Another look at principal curves and surfaces

Pedro Delicado*
Departament d'Economia i Empresa, Universitat Pompeu Fabra

February 26, 1999

Abstract

Principal curves have been defined (Hastie and Stuetzle [16]) as smooth curves passing through the middle of a multidimensional data set. They are nonlinear generalizations of the first principal component, a characterization of which is the basis of the definition of principal curves.

We establish a new characterization of the first principal component and base our new definition of a principal curve on this property. We introduce the notion of principal oriented points and we prove the existence of principal curves passing through these points. We extend the definition of principal curves to multivariate data sets and propose an algorithm to find them. The new notions lead us to generalize the definition of total variance. Successive principal curves are recursively defined from this generalization. The new methods are illustrated on simulated and real data sets.

Key Words: Fixed points; Generalized Total Variance; nonlinear multivariate analysis; principal components; smoothing techniques.

[^0]
1 Introduction

Consider a multivariate random variable X in \mathbb{R}^{p} with density function f and a random sample from X, namely X_{1}, \ldots, X_{n}. The first principal component can be viewed as the straight line which best fits the cloud of data (see, e.g., [17], pp. 386-387). When the distribution of X is ellipsoidal the population first principal component is the main axis of the ellipsoids of equal concentration.

In the last forty years many works have appeared proposing extensions of principal components to distributions with nonlinear structure. We cite Shepard and Carroll [24], Gnanadesikan and Wilk [13], Srivastava [27], Etezadi-Amoli and McDonald [10], Yohai, Ackermann and Haigh [33], Koyak [19] and Gifi [12], among others. Some of them look for nonlinear transformations of the observable variables into spaces admitting a usual principal component analysis. Others postulate the existence of a nonlinear link function between a latent lower dimensional linear space and the data space.

The work of Hastie and Stuetzle [16] opens a new way to look at the problem. Its main distinguishing mark is that no parametric assumptions are made. The principal curves (of a random variable X) defined at [16] (hereafter, HSPC) are one-dimensional parameterized curves $\left\{x \in \mathbb{R}^{p}: x=\alpha(s), s \in I\right\}$ (where $I \subseteq \mathbb{R}$ is an interval and $\alpha: I \rightarrow \mathbb{R}$ is differentiable), having the property of self-consistency: every point $\alpha(s)$ in the curve is the mean (under the distribution of X) of the points x that project onto $\alpha(s)$. In this sense, HSPC passes through the "middle" of the distribution. It is not guaranteed that such a curve does exist. An appropriate definition of principal curves for data sets is also given. Nonparametric algorithms are used to approximate them. Principal surfaces are analogously defined.

In the 90 's several works directly related with [16] have appeared. Banfield and Raftery [1], mainly applied, modifies the Hastie and Stuetzle's algorithm to reduce the estimation bias. Tibshirani [32] provides a new definition of a principal curve such that if X is the result of adding a noise to a random point over a one-dimensional curve α, then α is a principal curve of X; HSPC does not have this property. LeBlanc and Tibshirani [20] uses multivariate adaptive regression splines (see Friedman [11]) to develop estimation procedures of principal curves and surfaces. Duchamp and Stuetzle ([7] [8] [9]) study principal curves in the plane. They prove the existence of (many) principal curves crossing each other for simple distributions and they state a negative result: in general, principal
curves are critical points of the expected squared distance from the data, but they are not extremal points of this functional. An application of HSPC in the clustering context is made by Stanford and Raftery [28]. Tarpey and Flury [31] study in depth the selfconsistency concept and extend it to more general settings.

Other recent papers on nonlinear multivariate analysis do not follow directly the line of [16]. Kégl, Krzyżak, Linder and Zeger [18] introduce the concept of principal curves with a fixed length. They prove the existence and uniqueness of that curve for theoretical distributions, give an algorithm to implement their proposals, and calculate rates of convergence of the estimators. Related results can be found in Smola, Williamson and Schölkopf [26] and Smola, Mika and Schölkopf [25]. Salinelli [23] studies nonlinear principal components as optimal transformations of the original variables, where the nonlinear admissible transformations belong to a functional space verifying certain properties. In the most recent years, several related works have appeared in the neural networks literature: Mulier and Cherkassky [21], Tan and Mavarovouniotis [30], Dong and McAvoy [6], Bishop, Svensén and Williams [3], among others.

In this paper we give a new definition of principal curves. It is based on a generalization of a local property of principal components for a multivariate normal distribution X : the total variance of the conditional distribution of X, given that X belongs to a hyperplane, is minimal when the hyperplane is orthogonal to the first principal component. The generalization of this result to nonlinear distributions leads us to define principal oriented points (as the fixed points of certain function from \mathbb{R}^{p} to itself), and principal curves of oriented points (one-dimensional curves visiting only principal oriented points). The existence of principal oriented points is proved for theoretical distributions. It is also guaranteed that there exists a principal curve passing through each one of these points. Sample versions of these elements are introduced and illustrated with real and simulated data examples.

The new definition suggests a natural generalization of total variance, providing a good measure of the dispersion of a random variable distributed around a nonlinear principal curve. The generalized total variance allows us to define recursively local second (and higher order) principal curves.

Our proposals are close to [16] in spirit: no parametric assumptions are made, smoothing techniques are used in the proposed algorithms for estimation, and the conceptual idea
of principal curve we have in mind is very similar to that introduced at [16]. Nevertheless, there exist significant differences in definitions (for instance, in the normal multivariate case every principal component is a HSPC; however, only the first principal component satisfies our definition) and in implemented algorithms. On the other hand, our approach to second and higher order principal curves does not recall directly any of the previously cited works. In addition to that, our definition of principal curves involves the notion of principal oriented points, a concept with statistical interest in itself.

The structure of the rest of the paper is as follows. Section 2 presents principal oriented points and principal curves of oriented points, as distributional concepts. The definition of sample counterparts is postponed to section 3, where algorithmic aspects and some examples are examined. The generalization of the total variance and the definitions of local higher order principal curves are the core of section 4. Section 5 contains some concluding remarks. Appendix I presents the formal versions of the algorithms presented along the paper. The proofs of the results appearing in the paper are postponed to the Appendix II.

2 Definition of population principal curves

A well known property of the first principal component for normal distributions can be stated as follows: the projection of the normal random variable onto the hyperplane orthogonal to the first principal component has the lowest total variance among all the projected variables onto any hyperplane. Furthermore, this is true not only for the marginal distribution of the projected variable but also for its conditional distribution given any value of the first principal component. Our definition of principal curves is based on this property.

2.1 Definitions

Let X be a p-dimensional random variable with density function f and finite second moments. Consider $b \in S^{p-1}=\left\{w \in \mathbb{R}^{p}:\|w\|=1\right\}$ and $x \in \mathbb{R}^{p}$. We call $H(x, b)$ the hyperplane orthogonal to b passing through $x: H(x, b)=\left\{y \in \mathbb{R}^{p}:(y-x)^{t} b=0\right\}$.

Given $b \in S^{p-1}$, it is possible to find vectors $b_{2}(b), \ldots, b_{p}(b)$ such that $T(b)=\left(b, b_{2}(b)\right.$, $\left.\ldots, b_{p}(b)\right)$ is an orthonormal basis for \mathbb{R}^{p}. We define b_{\perp} as a $(p \times(p-1))$ matrix
$\left(b_{2}(b), \ldots, b_{p}(b)\right)$. The total variance of a random variable Y (i.e., the trace of the variance matrix of Y) is denoted by $T V(Y)$. A parameterized curve α in $\mathbb{R}^{p}, \alpha: I \rightarrow \mathbb{R}^{p}$ where I is a possibly unbounded interval, is said to be parameterized by the arc length if the length of the curve from $\alpha\left(s_{1}\right)$ to $\alpha\left(s_{2}\right)$ is $\left|s_{2}-s_{1}\right|$. This is equivalent to saying that α is unit-speed parameterized (i.e., $\left\|\alpha^{\prime}(s)\right\|=1$ for all s) when it is differentiable. More properties about curves in \mathbb{R}^{p} can be found, for instance, in [14].

With these definitions we introduce

$$
\begin{gathered}
f_{1}(x, b)=\int_{\mathbb{R}^{p-1}} f\left(x+b_{\perp} v\right) d v \\
\mu(x, b)=E(X \mid X \in H(x, b))=\frac{1}{f_{1}(x, b)} \int_{\mathbb{R}^{p-1}}\left(x+b_{\perp} v\right) f\left(x+b_{\perp} v\right) d v
\end{gathered}
$$

and

$$
\phi(x, b)=T V(X \mid X \in H(x, b))=\frac{1}{f_{1}(x, b)} \int_{\mathbb{R}^{p-1}} v^{t} v f\left(x+b_{\perp} v\right) d v-\mu(x, b)^{t} \mu(x, b),
$$

for any x and b such that $f_{1}(x, b)>0$. Observe that $E(X \mid X \in H(x, b))$ and $T V(X \mid X \in$ $H(x, b))$ do not depend on the choice of b_{\perp}, but only on x and b. Therefore the functions μ and ϕ are well defined. Notice also that $\mu(x, b)=\mu(x,-b)$ and $\phi(x, b)=\phi(x,-b)$. So we define in S^{p-1} the equivalence relation \equiv by: $v \equiv w \Longleftrightarrow v=w$ or $v=-w$. Let $S_{\equiv}^{\underline{p}-1}$ be the quotient set. From now on, we write S^{p-1} instead of $S_{\overline{\underline{p}}}^{\text {p-1 }}$ even if we want to refer to the quotient set.

Observe that the definitions of $\mu(x, b)$ and $\phi(x, b)$ are based on conditional expectations where one is conditioning on a probability zero event (X lying in the hyperplane $H(x, b)$). In general, as Proschan and Presnell [22] point out, conditional expectation is not well defined when conditioning on probability zero events. For this reason we explicitly define $\mu(x, b)$ and $\phi(x, b)$ in terms of joint and marginal probability density functions. In the line of the arguments presented at [22] and illustrated with their Figure 1, we can say that the problem with conditioning on the zero probability event $\{X \in H(x, b)\} \equiv\left\{(X-x)^{t} b=0\right\}$ arises because this event can be approached in many different ways by non-zero probability events. For instance, events $A_{\varepsilon}=\left\{(X-x)^{t} b \leq \varepsilon\right\}$ and $B_{\varepsilon}=\{\cos (X-x, b) \leq \varepsilon\}$ approach $\left\{(X-x)^{t} b=0\right\}$ when ε goes to zero, but conditional expectations $E\left(X \mid X \in A_{\varepsilon}\right)$ and $E\left(X \mid X \in B_{\varepsilon}\right)$ converge to different limits when ε goes to zero. Our definition of $\mu(x, b)$ and $\phi(x, b)$, based on density functions, are consistent with approaching $\{X \in H(x, b)\}$ by $A_{\varepsilon}, \varepsilon$ going to zero.

When the function ϕ is continuous, the infimum of $\phi(x, b)$ over b is achieved because $T V(X)$ is finite and because S^{p-1} is compact. We define the correspondence $b^{*}: \mathbb{R}^{p} \rightarrow S^{p-1}$ by $b^{*}(x)=\arg \min _{b \in S^{p-1}} \phi(x, b)$. We say that each element of $b^{*}(x)$ is a principal direction of x. Let $\phi^{*}(x)=\phi\left(x, b^{*}(x)\right)$, be the minimum value. We also define the correspondence $\mu^{*}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ as $\mu^{*}(x)=\mu\left(x, b^{*}(x)\right)$. Smoothness properties of μ, ϕ, b^{*}, μ^{*} and ϕ^{*} are in accordance with the smoothness of f. Proposition 3 in the Appendix II summarizes these properties.

The result below formalizes the property we expressed at the beginning of the section. It characterizes the points of the first principal component line in terms of μ^{*} and b^{*}.

Proposition 1 Consider a p-dimensional normal random variable X with mean value μ and variance matrix Σ. Let λ_{1} be the largest eigenvalue of Σ and v_{1} the corresponding unit length eigenvector. The following properties are verified.
(i) For any $x_{0} \in \mathbb{R}^{p}$ the correspondence b^{*} is in fact a function (i.e., the minimum of $\phi\left(x_{0}, b\right)$ as a function of b is unique) and $b^{*}\left(x_{0}\right)=v_{1}$, for all x_{0}.
(ii) For any $x_{0} \in \mathbb{R}^{p}$, the point $x_{1}=\mu^{*}\left(x_{0}\right)$ belongs to the first principal component line $\left\{\mu+s v_{1}: s \in \mathbb{R}\right\}$.
(iii) A point $x_{1} \in \mathbb{R}^{p}$ belongs to the first principal component line if and only if x_{1} is a fixed point of μ^{*}.

Observe that only local information around a point x_{1} is needed to verify whether x_{1} is a fixed point of μ^{*} or not. This result also provides a mechanism to find points in the first principal component: the iteration of the function μ^{*} leads (in one step) from any arbitrary point x_{0} to a point x_{1} on the first principal component line. In the rest of this subsection we exploit this mechanism in order to generalize the first principal component to non-normal distributions.

A comment on the adequacy of conditioning on $H(x, b)$ is in order. As we are interested in defining valid concepts for non-ellipsoidal distributions, random variables with non convex support have to be considered. If the support of X is not convex, the intersection of a fixed hyperplane with this support can be a non connected set. So for any $x \in$ Support (X) we define $H_{c}(x, b)$ as the connected component of $H(x, b) \cap \operatorname{Support}(X)$ where x lies in. It is more natural defining conditional concepts based on $H_{c}(x, b)$ than on $H(x, b)$.

Moreover, if $H_{c}(x, b)$ is convex then $E\left(X \mid X \in H_{c}(x, b)\right)$ always belongs to $H_{c}(x, b) \subset$ Support (X), and then μ^{*} maps $\operatorname{Support}(X)$ to itself. From now on, we condition always on $\left\{X \in H_{c}(x, b)\right\}$.

We are ready to introduce the notion of principal oriented points and then state our definition of principal curves.

Definition 1 We define the set $\Gamma(X)$ of principal oriented points ($P O P$) of X as the set of fixed points of $\mu^{*}: \Gamma(X)=\left\{x \in \mathbb{R}^{p}: x \in \mu^{*}(x)\right\}$.

Definition 2 Consider a curve α from I to \mathbb{R}^{p}, where I is an interval in R and α is continuous and parameterized by the arc length. α is a principal curve of oriented points $(P C O P$ or just principal curve) of X if $\{\alpha(s): s \in I\} \subseteq \Gamma(X)$.

When we refer to a POP x we also make implicit reference to its principal directions: the elements of $b^{*}(x)$. If $b^{*}(x)$ has only one element we have that the POPs verify the equation $x=\mu^{*}(x)$, recalling us the definition of self-consistency from Hastie and Stuetzle [16]. Nevertheless, at [16] (and also at [31]) self-consistency is defined for a whole curve (or, in a broader sense, for a set of points) and not for a single point. In order to know if a point x is self-consistent (in the sense of [16]) we need to know in advance the curve to which x belongs, because self-consistency is a curve property and not a point property. On the contrary, we check if x is a POP (i.e., if $x=\mu^{*}(x)$) without regarding to the remaining points $y \in \mathbb{R}^{p}$ verifying such a property. Only the underlying probability distribution determines whether x is or not a POP.

Observe that Proposition 1 establishes that the first principal component line is a PCOP for a multivariate normal distribution. The question of existence of POPs and PCOPs for an arbitrary p-dimensional random variable is considered in the next subsection.

Remark 1. Our definition of principal curve does not coincide in general with the definition of Hastie and Stuetzle. The main reason for this discrepancy is again the fact that conditional expectation is not well defined when conditioning on a zero probability event. If α is a HSPC then $\alpha(s)=E\left(X \mid X \in\left\{x: \lambda_{\alpha}(x)=s\right\}\right)$, where $\left\{x: \lambda_{\alpha}(x)=s\right\}$ is the set of points in \mathbb{R}^{p} projecting onto $\alpha(s)$. This set coincides, in general, with the hyperplane $H\left(\alpha(s), \alpha^{\prime}(s)\right)$ and is a zero probability set. We can approach this set by the wedges family $\left\{x:\left|\lambda_{\alpha}(x)-s\right| \leq \varepsilon\right\}$ when ε goes to zero (then we obtain the conditional expectation
required by Hastie and Stuetzle's definition, as the limit of conditional expectations on the wedges) and also by the hyperrectangles $\left\{x:\left|(x-\alpha(s))^{t} \alpha^{\prime}(s)\right| \leq \varepsilon\right\}$ (then the resulting conditional expectation is $\mu\left(\alpha(s), \alpha^{\prime}(s)\right)$, typically different from $\left.\alpha(s)\right)$. Then HSPCs and PCOPs only could share segments of straight lines.

As an example of no incidence between HSPCs and PCOPs, consider the uniform distribution on the annulus $\Omega_{R-d, R+d}=\left\{x \in \mathbb{R}^{2}: R-d \leq\|x\| \leq R+d\right\}$, with $0<d<R$. Duchamp and Stuetzle [8] prove that the circle with radius $r_{d}=R+d^{2} /(3 R)$ is one of the HSPCs for this distribution. Moreover, they prove that there exists an infinite number of HSPC oscillating around this circle. However, it is easy to prove that the only PCOP for this distribution is the circle with radius R. At this point, the question of which circle (the HSPC circle or the PCOP circle) has better properties is raised. In our opinion there is not a clear advantage of one curve over the other. On the one hand, if we let d go to R (then the annulus becomes a disk of radius $2 R$) the HSPC circle (with radius $4 R / 3$) looks more appropriate because there is more mass outside the PCOP circle (always with radius R) than inside. On the other hand, as a consequence of the local character of the POPs definition, the PCOP circle has the following invariance property. Let us change the uniform distribution on the annulus in such a way that a portion of the original distribution remains unchanged. For instance, we consider the uniform distribution on the set

$$
\begin{gathered}
\left(\Omega_{R-d, R+d} \cap\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \leq 0\right\}\right) \cup \\
\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: 0 \leq x_{1} \leq 1, R-d \leq\left|x_{2}^{2}\right| \leq R+d\right\} \cup \\
\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \geq 0,\left(x_{1}-1, x_{2}\right) \in \Omega_{R-d, R+d}\right\} .
\end{gathered}
$$

Then the portion of the PCOP circle belonging to the unchanged subset (in the example, $\left.\left.\left.\Omega_{R-d, R+d}\right\} \cap\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \leq 0\right\}\right)\right)$ continues being a portion of the PCOP for the new distribution, while the new HSPC does not overlap the old one.

Remark 2. Consider a random vector X in \mathbb{R}^{p} defined as the sum of a randomly chosen point on a given parametric curve α plus a noise term. This setting raises the question of whether the original curve α is a principal curve for X or not. Hastie and Stuetzle [16] prove that the answer is negative for their principal curves definition, and Tibshirani [32] defines an alternative concept overcoming this difficulty. In Delicado [5] we show that the answer to this question is also negative for the PCOP, but there we argue that it is natural
to have a negative answer and that it is not a so important awkwardness. So we do not worry about trying to recover a generating curve, and use the models given by curve plus noise only as appropriate mechanisms to generate data with nonlinear structure.

Next we define a distribution on \mathbb{R} induced for a random vector X which has a PCOP α. This concept will play an important role in Section 4.

Definition 3 Consider a random vector X with density function f and let α be a curve $\alpha: I \rightarrow \mathbb{R}^{p}$ parameterized by the arc length, where $I \subseteq \mathbb{R}$ is an interval. Assume that α is PCOP for X. The probability distribution on I induced by X and α is the distribution of a random variable S having probability density function

$$
f_{S}(s) \propto f_{1}\left(\alpha(s), b^{*}(\alpha(s))\right), s \in I
$$

provided that $\int_{I} f_{S}(s) d s<\infty$. Moreover, if $|E(S)|<\infty$, we reparameterize α adding the constant $(-E(S))$ to the values of I, in order to have an induced random variable S with zero mean.

2.2 Existence of principal oriented points and principal curves

Let D be a subset of \mathbb{R}^{p}. We consider the following conditions:
A1. Support(X) is a compact set.
A2. There exists a compact set $K \subset \operatorname{Support}(X)$ such that for all $x \in K$ and all $b \in S^{p-1}$, $\mu(x, b) \in K$.

A3. There exists a compact set $K \subset \operatorname{Support}(X)$ such that for all $x \in K, \mu^{*}(x) \subseteq K$.
A4(D). For all $x \in D$ and all $b \in S^{p-1}$ the integral $f_{1}(x, b)$ is positive, where the integral defining $f_{1}(x, b)$ is done over $\left\{v \in \mathbb{R}^{p-1}: x+b_{\perp} v \in H_{c}(x, b)\right\}$.

Observe that either A1 and A2 imply A3. Assumption A4(D) guarantees that conditional mean and variance are of class \mathcal{C}^{r} at $x \in D$, provided that $f \in \mathcal{C}^{r+1}$ at x for $r \geq 1$. (A function g defined on an open subset U in \mathbb{R}^{p} is said to be of class \mathcal{C}^{r} if all partial derivatives of g of order r exist and are continuous.)

The following theorem deals with the existence of POPs.

Theorem 1 Consider a random variable X with finite second moments and density function f of class $C^{r}, r \geq 2$. Assume that A3 is verified for a compact set K, that $\mathrm{A} 4(K)$ holds and that μ^{*} is a function (i.e., $\#\left\{\mu^{*}(x)\right\}=1$, for all $\left.x \in \operatorname{Support}(X)\right)$. Then the set $\Gamma(X)$ is a nonempty set.

Remark 3. The proof of this result is based on Brouwer's Fixed Point Theorem (see, e.g., [29], p. 260). If μ^{*} is a correspondence, the natural extension of the preceding result would be done applying Kakutani's Theorem instead of Brouwer's (see, e.g., [29], p. 259). Nevertheless, Kakutani's result needs the set $\mu^{*}(x)$ to be convex, and in general this is not true in our case.

Remark 4. The existence of a compact set K verifying A2 implies that there is a kind of attractive core in the support of X (the compact set K): the mean of any hyperplane crossing K is inside K. For instance, if X is normal with zero mean and variance matrix Σ, then the compact sets $K_{c}=\left\{x \in \mathbb{R}^{p}: x^{t} \Sigma^{-1} x \leq c\right\}$ verify condition A2. In general it looks sensible to think that sets of the form $\{x: f(x)>\epsilon\}$, for small $\epsilon>0$, should satisfy this condition.

The existence of a principal curve in the neighborhood of any principal oriented point is guaranteed by the following theorem.

Theorem 2 Consider a random variable X with finite second moments and density function f of class $C^{r}, r \geq 2$. Assume that the correspondence b^{*} is in fact a function (i.e., $\#\left\{b^{*}(x)\right\}=1$, for all $x \in \operatorname{Support}(X)$). Let x_{0} be a POP for X in the interior of Support (X), with principal direction $b^{*}\left(x_{0}\right)$. Then there exists a PCOP α in a neighborhood of x_{0} : there exists a positive ε and a curve $\alpha:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{p}$ such that $\alpha(0)=x_{0}$ and $\alpha(t)$ is a POP of X for all $t \in(-\varepsilon, \varepsilon)$. Moreover α is continuously differentiable and $\alpha^{\prime}(0)=\lambda_{0} K_{0}$, where

$$
K_{0}=\frac{\partial \mu^{*}}{\partial x}\left(x_{0}\right) b^{*}\left(x_{0}\right) \in \mathbb{R}^{p}
$$

and $\lambda_{0}=b^{*}\left(x_{0}\right)^{t} \alpha^{\prime}(0) \in \mathbb{R}$.

Because of this result, it is possible to compute the value of the tangent vector to a PCOP at a given point:

Corollary 1 Let us assume that there exists a \mathcal{C}^{1} curve $\alpha: I \rightarrow \mathbb{R}^{p}$ being a PCOP. Then $\alpha^{\prime}(t)=\lambda(t) K(t)$ for all t in the interior of I, where

$$
K(t)=\frac{\partial \mu^{*}}{\partial x}(\alpha(t)) b^{*}(\alpha(t)) \in \mathbb{R}^{p}
$$

and $\lambda(t)=b^{*}(\alpha(t))^{t} \alpha^{\prime}(t) \in \mathbb{R}$.

Remark 5. At this point, the question about whether $\alpha^{\prime}(t)$ coincides with $b^{*}(\alpha(t))$ or not arises in a natural way. The answer to that question is in general negative. Here we have a simple example. (Other examples verify that $b^{*}(\alpha(t))=\alpha^{\prime}(t)$: the first principal component of a normal distribution, or the circle with radius equal to R for the uniform distribution on the annulus $\Omega_{R-d, R+d}$, for instance).

Example 1. Consider the set

$$
\begin{gathered}
A=\left\{(x, y) \in \mathbb{R}^{2}: x<0, y>1\right\} \cup\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq y \leq 1\right\} \cup \\
\cup\left\{(x, y) \in \mathbb{R}^{2}: x>0, y<0\right\} \subset \mathbb{R}^{2}
\end{gathered}
$$

and let X be a uniform random variable in $K=A \cap B((0, .5), r)$, for some large enough r. Then, it is not difficult to verify that near the point $(0, .5)$ the following set is a principal curve of oriented points:

$$
\begin{gathered}
\alpha=\{(x, y): y=-x, x \leq-.5\} \cup\{(x, y): y=.5,-.5 \leq x \leq .5\} \cup \\
\cup\{(x, y): y=1-x, x \geq .5\}
\end{gathered}
$$

Observe that for all $(x, y) \in \alpha$ with $-.5<x<0$ the tangent direction to the curve α is parallel to the vector $(1,0)$. Moreover, for these points the principal direction of (x, y), say $b^{*}(x, y)$, is such that its orthogonal hyperplane (line, in this example) $H\left((x, y), b^{*}(x, y)\right)$ is the line determined by (x, y) and the point $(0,1)$. So $b^{*}(x, y)$ is not parallel to $(1,0)$ and we conclude that in general $\alpha^{\prime}(t) \neq b^{*}(\alpha(t))$. A similar reasoning can be done for (x, y) with $0<x<.5$.

Some comments about the uniqueness of the PCOP are in order. It is easy to find examples of random vectors with a unique PCOP (e.g., the first principal component is the unique PCOP for a non spherical multivariate normal) or many (even infinite) PCOP (e.g., any line passing through the mean is a PCOP for a spherical multivariate normal).

Theorem 2 establishes the existence of principal curves in a neighborhood of any POP. So the uniqueness question regards when these pieces of local curves can be joined to form a unique PCOP (or a finite number of them). The following result is based on compactness arguments and gives an intuition about when a PCOP is unique (the proof is direct).

Proposition 2 Consider a random vector X with finite second moments and density function f in $\mathcal{C}^{r}, r \geq 2$. Assume that hypotheses A 3 and $\mathrm{A} 4(K)$ are verified for some compact set $K \subset \mathbb{R}^{p}$. Let $\Gamma(X)$ be the set of POPs for X inside K, which is assumed to be a nonempty set. Assume that for all $x \in \Gamma(X)$ there exists a positive ε, a continuous curve $\alpha_{x}:(-\varepsilon, \varepsilon) \rightarrow K$ with $\alpha_{x}(0)=x$, and an open set $V_{x} \subseteq K$ such that $V_{x} \cap \Gamma(X)=$ $\left\{\alpha_{x}(s): s \in(-\varepsilon, \varepsilon)\right\}$. Then there exists a finite number J of continuous curves $\alpha_{j}: I_{j} \rightarrow K$, $j=1 \ldots, J$, such that $\Gamma(X)=\cup_{j=1}^{J} \alpha_{j}\left(I_{j}\right)$.

3 Principal curves for data sets

We consider a random sample X_{1}, \ldots, X_{n} from a multivariate random variable X. We assume that a non linear curve is a good summary of the structure of the distribution of X and we try to recover such a curve from the observed data X_{i}. In general, the hyperplanes passing through a given x_{0} contain a very few (usually, only zero or one) observed X_{i}. So we need to include some smoothing procedure to calculate both conditional expected values and conditional total variances.

To define smoothed expectation and variance corresponding to a hyperplane $H=$ $H(x, b)$, we project observations X_{i} orthogonally to the hyperplane and we denote the projections by X_{i}^{H}. A weight is associated to each projected observation,

$$
w_{i}=w\left(\left|\left(X_{i}-x\right)^{t} b\right|\right)=w\left(\left\|X_{i}-X_{i}^{H}\right\|\right)
$$

where w is any decreasing positive function.
The smoothed expectation of the sample corresponding to H is defined as the weighted expectation of $\left\{X_{i}^{H}\right\}$ with weights $\left\{w_{i}\right\}$. Let $\widetilde{\mu}(x, b)$ be such a value that, by definition, belongs to $H(x, b)$. The way we define the smoothed variance corresponding to a hyperplane $H(x, b)$ is

$$
\widetilde{\operatorname{Var}}(x, b)=\operatorname{Var}_{w}\left(X_{i}^{H}, w_{i} ; i=1, \ldots, n\right)
$$

where $\operatorname{Var}_{w}\left(X_{i}^{H}, w_{i}\right)$ denotes the weighted variance of the projected sample with weights $\left\{w_{i}\right\}$. The smoothed total variance is $\widetilde{\phi}(x, b)=\operatorname{Trace}(\widetilde{\operatorname{Var}}(x, b))$.

Several definitions are available for w. For instance, we can use $w(d)=K_{h}(d)=$ $K(d / h)$, where K is a univariate kernel function used in nonparametric density or regression estimation and h is its bandwidth parameter. If we use $w=K_{h}$, the smoothness of $\widetilde{\mu}$ and $\tilde{\phi}$ as functions of (x, b) depends on h, as well as it happens in univariate nonparametric functional estimation.

In Section 2 the convenience on conditioning on $H_{c}(x, b)$, instead of $H(x, b)$, was pointed out. Translated to the sample smoothed world, conditioning to $H(x, b)$ is equivalent to using all the projected observations X_{i}^{H} with positive weights w_{i}. On the other hand, conditioning to $H_{c}(x, b)$ implies that we must look for clusters on the projected data configuration $\left\{X_{i}^{H}: w_{i}>0\right\}$, assign x to one of these clusters, and use only the points in that cluster to compute $\widetilde{\phi}$ and $\widetilde{\mu}$. We have implemented this last procedure (see Algorithm 2 in Appendix I for details). So, when we write $\widetilde{\phi}$ and $\widetilde{\mu}$ we assume that care for the eventual existence of more than one cluster in $H(x, b)$ has been taken.

Once the main tools for dealing with data sets ($\widetilde{\mu}, \widetilde{\phi}$) have been defined, we can look for sample POPs (subsection 3.1) and afterwards sample PCOPs (subsection 3.2).

3.1 Finding principal oriented points

The sample version of b^{*} and μ^{*} are defined from $\widetilde{\mu}$ and $\tilde{\phi}$ in a direct way. We call them \tilde{b}^{*} and $\widetilde{\mu}^{*}$, respectively. So the set of sample POPs is the set of invariant points for $\widetilde{\mu}^{*}$: $\tilde{\Gamma}=\left\{x \in \mathbb{R}^{p}: x \in \tilde{\mu}^{*}(x)\right\}$. In order to approximate the set $\tilde{\Gamma}$ by a finite set of points, we propose the following procedure.

We randomly choose a point of the sample X_{1}, \ldots, X_{n} and call it x_{0}. Then we iterate the function $\widetilde{\mu}^{*}$ and define $x_{k}=\widetilde{\mu}^{*}\left(x_{k-1}\right)$ until convergence (i.e., $\left\|x_{k}-x_{k-1}\right\| \leq \epsilon$, for some prefixed ϵ) or until a prefixed maximum number of iterations is reached. If convergence is attained then we include the last x_{k} in the set of sample POPs $\tilde{\Gamma}$. Repeating m times the previous steps (for a prefixed m) a finite set of sample POPs is obtained.

There is no theoretical guarantee about the convergence of the sequence $\left\{x_{k}=\tilde{\mu}^{*}\left(x_{k-1}\right)\right.$: $k \geq 1\}$, for a given x_{0}. Nevertheless, in all the simulated and real data sets we have examined, we always quickly reached convergence.

Example 3. We illustrate the performance of this procedure with a real data set. Data
came from the Spanish household budget survey (EPF, Encuesta de Presupuestos Familiares) corresponding to year 1991. We select randomly 500 households from the 21.155 observations of the EPF, and for each of them we annotate proportions of the total expenditure dedicated to housing (variable P_{1}) and transport (variable P_{2}). Our data are the 500 observations of the two-dimensional variable $P=\left(P_{1}, P_{2}\right)$. By definition, values of P fall inside the triangle defined by the points $(0,0),(0,1)$ and $(1,0)$. A graphic representation indicates that data are non elliptic. We use $m=100$ and obtain the set of sample POPs represented in Figure 1 (upper panel) as big empty dots. The principal direction of each one of these points is also represented as a short segment. Observe that the pattern of the POPs suggests that more than a single curve are needed in order to capture the main features of the data. Specifically, it seems to be two principal curves with a common branch at the right hand side of a point around (.15, .1).

3.2 Finding a principal curve

In the population world, Theorem 2 guarantees that for any POP there exists a PCOP passing through this point. This result leads us to consider the following approach to build a sample PCOP: starting with a sample POP, we look for other POPs close to the first one, and placed in a way such that they recall a piece of a curve.

We follow the procedure described in the previous subsection until a POP appears. We call this point x_{1} and denote by b_{1} the principal direction of x_{1} (if there are more than one element in $\tilde{b}^{*}\left(x_{1}\right)$, we choose one of them). We take $s_{1}=0$ and define $\alpha\left(s_{1}\right)=x_{1}$. Now we move a little bit from x_{1} in the direction of b_{1} and define $x_{2}^{0}=x_{1}+\delta b_{1}$, for some $\delta>0$ previously fixed. The point x_{2}^{0} serves as the seed of the sequence $\left\{x_{2}^{k}=\widetilde{\mu}^{*}\left(x_{2}^{k-1}\right): k \geq 1\right\}$, which eventually approaches to a new point x_{2}. Define b_{2} as $b^{*}\left(x_{2}\right), s_{2}$ as $s_{1}+\left\|x_{2}-x_{1}\right\|$ and $\alpha\left(s_{2}\right)=x_{2}$.

We iterate that procedure until no points X_{i} can be considered "near" the hyperplane $H\left(x_{k}^{0}, b_{k}\right)$. Then we return to $\left(x_{1}, b_{1}\right)$ and complete the principal curve in the direction of $-b_{1}$. Let K be the total number of sample POPs x_{k} visited by the procedure.

Algorithm 1 in the Appendix I formalizes the whole procedure. In principle, only open principal curves are allowed by this algorithm but minor changes are needed to permit the estimation of a closed curve.

To obtain a curve $\hat{\alpha}$ from $I \subseteq \mathbb{R}$ to \mathbb{R}^{p} we define $I=\left[s_{1}, s_{K}\right]$ and identify the

Figure 1: Example 3. Upper panel: principal oriented points for proportions of household expenditure data. Lower panel: two smoothed principal curves of oriented points (solid lines) and the HSPC (dashed line).
curve with the polygonal $\left\{x_{1}, \ldots, x_{K}\right\}$. Observe that this curve is parameterized by the arc length. Smoothing techniques can also be used to find a smoother version of this polygonal curve (for instance, the curves represented at the bottom graphic of Figure 1 are obtained from the original polygonals by spline smoothing).

During the algorithm completion, it is possible to estimate many important statistical objects. The density of the induced random variable S on I can be estimated by

$$
\hat{f}_{S}\left(s_{k}\right)=C_{1} \frac{1}{n h} \sum_{i=1}^{n} K_{h}\left(\left|\left(X_{i}-x_{k}\right)^{t} b_{k}\right|\right),
$$

where the constant C_{1} is chosen to have integral of \hat{f}_{S} equal to one. We also can assign a mass to each s_{k} :

$$
\hat{p}_{S}\left(s_{k}\right)=C_{2} \hat{f}_{S}\left(s_{k}\right)\left(\frac{s_{k+1}-s_{k-1}}{2}\right)
$$

where C_{2} is such that the sum of $\hat{p}_{S}\left(s_{k}\right)$ is one. Then we could consider s_{1}, \ldots, s_{K} as a weighted sample of S. The mean and variance of this sample can be computed and subtracting the mean to the values s_{k} we obtain that S has estimated zero mean. Let us call $\widehat{\operatorname{Var}}(S)$ the estimated variance of S. An estimation of the total variance in the normal hyperplane can also be recorded for each $s_{k}: \widetilde{\phi}\left(x_{k}, b_{k}\right)$.

Two more definitions appear as natural. The first one is the central point of the data set along the curve. As S has estimated zero mean, this central point is defined as $\hat{\alpha}(0)$. The second is a measure of total variability consistent with the estimated structure around a curve. Our proposal is to define the total variability of the data along the curve as

$$
\widehat{T V}_{P C O P}=\widehat{\operatorname{Var}}(S)+\int_{I} \tilde{\phi}^{*}(\alpha(s)) \hat{f}_{S}(s) d s \simeq \widehat{\operatorname{Var}}(S)+\sum_{k} \widetilde{\phi}\left(x_{k}, b_{k}\right) \hat{p}_{S}\left(s_{k}\right)
$$

From these numbers we define the proportion of total variability explained by the estimated curve as $p_{1}=\widehat{\operatorname{Var}}(S) / \widehat{T V}_{P C O P}$. This quantity plays the role of the proportion of variance explained by the first principal component in the linear world.

Example 3 (Continuation). We compute now PCOPs for the households' expenditures data. Some MATLAB routines have been written to implement the Algorithm 1. The Figure 1 (upper panel) suggests that there are two curves for this data set. We look for them by starting the Algorithm 1 with two different points $x_{1}^{0}=(.1, .05)$ and $x_{1}^{0}=(.15, .2)$, and respective values of the starting vectors $b_{1}^{0}=(1,1)$ and $b_{1}^{0}=(0,-1)$. The resulting curves are drawn (after spline smoothing) in Figure 1 (lower panel). The total variability along the curves are, respectively, .0201 and .0306 , with percentages of variability explained by

Figure 2: Example 4. PCOP and HSPC for a simulated data set. Left hand side panel shows the simulated data. At the right hand side three curves are represented: the generating curve (dotted line), the HSPC (solid line with empty dots) and the PCOP (solid line with big dot marks).
the correspondent PCOP equal to 78.24% and 84.25%. For this data set, the total variance is .0302 , and the first principal component explains the 70.6% of it. So we conclude that any of the two estimated PCOPs summarizes the data better than the first principal component does. The corresponding HSPC is also presented in the same graphic (dashed line) to allow comparisons.

Example 4. To illustrate the algorithm 1, we apply it to a simulated data set. The data are generated as

$$
X=\binom{X_{1}}{X_{2}}=\binom{\alpha_{1}(S)}{\alpha_{2}(S)}+\frac{1}{\left\|\alpha^{\prime}(S)\right\|}\binom{-\alpha_{2}^{\prime}(S)}{\alpha_{1}^{\prime}(S)} Y
$$

where $\alpha:[0,1] \rightarrow \mathbb{R}^{2}, x=\alpha_{1}(s)=2 \pi s+1, y=\alpha_{2}(s)=2(1 / x-\cos (x-1)), S \sim U(0,1)$ and $Y \sim N(0, \sigma=.4)$. The sample size in our example is $n=200$.

Figure 2 shows the data set (small dots) and the graph of α (dashed curve). For that data set two principal curve methodologies have been applied: our own algorithm and that of Hastie and Stuetzle [16]. The S-plus public domain routines written by Trevor Hastie and available on STATLIB (http://www.stat.cmu.edu/S/principal.curve) are used to implement the HSPC methodology. Default parameters of these routines have been used (i.e., the maximum number of iterations is equal to 10 , and the smoother is
based on splines with equivalent degrees of freedom equal to 5). The HSPC has been represented in Figure 2 by a solid line with empty dot marks. The bold solid curve with big dot marks corresponds to the resultant PCOP. We can observe that the graphs of both principal curves are very similar in almost all their range of parameters. They differ for values of $\left(X_{1}, X_{2}\right)$ near the extreme $(1,0)$ of the scatter plot. Both procedures present a bias when the curvature of the original parametric curve α is important (near the point $(4,2))$. Techniques proposed in Banfield and Raftery [1] should be applied.

The bandwidth parameter h is 1 and δ is .33. The estimated interval I is $I=$ [$-5.10,4.37$], so the length of the PCOP is 9.47 (the length of the HSPC is 10.23 and the length of the generating curve is 10.39). The total variability along the PCOP curve is 6.97 . The estimation of the variance of the random variable S defined on I is 6.82 and the average value of the variance along the orthogonal lines to the principal curve is 0.15 (the generating noise variance is 0.16). So the proportion of the total variability explained by the first principal curve is $p_{1}=.98$.

Example 5. We replicate the example contained in section 5.3 of [16]. We generate a set of 100 data points from a circle in \mathbb{R}^{2} with independent normal noise:

$$
X=\binom{X_{1}}{X_{2}}=\binom{5 \sin (S)}{5 \cos (S)}+\binom{\epsilon_{1}}{\epsilon_{2}}
$$

with $S \sim U[0,2 \pi]$ and $\epsilon_{i} \sim N(0,1)$. Figure 3 summarizes the results of the estimation of the first principal curve by our methodology and also by using Hastie and Stuetzle's routines. Symbols are as in Figure 2.

The length of the original curve is 10π. When algorithm 1 is used, the estimated curve has length 30.8342 and the length for the estimated HSPC is 33.41086 . The estimated total variability along the curve is 87.65 , the estimated $\operatorname{Var}(S)$ is 86.58 (the value for the generating distribution is $100 \pi^{2} / 12=82.25$) and the average residual variance in the orthogonal directions is 1.06 (this value should not be compared directly with $\operatorname{Var}\left(\epsilon_{i}\right)$). Density estimation of variable S and local orthogonal variance estimation are approximately constant over the estimated support of S. These facts are according to the data generating process, which original parameterization was unit-speed in this example.

Example 6. Data in \mathbb{R}^{3} A simulated data set in \mathbb{R}^{3} is considered. Data are around the piece of circle $\left\{(x, y, z): x^{2}+y^{2}=10^{2}, x \geq 0, y \geq 0, z=0\right\}$. A uniform random variable

Figure 3: Example 5. Data set around a circle. Left hand side panel shows the simulated data. At the right hand side three curves are represented: the original circle (dotted line), the HSPC (solid line with empty dots) and the PCOP (solid line with big dot marks).
S over this set was generated, and then a noise Y was added to it so that $(Y \mid S=s)$ fall in the orthogonal plane to the circumference at the point s, and has bidimensional normal distribution with variance matrix equal to the 2×2 identity matrix. We used the parameters $h=1$ and $\delta=.75$. The resulting PCOP is represented in Figure 4 from two points of view. The estimated curve explains a 92.19% of the total variability along the curve.

4 Generalized total variance and higher order principal curves

In subsection 3.2 the total variability of a data set along an estimated curve was defined as $\widehat{T V}_{P C O P}=\widehat{\operatorname{Var}}(S)+\int_{I} \widetilde{\phi}^{*}(\alpha(s)) \hat{f}_{S}(s) d s$. If a random variable X has the curve $\alpha: I \rightarrow \mathbb{R}^{p}$ as a principal curve of oriented points, the sample measure $\widehat{T V}_{P C O P}$ corresponds to the population quantity

$$
T V_{\alpha}(X)=\operatorname{Var}(S)+\int_{I} T V\left[X \mid X \in H_{c}\left(\alpha(s), b^{*}(\alpha(s))\right)\right] f_{S}(s) d s
$$

where S is a random variable on I having probability distribution induced by X and α (see Definition 3).

Observe that when X has normal distribution and α is the first principal component

Figure 4: Example 6. Two perspectives of the estimated PCOP (solid line) for the threedimensional data around a piece of circumference (dotted line).
line, $T V_{\alpha}(X)$ is precisely the total variance of X because $T V\left[X \mid X \in H_{c}\left(\alpha(s), b^{*}(\alpha(s))\right)\right]$ is constant in s and equals the total variance of the joint distribution of the remaining $(p-1)$ principal components. We conclude that $T V_{\alpha}(X)$ is a good way to measure the variability of a p-dimensional random vector X having a PCOP α, provided that $T V\left[X \mid X \in H_{c}\left(\alpha(s), b^{*}(\alpha(s))\right)\right]$ appropriately measures the dispersion of the $(p-1)$ dimensional conditional random vector $\left(X \mid X \in H_{c}\left(\alpha(s), b^{*}(\alpha(s))\right)\right)$. When these $(p-1)$ dimensional distributions are ellipsoidal, the total variance is a well-suited measure, but when non-linearities also appear in $\left(X \mid X \in H_{c}\left(\alpha(s), b^{*}(\alpha(s))\right)\right)$, the total variance is no longer advisable and it should be replaced, in the definition of $\widehat{T V}_{P C O P}$, by a measure of the variability along a nonlinear curve.

The former arguments lead us to define the generalized total variance (hereafter GTV) of a p-dimensional random variable by induction in the dimension p. The definition is laborious because many concepts have to be simultaneously and recursively introduced. The following example could help to clarify what is going on.

Example 7. Figure 5 illustrates the ideas we are shortly defining. We want to deal with a three dimensional random variable distributed around a two dimensional structure. The curve in $\mathbb{R}^{3}:\left\{(x, y, z): x^{2}+y^{2}=10^{2}, x \geq 0, y \geq 0, z=0\right\}$ is the central axis of the structure (we will call it the first generalized $P C O P$). For each point $p_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ in this curve, there exists a specific second generalized $P C O P, \beta_{p_{0}}: \mathbb{R} \rightarrow H_{p_{0}}$, where $H_{p_{0}}$ is the orthogonal hyperplane to the first principal curve at p_{0}. In this case, $\beta_{p_{0}}$ is

$$
\beta_{p_{0}}(v)=\left(\begin{array}{cc}
-x_{0} / 10 & 0 \\
-y_{0} / 10 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
y_{0} / 10 & x_{0} / 10 \\
x_{0} / 10 & -y_{0} / 10
\end{array}\right)\binom{v}{\sin (v)}
$$

for $v \in[-\pi, \pi]$. The local second principal curves should smoothly vary along the first principal curve to allow the estimation.

Definition 4

For any one-dimensional random variable X with finite variance we say that X recursively admits a generalized principal curve of oriented points (GPCOP). We say that $x=E(X)$ is the only generalized principal oriented point $(G P O P)$ for X, that $\alpha:\{0\} \rightarrow \mathbb{R}$, with $\alpha(0)=E(X)$ is the only GPOP for X. We define the generalized expectation of X (along
α) as $G E_{1}(X)=\alpha(0)=E(X)$, and the generalized total variance of X (along α) as $G T V_{1}(X)=\operatorname{Var}(X)$.

Now we consider $p>1$. We assume that for $k<p$ we know whether a k-dimensional random variable recursively does admit or not GPCOPs, and what GPOPs, GPCOPs, $G E_{k}$ and $G T V_{k}$ are for k-dimensional random variables that recursively admit GPCOP.

Consider a p-dimensional random variable X with finite second moments. We say that X recursively admits GPCOPs if the following conditions (i), (ii) and (iii) are verified. The first one is as follows:
(i) For all $x \in \mathbb{R}^{p}$ and all $b \in S^{p-1}$ the $(p-1)$-dimensional distribution $\left(X \mid X \in H_{c}(x, b)\right)$ recursively admits principal curves.

If this condition holds, we define

$$
\begin{aligned}
& \mu_{G}(x, b)=G E_{p-1}\left(X \mid X \in H_{c}(x, b)\right), \phi_{G}(x, b)=G T V_{p-1}\left(X \mid X \in H_{c}(x, b)\right), \\
& b_{G}^{*}(x)=\arg \min _{b \in S^{p-1}} \phi_{G}(x, b), \mu_{G}^{*}(x)=\mu_{G}\left(x, b_{G}^{*}(x)\right), \phi_{G}^{*}(x)=\phi_{G}\left(x, b_{G}^{*}(x)\right) .
\end{aligned}
$$

The set of fixed points of $\mu_{G}^{*}, \Gamma_{G}(X)$, is called the set of generalized principal oriented points of X. Given a curve $\alpha: I \subseteq \mathbb{R} \rightarrow \mathbb{R}^{p}$ parameterized by the arc length, we say that it is a generalized principal curve of oriented points for X if $\alpha(I) \subseteq \Gamma_{G}(X)$.

Now we can express the second condition for X recursively admitting GPCOPs:
(ii) There exists a unique curve such that α is GPCOP for X.

When conditions (i) and (ii) apply, we define for any $s \in I$ the value $\bar{f}_{S}^{G}(s)=$ $\int_{\mathbb{R}^{p-1}} f\left(\alpha(s)+\left(b_{G}^{*}\right)_{\perp}(\alpha(s)) v\right) d v$. The third condition is:
(iii) The integral $\nu=\int_{I} \bar{f}_{S}^{G}(s) d s$ is finite and the random variable S with density function $f_{S}^{G}(s)=(1 / \nu) \bar{f}_{S}^{G}(s)$ has finite variance and zero mean (may be a translation of S is required to have $E(S)=0$).

If condition (iii) holds, we say that the distribution of S has been induced by X and α.
Now we define $G E_{p}$ as $G E_{p}(X)=\alpha(0)$, and the $G T V_{p}$ by

$$
\begin{aligned}
G T V_{p}(X)=\operatorname{Var}(S) & +\int_{I} G T V_{p-1}\left(X \mid X \in H_{c}\left(\alpha(s), b_{G}^{*}(\alpha(s))\right) f_{S}(s) d s=\right. \\
= & \left.\operatorname{Var}(S)+\int_{I} \phi_{G}^{*}(\alpha(s))\right) f_{S}(s) d s
\end{aligned}
$$

Observe that the concept of second (and higher order) principal curves is involved in the former definition. Our approach implies that there is not a common second principal curve for the whole distribution of X, but that there is a different second principal curve for each point in the first one. So the concept of second principal curve (and higher order) is a local concept.

Definition 5 If X recursively admits GPCOPs and α is GPCOP for X, we say that α is the first GPCOP of X. We say that the first GPCOPs for the ($p-1$)-dimensional distributions $\left(X \mid X \in H_{c}\left(\alpha(s), b_{G}^{*}(\alpha(s))\right)\right.$ are the family of second GPCOPs for X, and so on.

Observe that the definition of GPCOPs coincides with that of PCOP for $p=2$. For any p, both definitions coincide if the conditional distributions to $X \in H(x, b)$ are ellipsoidal for all x and all b. In this case, the second principal curves are the first principal component of these conditional distributions, and so on.

When second principal curves are considered, we say that the quantity

$$
p_{1}=\frac{\operatorname{Var}(S)}{\operatorname{GTV}_{p}(X)}
$$

is the proportion of generalized total variance explained by the first principal curve. As for each $s \in I$, the local second principal curve is the first principal curve for a $(p-1)$ dimensional random variable, we can compute the proportion $p_{1}(s)$ of the generalized total variance that the second principal curve locally explains at the point $\alpha(s)$. We calculate the expected proportion of explained GTV by the local second principal curves, define

$$
p_{2}=\left(1-p_{1}\right) \int_{I} p_{1}(s) f_{S}(s) d s
$$

and interpret it as the proportion of the GTV explained by the second principal curves. We can iterate the process and obtain $p_{j}, j=1, \ldots, p$, adding up to 1 .

Example 7. (Continuation)
Random data have been generated according to the structure shown in Figure 5. Uniform data were generated over the piece of circumference that constitutes the first principal curve. Then, each of these data (namely, p_{0}) was (uniformly) randomly moved along the sinusoidal second principal curve laying on p_{0}, to a new position p_{1}. Finally, a univariate random noise perturbs the point p_{1} inside the line orthogonal to the second curve at p_{1},

Figure 5: Example 7: Theoretical structure of local second principal curves along the first one.

Figure 6: Example 7. Estimation of the first principal curve and the family of local second principal curves along the first one. (a) Data set; (b) first GPCOP and second GPCOPs; (c) same as (b) viewed from a point with zero degrees of elevation over the $X Y$ plane; (d) GPCOP system projected over the $X Y$ plane.

Source of variability	$G T V$	$\% G T V$	Cum.GTV	Cum. $\% G T V$
First Principal Curve	22.18	88.45%	22.18	88.45%
Local 2nd. Ppal. Cvs.	2.71	10.80%	24.89	99.25%
Local 3rd. Ppal. Cvs.	.19	$.75 \%$	25.08	100.00%
Total	25.08	100%		

Table 1: Example 7. Proportion of the generalized total variance due to the first principal curve and to local second principal curves, for data set of Figure 6.
also contained $H_{p_{0}}$. The resulting point, p_{3}, is one of the simulated points. The normal noise has standard deviation $\sigma=.2$.

Figure 6 shows the results of the estimation procedure for a sample of size equal to 1000, offering three different perspectives of the estimated object. Table 1 indicates what percentages of the generalized total variance are due to the first GPCOP and to the family of second GPCOPs.

The comparison of our proposals with other methods for fitting principal surfaces (Hastie [15], LeBlanc and Tibshirani [20]) becomes difficult because at our knowledge there is no easily available software for alternative existing methods.

5 Discussion

In the present work the concept of principal curve introduced by Hastie and Stuetzle [16] is approached from a different perspective. A new definition of the first principal curve has been introduced, based on the notion of principal oriented points.

All the arguments are based on conditional expectation and variance, given that a p dimensional random variable lies in the hyperplane defined by a point x and the orthogonal direction b, but different measures of conditional location and dispersion could be used, as far as they are smooth function of x and b. More robust procedures could be obtained in that way.

In the last part of the paper we introduce generalized definitions of expectation and total variance along a principal curve. For random variables having principal curves for all its lower dimensional marginal distributions, these new definitions allow us to define second a higher order local principal curves in a recursive way.

Appendix I: Algorithms

Algorithm 1 (First Principal Curve)

Step 1. Make $k=1, j=0$ and $F=1$. Choose $x_{1}^{0} \in \mathbb{R}^{p}$ (for instance, the observed data closest to the sample mean). Choose $b_{1}^{0} \in S^{p-1}$ (for instance, $b_{1}^{0}=v_{1}$, where v_{1} is the director vector of the first principal component of the sample). Choose $h>0, \delta>0$ and $p_{t} \in[0,1]$. Let n be the sample size.

Step 2. Iterate in $j \geq 1$ the expression $x_{k}^{j}=\tilde{\mu}^{*}\left(x_{k}^{j-1}\right)$ until convergence. Let x_{k} the final point of the iteration. Let $b_{k}=b^{*}\left(x_{k}\right)$. If $\left(b_{k}^{0}\right)^{t} b_{k}<0$, then assign $-b_{k}$ to b_{k}.

Step 3. If $k=1$ define $s_{1}=0$, and if $k>1$ define $s_{k}=\operatorname{Prev}\left(s_{k}\right)+F\left\|x_{k}-\operatorname{Prev}\left(x_{k}\right)\right\|$. Define a new point in the principal curve $\alpha\left(s_{k}\right)=x_{k}$.

Step 4. Define $x_{k+1}^{0}=x_{k}+F \delta b_{k}, b_{k+1}^{0}=b_{k}$.
Step 5. First stopping rule.
If $\#\left\{i:\left(X_{i}-x_{k+1}^{0}\right)^{t} b_{k}^{0}>0\right\}<p_{t} n$ (i.e., there are less than a proportion p_{t} of the remaining points in the present direction of the principal curve) then go to Step 7.

Step 6. Define $\operatorname{Prev}\left(s_{k+1}\right)=s_{k}$ and $\operatorname{Prev}\left(x_{k+1}\right)=x_{k}$. Let $k=k+1$ and $j=0$. Return to Step 2.

Step 7. Second stopping rule.
If $F=1$ (i.e., only one tail of the principal curve has been explored) then make $\operatorname{Prev}\left(s_{k+1}\right)=s_{1}=0, \operatorname{Prev}\left(x_{k+1}\right)=x_{1}, k=k+1, F=-1, x_{k}^{0}=x_{1}^{0}+F \delta b_{1}$ and $b_{k+1}^{0}=b_{1}$. Go to Step 2.

Step 8. Final step. Let $K=k$. Order the values $\left\{\left(s_{k}, x_{k}\right), k=1, \ldots, K\right\}$ according to the values $\left\{s_{k}\right\}$. The ordered sequence of pairs is the estimated principal curve of oriented points (PCOP).

We present now the algorithm we use to assign x to a cluster in $H(x, b)$. Consider a set of points $\left\{y_{0}, y_{1}, \ldots, y_{n}\right\}$ in \mathbb{R}^{d}. The objective is to identify what points $y_{i}, i \geq 1$ belong to the same cluster as y_{0}. The algorithm is as follows.

Algorithm 2 (Clustering around a given point)

Step 1. Define the sets $C=\left\{y_{0}\right\}$ and $D=\left\{y_{1}, \ldots, y_{n}\right\}$. Set $j=1$. Choose a positive real number λ (for instance, $\lambda=3$).

Step 2. While $j \leq n$, repeat:
2.1 Define $d_{j}=d(C, D)=\min \{d(x, y): x \in C, y \in D\}$ and let y_{j}^{*} be the point $y \in D$ where this minimum is achieved.
2.2 Set $C=C \cup\left\{y_{j}^{*}\right\}$ and $D=D-\left\{y_{j}^{*}\right\}$. Set $j=j+1$.

Step 3. Compute the median m and quartiles Q_{1} and Q_{3} of the data set $\left\{d_{1}, \ldots, d_{n}\right\}$. Define the distance barrier as $\bar{d}=Q_{3}+\lambda\left(Q_{3}-Q_{1}\right)$.

Step 4. Let $j^{*}=\min \left\{\left\{j: d_{j}>\bar{d}\right\} \cup\{n+1\}\right\}-1$. The final cluster is $C^{*}=$ $\left\{y_{1}^{*}, \ldots, y_{j^{*}}^{*}\right\}$.

Observe that the algorithm identifies extreme outlying distances d_{j} as we would do it by using a box-plot, and it only accepts a point y_{i} as being in the same cluster as y_{0} when there is a polygonal line from y_{0} to y_{i} with vertex in $\left\{y_{0}, \ldots, y_{n}\right\}$ and segments shorter than \bar{d}.

Appendix II: Proofs

The following result determines the smoothness of μ and ϕ, b^{*}, μ^{*} and ϕ^{*} in terms of the smoothness of f.

Proposition 3 If f is of class \mathcal{C}^{r} at x and $\int_{\mathbb{R}^{p-1}} f\left(x+b_{\perp} v\right) d v$ is not equal to zero at (x, b), then μ and ϕ are of class \mathcal{C}^{r} at (x, b). If (x, b) verifies the previous hypothesis for all $b \in b^{*}(x)$, the function $\phi^{*}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is of class \mathcal{C}^{r} at x. Moreover, if $r \geq 2$ and b^{*} is a function in a neighborhood of x (i.e., $\#\left\{b^{*}(y)\right\}=1$ for y near x), then μ^{*} is also a function in a neighborhood of x, and μ^{*} and b^{*} are of class \mathcal{C}^{r-1} at x.

Proof. Smoothness properties of μ and ϕ follow as a direct consequence of Fubini's Theorem (see, e.g., [4], p. 524). The property concerning ϕ^{*} is a direct application of the Maximum Theorem (see, e.g., [29], p. 254). The Sensitivity Theorem (a corollary of the Implicit Function Theorem; see, e.g., [2], p.277) permits smoothness properties of b^{*} to be established, and then the smoothness of μ implies that of μ^{*}.

Proof of Proposition 1. The proof follows directly from the next Lemma.
Lemma 1 Consider $X \sim N_{p}(\mu, \Sigma)$. Take $x_{0} \in \mathbb{R}^{p}$ and for each $b \in \mathbb{R}^{p}$ such that $b^{t} \Sigma b=1$, let $H\left(x_{0}, b\right)=\left\{x \in \mathbb{R}^{p}:\left(x-x_{0}\right)^{t} b=0\right\}$ the orthogonal hyperplane to b passing through x_{0}. Consider the optimization problems

$$
\text { (P1) } \min _{b: b^{\Sigma} \Sigma b=1}\left\{T V\left(X \mid X \in H\left(x_{0}, b\right)\right\},\right.
$$

where for any random variable $Y, T V(Y)=\operatorname{Trace}(\operatorname{Var}(Y))$ is the total variance of Y, and

$$
\text { (P2) } \max _{h: h^{t} h=1}\left\{\operatorname{Var}\left(h^{t} X\right)\right\} .
$$

Then the solutions to both optimization problems are, respectively,

$$
b^{*}=\frac{1}{\lambda_{1}^{1 / 2}} v_{1} \quad \text { and } \quad h^{*}=v_{1},
$$

where λ_{1} is the largest eigenvalue of Σ and v_{1} the corresponding unit length eigenvector. Moreover, $E\left(X \mid X \in H\left(x_{0}, b^{*}\right)\right)=\mu+s_{0} v_{1}$, with $s_{0}=\left(x_{0}-\mu\right)^{t} v_{1}$.

Proof. Defining $Y=b^{t} X$, the joint distribution of $\left(X^{t}, Y\right)^{t}$ is $(p+1)$-dimensional normal. So standard theory on conditional normal distributions tells us that

$$
\begin{equation*}
\left(X \mid X \in H\left(x_{0}, b\right)\right) \equiv\left(X \mid Y=b^{t} x_{0}\right) \sim N_{p}\left(\mu+\frac{b^{t}\left(x_{0}-\mu\right)}{b^{t} \Sigma b} \Sigma b, \Sigma-\frac{\Sigma b b^{t} \Sigma}{b^{t} \Sigma b}\right) . \tag{1}
\end{equation*}
$$

So the conditional total variance is

$$
T V\left(X \mid X \in H\left(x_{0}, b\right)\right)=\operatorname{Trace}(\Sigma)-\frac{1}{b^{t} \Sigma b} \operatorname{Trace}\left(\Sigma b b^{t} \Sigma\right)
$$

and the problem ($\mathbf{P 1}$) is

$$
\begin{aligned}
& \min _{b: b^{t} \Sigma b=1}\left\{T V\left(X \mid X \in H\left(x_{0}, b\right)\right)\right\}=\operatorname{Trace}(\Sigma)-\max _{b: b^{\Sigma} \Sigma b=1}\left(b^{t} \Sigma \Sigma b\right)= \\
& =\operatorname{Trace}(\Sigma)-\max _{h: h^{t} h=1}\left(h^{t} \Sigma h\right)=\operatorname{Trace}(\Sigma)-\max _{h: h^{t} h=1} \operatorname{Var}\left(h^{t} X\right),
\end{aligned}
$$

where $h=\Sigma^{1 / 2} b$. So the solution of (P1) is given by the solution of (P2), which is the classical problem of principal components, with optimal solution $h^{*}=v_{1}$, the eigenvector associated with the largest eigenvalue λ_{1} of Σ. The corresponding solution of (P1) is

$$
b^{*}=\Sigma^{-1 / 2} h^{*}=\frac{1}{\lambda_{1}} \Sigma^{-1 / 2} \Sigma h^{*}=\frac{1}{\lambda_{1}} \Sigma^{1 / 2} h^{*}=\frac{1}{\lambda_{1}} \lambda^{1 / 2} h^{*}=\lambda^{-1 / 2} h^{*},
$$

and the main part of the proposition is proved. Two facts were used in this chain of equalities: first, h^{*} is eigenvector of Σ, and second, that if v is eigenvector of Σ with associate eigenvalue λ, then v is eigenvector of $\Sigma^{1 / 2}$ with associate eigenvalue $\lambda^{1 / 2}$. To prove the last sentence of the result, it suffices to replace $b=b^{*}$ in (1).

Proof of Theorem 1. The proof is direct because μ^{*} is a continuous function (Proposition 3) and Brouwer's Fixed Point Theorem applies (see, e.g., [29], p. 260).

Before proving Theorem 2, we need some lemmas.
Lemma 2 Let $x \in \mathbb{R}^{p}$ and $b \in S^{p-1}$. The partial derivatives of μ are as follows.

$$
\begin{aligned}
& \text { (i) } \frac{\partial \mu}{\partial x}(x, b)=K_{x}^{\mu}(x, b) b^{t}, K_{x}^{\mu}(x, b) \in \mathbb{R}^{p}, \text { and } b^{t} K_{x}^{\mu}(x, b)=1 . \\
& \text { (ii) } \frac{\partial \mu}{\partial b}(x, b)=K_{b}^{\mu}(x, b)\left(I_{p}-b b^{t}\right), K_{b}^{\mu}(x, b) \in \mathbb{R}^{p \times p} .
\end{aligned}
$$

Proof. (i) As $\mu(x, b)$ (as a function of $x)$ is constant on $H_{c}(x, b)$, then $\mu\left(x+\left(I-b b^{t}\right) v\right), b$) is constant in v, so its derivative with respect to v is equal to 0 :

$$
\left.0=\frac{\partial}{\partial v}\left(\mu\left(x+\left(I-b b^{t}\right) v\right), b\right)\right)=\frac{\partial \mu}{\partial x}\left(x+\left(I-b b^{t}\right) v, b\right)\left(I-b b^{t}\right) .
$$

That can be written as

$$
\frac{\partial \mu}{\partial x}\left(x+\left(I-b b^{t}\right) v, b\right)=\left[\frac{\partial \mu}{\partial x}\left(x+\left(I-b b^{t}\right) v, b\right) b\right] b^{t},
$$

and when v goes to 0 , we obtain that $(\partial \mu / \partial x)(x, b)=K_{x}^{\mu}(x, b) b^{t}$, where $K_{x}^{\mu}(x, b)=$ $(\partial \mu / \partial x)(x, b) b$. In order to see that $K_{x}^{\mu}(x, b)^{t} b=1$ we derive the identity $(x-\mu(x, b))^{t} b=0$ with respect to x and obtain that $b^{t}(I-(\partial \mu / \partial x)(x, b))=0$. Then the result follows postmultiplying by $b: b^{t} b=1=b^{t} K_{x}^{\mu}(x, b)$.
(ii) Observe that $\mu(x, b+v b)$ is constant for $v \in \mathbb{R}$, so

$$
0=\frac{\partial}{\partial v} \mu(x, b+v b)=\frac{\partial \mu}{\partial b}(x, b+v b) b,
$$

and then the rows of $(\partial \mu / \partial b)(x, b+v b)$ are orthogonal to b. Therefore,

$$
\frac{\partial \mu}{\partial b}(x, b+v b)\left(I-b b^{t}\right)=\frac{\partial \mu}{\partial b}(x, b+v b) .
$$

When v goes to zero we obtain $(\partial \mu / \partial b)(x, b)=K_{b}^{\mu}(x, b)\left(I-b b^{t}\right)$, where $K_{b}^{\mu}(x, b)=$ $(\partial \mu / \partial b)(x, b)$.

Lemma 3 For all x such that $\left(x, b^{*}(x)\right)$ is a POP, it is verified that

$$
\frac{\partial b^{*}}{\partial x}(x)=\left(I_{p}-b^{*}(x) b^{*}(x)^{t}\right) \tilde{K}(x) b^{*}(x)^{t} .
$$

Proof. We divide the proof in two parts.
(1) We obtain that $b^{*}(x)^{t}\left(\left(\partial b^{*} / \partial x\right)(x)\right)=0$, deriving with respect to x the identity $b^{*}(x)^{t} b^{*}(x)=1$. Therefore $\left(\partial b^{*} / \partial x\right)(x)$ is orthogonal to $b^{*}(x)$, and we can write that $\left(I-b^{*}(x) b^{*}(x)^{t}\right)\left(\left(\partial b^{*} / \partial x\right)(x)\right)$ equals $\left(\left(\partial b^{*} / \partial x\right)(x)\right)$.
(2) As $b^{*}(x)$ is constant on $y \in H_{c}\left(x, b^{*}(x)\right)$, by similar arguments to those used in the proof of Lemma 2, we can deduce that $\left(\partial b^{*} / \partial x\right)(x)=\tilde{K}(x) b^{*}(x)^{t}$ for some $\tilde{K}(x) \in \mathbb{R}^{p}$. Now, putting together (1) and (2) the result follows.

Lemma $4\left(\partial \mu^{*} / \partial x\right)(x)=K_{x}^{\mu^{*}}(x) b^{*}(x)^{t}$, where $K_{x}^{\mu^{*}}(x) \in \mathbb{R}^{p}$. Moreover, $b^{*}(x)^{t} K_{x}^{\mu^{*}}(x)=$ 1,

Proof. We derive the identity $\mu^{*}(x)=\mu\left(x, b^{*}(x)\right)$ with respect to x, and we obtain that

$$
\frac{\partial \mu^{*}}{\partial x}(x)=\frac{\partial \mu}{\partial x}\left(x, b^{*}(x)\right)+\frac{\partial \mu}{\partial b}\left(x, b^{*}(x)\right) \frac{\partial b^{*}}{\partial x}(x) .
$$

Now, from Lemmas 2 and 3, it follows that

$$
\begin{gathered}
\frac{\partial \mu^{*}}{\partial x}(x)=K_{x}^{\mu}\left(x, b^{*}(x)\right) b^{*}(x)^{t}+ \\
+K_{b}^{\mu}\left(x, b^{*}(x)\right)\left(I-b^{*}(x) b^{*}(x)^{t}\right) \tilde{K}(x) b^{*}(x)^{t}=K_{x}^{\mu^{*}}(x) b^{*}(x)^{t}
\end{gathered}
$$

for some $K_{x}^{\mu^{*}}(x) \in \mathbb{R}^{p}$. To prove the last sentence, we derive with respect to x the identity $\left(x-\mu^{*}(x)\right)^{t} b^{*}(x)=0$, as we did in the proof of Lemma 2.

Proof of Theorem 2. The proof is based on the Implicit Function Theorem. For the point x_{0}, we have that $x_{0}=\mu\left(x_{0}, b^{*}\left(x_{0}\right)\right)$. Without loss of generality, we can assume that $x_{0}=0 \in \mathbb{R}^{p}$ and that $b_{0}=b^{*}\left(x_{0}\right)=e_{1}=(1,0, \ldots, 0)^{t} \in \mathbb{R}^{p}$. For any $x \in \mathbb{R}^{P}$ we call
x_{1} its first component and denote by x^{2} its remaining $(p-1)$ components. Analogous notation is used for defining μ_{1} and μ^{2} from function μ (we do the same thing also for μ^{*} and α).

Consider the function

$$
\begin{aligned}
\Lambda: \mathbb{R} \times \mathbb{R}^{p-1} & \rightarrow \mathbb{R}^{p-1} \\
\left(x_{1}, x^{2}\right) & \rightarrow \mu^{2}\left(\binom{x_{1}}{x^{2}}, b^{*}\binom{x_{1}}{x^{2}}-x^{2}=\left(\mu^{*}\right)^{2}\binom{x_{1}}{x^{2}}-x^{2},\right.
\end{aligned}
$$

and observe that $\Lambda(0, \mathbf{0})=\mathbf{0}$, where $\mathbf{0}$ is the zero of $\mathbb{R}^{\boldsymbol{p - 1}}$. If the Implicit Function Theorem could be applied here, we would obtain that there exists a positive ε and a function Ψ

$$
\begin{aligned}
\Psi:(-\varepsilon, \varepsilon) \subset \mathbb{R} & \rightarrow \mathbb{R}^{p-1} \\
t & \rightarrow \Psi(t)
\end{aligned}
$$

such that $\Psi(0)=\mathbf{0}$, and

$$
\Lambda(t, \Psi(t))=\mathbf{0}
$$

or, equivalently,

$$
\Psi(t)=\mu^{2}\left(\binom{t}{\Psi(t)}, b^{*}\binom{t}{\Psi(t)}\right)
$$

for all $t \in(-\varepsilon, \varepsilon)$. We now define

$$
\begin{aligned}
\alpha:(-\varepsilon, \varepsilon) \subset \mathbb{R} & \rightarrow \mathbb{R}^{p} \\
t & \rightarrow \alpha(t)=\binom{t}{\Psi(t)}
\end{aligned}
$$

Observe that the properties of Ψ guarantee that $\alpha^{2}(t)=\mu^{2}\left(\alpha(t), b^{*}(\alpha(t))\right)$. So if we prove that $\mu_{1}\left(\alpha(t), b^{*}(\alpha(t))\right)=t$ then we will have that α is the PCOP we are looking for. But indeed that is true. Observe that always $\mu(x, b)$ belongs to $H(x, b)$, so $(x-\mu(x, b))^{t} b=0$. In our case, this fact implies that

$$
\left(\alpha(t)-\mu\left(\alpha(t), b^{*}(\alpha(t))\right)\right)^{t} b^{*}(\alpha(t))=0 .
$$

As $\alpha^{2}(t)=\mu^{2}\left(\alpha(t), b^{*}(\alpha(t))\right)$, the last equation is equivalent to

$$
\left(t-\mu_{1}\left(\alpha(t), b^{*}(\alpha(t))\right)\right) b_{1}^{*}(\alpha(t))=0
$$

Remember that $b^{*}\left(x_{0}\right)=e_{1}$, so $b_{1}^{*}\left(x_{0}\right)=1$. Continuity of b^{*} implies that $b_{1}^{*}(x)>.5$ if x is close enough to x_{0}. So, ϵ can be chosen in order to have $b_{1}^{*}(\alpha(t)) \neq 0$, and then we deduce that $\left(t-\mu_{1}\left(\alpha(t), b^{*}(\alpha(t))\right)\right)$ must be zero, and we conclude that α is a PCOP.

Only checking the assumptions for the Implicit Function Theorem (see, e.g., [4], p.397) remains to complete the proof of the Theorem. We need to show that the last $(p-1)$ columns of the Jacobian of Λ at $x_{0}=(0, \mathbf{0})$ are independent. These columns are

$$
\frac{\partial \Lambda}{\partial x^{2}}\left(x_{0}\right)=\left(\frac{\partial}{\partial x^{2}}\left(\mu^{2}\left(x, b^{*}(x)\right)\right)\right)\left(x_{0}\right)-I_{p-1}
$$

Observe that the first term in this sum is the matrix obtained by dropping out the first row and the first column of the following Jacobian matrix (see Lemma 4):

$$
\frac{\partial \mu^{*}}{\partial x}=\left(\frac{\partial}{\partial x}\left(\mu\left(x, b^{*}(x)\right)\right)\right)(x)=K_{x}^{\mu^{*}}(x) b^{*}(x)^{t}
$$

As $b^{*}\left(x_{0}\right)=b_{0}=e_{1}$, the product $K_{x}^{\mu^{*}}\left(x_{0}\right) b^{*}\left(x_{0}\right)^{t}$ has its last $(p-1)$ rows equal to zero. Therefore,

$$
\frac{\partial \Lambda}{\partial x^{2}}\left(x_{0}\right)=\mathbf{0}_{(p-1) \times(p-1)}-I_{p-1}=-I_{p-1}
$$

and it has complete rank. So Implicit Function Theorem applies and the first part of the Theorem is proved.

Let us compute $\alpha^{\prime}(0)$. Again, the Implicit Function Theorem determines the derivative of Ψ with respect to t :

$$
\frac{\partial \Psi}{\partial t}=\left(\frac{\partial \Lambda}{\partial \Psi}\right)^{-1} \frac{\partial \Lambda}{\partial t}
$$

In our case,

$$
\frac{\partial \Lambda}{\partial \Psi}=I_{p-1}
$$

and

$$
\frac{\partial \Lambda}{\partial t}=\frac{\partial}{\partial x_{1}}\left(\mu^{2}\left(x, b^{*}(x)\right)\right)=\frac{\partial}{\partial x_{1}}\left(\left(\mu^{*}\right)^{2}(x)\right)
$$

and this is the first column of $\left(\partial \mu^{*} / \partial x\right)\left(x_{0}\right)=K_{x}^{\mu^{*}}\left(x_{0}\right) b_{0}^{t}$ (i.e., $\left.K_{x}^{\mu^{*}}\left(x_{0}\right)\right)$, without its first element (we have used Lemma 4). Then, $\partial \Lambda / \partial t=\left(K_{x}^{\mu^{*}}\left(x_{0}\right)\right)^{2}$. Therefore,

$$
\frac{\partial \alpha}{\partial t}(0)=\left(\frac{\partial}{\partial t}\binom{t}{\Psi(t)}\right)(0)=\binom{1}{\left(K_{x}^{\mu^{*}}\left(x_{0}\right)\right)^{2}}
$$

The result would be proved if we can show that $\left(K_{x}^{\mu^{*}}\left(x_{0}\right)\right)_{1}$ is equal to 1 . But this is true because $\left(K_{x}^{\mu^{*}}\left(x_{0}\right)\right)_{1}=K_{x}^{\mu^{*}}\left(x_{0}\right)^{t} b_{0}=1$, by Lemma 4 .

Proof of Corollary 1. As $\alpha(t)=\mu^{*}(\alpha(t))$, deriving with respect to t, we have

$$
\alpha^{\prime}(t)=\left(\frac{\partial \mu^{*}}{\partial x}(\alpha(t))\right) \alpha^{\prime}(t)=K_{x}^{\mu^{*}}(\alpha(t)) b^{*}(\alpha(t))^{t} \alpha^{\prime}(t)
$$

Then $\alpha^{\prime}(t)=\lambda(t) K_{x}^{*}(\alpha(t))$ for all $t \in I$, and $\lambda(t)=b^{*}(\alpha(t))^{t} \alpha^{\prime}(t) \in \mathbb{R}$.

References

[1] J. D. Banfield and A. E. Raftery, Ice floe identification in satellite images using mathematical morphology and clustering about principal curves, Journal of the American Statistical Association 87 (1992), 7-16.
[2] D. P. Bertsekas, Nonlinear programming, Athenea Scientific, 1995.
[3] C.M. Bishop, M. Svensén, and C. K. I. Williams, GTM: The generative topographic mapping, Neural Computation 10 (1998), no. 1, 215-234.
[4] L. Corwin and R. Szczarba, Calculus in vector spaces, Marcel Dekker, Inc., 1979.
[5] P. Delicado, Principal curves and principal oriented points, Working Paper 309, Department of Economics, Universitat Pompeu Fabra, 1998.
[6] D. Dong and T. J. McAvoy, Nonlinear principal component analysis based on principal curves and neural networks, Computers chem. Engng. 20 (1996), 65-78.
[7] T. Duchamp and W. Stuetzle, The geometry of principal curves in the plane, Technical Report 250, Department of Statistics, University of Washington, 1993.
[8] , Geometric properties of principal curves in the plane, Robust Statistics, Data Analysis, and Computer Intensive Methods, Springer, Berlin, 1995, pp. 135-152.
[9] , Extremal properties of principal curves in the plane, The Annals of Statistics 24 (1996), 1511-1520.
[10] J. Etezadi-Amoli and R.P. McDonald, A second generation nonlinear factor analysis, Psychometrika 48 (1983), 315-342.
[11] J. H. Friedman, Multivariate adaptive regression splines, The Annals of Statistics 19 (1991), 1-141, (With discussion).
[12] A. Gifi, Nonlinear multivariate analysis, New York: John Wiley, 1990.
[13] R. Gnanadesikan and M.B. Wilk, Data analytic methods in multivariate statistical analysis, Multivariate analysis, Vol. II (P.R. Krisnaiah, ed.), 1966.
[14] H. W. Guggenheimer, Differential geometry, Dover Publications, 1977.
[15] T. Hastie, Principal curves and surfaces, Laboratory for Computational Statistics Technical Report 11, Stanford University, Dept. of Statistics, 1984.
[16] T. Hastie and W. Stuetzle, Principal curves, Journal of the American Statistical Association 84 (1989), 502-516.
[17] R. A. Johnson and D. W. Wichern, Applied multivariate statistical analysis (third edition), Prentice-Hall, 1992.
[18] B. Kégl, A. Krzyżak, T. Linder, and K. Zeger, Learning and design of principal curves, Tech. Report preprint, Concordia Univ. and UC San Diego, 1997.
[19] R. Koyak, On measuring internal dependence in a set of random variables, Annals of Statistics 15 (1987), 1215-1228.
[20] M. LeBlanc and R. J. Tibshirani, Adaptive principal surfaces, Journal of the American Statistical Association 89 (1994), 53-64.
[21] F. Mulier and V. Cherkassky, Self-organization as an iterative kernel smoothing process, Neural Computation 7 (1995), no. 6, 1165-1177.
[22] M. A. Proschan and B. Presnell, Expect the unexpected from conditional expectation, The American Statistician 52 (1998), 248-252.
[23] E. Salinelli, Nonlinear principal components i. absolutely continuous random variables with positive bounded densities, The Annals of Statistics 26 (1998), 596-616.
[24] R.N. Shepard and J.D. Carroll, Parametric representation of nonlinear data structures, Multivariate analysis, Vol. II (P.R. Krisnaiah, ed.), 1966.
[25] A. J. Smola, S. Mika, and B. Schölkopf, Quantization functionals and regularized principal manifolds, Technical Report Series NC2-TR-1998-028, NeuroCOLT2, 1998.
[26] A. J. Smola, R. C. Williamson, and B. Schölkopf, Generalization bounds and learning rates for regularized principal manifolds, Technical Report Series NC2-TR-1998-027, NeuroCOLT2, 1998.
[27] J.N. Srivastava, An information approach to dimensionality analysis and curved manifold clustering, Multivariate analysis, Vol. III (P.R. Krisnaiah, ed.), 1972.
[28] D. Stanford and A. E. Raftery, Principal curve clustering with noise, Technical Report 317, Department of Statistics, University of Washington, 1997.
[29] A. Takayama, Mathematical economics (second edition), Cambridge University Press, 1985.
[30] S. Tan and M. L. Mavarovouniotis, Reducing data dimensionality through optimizing neural network inputs, AIChE Journal 41 (1995), 1471-1480.
[31] T. Tarpey and B. Flury, Self-consistency: A fundamental concept in statistics, Statistical Science 11 (1996), 229-243.
[32] R. J. Tibshirani, Principal curves revisited, Statistics and Computing 2 (1992), 183190.
[33] V.J. Yohai, W. Ackermann, and C. Haigh, Nonlinear principal components, Quality and Quantity 19 (1985), 53-69.

Another look at principal curves and surfaces, by Pedro Delicado

Running head: Another look at principal curves

Pedro Delicado
Departament d'Economia i Empresa, Universitat Pompeu Fabra
Ramon Trias Fargas 25-27, 08005 Barcelona, SPAIN
delicado@upf.es, http://www.econ.upf.es/\~delicado

If accepted for publication, the final version would be sent electronically in LaTeX2e.

[^0]: *The author is very grateful to Wilfredo Leiva-Maldonado for helpful conversations, suggestions and theoretical support. Comments of A. Kohatsu, G. Lugosi and K. Udina were also very useful. This work was partially supported by the Spanish DGES grant PB96-0300. Electronic address: delicado@upf.es, http://www.econ.upf.es/\%7Edelicado

