4 research outputs found

    An agility-oriented and fuzziness-embedded semantic model for collaborative cloud service search, retrieval and recommendation

    Get PDF
    Cloud computing enables a revolutionary paradigm of consuming ICT services. However, due to the inadequately described service information, users often feel confused while trying to find the optimal services. Although some approaches are proposed to deal with cloud service semantic modelling and recommendation issues, they would only work for certain restricted scenarios in dealing with basic service specifications. Indeed, the missing extent is that most cloud services are "agile" whilst there are many vague service terms and descriptions. This paper proposes an agility-oriented and fuzziness-embedded ontology model, which adopts agility-centric design along with OWL2 (Web Ontology Language) fuzzy extensions. The captured cloud service specifications are maintained in an open and collaborative manner, as the fuzziness in the model accepts rating updates from users on the fly. The model enables comprehensive service specification by capturing cloud concept details and their interactions, even across multiple service categories and abstraction levels. Utilizing the model as a knowledge base, a service recommendation system prototype is developed. Case studies demonstrate that the approach can outperform existing practices by achieving effective service search, retrieval and recommendation outcomes

    Self-adaptive mobile web service discovery framework for dynamic mobile environment

    Get PDF
    The advancement in mobile technologies has undoubtedly turned mobile web service (MWS) into a significant computing resource in a dynamic mobile environment (DME). The discovery is one of the critical stages in the MWS life cycle to identify the most relevant MWS for a particular task as per the request's context needs. While the traditional service discovery frameworks that assume the world is static with predetermined context are constrained in DME, the adaptive solutions show potential. Unfortunately, the effectiveness of these frameworks is plagued by three problems. Firstly, the coarse-grained MWS categorization approach that fails to deal with the proliferation of functionally similar MWS. Secondly, context models constricted by insufficient expressiveness and inadequate extensibility confound the difficulty in describing the DME, MWS, and the user’s MWS needs. Thirdly, matchmaking requires manual adjustment and disregard context information that triggers self-adaptation, leading to the ineffective and inaccurate discovery of relevant MWS. Therefore, to address these challenges, a self-adaptive MWS discovery framework for DME comprises an enhanced MWS categorization approach, an extensible meta-context ontology model, and a self-adaptive MWS matchmaker is proposed. In this research, the MWS categorization is achieved by extracting the goals and tags from the functional description of MWS and then subsuming k-means in the modified negative selection algorithm (M-NSA) to create categories that contain similar MWS. The designing of meta-context ontology is conducted using the lightweight unified process for ontology building (UPON-Lite) in collaboration with the feature-oriented domain analysis (FODA). The self-adaptive MWS matchmaking is achieved by enabling the self-adaptive matchmaker to learn MWS relevance using a Modified-Negative Selection Algorithm (M-NSA) and retrieve the most relevant MWS based on the current context of the discovery. The MWS categorization approach was evaluated, and its impact on the effectiveness of the framework is assessed. The meta-context ontology was evaluated using case studies, and its impact on the service relevance learning was assessed. The proposed framework was evaluated using a case study and the ProgrammableWeb dataset. It exhibits significant improvements in terms of binary relevance, graded relevance, and statistical significance, with the highest average precision value of 0.9167. This study demonstrates that the proposed framework is accurate and effective for service-based application designers and other MWS clients

    A semantic framework for unified cloud service search, recommendation, retrieval and management

    Get PDF
    Cloud computing (CC) is a revolutionary paradigm of consuming Information and Communication Technology (ICT) services. However, while trying to find the optimal services, many users often feel confused due to the inadequacy of service information description. Although some efforts are made in the semantic modelling, retrieval and recommendation of cloud services, existing practices would only work effectively for certain restricted scenarios to deal for example with basic and non-interactive service specifications. In the meantime, various service management tasks are usually performed individually for diverse cloud resources for distinct service providers. This results into significant decreased effectiveness and efficiency for task implementation. Fundamentally, it is due to the lack of a generic service management interface which enables a unified service access and manipulation regardless of the providers or resource types.To address the above issues, the thesis proposes a semantic-driven framework, which integrates two main novel specification approaches, known as agility-oriented and fuzziness-embedded cloud service semantic specifications, and cloud service access and manipulation request operation specifications. These consequently enable comprehensive service specification by capturing the in-depth cloud concept details and their interactions, even across multiple service categories and abstraction levels. Utilising the specifications as CC knowledge foundation, a unified service recommendation and management platform is implemented. Based on considerable experiment data collected on real-world cloud services, the approaches demonstrate distinguished effectiveness in service search, retrieval and recommendation tasks whilst the platform shows outstanding performance for a wide range of service access, management and interaction tasks. Furthermore, the framework includes two sets of innovative specification processing algorithms specifically designed to serve advanced CC tasks: while the fuzzy rating and ontology evolution algorithms establish a manner of collaborative cloud service specification, the service orchestration reasoning algorithms reveal a promising means of dynamic service compositions
    corecore