(X).

When we refer to a POP x we also make implicit reference to its principal directions:

the elements of b

�

(x). If b

�

(x) has only one element we have that the POPs verify the

equation x = �

�

(x), recalling us the de�nition of self-consistency from Hastie and Stuetzle

[16]. Nevertheless, at [16] (and also at [31]) self-consistency is de�ned for a whole curve (or,

in a broader sense, for a set of points) and not for a single point. In order to know if a point

x is self-consistent (in the sense of [16]) we need to know in advance the curve to which

x belongs, because self-consistency is a curve property and not a point property. On the

contrary, we check if x is a POP (i.e., if x = �

�

(x)) without regarding to the remaining

points y 2 IR

p

verifying such a property. Only the underlying probability distribution

determines whether x is or not a POP.

Observe that Proposition 1 establishes that the �rst principal component line is a

PCOP for a multivariate normal distribution. The question of existence of POPs and

PCOPs for an arbitrary p-dimensional random variable is considered in the next subsec-

tion.

Remark 1. Our de�nition of principal curve does not coincide in general with the de�-

nition of Hastie and Stuetzle. The main reason for this discrepancy is again the fact that

conditional expectation is not well de�ned when conditioning on a zero probability event.

If � is a HSPC then �(s) = E(XjX 2 fx : �

�

(x) = sg), where fx : �

�

(x) = sg is the set

of points in IR

p

projecting onto �(s). This set coincides, in general, with the hyperplane

H(�(s); �

0

(s)) and is a zero probability set. We can approach this set by the wedges family

fx : j�

�

(x) � sj � "g when " goes to zero (then we obtain the conditional expectation
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required by Hastie and Stuetzle's de�nition, as the limit of conditional expectations on the

wedges) and also by the hyperrectangles fx : j(x � �(s))

t

�

0

(s)j � "g (then the resulting

conditional expectation is �(�(s); �

0

(s)), typically di�erent from �(s)). Then HSPCs and

PCOPs only could share segments of straight lines.

As an example of no incidence between HSPCs and PCOPs, consider the uniform

distribution on the annulus 


R�d;R+d

= fx 2 IR

2

: R�d � jjxjj � R+dg, with 0 < d < R.

Duchamp and Stuetzle [8] prove that the circle with radius r

d

= R+d

2

=(3R) is one of the

HSPCs for this distribution. Moreover, they prove that there exists an in�nite number of

HSPC oscillating around this circle. However, it is easy to prove that the only PCOP for

this distribution is the circle with radius R. At this point, the question of which circle

(the HSPC circle or the PCOP circle) has better properties is raised. In our opinion there

is not a clear advantage of one curve over the other. On the one hand, if we let d go to

R (then the annulus becomes a disk of radius 2R) the HSPC circle (with radius 4R=3)

looks more appropriate because there is more mass outside the PCOP circle (always with

radius R) than inside. On the other hand, as a consequence of the local character of the

POPs de�nition, the PCOP circle has the following invariance property. Let us change the

uniform distribution on the annulus in such a way that a portion of the original distribution

remains unchanged. For instance, we consider the uniform distribution on the set

(


R�d;R+d

\ fx = (x

1

; x

2

) 2 IR

2

: x

1

� 0g)[

fx = (x

1

; x

2

) 2 IR

2

: 0 � x

1

� 1; R � d � jx

2

2

j � R+ dg[

fx = (x

1

; x

2

) 2 IR

2

: x

1

� 0; (x

1

� 1; x

2

) 2 


R�d;R+d

g:

Then the portion of the PCOP circle belonging to the unchanged subset (in the example,




R�d;R+d

g \ fx = (x

1

; x

2

) 2 IR

2

: x

1

� 0g)) continues being a portion of the PCOP for

the new distribution, while the new HSPC does not overlap the old one.

Remark 2. Consider a random vector X in IR

p

de�ned as the sum of a randomly chosen

point on a given parametric curve � plus a noise term. This setting raises the question of

whether the original curve � is a principal curve for X or not. Hastie and Stuetzle [16]

prove that the answer is negative for their principal curves de�nition, and Tibshirani [32]

de�nes an alternative concept overcoming this di�culty. In Delicado [5] we show that the

answer to this question is also negative for the PCOP, but there we argue that it is natural
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to have a negative answer and that it is not a so important awkwardness. So we do not

worry about trying to recover a generating curve, and use the models given by curve plus

noise only as appropriate mechanisms to generate data with nonlinear structure.

Next we de�ne a distribution on IR induced for a random vector X which has a PCOP

�. This concept will play an important role in Section 4.

De�nition 3 Consider a random vector X with density function f and let � be a curve

�: I ! IR

p

parameterized by the arc length, where I � IR is an interval. Assume that � is

PCOP for X. The probability distribution on I induced by X and � is the distribution of a

random variable S having probability density function

f

S

(s) / f

1

(�(s); b

�

(�(s))); s 2 I;

provided that

R

I

f

S

(s)ds < 1. Moreover, if jE(S)j < 1, we reparameterize � adding the

constant (�E(S)) to the values of I, in order to have an induced random variable S with

zero mean.

2.2 Existence of principal oriented points and principal curves

Let D be a subset of IR

p

. We consider the following conditions:

A1. Support(X) is a compact set.

A2. There exists a compact set K � Support(X) such that for all x 2 K and all b 2 S

p�1

,

�(x; b) 2 K.

A3. There exists a compact set K � Support(X) such that for all x 2 K, �

�

(x) � K.

A4(D). For all x 2 D and all b 2 S

p�1

the integral f

1

(x; b) is positive, where the integral

de�ning f

1

(x; b) is done over fv 2 IR

p�1

: x+ b

?

v 2 H

c

(x; b)g.

Observe that either A1 and A2 imply A3. Assumption A4(D) guarantees that conditional

mean and variance are of class C

r

at x 2 D, provided that f 2 C

r+1

at x for r � 1.

(A function g de�ned on an open subset U in IR

p

is said to be of class C

r

if all partial

derivatives of g of order r exist and are continuous.)

The following theorem deals with the existence of POPs.
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Theorem 1 Consider a random variable X with �nite second moments and density func-

tion f of class C

r

; r � 2. Assume that A3 is veri�ed for a compact set K, that A4(K)

holds and that �

�

is a function (i.e., #f�

�

(x)g = 1, for all x 2 Support(X)). Then the set

�(X) is a nonempty set.

Remark 3. The proof of this result is based on Brouwer's Fixed Point Theorem (see,

e.g., [29], p. 260). If �

�

is a correspondence, the natural extension of the preceding result

would be done applying Kakutani's Theorem instead of Brouwer's (see, e.g., [29], p. 259).

Nevertheless, Kakutani's result needs the set �

�

(x) to be convex, and in general this is

not true in our case.

Remark 4. The existence of a compact set K verifying A2 implies that there is a kind

of attractive core in the support of X (the compact set K): the mean of any hyperplane

crossing K is inside K. For instance, if X is normal with zero mean and variance matrix

�, then the compact sets K

c

= fx 2 IR

p

: x

t

�

�1

x � cg verify condition A2. In general it

looks sensible to think that sets of the form fx : f(x) > �g, for small � > 0, should satisfy

this condition.

The existence of a principal curve in the neighborhood of any principal oriented point

is guaranteed by the following theorem.

Theorem 2 Consider a random variable X with �nite second moments and density func-

tion f of class C

r

; r � 2. Assume that the correspondence b

�

is in fact a function

(i.e., #fb

�

(x)g = 1, for all x 2 Support(X)). Let x

0

be a POP for X in the interior of

Support(X), with principal direction b

�

(x

0

). Then there exists a PCOP � in a neighbor-

hood of x

0

: there exists a positive " and a curve �: (�"; ") ! IR

p

such that �(0) = x

0

and �(t) is a POP of X for all t 2 (�"; "). Moreover � is continuously di�erentiable and

�

0

(0) = �

0

K

0

, where

K

0

=

@�

�

@x

(x

0

)b

�

(x

0

) 2 IR

p

and �

0

= b

�

(x

0

)

t

�

0

(0) 2 IR.

Because of this result, it is possible to compute the value of the tangent vector to a

PCOP at a given point:
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Corollary 1 Let us assume that there exists a C

1

curve �: I ! IR

p

being a PCOP. Then

�

0

(t) = �(t)K(t) for all t in the interior of I, where

K(t) =

@�

�

@x

(�(t))b

�

(�(t)) 2 IR

p

and �(t) = b

�

(�(t))

t

�

0

(t) 2 IR.

Remark 5. At this point, the question about whether �

0

(t) coincides with b

�

(�(t)) or

not arises in a natural way. The answer to that question is in general negative. Here we

have a simple example. (Other examples verify that b

�

(�(t)) = �

0

(t): the �rst principal

component of a normal distribution, or the circle with radius equal to R for the uniform

distribution on the annulus 


R�d;R+d

, for instance).

Example 1. Consider the set

A = f(x; y) 2 IR

2

: x < 0; y > 1g [ f(x; y) 2 IR

2

: 0 � y � 1g[

[f(x; y) 2 IR

2

: x > 0; y < 0g � IR

2

and let X be a uniform random variable in K = A\B((0; :5); r), for some large enough r.

Then, it is not di�cult to verify that near the point (0; :5) the following set is a principal

curve of oriented points:

� = f(x; y) : y = �x; x � �:5g [ f(x; y) : y = :5;�:5 � x � :5g[

[f(x; y) : y = 1� x; x � :5g:

Observe that for all (x; y) 2 � with �:5 < x < 0 the tangent direction to the curve � is

parallel to the vector (1; 0). Moreover, for these points the principal direction of (x; y), say

b

�

(x; y), is such that its orthogonal hyperplane (line, in this example) H((x; y); b

�

(x; y)) is

the line determined by (x; y) and the point (0; 1). So b

�

(x; y) is not parallel to (1; 0) and

we conclude that in general �

0

(t) 6= b

�

(�(t)). A similar reasoning can be done for (x; y)

with 0 < x < :5. 2

Some comments about the uniqueness of the PCOP are in order. It is easy to �nd

examples of random vectors with a unique PCOP (e.g., the �rst principal component is

the unique PCOP for a non spherical multivariate normal) or many (even in�nite) PCOP

(e.g., any line passing through the mean is a PCOP for a spherical multivariate normal).

11



Theorem 2 establishes the existence of principal curves in a neighborhood of any POP. So

the uniqueness question regards when these pieces of local curves can be joined to form a

unique PCOP (or a �nite number of them). The following result is based on compactness

arguments and gives an intuition about when a PCOP is unique (the proof is direct).

Proposition 2 Consider a random vector X with �nite second moments and density

function f in C

r

, r � 2. Assume that hypotheses A3 and A4(K) are veri�ed for some

compact set K � IR

p

. Let �(X) be the set of POPs for X inside K, which is assumed to

be a nonempty set. Assume that for all x 2 �(X) there exists a positive ", a continuous

curve �

x

: (�"; ") ! K with �

x

(0) = x, and an open set V

x

� K such that V

x

\ �(X) =

f�

x

(s) : s 2 (�"; ")g. Then there exists a �nite number J of continuous curves �

j

: I

j

! K,

j = 1 : : : ; J , such that �(X) = [

J

j=1

�

j

(I

j

).

3 Principal curves for data sets

We consider a random sample X

1

; : : : ;X

n

from a multivariate random variable X. We

assume that a non linear curve is a good summary of the structure of the distribution of X

and we try to recover such a curve from the observed data X

i

. In general, the hyperplanes

passing through a given x

0

contain a very few (usually, only zero or one) observed X

i

.

So we need to include some smoothing procedure to calculate both conditional expected

values and conditional total variances.

To de�ne smoothed expectation and variance corresponding to a hyperplane H =

H(x; b), we project observations X

i

orthogonally to the hyperplane and we denote the

projections by X

H

i

. A weight is associated to each projected observation,

w

i

= w

�

j(X

i

� x)

t

bj

�

= w(kX

i

�X

H

i

k);

where w is any decreasing positive function.

The smoothed expectation of the sample corresponding to H is de�ned as the weighted

expectation of fX

H

i

g with weights fw

i

g. Let

e

�(x; b) be such a value that, by de�nition, be-

longs to H(x; b). The way we de�ne the smoothed variance corresponding to a hyperplane

H(x; b) is

g

Var(x; b) = Var

w

(X

H

i

; w

i

; i = 1; : : : ; n);

12



where Var

w

(X

H

i

; w

i

) denotes the weighted variance of the projected sample with weights

fw

i

g. The smoothed total variance is

e

�(x; b) = Trace(

g

Var(x; b)).

Several de�nitions are available for w. For instance, we can use w(d) = K

h

(d) =

K(d=h), where K is a univariate kernel function used in nonparametric density or regres-

sion estimation and h is its bandwidth parameter. If we use w = K

h

, the smoothness of

e

�

and

e

� as functions of (x; b) depends on h, as well as it happens in univariate nonparametric

functional estimation.

In Section 2 the convenience on conditioning on H

c

(x; b), instead of H(x; b), was

pointed out. Translated to the sample smoothed world, conditioning to H(x; b) is equiv-

alent to using all the projected observations X

H

i

with positive weights w

i

. On the other

hand, conditioning to H

c

(x; b) implies that we must look for clusters on the projected

data con�guration fX

H

i

: w

i

> 0g, assign x to one of these clusters, and use only the

points in that cluster to compute

e

� and

e

�. We have implemented this last procedure (see

Algorithm 2 in Appendix I for details). So, when we write

e

� and

e

� we assume that care

for the eventual existence of more than one cluster in H(x; b) has been taken.

Once the main tools for dealing with data sets (

e

�;

e

�) have been de�ned, we can look

for sample POPs (subsection 3.1) and afterwards sample PCOPs (subsection 3.2).

3.1 Finding principal oriented points

The sample version of b

�

and �

�

are de�ned from

e

� and

e

� in a direct way. We call them

~

b

�

and

e

�

�

, respectively. So the set of sample POPs is the set of invariant points for

e

�

�

:

~

� = fx 2 IR

p

: x 2

e

�

�

(x)g. In order to approximate the set

~

� by a �nite set of points, we

propose the following procedure.

We randomly choose a point of the sample X

1

; : : : ;X

n

and call it x

0

. Then we iterate

the function

e

�

�

and de�ne x

k

=

e

�

�

(x

k�1

) until convergence (i.e., jjx

k

�x

k�1

jj � �, for some

pre�xed �) or until a pre�xed maximum number of iterations is reached. If convergence is

attained then we include the last x

k

in the set of sample POPs

~

�. Repeating m times the

previous steps (for a pre�xed m) a �nite set of sample POPs is obtained.

There is no theoretical guarantee about the convergence of the sequence fx

k

=

e

�

�

(x

k�1

) :

k � 1g, for a given x

0

. Nevertheless, in all the simulated and real data sets we have ex-

amined, we always quickly reached convergence.

Example 3. We illustrate the performance of this procedure with a real data set. Data

13



came from the Spanish household budget survey (EPF, Encuesta de Presupuestos Famil-

iares) corresponding to year 1991. We select randomly 500 households from the 21.155

observations of the EPF, and for each of them we annotate proportions of the total expen-

diture dedicated to housing (variable P

1

) and transport (variable P

2

). Our data are the

500 observations of the two-dimensional variable P = (P

1

; P

2

). By de�nition, values of P

fall inside the triangle de�ned by the points (0; 0), (0; 1) and (1; 0). A graphic represen-

tation indicates that data are non elliptic. We use m = 100 and obtain the set of sample

POPs represented in Figure 1 (upper panel) as big empty dots. The principal direction of

each one of these points is also represented as a short segment. Observe that the pattern

of the POPs suggests that more than a single curve are needed in order to capture the

main features of the data. Speci�cally, it seems to be two principal curves with a common

branch at the right hand side of a point around (:15; :1).

3.2 Finding a principal curve

In the population world, Theorem 2 guarantees that for any POP there exists a PCOP

passing through this point. This result leads us to consider the following approach to build

a sample PCOP: starting with a sample POP, we look for other POPs close to the �rst

one, and placed in a way such that they recall a piece of a curve.

We follow the procedure described in the previous subsection until a POP appears. We

call this point x

1

and denote by b

1

the principal direction of x

1

(if there are more than one

element in

~

b

�

(x

1

), we choose one of them). We take s

1

= 0 and de�ne �(s

1

) = x

1

. Now

we move a little bit from x

1

in the direction of b

1

and de�ne x

0

2

= x

1

+ �b

1

, for some � > 0

previously �xed. The point x

0

2

serves as the seed of the sequence fx

k

2

=

e

�

�

(x

k�1

2

) : k � 1g,

which eventually approaches to a new point x

2

. De�ne b

2

as b

�

(x

2

), s

2

as s

1

+ kx

2

� x

1

k

and �(s

2

) = x

2

.

We iterate that procedure until no points X

i

can be considered \near" the hyperplane

H(x

0

k

; b

k

). Then we return to (x

1

; b

1

) and complete the principal curve in the direction of

�b

1

. Let K be the total number of sample POPs x

k

visited by the procedure.

Algorithm 1 in the Appendix I formalizes the whole procedure. In principle, only open

principal curves are allowed by this algorithm but minor changes are needed to permit the

estimation of a closed curve.

To obtain a curve �̂ from I � IR to IR

p

we de�ne I = [s

1

; s

K

] and identify the

14
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Figure 1: Example 3. Upper panel: principal oriented points for proportions of household

expenditure data. Lower panel: two smoothed principal curves of oriented points (solid

lines) and the HSPC (dashed line).
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curve with the polygonal fx

1

; : : : ; x

K

g. Observe that this curve is parameterized by the

arc length. Smoothing techniques can also be used to �nd a smoother version of this

polygonal curve (for instance, the curves represented at the bottom graphic of Figure 1

are obtained from the original polygonals by spline smoothing).

During the algorithm completion, it is possible to estimate many important statistical

objects. The density of the induced random variable S on I can be estimated by

^

f

S

(s

k

) = C

1

1

nh

n

X

i=1

K

h

�

j(X

i

� x

k

)

t

b

k

j

�

;

where the constant C

1

is chosen to have integral of

^

f

S

equal to one. We also can assign a

mass to each s

k

:

p̂

S

(s

k

) = C

2

^

f

S

(s

k

)

�

s

k+1

� s

k�1

2

�

;

where C

2

is such that the sum of p̂

S

(s

k

) is one. Then we could consider s

1

; : : : ; s

K

as

a weighted sample of S. The mean and variance of this sample can be computed and

subtracting the mean to the values s

k

we obtain that S has estimated zero mean. Let us

call

d

Var(S) the estimated variance of S. An estimation of the total variance in the normal

hyperplane can also be recorded for each s

k

:

e

�(x

k

; b

k

).

Two more de�nitions appear as natural. The �rst one is the central point of the data

set along the curve. As S has estimated zero mean, this central point is de�ned as �̂(0).

The second is a measure of total variability consistent with the estimated structure around

a curve. Our proposal is to de�ne the total variability of the data along the curve as

d

TV

PCOP

=

d

Var(S) +

Z

I

e

�

�

(�(s))

^

f

S

(s)ds '

d

Var(S) +

X

k

e

�(x

k

; b

k

)p̂

S

(s

k

):

From these numbers we de�ne the proportion of total variability explained by the estimated

curve as p

1

=

d

Var(S)=

d

TV

PCOP

. This quantity plays the role of the proportion of variance

explained by the �rst principal component in the linear world.

Example 3 (Continuation). We compute now PCOPs for the households' expenditures data.

Some MATLAB routines have been written to implement the Algorithm 1. The Figure 1

(upper panel) suggests that there are two curves for this data set. We look for them by

starting the Algorithm 1 with two di�erent points x

0

1

= (:1; :05) and x

0

1

= (:15; :2), and

respective values of the starting vectors b

0

1

= (1; 1) and b

0

1

= (0;�1). The resulting curves

are drawn (after spline smoothing) in Figure 1 (lower panel). The total variability along

the curves are, respectively, .0201 and .0306, with percentages of variability explained by
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Figure 2: Example 4. PCOP and HSPC for a simulated data set. Left hand side panel

shows the simulated data. At the right hand side three curves are represented: the gen-

erating curve (dotted line), the HSPC (solid line with empty dots) and the PCOP (solid

line with big dot marks).

the correspondent PCOP equal to 78.24% and 84.25%. For this data set, the total variance

is .0302, and the �rst principal component explains the 70.6% of it. So we conclude that

any of the two estimated PCOPs summarizes the data better than the �rst principal

component does. The corresponding HSPC is also presented in the same graphic (dashed

line) to allow comparisons. 2

Example 4. To illustrate the algorithm 1, we apply it to a simulated data set. The data

are generated as

X =

0

B

@

X

1

X

2

1

C

A

=

0

B

@

�

1

(S)

�

2

(S)

1

C

A

+

1

k�

0

(S)k

0

B

@

��

0

2

(S)

�

0

1

(S)

1

C

A

Y

where �: [0; 1] ! IR

2

, x = �

1

(s) = 2�s+ 1, y = �

2

(s) = 2 (1=x� cos(x� 1)), S � U(0; 1)

and Y � N(0; � = :4). The sample size in our example is n = 200.

Figure 2 shows the data set (small dots) and the graph of � (dashed curve). For that

data set two principal curve methodologies have been applied: our own algorithm and

that of Hastie and Stuetzle [16]. The S-plus public domain routines written by Trevor

Hastie and available on STATLIB (http://www.stat.cmu.edu/S/principal.curve) are

used to implement the HSPC methodology. Default parameters of these routines have

been used (i.e., the maximum number of iterations is equal to 10, and the smoother is
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based on splines with equivalent degrees of freedom equal to 5). The HSPC has been

represented in Figure 2 by a solid line with empty dot marks. The bold solid curve with

big dot marks corresponds to the resultant PCOP. We can observe that the graphs of both

principal curves are very similar in almost all their range of parameters. They di�er for

values of (X

1

;X

2

) near the extreme (1; 0) of the scatter plot. Both procedures present a

bias when the curvature of the original parametric curve � is important (near the point

(4; 2)). Techniques proposed in Ban�eld and Raftery [1] should be applied.

The bandwidth parameter h is 1 and � is .33. The estimated interval I is I =

[�5:10; 4:37], so the length of the PCOP is 9.47 (the length of the HSPC is 10.23 and

the length of the generating curve is 10.39). The total variability along the PCOP curve

is 6.97. The estimation of the variance of the random variable S de�ned on I is 6.82 and

the average value of the variance along the orthogonal lines to the principal curve is 0.15

(the generating noise variance is 0.16). So the proportion of the total variability explained

by the �rst principal curve is p

1

= :98. 2

Example 5. We replicate the example contained in section 5.3 of [16]. We generate a set

of 100 data points from a circle in IR

2

with independent normal noise:

X =

0

B

@

X

1

X

2

1

C

A

=

0

B

@

5 sin(S)

5 cos(S)

1

C

A

+

0

B

@

�

1

�

2

1

C

A

;

with S � U [0; 2�] and �

i

� N(0; 1). Figure 3 summarizes the results of the estimation

of the �rst principal curve by our methodology and also by using Hastie and Stuetzle's

routines. Symbols are as in Figure 2.

The length of the original curve is 10�. When algorithm 1 is used, the estimated curve

has length 30.8342 and the length for the estimated HSPC is 33.41086. The estimated

total variability along the curve is 87:65, the estimated Var(S) is 86.58 (the value for

the generating distribution is 100�

2

=12 = 82:25) and the average residual variance in the

orthogonal directions is 1.06 (this value should not be compared directly with Var(�

i

)).

Density estimation of variable S and local orthogonal variance estimation are approxi-

mately constant over the estimated support of S. These facts are according to the data

generating process, which original parameterization was unit-speed in this example. 2

Example 6. Data in IR

3

A simulated data set in IR

3

is considered. Data are around the

piece of circle f(x; y; z) : x

2

+ y

2

= 10

2

; x � 0; y � 0; z = 0g. A uniform random variable
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Figure 3: Example 5. Data set around a circle. Left hand side panel shows the simulated

data. At the right hand side three curves are represented: the original circle (dotted line),

the HSPC (solid line with empty dots) and the PCOP (solid line with big dot marks).

S over this set was generated, and then a noise Y was added to it so that (Y jS = s)

fall in the orthogonal plane to the circumference at the point s, and has bidimensional

normal distribution with variance matrix equal to the 2� 2 identity matrix. We used the

parameters h = 1 and � = :75. The resulting PCOP is represented in Figure 4 from two

points of view. The estimated curve explains a 92.19% of the total variability along the

curve.

4 Generalized total variance and higher order principal curves

In subsection 3.2 the total variability of a data set along an estimated curve was de�ned as

d

TV

PCOP

=

d

Var(S)+

R

I

e

�

�

(�(s))

^

f

S

(s)ds. If a random variable X has the curve �: I ! IR

p

as a principal curve of oriented points, the sample measure

d

TV

PCOP

corresponds to the

population quantity

TV

�

(X) = Var(S) +

Z

I

TV [XjX 2 H

c

(�(s); b

�

(�(s)))]f

S

(s)ds;

where S is a random variable on I having probability distribution induced by X and �

(see De�nition 3).

Observe that when X has normal distribution and � is the �rst principal component
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Figure 4: Example 6. Two perspectives of the estimated PCOP (solid line) for the three-

dimensional data around a piece of circumference (dotted line).
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line, TV

�

(X) is precisely the total variance of X because TV [XjX 2 H

c

(�(s); b

�

(�(s)))]

is constant in s and equals the total variance of the joint distribution of the remain-

ing (p � 1) principal components. We conclude that TV

�

(X) is a good way to mea-

sure the variability of a p-dimensional random vector X having a PCOP �, provided

that TV [XjX 2 H

c

(�(s); b

�

(�(s)))] appropriately measures the dispersion of the (p� 1)-

dimensional conditional random vector (XjX 2 H

c

(�(s); b

�

(�(s)))). When these (p� 1)-

dimensional distributions are ellipsoidal, the total variance is a well-suited measure, but

when non-linearities also appear in (XjX 2 H

c

(�(s); b

�

(�(s)))), the total variance is no

longer advisable and it should be replaced, in the de�nition of

d

TV

PCOP

, by a measure of

the variability along a nonlinear curve.

The former arguments lead us to de�ne the generalized total variance (hereafter GTV)

of a p-dimensional random variable by induction in the dimension p. The de�nition is

laborious because many concepts have to be simultaneously and recursively introduced.

The following example could help to clarify what is going on.

Example 7. Figure 5 illustrates the ideas we are shortly de�ning. We want to deal with a

three dimensional random variable distributed around a two dimensional structure. The

curve in IR

3

: f(x; y; z) : x

2

+ y

2

= 10

2

; x � 0; y � 0; z = 0g is the central axis of the

structure (we will call it the �rst generalized PCOP). For each point p

0

= (x

0

; y

0

; z

0

) in

this curve, there exists a speci�c second generalized PCOP, �

p

0

: IR ! H

p

0

, where H

p

0

is

the orthogonal hyperplane to the �rst principal curve at p

0

. In this case, �

p

0

is

�

p

0

(v) =

0

B

B

B

B

@

�x

0

=10 0

�y

0

=10 0

0 1

1

C

C

C

C

A

0

B

@

y

0

=10 x

0

=10

x

0

=10 �y

0

=10

1

C

A

0

B

@

v

sin(v)

1

C

A

;

for v 2 [��; �]. The local second principal curves should smoothly vary along the �rst

principal curve to allow the estimation. 2

De�nition 4

For any one-dimensional random variable X with �nite variance we say that X recursively

admits a generalized principal curve of oriented points (GPCOP). We say that x = E(X)

is the only generalized principal oriented point (GPOP) for X, that �: f0g ! IR, with

�(0) = E(X) is the only GPOP for X. We de�ne the generalized expectation of X (along
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�) as GE

1

(X) = �(0) = E(X), and the generalized total variance of X (along �) as

GTV

1

(X) = Var(X).

Now we consider p > 1. We assume that for k < p we know whether a k-dimensional

random variable recursively does admit or not GPCOPs, and what GPOPs, GPCOPs,

GE

k

and GTV

k

are for k-dimensional random variables that recursively admit GPCOP.

Consider a p-dimensional random variable X with �nite second moments. We say that

X recursively admits GPCOPs if the following conditions (i), (ii) and (iii) are veri�ed. The

�rst one is as follows:

(i) For all x 2 IR

p

and all b 2 S

p�1

the (p�1)-dimensional distribution (XjX 2 H

c

(x; b))

recursively admits principal curves.

If this condition holds, we de�ne

�

G

(x; b) = GE

p�1

(XjX 2 H

c

(x; b)); �

G

(x; b) = GTV

p�1

(XjX 2 H

c

(x; b));

b

�

G

(x) = arg min

b2S

p�1

�

G

(x; b); �

�

G

(x) = �

G

(x; b

�

G

(x)); �

�

G

(x) = �

G

(x; b

�

G

(x)):

The set of �xed points of �

�

G

, �

G

(X), is called the set of generalized principal oriented points

of X. Given a curve �: I � IR ! IR

p

parameterized by the arc length, we say that it is a

generalized principal curve of oriented points for X if �(I) � �

G

(X).

Now we can express the second condition for X recursively admitting GPCOPs:

(ii) There exists a unique curve such that � is GPCOP for X.

When conditions (i) and (ii) apply, we de�ne for any s 2 I the value

�

f

G

S

(s) =

R

IR

p�1

f(�(s) + (b

�

G

)

?

(�(s))v)dv. The third condition is:

(iii) The integral � =

R

I

�

f

G

S

(s)ds is �nite and the random variable S with density function

f

G

S

(s) = (1=�)

�

f

G

S

(s) has �nite variance and zero mean (may be a translation of S is

required to have E(S) = 0).

If condition (iii) holds, we say that the distribution of S has been induced by X and �.

Now we de�ne GE

p

as GE

p

(X) = �(0), and the GTV

p

by

GTV

p

(X) = Var(S) +

Z

I

GTV

p�1

(XjX 2 H

c

(�(s); b

�

G

(�(s)))f

S

(s)ds =

= Var(S) +

Z

I

�

�

G

(�(s)))f

S

(s)ds:
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Observe that the concept of second (and higher order) principal curves is involved in

the former de�nition. Our approach implies that there is not a common second principal

curve for the whole distribution of X, but that there is a di�erent second principal curve

for each point in the �rst one. So the concept of second principal curve (and higher order)

is a local concept.

De�nition 5 If X recursively admits GPCOPs and � is GPCOP for X, we say that

� is the �rst GPCOP of X. We say that the �rst GPCOPs for the (p � 1)-dimensional

distributions (XjX 2 H

c

(�(s); b

�

G

(�(s))) are the family of second GPCOPs for X, and so

on.

Observe that the de�nition of GPCOPs coincides with that of PCOP for p = 2. For any

p, both de�nitions coincide if the conditional distributions to X 2 H(x; b) are ellipsoidal

for all x and all b. In this case, the second principal curves are the �rst principal component

of these conditional distributions, and so on.

When second principal curves are considered, we say that the quantity

p

1

=

Var(S)

GTV

p

(X)

is the proportion of generalized total variance explained by the �rst principal curve. As

for each s 2 I, the local second principal curve is the �rst principal curve for a (p � 1)-

dimensional random variable, we can compute the proportion p

1

(s) of the generalized total

variance that the second principal curve locally explains at the point �(s). We calculate

the expected proportion of explained GTV by the local second principal curves, de�ne

p

2

= (1� p

1

)

Z

I

p

1

(s)f

S

(s)ds

and interpret it as the proportion of the GTV explained by the second principal curves.

We can iterate the process and obtain p

j

; j = 1; : : : ; p, adding up to 1.

Example 7. (Continuation)

Random data have been generated according to the structure shown in Figure 5. Uniform

data were generated over the piece of circumference that constitutes the �rst principal

curve. Then, each of these data (namely, p

0

) was (uniformly) randomly moved along the

sinusoidal second principal curve laying on p

0

, to a new position p

1

. Finally, a univariate

random noise perturbs the point p

1

inside the line orthogonal to the second curve at p

1

,
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Figure 5: Example 7: Theoretical structure of local second principal curves along the �rst

one.
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Figure 6: Example 7. Estimation of the �rst principal curve and the family of local second

principal curves along the �rst one. (a) Data set; (b) �rst GPCOP and second GPCOPs;

(c) same as (b) viewed from a point with zero degrees of elevation over the XY plane; (d)

GPCOP system projected over the XY plane.
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Source of variability GTV %GTV Cum.GTV Cum. %GTV

First Principal Curve 22.18 88.45% 22.18 88.45%

Local 2nd. Ppal. Cvs. 2.71 10.80% 24.89 99.25%

Local 3rd. Ppal. Cvs. .19 .75% 25.08 100.00%

Total 25.08 100%

Table 1: Example 7. Proportion of the generalized total variance due to the �rst principal

curve and to local second principal curves, for data set of Figure 6.

also contained H

p

0

. The resulting point, p

3

, is one of the simulated points. The normal

noise has standard deviation � = :2.

Figure 6 shows the results of the estimation procedure for a sample of size equal to

1000, o�ering three di�erent perspectives of the estimated object. Table 1 indicates what

percentages of the generalized total variance are due to the �rst GPCOP and to the family

of second GPCOPs.

The comparison of our proposals with other methods for �tting principal surfaces

(Hastie [15], LeBlanc and Tibshirani [20]) becomes di�cult because at our knowledge

there is no easily available software for alternative existing methods.

5 Discussion

In the present work the concept of principal curve introduced by Hastie and Stuetzle [16]

is approached from a di�erent perspective. A new de�nition of the �rst principal curve

has been introduced, based on the notion of principal oriented points.

All the arguments are based on conditional expectation and variance, given that a p-

dimensional random variable lies in the hyperplane de�ned by a point x and the orthogonal

direction b, but di�erent measures of conditional location and dispersion could be used,

as far as they are smooth function of x and b. More robust procedures could be obtained

in that way.

In the last part of the paper we introduce generalized de�nitions of expectation and

total variance along a principal curve. For random variables having principal curves for

all its lower dimensional marginal distributions, these new de�nitions allow us to de�ne

second a higher order local principal curves in a recursive way.
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Appendix I: Algorithms

Algorithm 1 (First Principal Curve)

Step 1. Make k = 1, j = 0 and F = 1. Choose x

0

1

2 IR

p

(for instance, the observed

data closest to the sample mean). Choose b

0

1

2 S

p�1

(for instance, b

0

1

= v

1

,

where v

1

is the director vector of the �rst principal component of the sample).

Choose h > 0, � > 0 and p

t

2 [0; 1]. Let n be the sample size.

Step 2. Iterate in j � 1 the expression x

j

k

=

e

�

�

(x

j�1

k

) until convergence. Let x

k

the

�nal point of the iteration. Let b

k

= b

�

(x

k

). If (b

0

k

)

t

b

k

< 0, then assign �b

k

to

b

k

.

Step 3. If k = 1 de�ne s

1

= 0, and if k > 1 de�ne s

k

= Prev(s

k

)+Fkx

k

�Prev(x

k

)k.

De�ne a new point in the principal curve �(s

k

) = x

k

.

Step 4. De�ne x

0

k+1

= x

k

+ F�b

k

, b

0

k+1

= b

k

.

Step 5. First stopping rule.

If #fi : (X

i

� x

0

k+1

)

t

b

0

k

> 0g < p

t

n (i.e., there are less than a proportion p

t

of

the remaining points in the present direction of the principal curve) then go

to Step 7.

Step 6. De�ne Prev(s

k+1

) = s

k

and Prev(x

k+1

) = x

k

. Let k = k + 1 and j = 0.

Return to Step 2.

Step 7. Second stopping rule.

If F = 1 (i.e., only one tail of the principal curve has been explored) then make

Prev(s

k+1

) = s

1

= 0, Prev(x

k+1

) = x

1

, k = k + 1, F = �1, x

0

k

= x

0

1

+ F�b

1

and b

0

k+1

= b

1

. Go to Step 2.

Step 8. Final step. Let K = k. Order the values f(s

k

; x

k

); k = 1; : : : ;Kg according

to the values fs

k

g. The ordered sequence of pairs is the estimated principal

curve of oriented points (PCOP).

2
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We present now the algorithm we use to assign x to a cluster in H(x; b). Consider a set

of points fy

0

; y

1

; : : : ; y

n

g in IR

d

. The objective is to identify what points y

i

; i � 1 belong

to the same cluster as y

0

. The algorithm is as follows.

Algorithm 2 (Clustering around a given point)

Step 1. De�ne the sets C = fy

0

g and D = fy

1

; : : : ; y

n

g. Set j = 1. Choose a

positive real number � (for instance, � = 3).

Step 2. While j � n, repeat:

2.1 De�ne d

j

= d(C;D) = minfd(x; y) : x 2 C; y 2 Dg and let y

�

j

be the

point y 2 D where this minimum is achieved.

2.2 Set C = C [ fy

�

j

g and D = D � fy

�

j

g. Set j = j + 1.

Step 3. Compute the medianm and quartilesQ

1

andQ

3

of the data set fd

1

; : : : ; d

n

g.

De�ne the distance barrier as

�

d = Q

3

+ �(Q

3

�Q

1

).

Step 4. Let j

�

= minffj : d

j

>

�

dg [ fn + 1gg � 1. The �nal cluster is C

�

=

fy

�

1

; : : : ; y

�

j

�

g.

Observe that the algorithm identi�es extreme outlying distances d

j

as we would do it

by using a box-plot, and it only accepts a point y

i

as being in the same cluster as y

0

when

there is a polygonal line from y

0

to y

i

with vertex in fy

0

; : : : ; y

n

g and segments shorter

than

�

d.

Appendix II: Proofs

The following result determines the smoothness of � and �, b

�

, �

�

and �

�

in terms of the

smoothness of f .

Proposition 3 If f is of class C

r

at x and

R

IR

p�1

f(x + b

?

v)dv is not equal to zero at

(x; b), then � and � are of class C

r

at (x; b). If (x; b) veri�es the previous hypothesis for

all b 2 b

�

(x), the function �

�

: IR

p

! IR is of class C

r

at x. Moreover, if r � 2 and b

�

is a function in a neighborhood of x (i.e., #fb

�

(y)g = 1 for y near x), then �

�

is also a

function in a neighborhood of x, and �

�

and b

�

are of class C

r�1

at x.
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Proof. Smoothness properties of � and � follow as a direct consequence of Fubini's

Theorem (see, e.g., [4], p. 524). The property concerning �

�

is a direct application of the

Maximum Theorem (see, e.g., [29], p. 254). The Sensitivity Theorem (a corollary of the

Implicit Function Theorem; see, e.g., [2], p.277) permits smoothness properties of b

�

to be

established, and then the smoothness of � implies that of �

�

. 2

Proof of Proposition 1. The proof follows directly from the next Lemma.

Lemma 1 Consider X � N

p

(�;�). Take x

0

2 IR

p

and for each b 2 IR

p

such that

b

t

�b = 1, let H(x

0

; b) = fx 2 IR

p

: (x� x

0

)

t

b = 0g the orthogonal hyperplane to b passing

through x

0

. Consider the optimization problems

(P1) min

b:b

t

�b=1

fTV (XjX 2 H(x

0

; b)g;

where for any random variable Y , TV (Y ) = Trace(Var(Y )) is the total variance of Y , and

(P2) max

h:h

t

h=1

fVar(h

t

X)g:

Then the solutions to both optimization problems are, respectively,

b

�

=

1

�

1=2

1

v

1

and h

�

= v

1

;

where �

1

is the largest eigenvalue of � and v

1

the corresponding unit length eigenvector.

Moreover, E(XjX 2 H(x

0

; b

�

)) = �+ s

0

v

1

, with s

0

= (x

0

� �)

t

v

1

.

Proof. De�ning Y = b

t

X, the joint distribution of (X

t

; Y )

t

is (p+1)-dimensional normal.

So standard theory on conditional normal distributions tells us that

(XjX 2 H(x

0

; b)) � (XjY = b

t

x

0

) � N

p

 

�+

b

t

(x

0

� �)

b

t

�b

�b; ��

�bb

t

�

b

t

�b

!

: (1)

So the conditional total variance is

TV (XjX 2 H(x

0

; b)) = Trace(�)�

1

b

t

�b

Trace(�bb

t

�);

and the problem (P1) is

min

b:b

t

�b=1

fTV (XjX 2 H(x

0

; b))g = Trace(�)� max

b:b

t

�b=1

(b

t

��b) =

= Trace(�)� max

h:h

t

h=1

(h

t

�h) = Trace(�)� max

h:h

t

h=1

Var(h

t

X);
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where h = �

1=2

b. So the solution of (P1) is given by the solution of (P2), which is the

classical problem of principal components, with optimal solution h

�

= v

1

, the eigenvector

associated with the largest eigenvalue �

1

of �. The corresponding solution of (P1) is

b

�

= �

�1=2

h

�

=

1

�

1

�

�1=2

�h

�

=

1

�

1

�

1=2

h

�

=

1

�

1

�

1=2

h

�

= �

�1=2

h

�

;

and the main part of the proposition is proved. Two facts were used in this chain of

equalities: �rst, h

�

is eigenvector of �, and second, that if v is eigenvector of � with

associate eigenvalue �, then v is eigenvector of �

1=2

with associate eigenvalue �

1=2

. To

prove the last sentence of the result, it su�ces to replace b = b

�

in (1). 2

Proof of Theorem 1. The proof is direct because �

�

is a continuous function (Proposi-

tion 3) and Brouwer's Fixed Point Theorem applies (see, e.g., [29], p. 260). 2

Before proving Theorem 2, we need some lemmas.

Lemma 2 Let x 2 IR

p

and b 2 S

p�1

. The partial derivatives of � are as follows.

(i)

@�

@x

(x; b) = K

�

x

(x; b)b

t

; K

�

x

(x; b) 2 IR

p

; and b

t

K

�

x

(x; b) = 1:

(ii)

@�

@b

(x; b) = K

�

b

(x; b)

�

I

p

� bb

t

�

; K

�

b

(x; b) 2 IR

p�p

:

Proof. (i) As �(x; b) (as a function of x) is constant on H

c

(x; b), then �(x+(I� bb

t

)v); b)

is constant in v, so its derivative with respect to v is equal to 0:

0 =

@

@v

�

�(x+ (I � bb

t

)v); b)

�

=

@�

@x

�

x+ (I � bb

t

)v; b

�

(I � bb

t

):

That can be written as

@�

@x

�

x+ (I � bb

t

)v; b

�

=

�

@�

@x

�

x+ (I � bb

t

)v; b

�

b

�

b

t

;

and when v goes to 0, we obtain that (@�=@x)(x; b) = K

�

x

(x; b)b

t

, where K

�

x

(x; b) =

(@�=@x)(x; b)b. In order to see thatK

�

x

(x; b)

t

b = 1 we derive the identity (x��(x; b))

t

b = 0

with respect to x and obtain that b

t

(I � (@�=@x)(x; b)) = 0. Then the result follows post-

multiplying by b: b

t

b = 1 = b

t

K

�

x

(x; b).

(ii) Observe that �(x; b+ vb) is constant for v 2 IR, so

0 =

@

@v

�(x; b+ vb) =

@�

@b

(x; b+ vb)b;
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and then the rows of (@�=@b)(x; b + vb) are orthogonal to b. Therefore,

@�

@b

(x; b+ vb)

�

I � bb

t

�

=

@�

@b

(x; b+ vb):

When v goes to zero we obtain (@�=@b)(x; b) = K

�

b

(x; b)

�

I � bb

t

�

, where K

�

b

(x; b) =

(@�=@b)(x; b). 2

Lemma 3 For all x such that (x; b

�

(x)) is a POP, it is veri�ed that

@b

�

@x

(x) =

�

I

p

� b

�

(x)b

�

(x)

t

�

~

K(x)b

�

(x)

t

:

Proof. We divide the proof in two parts.

(1) We obtain that b

�

(x)

t

((@b

�

=@x)(x)) = 0, deriving with respect to x the identity

b

�

(x)

t

b

�

(x) = 1. Therefore (@b

�

=@x)(x) is orthogonal to b

�

(x), and we can write that

(I � b

�

(x)b

�

(x)

t

) ((@b

�

=@x)(x)) equals ((@b

�

=@x)(x)).

(2) As b

�

(x) is constant on y 2 H

c

(x; b

�

(x)), by similar arguments to those used in the

proof of Lemma 2, we can deduce that (@b

�

=@x)(x) =

~

K(x)b

�

(x)

t

for some

~

K(x) 2 IR

p

.

Now, putting together (1) and (2) the result follows. 2

Lemma 4 (@�

�

=@x)(x) = K

�

�

x

(x)b

�

(x)

t

, where K

�

�

x

(x) 2 IR

p

. Moreover, b

�

(x)

t

K

�

�

x

(x) =

1,

Proof. We derive the identity �

�

(x) = �(x; b

�

(x)) with respect to x, and we obtain that

@�

�

@x

(x) =

@�

@x

(x; b

�

(x)) +

@�

@b

(x; b

�

(x))

@b

�

@x

(x):

Now, from Lemmas 2 and 3, it follows that

@�

�

@x

(x) = K

�

x

(x; b

�

(x))b

�

(x)

t

+

+K

�

b

(x; b

�

(x))(I � b

�

(x)b

�

(x)

t

)

~

K(x)b

�

(x)

t

= K

�

�

x

(x)b

�

(x)

t

for some K

�

�

x

(x) 2 IR

p

. To prove the last sentence, we derive with respect to x the identity

(x� �

�

(x))

t

b

�

(x) = 0, as we did in the proof of Lemma 2. 2

Proof of Theorem 2. The proof is based on the Implicit Function Theorem. For the

point x

0

, we have that x

0

= �(x

0

; b

�

(x

0

)). Without loss of generality, we can assume that

x

0

= 0 2 IR

p

and that b

0

= b

�

(x

0

) = e

1

= (1; 0; : : : ; 0)

t

2 IR

p

. For any x 2 IR

P

we call
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x

1

its �rst component and denote by x

2

its remaining (p � 1) components. Analogous

notation is used for de�ning �

1

and �

2

from function � (we do the same thing also for �

�

and �).

Consider the function

�: IR� IR

p�1

! IR

p�1

(x

1

; x

2

) ! �

2

��

x

1

x

2

�

; b

�

�

x

1

x

2

��

� x

2

= (�

�

)

2

�

x

1

x

2

�

� x

2

;

and observe that �(0;0) = 0, where 0 is the zero of IR

p�1

. If the Implicit Function

Theorem could be applied here, we would obtain that there exists a positive " and a

function 	

	: (�"; ") � IR ! IR

p�1

t ! 	(t)

such that 	(0) = 0, and

�(t;	(t)) = 0

or, equivalently,

	(t) = �

2

  

t

	(t)

!

; b

�

 

t

	(t)

!!

for all t 2 (�"; "). We now de�ne

�: (�"; ") � IR ! IR

p

t ! �(t) =

�

t

	(t)

�

Observe that the properties of 	 guarantee that �

2

(t) = �

2

(�(t); b

�

(�(t))). So if we prove

that �

1

(�(t); b

�

(�(t))) = t then we will have that � is the PCOP we are looking for. But

indeed that is true. Observe that always �(x; b) belongs to H(x; b), so (x� �(x; b))

t

b = 0.

In our case, this fact implies that

(�(t)� �(�(t); b

�

(�(t))))

t

b

�

(�(t)) = 0:

As �

2

(t) = �

2

(�(t); b

�

(�(t))), the last equation is equivalent to

(t� �

1

(�(t); b

�

(�(t)))) b

�

1

(�(t)) = 0:

Remember that b

�

(x

0

) = e

1

, so b

�

1

(x

0

) = 1. Continuity of b

�

implies that b

�

1

(x) > :5 if x is

close enough to x

0

. So, � can be chosen in order to have b

�

1

(�(t)) 6= 0, and then we deduce

that (t� �

1

(�(t); b

�

(�(t)))) must be zero, and we conclude that � is a PCOP.
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Only checking the assumptions for the Implicit Function Theorem (see, e.g., [4], p.397)

remains to complete the proof of the Theorem. We need to show that the last (p � 1)

columns of the Jacobian of � at x

0

= (0;0) are independent. These columns are

@�

@x

2

(x

0

) =

�

@

@x

2

�

�

2

(x; b

�

(x))

�

�

(x

0

)� I

p�1

:

Observe that the �rst term in this sum is the matrix obtained by dropping out the �rst

row and the �rst column of the following Jacobian matrix (see Lemma 4):

@�

�

@x

=

�

@

@x

(�(x; b

�

(x)))

�

(x) = K

�

�

x

(x)b

�

(x)

t

:

As b

�

(x

0

) = b

0

= e

1

, the product K

�

�

x

(x

0

)b

�

(x

0

)

t

has its last (p � 1) rows equal to zero.

Therefore,

@�

@x

2

(x

0

) = 0

(p�1)�(p�1)

� I

p�1

= �I

p�1

and it has complete rank. So Implicit Function Theorem applies and the �rst part of the

Theorem is proved.

Let us compute �

0

(0). Again, the Implicit Function Theorem determines the derivative

of 	 with respect to t:

@	

@t

=

�

@�

@	

�

�1

@�

@t

:

In our case,

@�

@	

= I

p�1

and

@�

@t

=

@

@x

1

�

�

2

(x; b

�

(x))

�

=

@

@x

1

�

(�

�

)

2

(x)

�

and this is the �rst column of (@�

�

=@x)(x

0

) = K

�

�

x

(x

0

)b

t

0

(i.e., K

�

�

x

(x

0

)), without its �rst

element (we have used Lemma 4). Then, @�=@t = (K

�

�

x

(x

0

))

2

. Therefore,

@�

@t

(0) =

 

@

@t

 

t

	(t)

!!

(0) =

 

1

(K

�

�

x

(x

0

))

2

!

:

The result would be proved if we can show that (K

�

�

x

(x

0

))

1

is equal to 1. But this is true

because (K

�

�

x

(x

0

))

1

= K

�

�

x

(x

0

)

t

b

0

= 1, by Lemma 4. 2

Proof of Corollary 1. As �(t) = �

�

(�(t)), deriving with respect to t, we have

�

0

(t) =

�

@�

�

@x

(�(t))

�

�

0

(t) = K

�

�

x

(�(t))b

�

(�(t))

t

�

0

(t):

Then �

0

(t) = �(t)K

�

x

(�(t)) for all t 2 I, and �(t) = b

�

(�(t))

t

�

0

(t) 2 IR. 2
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