
A SEMANTIC FRAMEWORK

FOR UNIFIED CLOUD SERVICE

SEARCH, RECOMMENDATION,

RETRIEVAL AND MANAGEMENT

DAREN FANG

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS OF EDINBURGH NAPIER UNIVERSITY, FOR THE

AWARD OF

DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

EDINBURGH NAPIER UNIVERSITY

SEPTEMBER 2015

I

Abstract

Cloud computing (CC) is a revolutionary paradigm of consuming Information

and Communication Technology (ICT) services. However, while trying to find

the optimal services, many users often feel confused due to the inadequacy of

service information description. Although some efforts are made in the semantic

modelling, retrieval and recommendation of cloud services, existing practices

would only work effectively for certain restricted scenarios to deal for example

with basic and non-interactive service specifications. In the meantime, various

service management tasks are usually performed individually for diverse cloud

resources for distinct service providers. This results into significant decreased

effectiveness and efficiency for task implementation. Fundamentally, it is due to

the lack of a generic service management interface which enables a unified

service access and manipulation regardless of the providers or resource types.

To address the above issues, the thesis proposes a semantic-driven framework,

which integrates two main novel specification approaches, known as agility-

oriented and fuzziness-embedded cloud service semantic specifications, and

cloud service access and manipulation request operation specifications. These

consequently enable comprehensive service specification by capturing the in-

depth cloud concept details and their interactions, even across multiple service

categories and abstraction levels. Utilising the specifications as CC knowledge

foundation, a unified service recommendation and management platform is

implemented. Based on considerable experiment data collected on real-world

cloud services, the approaches demonstrate distinguished effectiveness in

service search, retrieval and recommendation tasks whilst the platform shows

outstanding performance for a wide range of service access, management and

interaction tasks. Furthermore, the framework includes two sets of innovative

specification processing algorithms specifically designed to serve advanced CC

tasks: while the fuzzy rating and ontology evolution algorithms establish a

manner of collaborative cloud service specification, the service orchestration

reasoning algorithms reveal a promising means of dynamic service

compositions.

II

Acknowledgments

I would like to thank my director of study Dr. Xiaodong Liu, supervisor Dr. Imed

Romdhani, and my panel chair Dr. Michael Smyth for all their help, support,

expertise and understanding throughout the period of my PhD study. I would

also like to thank all staff in the School of Computing at Edinburgh Napier

University, especially the members of the Centre for Information and Software

Systems group, for providing me with valuable feedback and suggestions during

my research.

I am most indebted to my beloved wife, Qian Liu, for her endless support and

understanding during this period. Finally, great appreciation and thanks to my

parents and my parents-in-law. Although they are in China, they always

encourage me over the phone and via email, give me consistent spiritual

support. I am proud of them and appreciate what they contribute to my life.

III

Publications from the PhD work

Journal Articles

1 Fang D, Liu X, Romdhani I, Pahl C, Jamshidi P, (2015) An agility-oriented and
fuzziness-embedded semantic model for collaborative cloud service search,
retrieval and recommendation. Future Generation Computer Systems (Accepted).

2 Fang D, Liu X, Romdhani I, Pahl, C, (2015) An Approach to Unified Cloud

Service Access, Manipulation and Dynamic Orchestration via Semantic Cloud
Service Operation Specification Framework. Journal of Cloud Computing: Advances,
Systems and Applications, vol. 4, no. 14, pp. 1-20.

3 Fang D, Liu X, Liu L, Yang H, (2014) OCSO: Off-the-cloud service optimisation

for green efficient service resource utilisation. Journal of Cloud Computing:
Advances, Systems and Applications, vol. 3, no. 9, pp. 1-17.

Conference papers

4 Fang D, Liu X, Romdhani I, (2014) A Loosely-coupled Semantic Model for
Diverse and Comprehensive Cloud Service Search and Retrieval, CLOUD
COMPUTING 2014, The Fifth International Conference on Cloud Computing, pp.6-11.

5 Fang D, Liu X, Liu L and Yang H, (2013) TARGO: Transition and Reallocation
Based Green Optimisation for Cloud VMs, IEEE International Conference on Green
Computing and Communications (GreenCom), pp.215-223.

6 Fang D, Liu X, Romdhani I and Zhao H, (2012) Towards OWL2 Natively
Supported Fuzzy Cloud Ontology, 36th Annual Computer Software and
Applications Conference Workshops (COMPSACW), pp. 328-333.

7 Fang D, Liu X, Liu L and Yang H, (2012) Evolution for the sustainability of
Internetware, Internetware '12 Proceedings of the Fourth Asia-Pacific Symposium on
Internetware, no. 17.

https://scholar.google.com/scholar?oi=bibs&cluster=1506049131525213250&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=1506049131525213250&btnI=1&hl=en
http://www.sweg.org.cn/Internetware2012.html

IV

Table of Contents

ABSTRACT 1

ACKNOWLEDGMENTS ... 2

PUBLICATIONS FROM THE PHD WORK... 3

Journal Articles .. 3

Conference papers .. 3

TABLE OF CONTENTS ... 4

LIST OF FIGURES ... 7

LIST OF TABLES ... 9

CHAPTER 1 INTRODUCTION ... 1

1.1 Problem Statement ... 1

1.2 Motivation ... 2

1.3 Aims and Objectives of the Research .. 3

1.3.1 To Develop an Approach for Effective Cloud Service Search, Recommendation and Retrieval

 3
1.3.2 To Develop an Approach for Generic Service Remote Management 4
1.3.3 To Integrate the Cloud Service Specifications and Prototype Implementation 4
1.3.4 To Conduct Case Studies and Evaluation ... 5

1.4 Contributions to Knowledge .. 5

1.5 Research Method .. 8

1.6 The Structure of the Thesis .. 8

CHAPTER 2 LITERATURE REVIEW ... 10

2.1 Background of Cloud Computing ... 10

2.1.1 Cloud Service Delivery Models .. 10
2.1.2 Cloud Service Deployment Types ... 11
2.1.3 Parties and Roles ... 12
2.1.4 Cloud Computing Fundament: Virtualisation ... 13
2.1.5 Typical Characteristics .. 15
2.1.6 Research Focuses .. 16

2.2 Service Modelling Specifications ... 19

2.2.1 Semantic Web Services ... 19
2.2.2 Existing Cloud Service Modelling Practices ... 21
2.2.3 Latest Semantic Specification Language: OWL2 New Features .. 22

2.3 Cloud Service Search and Recommendation Approaches .. 24

2.3.1 Search Engines for Clouds/Cloud Service .. 24
2.3.2 Service Repository and OWL-enabled Applications .. 26

2.4 Dealing with Uncertainties for Cloud Computing ... 27

2.4.1 Theory Support for OWL Fuzzy Extension .. 27
2.4.2 Fuzzy Logic Theories .. 28
2.4.3 Fuzzy OWL Extensions .. 29

2.5 Summary ... 31

CHAPTER 3 RELATED WORK .. 33

V

3.1 Cloud (Service) Specification Models and Recommendation Systems 33

3.1.1 Ontology-based Cloud Computing/Service Knowledge Representation 33
3.1.2 Cloud Service Recommendation Systems ... 34

3.2 Ontology Fuzzy Extensions .. 35

3.3 Toward Unified Cloud Service/Resource Specification and Management 37

3.3.1 Open Cloud Service Specification Framework ... 37
3.3.2 Open Cloud Service API ... 38
3.3.3 Service/Resource Management Tools for Heterogeneous Clouds .. 40

3.4 Summary ... 41

CHAPTER 4 AOFECSO ... 43

4.1 Overall Ontology Design and Implementation ... 43

4.1.1 Loosely-coupled Foundation ... 43
4.1.2 Agility-oriented Design ... 44
4.1.3 Ontology Construction .. 47

4.2 Fuzzy Cloud Service Specification with OWL2 Fuzzy Extension .. 52

4.2.1 Fuzzy Scenarios .. 52
4.2.2 Native OWL2 Support .. 60
4.2.3 Fuzzy Specification Application ... 63

4.3 Summary ... 71

CHAPTER 5 SAMOS .. 72

5.1 Modelling Granular Cloud Service Entities and Operations .. 72

5.1.1. Specification of Cloud Service Entity and Operation Classification 72
5.1.2. Specification of Cloud Service Entity Data Types .. 75
5.1.3. Specification of Cloud Service Entity Operational Relationships ... 76

5.2 Preparation and Invocation of Basic Service Operations ... 82

5.2.1 Verification of Service Operation Parameters ... 82
5.2.2 Verification of Service Operation Preconditions .. 84

5.3 Assisted Service Operation Reasoning .. 87

5.3.1 Basic Assisted Service Request (BASR) Operations .. 87
5.3.2 Concurrent Combined Service Request (CCSR) Operations .. 88
5.3.3 Sequenced Chained Service Request (SCSR) Operations ... 89
5.3.4 Interactive Orchestrated Service Request (IOSR) Operations .. 91

5.4 Service Operation Process Maps ... 92

5.5 Summary ... 95

CHAPTER 6 APPROACH INTEGRATION AND PROCESS AUTOMATION

 ………………………………………………………………….……96

6.1 Overall Platform Architecture Design .. 97

6.2 CSR Sub System Design ... 97

6.2.1 CSR System Components ... 98
6.2.2 Service Search and Filter Rules .. 100
6.2.3 Service Profile (Agility) Evaluation .. 101
6.2.4 Service Recommendation .. 102
6.2.5 Component Interactions .. 103

6.3 USAMS Sub System Architecture Design .. 104

6.3.1 USAMS System Components ... 104
6.3.2 Mapping Ontology Specifications to Service API Calls ... 107

6.4 Platform Sub System Interactions ... 109

VI

6.5 Summary ... 110

CHAPTER 7 CASE STUDIES .. 111

7.1 Agility-oriented Service Search, Retrieval and Recommendation ... 111

7.1.1 Cloud Service Search with Keywords and Filters ... 112
7.1.2 Cloud Service Recommendation with Ratios .. 113
7.1.3 Cloud Service Specification Retrieval, Modification and Evaluation 116
7.1.4 Evaluation: Cloud Service Search, Recommendation and Retrieval..................................... 122

7.2 Cloud Service Operation Specification and Execution .. 127

7.2.1 Specification of IaaS Service Operations .. 127
7.2.2 Specification of SaaS Service Operations ... 133
7.2.3 The Unified Interface for Real-world Cloud Service Access and Manipulation Tasks......... 138
7.2.4 Cloud Service Operation Assistance and Dynamic Orchestration .. 147
7.2.5 Performance of Service Access and Manipulation .. 156
7.2.6 Evaluation and Discussion .. 163

7.3 Summary ... 165

CHAPTER 8 CONCLUSIONS .. 166

8.1 Critical Analysis .. 166

8.1.1 Objective I: Agility-oriented Cloud Service Modelling with OWL2 Natively-supported Fuzzy

Extensions for Collaborative Service Search, Recommendation and Retrieval 166
8.1.2 Objective II: Cloud Service Access and Manipulation Operation Modelling and Unified

Service Management Portal ... 169
8.1.3 Objective III: Validation with Approach Integration and Prototype Tool Implementation .. 171
8.1.4 Objective IV: Evaluation with Real-world Cloud Service Case Studies 173

8.2 Conclusions and Contributions ... 174

8.2.1 Contribution I: OWL2 Natively Supported Fuzzy Extensions .. 174
8.2.2 Contribution II: AoFeCSO .. 175
8.2.3 Contribution III: SAMOS framework ... 175
8.2.4 Contribution IV: CSAMO ... 176
8.2.5 Contribution V: CSRMP prototype tool .. 176

8.3 Future Work ... 177

REFERENCES ……………………………………………………………………..178

APPENDIX A ABBREVIATIONS AND ACRONYMS 193

APPENDIX B AOFECSO ENTITY SCREENSHOTS 194

APPENDIX C CLOUD SERVICE WEB PORTAL SCREENSHOTS 198

APPENDIX D PAAS SERVICE/CSI/PSSA OPERATION SPECIFICATIONS

FOR AWS ELASTIC BEANSTALK .. 203

VII

List of Figures

Figure 2.1 NIST cloud computing reference architecture [89] 13
Figure 2.2 Virtualised services provision of cloud providers[68] 14

Figure 4.1 Agility-oriented Ontology Design ... 46
Figure 4.2 Advances of AoFeCSO in Dealing with Object Properties 48
Figure 4.3 Advances of AoFeCSO in Dealing with Data Properties 50
Figure 4.4 Advances of AoFeCSO in Dealing with Annotation Properties 51
Figure 4.5 OWL2 Fuzzy Subsumption Weight for Individuals 61

Figure 4.6 OWL2 Fuzzy Subsumption Weight Application for Classes 61
Figure 4.7 OWL2 Fuzzy Restriction Weight Application 63
Figure 4.8 Fuzzy Conversion, Annotation and Reasoning in AoFeCSO 67

Figure 4.9 Fuzzy Modification Flow .. 69
Figure 5.1 Cloud Service Entity Association and Membership Relations 73
Figure 5.2 Example Cloud Service Operation Membership Relations 74
Figure 5.3 Cloud Service Entity Data Type Attribute Implementation 75

Figure 5.4 Cloud Service Entity Object Properties .. 79
Figure 5.5 Cloud Service Operation Parameter Verification Algorithm 83
Figure 5.6 Cloud Service Operation Precondition Verification Algorithm 85
Figure 5.7 Cloud Service OPM Representation .. 94

Figure 6.1 CSR Platform Architecture .. 96
Figure 6.2 CSR Sub System Architecture .. 98

Figure 6.3 Algorithm for Cloud Service Search and Filter 101
Figure 6.4 USAMS Sub System Architecture ... 104

Figure 6.5 The Cloud Service Operation Specification and API Mapping ... 108
Figure 6.6 CSR Platform Sub System Component Interactions 109

Figure 7.1 Cloud Service Search and Filter .. 112
Figure 7.2 Cloud service recommendation preparation 114
Figure 7.3 Cloud service recommendation result 115

Figure 7.4 Cloud Service General Descriptions .. 116
Figure 7.5 Cloud Service General Service Attributes 117

Figure 7.6 Cloud Service Detailed Attributes .. 118

Figure 7.7 Cloud Service Agility Evaluation .. 119
Figure 7.8 Dynamic Keyword Field ... 121

Figure 7.9 CSR Service Information Processing Time 122
Figure 7.10 Initial Cloud Service Entity Panels ... 139

Figure 7.11 EC2 SIR Operations Retrieval ... 140
Figure 7.12 EC2 SIR Operation with Real-time Cloud Data Access 141
Figure 7.13 EC2 Instance Cloud Service SIR Interactions 142

Figure 7.14 EC2 SMR Operation Retrieval ... 143
Figure 7.15 EC2 SMR Operation Preparation .. 144

Figure 7.16 EC2 SMR Execution .. 145
Figure 7.17 EC2 SIR Update After SMR Execution 146
Figure 7.18 BASR Reasoning Assistance Example 147

Figure 7.19 CCSR Reasoning Assistance Example 149
Figure 7.20 CCSR Reasoning Assistance Operation Execution................... 150

Figure 7.21 SCSR Reasoning Assistance Example 152

Figure 7.22 IOSR Reasoning Assistance Example 154

VIII

Figure 7.23 IOSR Reasoning Assistance Example 155

Figure 7.24 Comparison of Multiple SIR Operations Execution 160
Figure 7.25 Comparison of Multiple SMR Operations Execution 161
Figure 7.26 Comparison of Chained SMR Operations Execution 162

IX

List of Tables

Table 4.1 Fuzzy Weight Rating Authorisation Control 65
Table 5.1 Cloud Service Operation Classification 76

Table 5.2 Cloud Service Operation Specification Element 80
Table 5.3 SRParameter Symbol Notations .. 81
Table 5.4 Cloud Service Operation Reasoning Assistance Type 86
Table 5.5 Cloud Service OPM Element Representation 93
Table 7.1 Domain Coverage Scale .. 123

Table 7.2 Service Attributes Processing: Service Recommendations 125
Table 7.3 Overall Service Attributes Processing Effectiveness 125
Table 7.4 AWS EC2 Service Level Operation Specification 128

Table 7.5 Rackspace Cloud Servers Service Operation Specification 128
Table 7.6 AWS EC2 Service Instance Operation Specification 130
Table 7.7 AWS EC2 Provider-Specific Entity Operation Specification 132
Table 7.8 GoGrid Dynamic Load Balancers Service Operations 134

Table 7.9 Rackspace Cloud Load Balancers Service Level Operation
Specification ………………………………………………………………………..134
Table 7.10 Rackspace Cloud Load Balancers Service Instance Operations
 ………………………………………………………………………..135

Table 7.11 Rackspace Cloud Load Balancers Service Instance Operation
Specification ………………………………………………………………………..136

Table 7.12 Rackspace Cloud Load Balancers Provider-Specific Operation
Specification ……………………………………………………………………..138

Table 7.13 Comparison of Single SIR Access Time (Via Standard Web
Portal/USAMS) ……………………………………………………………………..157

Table 7.14 Comparison of Single SMR Access Time (Via Standard Web
Portal/USAMS) .. 159
Table 7.15 Comparison of Cloud Service Specification Frameworks 164

Table 8.1 Cloud Service Specifications Toward Service Recommendation
Relevant Functions ... 172

Table 8.2 Cloud Service Operation Specifications Toward Service
Management Relevant Functions ... 172

1

Chapter 1 Introduction

1.1 Problem Statement

Cloud computing (CC) revolutionises the world’s ICT with on-demand

provisioning, pay-per-use self-service, ubiquitous network access and location-

independent resource pooling. Its reliable, scalable and customisable

computational service and resource provision can adapt rapidly and effectively

to nearly all kinds of needs for all major industrial sectors [23, 92]. The rapid

development incurs numerous new cloud services and service updates

continuously. Facing the increasingly complex service market, cloud service

consumers (CSCs) often need to dig deeply while searching for optimal

services. Meanwhile, many cloud service providers (CSPs) provide unique

management portals for their own services and resources [41]. The service

interfaces, functionalities and operation environments are mostly diverse.

Accordingly, while trying to manage multiple cloud services and resources,

CSCs usually have to use a variety of cloud portals for different CSPs. This

significantly limits the effectiveness and efficiency for tasks deployment and

implementation [40].

In recent years, Web Ontology Language (OWL) 98 has been widely adopted

for web service semantic specifications [105, 144]. The formal entity

specification and reference framework can enable the integration of a wide

range of aspects, e.g. context information [80], user requirements [73], business

processes [72]. Indeed, this greatly assists service design, development,

invocation and composition tasks in pervasive environments [107].

Although considerable research efforts are made to drive and enhance the

interoperability and composition of cloud applications, services and resources [7,

59, 150], significant research gaps are found among the existing service

reference frameworks and models. Consequently, these impose urgent needs

yet great challenges on the specification and retrieval of cloud services,

2

whereas an effective cloud service recommendation and management tool is in

demand for a variety of CSCs.

1.2 Motivation

As a series of cloud (service) semantic models propagate [150, 73, 93, 122, 144,

161], they still suffer from limitations. Firstly, the majority of the existing models

cannot maintain comprehensive service information across multiple abstraction

levels (i.e. Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and

Software-as-a-Service (SaaS)). These models fail to reveal the various agile

interactions among cloud services and resources of such matrix structure (e.g.

SaaS services can be deployed on PaaS platforms whilst PaaS services may

rely on IaaS resources). Secondly, a limited number of the models can

effectively present the diverse full and potential service functions and features;

none of them clarifies the range of connections or cooperation among cloud

services and companies who have (hidden) relationships (e.g. some cloud

services can orchestrate with others whilst some CSPs have certain industry

relationships). Thirdly, most cloud services are “agile”, i.e. adaptable at run time

in their functions, interfaces, capacity, etc (see detailed discussion in Section

4.1.2). Yet, these agility aspects are often ignored or poorly disclosed in the

existing models. Consequently, the lack of these critical aspects causes

ineffectiveness while implementing service search, discovery, retrieval, and

recommendation tasks.

Meanwhile, to deal with the cloud (service) interoperability issues, a number of

cloud (service and resource) interoperability and portability approaches are

proposed. These solutions include but not limited to: open cloud API

(Application Programming Interface) development such as jclouds [4], libcloud

[5], fog [42]; service specifications such as TOSCA [150], mOSAIC [7]; unified

cloud management protocols/drivers such as OCCI [107]. Yet, despite their

capabilities of handling certain specific service/resource categories, it is difficult

to find any that allows adequate management for diverse CSPs’ services and

resources via a common interface. This is mainly due to the lack of a unified

3

service specification model that interprets cloud service and resource entities

and deals with the interoperability among CSPs [146].

1.3 Aims and Objectives of the Research

Driven by the above motivations, the vision of the research is to provide

comprehensive assistances for a combination of cloud service search,

recommendation, retrieval, and management tasks. To a wider extent, this

would consequently enhance service discovery, evaluation, invocation,

manipulation and orchestration for additional usages. Accordingly, the aim of

the thesis is to convey the diverse features, attributes and operation behaviours

of cloud services to a unified semantic specification framework. In this thesis,

the framework is defined as a layered structure which involves a combination of

semantic modelling approaches, cloud service ontologies, relevant specification

processing algorithms and mechanisms. Within the framework, relevant

components are interrelated and work together to serve certain parts of the aim.

More specifically, these are delivered through the following four objectives.

1.3.1 To Develop an Approach for Effective Cloud Service Search,

Recommendation and Retrieval

In order to assist cloud service search, recommendation and retrieval tasks, a

number of cloud service ontology models have been proposed. However, these

ontologies cannot sustain comprehensive and in-depth cloud service

specifications. Fundamentally, these ontologies lack of focus on the “agility”

aspects existed widely for many cloud concepts and service entities. In addition,

CC involves many vague definitions and descriptions that conventional

semantic specifications cannot effectively handle, due to the fundamental OWL

description logic consistency and simplicity reasons [11, 42].

The first objective will focus on a novel agility-oriented and fuzziness-embedded

cloud service ontology. The agility-oriented design would allow the ontology to

effectively specify comprehensive and in-depth cloud service specifications. The

4

OWL2 fuzzy extensions would enable adequate and precise specifications

regarding the uncertainties involved in cloud service descriptions.

1.3.2 To Develop an Approach for Generic Service Remote

Management

Despite a wide range of approaches proposed to deal with cloud service remote

management and interoperability issues, they are only capable of handling

certain limited cloud resource categories and operation types. Indeed, this is

mainly due to their restricted model/framework designs that fail to support cloud

services in a wider scale [40].

The second objective will address an innovative unified cloud service operation

specification approach. It would capture adequate details for service operation

view, retrieval and execution tasks. Moreover, the approach should enable

functions for enhanced service operation assistance tasks (e.g., operation

execution verifications, schedulers), even across distinct provider clouds.

Consequently, this ought to drive accurate and efficient cloud service

data/resource remote management tasks.

1.3.3 To Integrate the Cloud Service Specifications and Prototype

Implementation

Currently, it is difficult to find any cloud service tool that is capable of delivering

the combination of service search, recommendation, retrieval and management

functions. Targeting such research gap, the third objective is to integrate the

above research components and implement a versatile cloud service assistance

prototype tool. With the aim of providing distinguished assistances for CSCs, it

is designed to combine the above functions into a unified interface, i.e. an

integrated cloud service recommendation and management platform.

Dynamic cloud service management operation tasks are performed via service

API calls. This is to be addressed by a cloud service API mapping mechanism

within the prototype. A new mapper component is proposed for invoking

5

appropriate service API requests whenever remote management operations are

initiated by users.

1.3.4 To Conduct Case Studies and Evaluation

For proof-of-concept, validation and evaluation, the final objective is to apply a

series of real-life case studies and experiments to critically examine the

proposed approaches and tool implementations. Considering the wide range of

assistance functions provided for diverse cloud service types and categories,

the case studies would involve multiple cloud services from distinct service

types/providers, whereas the experiment results ought to provide comparisons

with typical solutions from existing research/industry practices.

1.4 Contributions to Knowledge

The research overcomes the existing limitations by offering comprehensive

cloud service search, recommendation and retrieval functions for diverse

service categories/types. Further, it closes the research gaps by providing a

unified service interface for cloud service remote management tasks over

multiple clouds. Accordingly, they result into a series of contributions: Firstly, a

number of new modelling approaches are proposed. They provide an innovative

means of cloud service semantic modelling towards precise and comprehensive

CC entity specifications. Secondly, based on the approaches, two cloud service

ontologies are developed as resourceful knowledge sources for CC

specifications. The proposed ontologies are capable of describing the diversity

of service data and specifications for real-world cloud services, regardless of

their service types/categories/providers. Thirdly, within the unified cloud service

assistance platform, a series of algorithms (i.e. fuzziness rating and operation

reasoning algorithms) and mechanisms (i.e. ontology evolution and API

mapping) are developed. They enable an effective means of service

specification and interoperability enhancement for many advanced

requirements and tasks. More specifically, the contributions are described as

follows:

6

 OWL2 Natively Supported Fuzzy Extension Approach

The thesis proposes a novel OWL2 fuzzy extension approach which can be

easily applied to ordinary OWL2 ontologies for fuzziness representation.

According to the relevant PLN and fuzzy set and relationships theory, three

categories of fuzzy scenarios are demonstrated to specifically deal with a

certain type of fuzziness. By adopting the approach, various cloud service

vagueness can be adequately revealed. This consequently enhances cloud

service modelling by achieving precise specifications.

 Service Access and Manipulation Operation Specification (SAMOS)

Approach

In contrast with other existing service operation specification framework and

models, SAMOS provides a light-weight yet effective solution for

comprehensive service operation specifications. Resting on ontological

modelling specifications, it comprises complete specifications for service

operations regardless of the service/operation/provider types. By decoupling

complicated service operations into two categories of granular service

operations, which are seen as service information requests (SIRs) and service

manipulation requests (SMRs), it can effectively specifies all typical operation

details including the parameters, requirement, outcome, condition changes, etc.

 Agility-oriented and Fuzziness-embedded Cloud Service Ontology

(AoFeCSO)

By researching over two hundreds of real-world cloud services and using the

above modelling techniques, two large scale cloud service ontologies are

developed. In particular, for service search, recommendation and retrieval tasks,

AoFeCSO provides comprehensive specifications for cloud service descriptions,

functions, features, characteristics, etc. aspect. It adopts a loosely-coupled and

agility-oriented design which maximally utilises the full range of OWL2 (latest)

axiom assertions. Moreover, it is deployed as a fuzziness-embedded ontology

that stays active, where certain specifications are asserted with fuzzy weights

7

and hence able to illustrate the hidden/inexplicit/controversial nature in the form

of truth degrees.

 Cloud Service Access and Manipulation Ontology (CSAMO)

For cloud service operation specification towards generic service remote

management requirement, CSAMO is developed based on the proposed

modelling framework. It comprehensively describes the relevant cloud entities,

their attributes and relationships involved in service operations. By preserving

the complexity which lies behind the diversity of operation tasks, CSAMO

effectively interprets and instructs cloud service access and manipulation

operations in a formal systematic way.

 Cloud Service Specification and Interoperability Enhancement

Algorithms and Mechanisms

Based on the above two cloud service specification ontologies and approaches,

a tool namely cloud service recommendation and management platform

(CSRMP) is implemented. The platform demonstrates a practical use of the

proposed AoFeCSO and CSAMO by establishing a unified interface for diverse

cloud service usage assistance tasks including service search, recommendation,

management (plus additional comparison, evaluation and orchestration).

The platform owns a range of innovative algorithms and mechanisms that would

greatly enhance cloud service specifications and interoperability. Specifically, a

cloud service API mapping mechanism proposed within the platform provides

wide compatibility with real IaaS, PaaS and SaaS services from multiple

provider clouds. This allows CSCs to effectively search, view, create and

amend a wide range of cloud services/resources/data via a unified structured

interface. Moreover, a fuzziness rating management algorithm and an ontology

evolution mechanism enable automatic and dynamic ontology evolution without

interrupting concurrent service retrieval actions. Additionally, a series of service

operation reasoning algorithms are capable of presenting intelligent dynamic

assistances based on the analysis of real-time service data and user

8

requirements. These consequently achieve distinguished assistances for

advanced cloud service usage tasks.

1.5 Research Method

The thesis adopts a combination of research methods including literature review

and tool-based case studies.

Initially, comprehensive review of philosophical literature is undertaken with

regard to CC semantic models, ontological specifications, OWL fuzzy extension,

service operation specifications. Through in-depth review and analysis of the

latest literatures, several issues and limitations are found on existing cloud

(service) specifications models and relevant modelling techniques. These lead

to the design and development of the series of novel approaches proposed

subsequently.

To justify and evaluate the proposed modelling approaches and cloud service

specification approaches, a prototype tool is implemented and a series of case

studies are conducted. Utilising a number of distinct real-world cloud services,

extensive experiments are conducted to evaluate the functionality, effectiveness,

efficiency of proposed approaches.

Papers have been published based on research outcome at each milestone.

This enables valuable assessments of the work from other researchers in terms

of contribution and justification within the field.

1.6 The Structure of the Thesis

The thesis is organised as follows:

Chapter 1 outlines introduction of the research with the problem statement, the

aim and objectives of the research, the contributions to knowledge and the

statement of methodology.

9

Chapter 2 broadly reviews the relevant literature, including the background of

CC, sematic modelling, existing approaches and tools for cloud services, and

fuzzy logic theories and applications.

Chapter 3 discusses the related work in details focusing on three main research

areas: cloud service specification models and recommendation tools, ontology

fuzzy extensions, and unified cloud service management.

Chapter 4 presents the design and implementation of AoFeCSO, which is to

enhance cloud service search, recommendation and retrieval tasks.

Chapter 5 demonstrates SAMOS approach, which is to enable and assist cloud

service remote management and potential orchestration tasks via a generic

interface.

Chapter 6 interconnects the previous research objectives by providing the

architecture design and implementation of the proposed prototype: the

integrated cloud service recommendation, retrieval, management and

orchestration platform.

In Chapter 7, using popular real-world cloud services from multiple providers, a

series of case studies and experiments are conducted to illustrate and evaluate

the functions and performances of the proposed approach and tool.

Finally, Chapter 8 summarises the thesis by presenting the conclusions and the

future work.

10

Chapter 2 Literature Review

To further explain the research questions and to formulate solutions, this

chapter broadly reviews the relevant subject areas. These involve an overview

of CC (the delivery models, the deployment types, the parties and roles, service

characteristics, etc.) Then, they lead to a series of additional literature, including

the current practises of cloud service modelling, service operations

specifications, OWL fuzzy extension, service recommendation systems, etc.

The above aspects are seen as the grounding where the proposed approaches

are established and developed.

2.1 Background of Cloud Computing

2.1.1 Cloud Service Delivery Models

Infrastructure-as-a-Service (IaaS) [137] is defined as the service model that

provides fundamental computing resources such as virtualised processing

power, storage, networking systems, etc. Typical examples are seen as

Amazon EC2 [1], Rackspace Cloud Servers [118] and GoGrid Cloud Servers

[52]. IaaS model eliminates substantial IT investment for users whist it achieves

an effective use of computing hardware for the providers [48]. Generally

speaking, these services provide many types of customisability, such as the

options of virtual machine (VM) configurations, operating systems (OSs),

network configurations, supplied software, etc. [101]. Nevertheless, the service

providers tend to maintain maximum control of all underlying hardware and the

software kernel [86].

Platform-as-a-Service (PaaS) [93] refers to the service model which provisions

virtualised hosting and development environment for users to run, test and

deploy services/applications. Typical examples are known as Google

AppEngine [55], Salesforce Service Clouds [127] and IBM SmartCloud [114].

PaaS platforms usually offer customisable environment feature and attribute

controls, e.g. programming language historical version supports, resource

11

scaling functionalities, monitor and alarm features, etc. [29]. However, beyond

those, users are often restricted for any further configurations (e.g. virtualisation

hardware, architecture, OS, network setting, etc.) [128]

Software-as-a-Service (SaaS) [70] is the service model for cloud-enabled

applications that are designed to achieve specific software-alike functions, e.g.

Rackspace Cloud Load Balancers [117], Google Docs [56] and Cisco WebEx

[26]. SaaS users are typically more concerned about what and how a service

achieves certain application functions, rather than the underlying service

provision details (e.g. virtualisation platform, virtualisation software) [48]. Most

likely, very limited information (no more than prices, service features, service

level agreements (SLAs), etc.) are disclosed to public; sensitive contents such

as the cloud hardware, system and platform information of these services are

hidden and not customisable [78]. SaaS eliminates the effort of licensing,

installing, maintaining, and updating, compared with traditional software

solutions [15].

2.1.2 Cloud Service Deployment Types

 Public Cloud

Public clouds [137] are recognised as the clouds where service resources are

provided and maintained by third-party CSP(s) over the Internet. Typically,

public cloud CSCs have little concerns for the underlying service provision

details and technologies; instead, they tend to care more regarding the

competent factors such as the services’ SLA, features, quality of service (QoS),

etc. offered by CSPs [8]. Further, CSCs usually have no/limited control over the

fundamental cloud infrastructure/hardware, whereas their service management

behaviours and records are often monitored as they consume the services [62].

 Private Cloud

Private clouds [137] are built, deployed, and managed privately by certain users.

This means that computing hardware and software are owned and configured

12

privately within one’s own networks. In contrast with public clouds, the

deployment type exposes superior advantages for the customisable service

design and implementation, few legal concerns, privately managed

account/security/maintenance controls, etc. Yet, this also means that the owner

has to spend more time, resource, efforts, etc. while managing the cloud [31].

 Hybrid Cloud

Hybrid cloud [137] stands for the solution that makes use of both public and

private cloud resources to fulfil the computing needs. The deployment model

effectively mitigates their individual weaknesses and therefore, improves the

overall computing/resource performance. This flexible manner is considered to

be more sensible while dealing with complex cases and needs, as many

characteristics of public cloud and private cloud are complementary [137].

 Community Cloud

Community cloud [137] is run and controlled by a number of organisations

which are of the same or similar interest. Between these organisations, data

and policy occurred in the community cloud are often shared easily and

securely, rather than crossing the entire Internet.

2.1.3 Parties and Roles

According to IBM [10] and NIST [88], CC involves two minimum parties known

as CSP and CSC. CSP is regarded as the party who provides cloud services

and resources and is responsible for the availability and QoS. CSC is defined

as the party that requests and uses cloud services which are provided by CSPs.

It can be a single person or an organisation. CSC can also be involved in the

management of the service. For instance, IaaS users often manage the updates

and settings of their virtual compute resources on their own.

IBM cloud reference architecture comprises a party in addition to the above

parties, called is cloud service creator. The main role of it is to develop and

13

create complete cloud services within CSP’ computational resources for use of

potential CSCs, i.e. to develop cloud service components, design cloud service

architectures, and implement cloud services provision, etc.

In addition, NIST adds three more parties apart from CSC and CSP, depicted in

Figure 2.1. Cloud carrier is the mediator that is responsible for the delivery of

cloud services from CSP towards CSC. Cloud broker is the intermediate who

manages the relationships and negotiation between CSP and CSC. It can also

be assigned to manage the provision and usage of cloud services. Cloud

auditor is an entity involved to monitor the use of consumers, or record the

performance of CSP for legal purposes.

2.1.4 Cloud Computing Fundament: Virtualisation

In the field of computing, virtualisation refers to a computational resource

abstraction technology through which virtual appliances are created from

managed computing resources [83]. For instance, OS virtualisation allows to

Figure 2.1 NIST cloud computing reference architecture [88]

14

run another OS within host OS on a single set of physical hardware. A cloud is

seen as a pool of virtualised resources from which certain level(s) of service(s)

is abstracted based on users’ requests [160]. CC is a service-oriented model

that relies on virtualisation and distributed computing technologies [89], as

depicted in Figure 2.2.

Figure 2.2 Virtualised services provision of cloud providers [67]

Virtualisation technology enables a maximally energy-efficient consumption of

physical computer systems, due to the fact that idle hardware operation is

minimised [161]. It also assists in distributing workload, e.g. server consolidation

is achieved by powering up or shutting down virtual servers based on volume of

work. Nevertheless, a number of drawbacks of virtual appliances are discovered

[170]: there is inadequate flexibility and adaptability between virtualised

appliances and applications. For instance, a user may have to work on different

VMs when one tries to use heterogeneous software. Another issue is known as

the inefficient use of storage [6]. Although it aims to minimise the idle wastage

and unproductive resource consumption, it proves that the preserved storage

15

overhead is still an issues. As for VM image disk spaces, they are not efficiently

consumed.

2.1.5 Typical Characteristics

 Elasticity

Elasticity [25] as one of the typical characteristics of cloud services, stands for

the ability to scale resource provision up and down rapidly based on real needs

of the users. Compared with traditional computing services, it is a distinguished

feature as the scaling is rapidly achieved, plus there is no complicated hardware

upgrade/downgrade or administration task involved [86].

Elasticity makes CC a “game-changing force for IT” (combined with the on-

demand self-service-alike paradigm) [110]. Before this paradigm, elastic IT

responds only exist in large-scale organisations which have substantial budgets

to develop and maintain the maximum computing infrastructure and software

services. Yet, CC offers cost-effective service elasticity that enables very similar

IT experience for those with limited funds.

 Scalability

Scalability [24] is defined as the ability of to cope with increased or decreased

workload through adding or removing system resources based on certain

system design. Typically, all systems are considered as finite, so scalability is

specified to a certain extent [25]. According to Bondi [20], scalability can be

categorised into a series of types: Load scalability is regarding the capability of

functioning “gracefully”, i.e. no matter at light, moderate, or heavy system load,

the system can function without excessive delay or improper resource

consumption. Space scalability is regarded as the size of memory space can

“shrink or expand” but does not grow intolerably depending on real-time system

requirement. Structural scalability, for a certain system, is seen as the

implementation or standards of it can encompass all objects no matter how they

grow to some extent.

16

 Service Level Agreement

As cloud services are provisioned by CSPs and are consumed by CSCs,

between the two parties, there would always be certain contract(s) which

regulate each party’s roles, behaviour, activities, etc. The contract is commonly

known as SLA [111]. For CSPs, it usually state the duties (e.g. reliability,

availability), liabilities (e.g. on-demand, pay-per-use, QoS), compensations, etc.

For CSC, there are a series of user agreement to follow and comply.

Understanding of cloud services vary from user to user, it is not easy for CSP to

produce appropriate SLAs that balance well between technical and general

aspects.

In CC, SLAs serves as contract-alike agreements that specify what levels of

services are to be provided and consumed between CSPs and CSCs. To a

wide extent, it may also involve aspects such as obligations and penalties. Due

to their impacts on a cloud service’s design, provision, pricing, QoS,

considerable research on CC SLA is discovered [38].

 Reliability and availability

For the provisioned cloud services and resources, reliability and availability are

often guaranteed by the relevant CSPs at a certain level [166]. Typically, cloud

applications are regarded more reliable and available than traditional self-

maintained computing applications. Fundamentally, this is mainly due to the fact

that public CSP usually invest heavily to employ service assurance techniques

such as load balancing, live migration, and failover recovery, etc. On the other

hand, these are seldom in favour for ordinary users or small organisations [93].

2.1.6 Research Focuses

 Security

Currently, the security concerns that are likely being considered by the public

are enumerated as [146]: Where is the data stored and who has what level of

17

access? What are the regulatory requirements and how is audition

implemented? What about the long-term viability of CSPs? In addition, since the

majority of cloud services runs over the Internet, both CSP and CSC can

become victims of those well-known malicious networking attacks, like Denial of

Service (DoS) attacks, man-in-the-middle attacks, authentication attacks, etc.

[11, 125].

Compared to traditional computing security mechanism deployment, CSC has

no initiative control over the security policy and the degree of practice. CSP

tends to provide ubiquitous access and operation for utilised resources [62].

While compliance and data privacy laws varying from country to country, data

locality issues arise when sensitive data flow from one to another. Since cloud

consumers do not store their data locally any more whilst they are managed by

the cloud vendors, it is not up to the users what security mechanism is

implemented and very few providers can offer security customisability. Similarly,

it is often impracticable for CSC to choose networking encryption method over

cloud application environment [74].

 Interoperability

While many cloud service providers (CSPs) provide unique management

portals for their own services and resources, the interfaces, functionalities and

service operation environments are mostly diverse. Indeed, this is due to the

fact that different CSPs usually offer distinct characteristics for certain service

quality of service (QoS), feature, customisability, requirement, etc. aspects [102,

107]. Interoperability is a substantial challenge of CC [128]. Even if many efforts

have been made towards CC consolidation and standardisation, various

vendors have launched their individual paradigms and services which make the

market heterogeneous. The largest gap falls between IaaS clouds, whilst PaaS

and SaaS clouds have significantly inadequate flexibility and portability [119].

Generally speaking, the heterogeneity in CC can be categorised into two types

[134]: vertical heterogeneity and horizontal heterogeneity. Vertical heterogeneity

18

often exists in different delivery models (among distinct clouds) when services

cannot be used in conjunction with each other. Horizontal heterogeneity

typically means that data cannot be moved over different clouds despite in the

same level of service delivery. Indeed, these gaps usually lead to potential

vender lock-in issues and system/process overheads.

 Service optimisation

Historically, the efforts made in optimising ICT (Information Communication

Technology) energy consumption have been largely focusing on efficient

utilisation of physical computational resources e.g. green networking, storage

and computation in large scale data centres [153]. In the era of CC, however,

green optimisation should involve two sets of major objectives: green service

(resource) provision [80] as well as green service (resource) consumption [43].

While the former is largely focused with a diversity of approaches proposed, the

latter is seldom adequately addressed.

Statistics shows that large and complex server farms and data centres all over

the world constitute the majority of global ICT energy consumption [137, 112].

This attracts several attentions and results into numerous research practices.

Addressing the service pool and data centre resources utilisation, the

optimisation approaches are seen as resource virtualisation [12], server

consolidations [54], workload consolidations [70], dynamic voltage and

frequency scaling (DVFS) [39], as well as a series of optimised resource

allocation and scheduling techniques. These approaches are typically designed

for infrastructure owners, e.g. cloud service providers, so that they can run their

own infrastructure efficiently [67]. Yet, these optimisations should seldom be

regarded as achieving the ultimate energy efficiency, since they only deal with

one side of the problem: the service/resource provision efficiency [106, 165].

Currently, very few approaches try to enable service consumption optimisation

from the service consumer perspective. In fact, while considering the full life-

cycle of cloud services/resources, the efficiency in relation to how end users

utilise the provisioned services/resources also matters significantly.

19

 Service search and recommendation

In recent years, many efforts have been made regarding cloud service

performance improvement, service scalability and cloud resources

management, whereas user-oriented aspects have been neglected [57]. As a

result, lacking concentration of the users significantly drag the development

pace of CC. As the number of cloud services continues growing whilst the

market becomes increasingly complex, CSCs thus, may need to dig deeply to

find the optimal services, by researching on a large number of service

descriptions, characteristics, properties, SLAs, etc. Furthermore, regarding the

services’ features, functionalities, customisability and interoperability, etc.,

existing CSPs offer a diversity of interfaces, standards, policies and SLA

parameters, which result into numerous difficulties in service information

retrieval, interpretation and analysis [109, 161]. Consequently, these impose

urgent needs and great challenges on the specification and retrieval of cloud

services, whereas an effective cloud service recommendation system is in

demand for a variety of CSCs.

2.2 Service Modelling Specifications

2.2.1 Semantic Web Services

Towards the promises of service oriented architecture (SOA), web services are

delivered to achieve a single aim or integrated goals [21]. Yet, the dynamic

composition of web services experiences a series of difficulties, e.g. the goal of

the web service is not clear, the protocol is not compatible. Indeed, this is due to

SOA systems suffer from interpretability and interoperability issues across the

Internet. The semantic Web was first raised by Tim Berners-Lee [14]. The idea

of semantically define and describe web services are endorsed by many

researchers. It realises the feasibility of interpreting details of web services not

only to human, but also to machines themselves. By understanding and

communicating between each other, web service discovery and composition

tasks can be automated operated even without human intervention [31].

20

According to Martin and Domingue [94, 95], there are four main elements of the

Web Service Modelling Framework (WSMF), known as ontologies, web

services, goals, and mediators.

Ontologies are constructed by web service and applying fields experts based on

facts and consistent logic. The properly defined concepts, relations, axioms, etc.

in ontology are known as the semantic foundation that provides accurate

information inference and reasoning between machines and humans.

Web services are designed to achieve a single objective, which is a certain part

of the whole aim. They are described semantically so that human and machines

are able to interpret their functionality, behaviour, and properties, such as

interface, protocol, etc. Once a web service in developed and published, it then

can be used and reused as a component interacting with others towards a

united goal.

Goals are what users are trying to achieve while consuming web services. For

instance, a person uses an online payment service with the goal of making a

payment. It usually consists of two parts: requested capability and requested

interface.

Mediators are involved to deal with interoperability issues between web

services. For example, to adjust interface or protocol mismatch between web

services, to construct a new goal by composing differently aimed web services,

to configure data or ontological semantics heterogeneity across web services,

etc.

Web service modelling semantics can offer many advantages for various usage

scenarios. Firstly, the functional and non-functional service specifications and

definitions would present detailed service functionality and additional

information, and particularly benefit porting application horizontally in the

service community [143]. Secondly, the relevant service data modelling would

eliminate many interoperability issues for web service data communication [58].

Thirdly, with the enhanced service descriptions various types of service

21

attributes can be disclosed and interpreted easily by both machines and

humans. This would effectively assist service discovery and invocation tasks

[77].

2.2.2 Existing Cloud Service Modelling Practices

Ontology expresses a body of knowledge of a certain domain by defining

concepts, their relationships and restrictions. It is considered as an explicit

specification of conceptualisation [161]. In OWL-based ontologies, with

appropriate annotations, not only can it be easily understood by humans, but

also it is interpretable by machines. Recently, OWL and a variety of web service

ontologies [136] prove that such approach has many superior advantages than

UDDI (Universal Description, Discovery and Integration [153]), and WSDL (Web

Service Description Language [163]).

Youseff et al. [167] proposes an initial architecture towards their unified cloud

ontology. Towards the proposed ontology classifications, a layered hierarchy is

being built based on logical definition of CC, seen as “cloud applications”, “cloud

software environment”, “cloud software infrastructure”, “software kernel” and

“firmware/hardware”. Indeed, all CC services/applications rely on the hardware

and firmware stack, on which the software kernel layer implements control and

monitor behaviours over the entire physical computational resources. Cloud

software infrastructure is provisioned on top of the software kernel

management; whereas the many cloud applications are achieved above the

cloud software infrastructure layer. Nonetheless, it is not clear whether and how

their proposed solution actually relate the above layers one another properly.

Indeed, many existing cloud (service) ontologies only concern about limited

cloud concepts with tightly-structured entity relations, such as in [73, 79, 167].

On the other hand, a much better solution is to use an open classification and

loosely-coupled ontology structure, since this can comprise as many as relevant

entities and their penitential relationships. With such implementation

techniques, the diversity of CC concepts, service entities and properties would

22

no longer be isolated to each other. In addition, by using appropriate ontology

reasoning engine, new inferred assertions would present more useful

knowledge whenever new data is inserted. Consequently, this ought to

construct a more resourceful and meaningful ontology in CC domain.

Another important concern is that none of them considered the unique dynamic

characteristics of CC. Different from other fairly “static” knowledge domains, CC

comprises dynamic entity aspects, the relationships among them are hard to

define or describe due to a series of changing factors. For instance, not all

“IaaS has the capability to host PaaS”, even if it is commonly regarded that they

do, as operating platforms usually run on top of computing infrastructure. While

allocating computing power to CSC, actual service provision changes according

to a series of activities such as resource availability, load balancing, automated

scheduled services, and also users’ demand.

Since CC is regarded as deriving from a series of computing technology, such

as virtualisation, distributed computing, grid computing, potential categories and

definitions of CC concepts may raise heterogeneous issues based on different

perspectives from different computing research fields. Hence, cloud service

ontology with appropriate terms that satisfy a high degree of common

understanding across associated computing subject areas is also being

expected.

2.2.3 Latest Semantic Specification Language: OWL2 New Features

OWL2 extends OWL by adding new syntax sugar, new constructs, extended

datatypes, simple metamodeling and extended annotation capabilities [53].

 New Syntax Sugar

DisjointClass – for use of defining a series of classes are pairwise disjointed.

DisjointUnion – for use of specifying a superclass is the union of pairwise

disjointed classes. It means the superclass subsumes those disjointed classes,

23

whereas any member of the superclass can only belong to one of those

classes.

NegativeObjectPropertyAssertion / NegativeDataPropertyAssertion – for use of

indicating the negation for a given property applied on an individual or a class of

individuals.

 New Constructs

Self-restriction allows an individual or a class of individuals to relate to itself or

themselves with an appropriate property.

Property qualified cardinality restriction enables extended range qualified

restrictions to be applied to the object/data property cardinality restrictions.

Object properties can be tagged as Reflexive, Irreflexive, and Asymmetric

properties. Reflexive means for a given object property a subject can relate to

itself and others at the same time; Irreflexive property means the property can

only be used to relate a subject to others and not to itself; Asymmetric property

states an object property is directional between two subjects, it is inconsistent if

the two subjects are swapped over.

Disjoint Properties can be stated when a series of properties are pairwise

incompatible in the ontology, similarly to Disjoint Classes.

Property Chain Inclusion provides a means to indicate a property is composed

by a number of other properties.

Keys allow universal unique key value to be inserted to individuals or classes in

ontology, by presenting keys it is much easier to locate subjects within the key

propertied class.

 Extended data type restrictions

24

OWL2 presents advanced use of datatype property, seen as

DatatypeRestriction, DatatypeDefination, DataIntersectionOf, DataUnionOf,

DataComplementOf.

 Simple Metamodeling

In OWL2 ontology, an entity can be stated as both an individual and a class of

that kind of individuals. In some cases, with the same name, an individual can

be used as an object property, whilst a class can be used as an object property.

 Annotation Updates

Annotations can be flexibly inserted to individuals, classes, properties, axioms,

ontology, and annotations using OWL2. They work as annotation assertions,

which do not carry OWL2 Direct Semantics and will not be reasoned.

2.3 Cloud Service Search and Recommendation Approaches

2.3.1 Search Engines for Clouds/Cloud Service

In order to assist cloud service search and discovery, Han, Kang and Kim [60,

73, 79] implement a series of research and experiments based on their

proposed cloud service ontologies. Their “cloudle” system allows users to input

their service requirements through a web portal, and after searching and

comparing all recorded cloud services, possible candidates are displayed along

with a numbers of parameters (similarity degree, QoS, etc.).

Two separate cloud service ontologies are used for evaluation purposes in

above experiments. The first one [60], comprises only basic cloud service

concepts with sub-super relationships among them. For example, “DaaS (Data-

as-a-Service), SaaS, PaaS, CaaS (Communication-as-a-Service), and IaaS” “is-

a” “Cloud System”, which means that “DaaS, SaaS, PaaS, CaaS, IaaS are all

subclasses of Cloud System”. Such way of using OWL only has the capability of

categorising cloud concepts properly. Yet, there are hardly any obvious

25

advantages comparing with database techniques, for the reason that complex

relationships, description logic, and reasoning are not involved.

The second ontology [79] is developed to deal with advanced queries and

comprehensive results and recommendations. Object properties are used to

relate class categories with specific relationships, whilst datatype properties are

used to point out that some classes fulfil certain datatype restrictions. For

example, “has programming language” can be an object property that relate

“PaaS” to “Java and C++”; “has memory” of “integer” between “128” and

“12800” can be a datatype property that applies to an instance of “IaaS”. In fact,

this manner cannot effectively deal with updates occurred in the clouds. Since it

allows only fixed axioms to be inserted, the changes to be presented to the

ontology may grow exponentially.

The search and recommendation system proposed [73] consists of “query

processor, user profiling, similarity reasoning, price and timeslot utilities

matching, and rating” components. By inputting requirements and parameters

like, type, function, price, time slot, etc. of services, users obtain a list of most

applicable service candidates that are similar to what they have entered. The

similarity value is calculated based on consulting their cloud service ontology.

Despite the fact that their experiments show that “cloudle” makes some

differences, a number of points are to be noticed. Firstly, the ontology used is

still not expressive enough to describe comprehensive information of CC

concepts and entities. Cloud services are not isolated one another; instead,

there are complex relationships among each other. Secondly, to compare

service candidates, not only should “hardware” oriented aspects are compared,

additional attributes should also be considered, such as SLA, security,

dependent restrictions, etc. Thirdly, the web portal and user interface do not

seem to be very friendly. In order to assist all types of users, and especially

non-expert users, an interpretative mechanism will result in significant

differences.

26

2.3.2 Service Repository and OWL-enabled Applications

Many efforts [9, 59, 95] have been made regarding semantic specification of

(web) services. Nevertheless, none of these existing approaches have

considered the dynamic aspects of software aspects. Therefore, those service

repositories, known as “static asset” repositories, cannot present the adaptive

evolving nature of the software assets.

Ontologies are widely used in service repository building, where service

specification semantics facilitate service discovery as they are enriched with

ontology description languages [129]. In fact, a huge number of service

specification techniques as well as service repositories are semantic based. By

either using service description enhancements [100, 123], annotating service

details [80], or adding protocol information [75], the semantic repository

approach has been adopted as a suitable means for service matching.

The semantic web [76] and OWL-based modelling techniques [49] provide

feasibilities of identifying, sharing, and reusing data among web applications.

They can not only assist human to understand the services behaviours and

interfaces, but also allow machines to communicate with each other for relevant

application interaction tasks.

As many service providers often follow similar service/resource provision

paradigms, the provisioned services and recourses can be specified using

ontology semantics with similar modelling style [128]. Indeed, for CC domain,

ontological modelling approach can be utilised to formally describe a wide range

of CC entities, concepts, attributes and relations. Therefore, the generic

specifications can effectively addresses interoperability issues among

heterogeneous clouds [134]. Semantic-based cloud (service) ontologies are

hence considered more expressive than other specification models. Moreover,

another benefit offered by ontology modelling is known as reasoning. It ensures

the (specification) data consistency within the ontology whilst additional inferred

information may be produced whenever changes are made to it.

27

Deng et al. [36] proposes an enterprise service catalogue management

framework using ontology oriented approach. The declared ontology clearly

presents information of the services and the involved processes based on

detailed analysis of the common user requirements and technical aspects.

Apart from above, with additional algorithm support, the ontology representation

allows optimised selection and combination of services according to complex

requests. The limitation of such approach, however, is that concepts similarity

judgment remains an issue across heterogeneous ontologies [161].

2.4 Dealing with Uncertainties for Cloud Computing

2.4.1 Theory Support for OWL Fuzzy Extension

In fact, unlike web services and many other domains, CC involves a variety of

vague and imprecise descriptions, terms, categorisations, etc. This can result

into various specification issues. For instance, according to the majority of

literature, “availability” and “security” are two separate service properties, yet

some [68] argue that availability is a sub category of security; for those diverse

service types and characteristics, should Amazon S3, Dropbox and Google

Drive be regarded as SaaS, PaaS, IaaS or Storage-as-a-Service? Do they have

the same extent (degree to the capability) towards scalability, reliability,

interpretability? Indeed, conventional OWL/OWL2 modelling techniques cannot

handle the above scenarios effectively. Originally, they are designed to clarify

crisp knowledge with concrete axioms, either true or false. Fundamentally, this

is due to the formal description logical (DL) consistency requirement which does

not support such fuzziness [19, 42].

Fuzzy logic [168] (FL) is a well-known extension to DL that has been used

widely in many fields for decades. It includes two sets of theories: fuzzy set

theory describes vague subsumption between a class and its members; fuzzy

relationship theory [124] specifies uncertain relationships between individuals

and classes.

28

2.4.2 Fuzzy Logic Theories

 Fuzzy Set and Membership

In crisp set scenario, an individual element can either belong or not belong to a

certain collection, based on the fact whether the individual complies with the

characteristics of the collection. For example, an apple is obvious an instance of

fruit; a cucumber is not an animal. Yet, fuzziness and vagueness exist widely

around us, e.g. dark colours, big cakes. To address these and similar kind of

uncertainties, fuzzy logic was introduced. According to FL theory [167], a fuzzy

set is known as: a collection that has fuzzy characteristics or a class that is

imprecisely defined. Moreover, to indicate a subject is or is not an instance of a

fuzzy collection, the float μ is typically used as the truth rate of the unit interval

[0, 1].

A membership degree is, thus, defined as the degree to which an individual is

considered to be the instance of a class. Value of interval (0, 0.5] means “the

statement is less likely to be true” and [0.5, 1) means “the statement is more

likely to be true”. Assuming an individual x and two fuzzy sets A and B that it

may belong to: μ A (x) = 0.9 stands for x is very likely to be the instance of A; μ B

(x) = 0.2 stands for x is very unlikely to be the instance of B. In addition, they

satisfy

 𝜇 A∩B (x) = 𝜇 A (x) ∧ 𝜇 B (x) = min {𝜇 A (x), 𝜇 B (x)} = 𝜇 B (x) = 0.2

 𝜇 A∪B (x) = 𝜇 A (x) ∨ 𝜇 B (x) = max {𝜇 A (x), 𝜇 B (x)} = 𝜇 A (x) = 0.9

It means that the degree of x belonging to the intersection of A and B is the

minimum μ of μ A (x) and μ B (x), which is 0.2; and the degree of x belonging to

the union of A and B is the maximum μ of μ A (x) and μ B (x), seen as 0.9.

 Fuzzy Relations

29

Crisp relations between subjects are known as one subject is completely related

or unrelated with another subject over certain named relationships. For

instance, a mother relates her child with the “give birth to” relation. In a slightly

complicated case, a single subject can relate to a set of subjects with the same

relation in the same time. Also, there can be a relation, with which each

subjects of one set relates to every individual of another set respectively. For

example, A = {a1, a2, a3}; B = {b1, b2, b3}; the relations between A and B denote:

A × B = { a1 × b1, a1 × b2, a1 × b3, a2 × b1, a2 × b2, a2 × b3, a3 × b1, a3 × b2, a3

× b3 }

In the fuzzy relationship [124] theory, strengths can be allocated on top of crisp

relations between ordered pairs of two collections. For example, to express that

a father knows his son better than his wife does, two strengths can be used

along with the two relations: the father knows his son at the degree of 0.9; the

mother knows her son at the degree of 0.8. Therefore, for a fuzzy relation,

strength can be asserted to express applicable or constraint degree.

A fuzzy relation R over two sets U and V denotes: R: U × V → [0, 1]; when R =

1, it means there is a crisp relationship R over U and V, and R = 0 means the

negation of R = 1. Additionally, each relation rij between ordered pairs of U and

V can be displayed in the matrix of R(rij)u×v (where j ≠ k and u ≠ n). For

instance, say, U = {u1, u2, u3}, V = {v1, v2, v3, v4}, RU×V denotes:

RU×V = [

𝑢1 × 𝑣1 𝑢2 × 𝑣1 𝑢3 × 𝑣1
𝑢1 × 𝑣2 𝑢2 × 𝑣2 𝑢3 × 𝑣2
𝑢1 × 𝑣3 𝑢2 × 𝑣3 𝑢3 × 𝑣3
𝑢1 × 𝑣4 𝑢2 × 𝑣4 𝑢3 × 𝑣4

]

2.4.3 Fuzzy OWL Extensions

The necessity of fuzzy support in semantic web has been widely agreed [16, 17,

91, 141]. In their work, FL and fuzzy DL reasoning are introduced to OWL (1&2)

to cope with fuzziness occurred in domains of ontology. Stoilos et al. [140, 141]

30

suggests an achievable approach by using new syntax (like “owlx:degree”) as

OWL extensions; Bobillo and Straccia [17] initially advocates wrapping fuzzy

theory with OWL individual/class concepts for fuzzy expressions, then

recommends using annotation itself to present the fuzziness afterwards [16, 17].

 fuzzyowl2

An early work on fuzzy support of OWL2 is proposed in [19], where several

fuzzy concepts are introduced to OWL2 ontology in the form of OWL classes

and individuals. Yet, it is proved that their approach is not applicable for the

entire fuzzy theories in many cases. Not only the way fuzzy theory is adopted

caused logic inconsistencies, it also accelerates the growth of the ontology

exponentially.

 SWRL-F

Another OWL2 fuzzy extension is known as Semantic Web Rule Language –

Fuzzy (SWRL-F) [162]. The approach does not use extra built-in either. Instead,

OWL OP and individuals are used as key factors to construct fuzzy assertions.

The implementation does not affect the consistency of the applied ontology.

Yet, general limitation of SWRLJessTab and fuzzy inferences are limited based

on the logic rules of consistent OWL DL.

 fowl

Annotation based “fowl” alike fuzzy support is proposed in [139], which against

their previous work. By using solely customised OWL annotations to express

the fuzziness, quite comprehensive fuzzy theory is represented in their

proposed <fuzzyOwl2>. By using their user friendly Protégé plug-in,

modification of ontology seems to be easy. In addition, fuzzyDL [17] and

DeLorean [18] reasoners are also developed in order to support fuzzy

reasoning. Despite the fact that it shows optimised support of complex fuzzy

concepts and theory, the way it is applied into OWL2 is a bit controversial. The

31

fuzziness is applied in the annotations, which is hardly a genuine OWL2

support; it does not support traditional DL reasoner, either.

 f-OWL

New syntax based extension is recommended by [140, 141], who arguing to

support f-OWL, primitive syntax shall be extended, such as by adding

owlx:degree, owlx:ineq, etc. However, after many years, there is not much

development and their syntax family is far from completeness. Not to say the

design is not entirely OWL2 focused as well.

2.5 Summary

Existing cloud (service) search engines cannot effectively understand the

constraints and dependencies among resources within the same cloud or

across multiple clouds, whereas none of them comprises enough information to

reveal the various types, functions, and features of cloud services. This results

into significant limitations for search and recommendation tasks. Moreover,

current cloud search and recommendation systems cannot efficiently deal with

the frequent updates occurred in the clouds along with the evolvement of the

cloud services. As a consequence, the existing systems/tools would eventually,

decay as CC evolves progressively.

The efforts on building CC domain ontology can be traced back since 2008.

This proves that there is substantial necessity of such. Yet, for the existing

cloud ontologies, they are seldom comprehensive enough to capture the wide

range of unique characteristics of cloud services, i.e. elasticity, scalability,

reliability, security, interoperability, SLA, etc. None of the existing cloud domain

ontologies is built upon or able to reveal the fundamental aspects of it.

Fuzzy extension to OWL has been a widely discussed topic in Appropriate

Reasoning and Fuzzy Systems fields. Although distinct solutions are proposed,

none of them is free of limitation: As a few tend to use new syntax to represent

the fuzziness, their modified ontologies fail to work with all existing OWL-

32

enabled applications. While some wrap the whole fuzzy theory into OWL

annotations, they are doubt whether that is a genuine OWL supported

approach.

Process-based service modelling mechanism exhibits superior characteristics of

assisting search and comparison tasks, yet suffers from exponential elements

growth and effort consuming pre-design in extreme cases. In the meantime,

dynamic service repository system offers a variety of advantages while tackling

software aspects evolvement, but it needs an efficient way of processing entire

ontology entities.

In the meantime, relevant literature regarding the proposed approach is

explored. While exploring virtualisation and semantic web service, possible

solutions toward the above issues are developed, i.e. to develop a semantic

cloud service specification framework that is capable of assisting a combination

of functions including cloud service search, recommendation, retrieval,

management and potentially comparison, evaluation and orchestration. Within

the framework, some cloud service ontologies will be developed. They would

comprehensively specify a diversity of cloud aspects and entities. As all of such

entities and aspects are to be properly addressed and related according to

appropriate dependencies and constraints among each other, this then spreads

across additional research areas and rationales (e.g. OWL2 new features,

process-based service modelling, and fuzzy logic theories). By detailing how

they work, the mandatory elements of the proposed approach have been

illustrated.

33

Chapter 3 Related Work

This chapter discusses the related work closely relevant to the proposed

ontologies, approaches and cloud service assistance tool. Firstly, the existing

semantic cloud (service) specification models and the current practices of cloud

service recommendation system are described. Subsequently, the work on

fuzzy ontology extensions is talked. Finally, the research on open cloud service

and resource specification, API and remote service management tool is

reviewed.

3.1 Cloud (Service) Specification Models and Recommendation

Systems

3.1.1 Ontology-based Cloud Computing/Service Knowledge

Representation

Historically, cloud (service) semantic modelling research has involved various

ontological approaches such as single ontology [144], multiple-layered

ontologies [131] and multiple ontologies [93], etc. The semantic platform for

cloud service annotation and retrieval [122] utilises multiple ontologies of

different domains. Being advanced in its annotation term extraction and

indexing techniques plus the integrated ontology evolution module, it can

implement ontology updates according to the service concept information found

on Wikipedia. In their incremental work [121], GATE [30] is employed for

automatic service annotation and ontology evolution. Nonetheless, annotation

specification, parsing and retrieval are a basic use case in ontology modelling.

Such updates in annotations would not drive sound ontology evolutions, i.e.

generating new inferred knowledge.

Alternatively, other work (e.g. [99, 161]) does employ class, object property

(OP), data property (DP), assertions as well as basic inheritance and inference,

etc. in their ontologies. Nevertheless, most of the ontologies are primarily

designed to work for certain limited service categories: e.g. infrastructure

34

services [60, 73, 93, 161, 169], platform services [96, 144], software services

[121, 122]. FCFA [96], for instance, is a hierarchical federated resource

exploration and sharing framework which drives federated cloud cooperation

and eliminates interoperability issues among independent organisations and

providers. The proposed ontology only concentrates on the relationships

between organisations, communities in terms of federation contracts, SLA

agreements, plus the various physical and virtual resource properties and

parameters involved. CoCoOn [161] is an infrastructure service ontology which

comprises both functional and non-functional specifications of cloud VM and

storage resource aspects; it still does not involve service information across

wider resource abstraction levels. Although Cloud Ontology [73] is able to

specify service information of a variety of cloud services, it only discloses some

basic aspects regarding the diverse service functions/levels. In fact, for almost

all existing ontologies, the cloud service and CC concept specifications are not

established evenly across multiple abstraction levels and service function

categories. Indeed, except mosaic [7], none of other ontologies reveals any

explicit details regarding the many service functional, non-functional properties

or relationships. Besides, there is no other that attempts to specify the various

service agility aspects or the most appropriate specifications through fuzzy

extensions; none of current practices supports collaborative editing for the

modelled service specifications.

3.1.2 Cloud Service Recommendation Systems

Existing service recommendation/discovery systems/tools are seen limited in

terms of their overall applicability, flexibility and comprehensiveness. Some [60,

161] are found focusing on IaaS-centric service recommendation. Specifically,

CSDS 60 presents an example of discovering VM services according to search

parameters such as virtual CPU architecture/frequency, memory/storage size,

network parameter, operating system (OS), etc. CloudRecommender [161]

offers enhanced functions which accept both functional and non-functional

service properties as recommendation requirements. Nonetheless, due to their

limited service category applicability, the two systems cannot facilitate

35

comprehensive service recommendation in a wider domain (with inclusion of

PaaS and SaaS). Differently, the cloud repository and discovery framework [144]

advocates recommending cloud services from a business and cloud service

combined ontology. However, since the recommendation is implemented

through querying business-relevant service properties, it implies that the

recommendation process would be excessively business–focused. Cloudle [73]

can produce a list of discovered services along with their similarity values from

several services types by offering diverse search criteria and options of, e.g.

cost, time, function, technical requirements, etc. Yet, the similarity computation

relies on purely numerical service properties and, therefore it still cannot

effectively handle comprehensive service specification. On the other hand, non-

ontology-based service recommendation system, like the collaborative service

recommender mechanism [151], is an alternative that specifically deals with

service matchmaking through consumer rated service qualities against users’

profiles. Yet due to the prototype mostly concentrated on non-functional service

aspects (e.g. response time, availability, price, etc.), the limited functional

requirement processing capability would result into poor overall service

recommendation.

In summary, currently there is not a comprehensive means of cloud service

search, retrieval and recommendation which covers a diversity of

service/application domains, whereas none existing tool attempts to involve

search/recommendation requirements regarding any details regarding the

unique (agility) aspects of cloud services, e.g. scalability, adaptability,

interoperability, etc.

3.2 Ontology Fuzzy Extensions

On the basis of fuzzy theories (described in Chapter 2), a series of fuzzy

extension techniques propagate. FuzzyOWL2Ontology [19] advocates a

merging approach to import the fuzzy representations, which are wrapped as

ontology entities, to the target ontology for fuzziness expression. The drawback

is known to be its limited support of complicated fuzzy scenarios as well as the

36

considerable extra overhead. In contrast, new syntax-based fuzzy extension

[139] is proposed where the primitive OWL2 syntax is extended with

“owlx:degree”, “owlx:ineqType”, etc. elements. Nevertheless, due to without

additional extension mechanism support (for fuzzy assertion and interpretation),

such modification would have little compatibility with current main stream

OWL/OWL2 tools and can only be implemented and interpreted manually by

humans. The annotation-based fuzzy extension [16] presents another

approach, seen as to place the fuzziness in OWL2 annotations. With

comprehensive fuzzy set and relation theory support using “fowl” and

“fuzzyOWL2” syntax, a Protégé [62] plug-in is also developed for easy fuzzy

modification and illustration. Yet, applying fuzziness in annotation property

would suggest that such extensions only present some fuzzy annotation

descriptions for the ontology entities whilst they do not influence the individuals,

classes or their relations in the ontology in any means concretely, i.e. such

fuzziness assertions do not present genuine facts of them. While all the above

approaches remain unideal, the OWL2 natively supported fuzzy extension [42]

demonstrates a promising technique by using fuzzy tag-alike modifications. The

extension employs no further new syntax but only OWL2 DP assertions, which

brings a series of advantages: the fuzzy extended ontology is readable by all

mainstream OWL2 tools (like Protégé) whereas traditional DL reasoners like

FaCT++ [152] and HermiT [131] are supported; Changes made to the asserted

fuzziness can trigger ontology inference changes.

In spite of the above FL-based fuzzy extension approaches, recently,

probabilistic logic network [51] (PLN) is raised and known as another complete

systematic and pragmatic knowledge representation theory specifically

developed for uncertainness assertions and inferences. In comparison with FL,

it extends the fuzzy set and relationship theories and their reasoning

applicability to a great extent with complementary rules, strength formulas and

inferential truth value equations using extended formal notations, e.g. it

differentiates FL’s fuzzy membership theory into a number of detailed scenarios

(e.g. degreed belonging, chanced belonging, sharing partial properties and

37

overall weighted judgment); it fulfils FL’s relationship theory with higher-order

and N-ary logical relationships. With these advanced theoretical support, this

thesis advocates the extended version of the OWL2 natively supported fuzzy

extension approach [42] for ontology fuzzy axioms revealing and handling.

3.3 Toward Unified Cloud Service/Resource Specification and

Management

In the last decades, considerable efforts have been made on enhancing the

interoperability and portability of cloud services. The practices are widely

discovered in open cloud API developments, comprehensive service/resource

specification frameworks, unified cloud management protocols/drivers, etc.

3.3.1 Open Cloud Service Specification Framework

The Open Cloud Computing Interface [107] (OCCI) is one of the earliest

practices in the field. Originally, it was developed only to deal with IaaS service

remote management tasks such as resource deployment, monitoring and

automated scheduling. Yet later, the evolved Rendering and Extension

specification frameworks on top of the Core Model enable a much wider

application for PaaS and SaaS services, which consequently make it a generic

management API for a diversity of cloud resources.

The OASIS Topology and Orchestration Specification for Cloud Applications

(TOSCA [150]) is a recently established standard for clouds. With the aim to

enhance cloud service portability, it enables specifications for diverse cloud

service resources, their relationships and operational behaviours. With several

templates (e.g. service/policy templates) and types (e.g. node/relationship

/requirement/capability types) specifications, the topology framework can

provide semantic support for many cloud service management and

orchestration tasks.

Other than the above well-established practices, a series of research projects

are also implemented towards the aim. mOSAIC [7], for instance, advocates a

38

so-called application/provider/language-independent for service semantic

specification. Resting on the mOSAIC ontology as the knowledge base for

semantic resource discovery, it allows separation of application-logic and cloud

layers while enabling service portability. Likewise, another work targeting at

enhancing the interoperability of cloud services is seen the RASIC framework

[90]. It is composed from three horizontal layers (i.e. service frontend, SOA,

virtualisation/execution) and two vertical layers (i.e. semantic and governance).

Similarly, the Intercloud [35] architecture comprises multi-layer cloud service

models and a series of management, federation and operations frameworks.

They serve as cloud middleware to support the service integration. However,

these approaches are developed mainly for infrastructure services (resources).

This limits the application towards wider service domains/categories.

3.3.2 Open Cloud Service API

In the meantime, a number of language-dependant Cloud APIs are also

discovered. Compared with the above ones where either service specification,

protocols or management portal are also available, these are only stand-alone

libraries, which are used for cloud service/resource management via a generic

API.

Deltacloud [34] is provides an abstraction API that enables service

management functions for a number of IaaS resources. The wide range of CSP

support makes it feasible to manage heterogeneous resources across diverse

clouds. Fundamentally, it runs a series of drivers serving as individual service

adapters for each CSP specifically. Each driver would serve as the latest native

API associated with its own CSP. Consequently, Deltacloud API along with the

management interface enables long-term stability for cloud resource utilisation.

This means users would no long need to worry about the differences while

handling services across distinct clouds, nor the compatibility issues incurred for

frequent version updates.

39

Libcloud [5], for instance, is a Python library that offers wide supports for more

than 30 popular cloud service providers. The library provides four main

categories of interfacing functions: compute, storage, load balancer, DNS. In

addition, Fog [47] is known as the API library for Ruby developers, which offers

similar functionalities. The library has flexible support for a variety of services

from mainstream CSPs. Jclouds [4], on the other hand, is a java API library that

supports a wide range of existing CSPs. It can be applied for various cloud

service categories and purposes for IaaS compute, platform, database, storage,

etc. services. Similarly, Dasein cloud API [146] is another example of Java-

based cloud service interface. While aiming to eliminate the interoperability

issues and enhance the efficiency while building cloud applications using

multiple CSP resources, it offers adequate supports for a diversity of Clouds

and service platforms.

In addition to the above industry projects, some open cloud service API

research is also found in the field. Bastião Silva et al. [8] propose a common API

for delivering services over multi-vendor cloud resources, where SDCP (service

delivery cloud platform) is presented. Basically, the platform models the diverse

cloud entities (e.g. agent, domain, and provider) and manages cloud service

data and abstraction (streams) conventions; the cloud controller component

provides interfacing functionalities such as provider credential aggregation and

service resource access, through the cloud gateway which loads new cloud

services and grants authentications. In addition, Petcu et al. [113] proposes the

mOSAIC java API as an example of open interface for service deployment and

portability. Similarly, in [90] another design of open cloud API is illustrated.

However, a known drawback of the approach is that it would easily fail to deal

with the uniqueness of similar services for their advanced or newly updated

features, due to the fundamental nature of preserving the maximum common

aspects for them.

40

3.3.3 Service/Resource Management Tools for Heterogeneous

Clouds

Bernabe et al. [13] demonstrates an access control system for multi-vender

cloud resource management. Using ontological modelling techniques, the

proposed ontology handles the specifications of the various entities (e.g. cloud,

system, software, etc.) involved, whereas the authorisation model deals with the

roles, identities and privileges aspects for authorisation and authentication tasks.

Although the approach is advanced for its comprehensive support for both

conditional and hierarchical role-based access control, the application is

currently limited to AWS EC2 resources.

For the aim of a unified cloud storage acquisition, Cloud Data Imager [45] (CDI)

is proposed as a complete system to provide comprehensive functionalities for

access and managing storage resources across diverse clouds (i.e. Dropbox,

Google Drive, Microsoft SkyDrive). The developed CDI library is able to handle

a variety of functions including user authentication, folder listing, file

downloading, etc. Another work addressing resource utilisation monitoring

issues over heterogeneous multi-tenant clouds is found in [116]. The work

proposes DARGOS architecture which can provide highly reliable and scaling

monitoring functions, where insignificant overhead is resulted. Despite their

advantages on dealing with the respected cloud service tasks, the above

systems and approaches are restricted by their fundamental sole usage design

and would only work for limited cloud service models/types.

A model-based cloud service integration platform is advocated 84 to drive

service orchestration for business purpose. The proposed framework tackles

the issues by looking into three levels of modelling: cross-organisational

business processes modelling, service operation/orchestration modelling, and

dynamic member services binding modelling. By using the cloud service API

encapsulation method, it is then able to interconnect different services and

resources as needed, according certain business process flows.

41

3.4 Summary

Existing cloud (service) ontologies are often based on unbalanced and

incomprehensive service and concept specification establishment. For most of

them, explicit details regarding services’ characteristics, properties and

relationships are missing. Moreover, no existing ontology involves the

specification and presentation of cloud service fuzziness. Consequently, they

have various limitations in terms of the comprehensiveness and depth of the

knowledge represented; particularly, they fail to deal with service agility across

the abstraction levels and the service categories. These issues prevent current

service recommendation systems from providing the most effective cloud

service recommendation functions. In fact, fundamentally, this is very likely

caused by the conventional inflexible design accompanied by the DL-consistent

nature of OWL ontology. From a range of proposed FL-based ontology fuzzy

extensions, the new PLN-based OWL2 natively supported fuzzy extension is

adopted to develop the loosely-coupled and agility-oriented cloud service

ontology. As the fuzziness is imported in a collaborative manner, the proposed

approach ought to drive comprehensive and flexible service search, retrieval

and recommendation.

In the meantime, there are considerable third-party open cloud service API

libraries which are mature and available for use, whereas the majority of them

offer wide supports for most popular CSPs and all service categories. Not to say,

several large scale CSPs also provide their own native API for public, which are

often more efficient and stable. These brings many advantages for CSCs in

terms of avoiding vender lock-in, more flexible service/resource management,

advanced service usages such as service orchestration and adaptation. In the

meantime, despite various service modelling, specification, integration, etc.

approaches being proposed, currently none of them can work effectively while

handling diverse cloud service categories/types for a variety of tasks: I) a unified

management portal for diverse cloud service access and manipulation

regardless of the service layer/category/provider/resource (type), II) an interface

that allows automated flexible service (operation) orchestration through its built-

42

in task scheduler, III) a system which can reason the relationships of cloud

services/resources and then produce candidate operation process chains for

potential service interactions. Consequently, the gaps discovered in existing

works significantly limit the effectiveness and efficiency for cloud service

management and composition tasks.

43

Chapter 4 AoFeCSO

- Agility-oriented and Fuzziness-embedded Cloud Service Ontology

In this chapter, the agility-oriented and fuzziness-embedded cloud service

ontology namely AoFeCSO is proposed. Toward the first objective, it is

designed to comprehensively specify the various descriptions, characteristics,

features properties, etc. concerned with CC and cloud service entities.

AoFeCSO utilises the latest OWL2 modelling language and incorporates a

range of specification assertions for optimal information presentation. In

particular, Section 4.1 firstly illustrates the overall ontology foundation design.

This then leads to the details of ontology implementation, including relevant

object property, data type property and annotation property specification

assertions. In addition, as such traditional modelling techniques cannot handle

the vagueness and uncertainty appeared in the specifications, an OWL2 fuzzy

extension approach in developed. Section 4.2 presents the design of the

extension as well as an OWL2 fuzzy specification management mechanism for

fuzzy cloud service specification. With the above featured modelling techniques,

AoFeCSO ought to serve effectively for various cloud service search,

recommendation and retrieval tasks.

4.1 Overall Ontology Design and Implementation

4.1.1 Loosely-coupled Foundation

AoFeCSO is deployed with a “loosely-couple” ontology foundation: it adopts

flexible membership classifications, which enables loose (class) boundary

restrictions; it follows the reasoning ontology design patter (ReasoningOP [50]),

as it maximally utilises property specifications for enhanced reasoning

application. More specifically, they are represented as follows:

1) In AoFeCSO, cloud services are asserted as individuals that belong to the

respected cloud company classes (instead of belonging to certain service

44

delivery models). Among those who are related, there are appropriate

relationships such as “rely resource of”, “have control over” and “can

orchestrate with”.

2) The cloud services delivery model, deployment model, role, party, feature

and function specifications are revealed through object relationships. Object

property specifications are asserted from a cloud service towards its respected

service model/role classes, e.g. EC2 “is delivered as” IaaS; EC2 “is deployed

as” public cloud; Amazon “is recognised as” CSP. In this way, in AoFeCSO, a

service can have multiple models and roles, in case that the service is

uncertainly regarded as both IaaS and SaaS, both public and private cloud, or

both CSC and CSP at the same time.

3) The characteristics and properties that cloud services apply are illustrated as

they have detailed relationships with the subclasses of the main service

attributes, e.g. service characteristics (elasticity, adaptability, reliability, etc.) and

service features (monitoring, notification, multiple OS and programming

language support, migration and transition support, etc.).

4) In AoFeCSO, except of the main designed service function(s), cloud services

are specified to have more functions as long as they can serve the purpose. For

instance, IaaS compute services may also provide application development

platform, network, database, or storage functions.

4.1.2 Agility-oriented Design

In the field of CC, agility is generally referred as the ability of a cloud service to

react appropriately and rapidly to a series of requirements such as adaptation,

customisability, interoperability [67]. In fact, such reaction capability would most

likely count on a diversity of fundamental service elements, including solid

service design, flexible resource provision, comprehensive monitoring,

notification, security, backup and orchestration supports, etc.

45

Fundamentally, the functions a service can achieve should matter the most

regarding its agility, since different functions require distinct architecture designs

and resource provisions [67, 92]. Most SaaS services, for instance, rely on fairly

limited computational resources and provide single or few limited functions.

Meanwhile, typical PaaS services do not have fixed application-scale functions,

and instead, can be used to develop or deploy a variety of applications/services

where various (potential) usage/functionalities can be achieved. Similarly, for

those IaaS services which are designed for general computing needs, they

often offer greater service control, access and customisation in both functional

and non-functional aspects whilst they can be used to achieve even more

(potential) usage purposes. Indeed, the ranges of functions and resources a

service is deployed decide how agile it would act during service composition,

whereas agility inevitably becomes the link while specifying the above service

function aspects and their potential interactions.

The various characteristics and features of cloud services can be seen as a

series of further information regards their main and potential service functions

[69, 92]. Elasticity and scalability, for instance, are two typical cloud service

characteristics. While describing their sub-concepts such as available VM sizes

and scaling options plus the further details of vCPU clock speed/cores,

intranet/Internet connection speed, memory and virtual storage sizes, etc., all of

these aspects are extremely relevant to service’ agility as they are proofs

detailing certain service’ capability of scaling either up/down or in/out as

required. Likewise, platform, OS, programming language and application

programming interface (API) supports are evidences of agility. The lists of

available platforms, OSs, programming languages, APIs are facts that state a

service’s interoperability and configurability. Similarly, detailed notification,

monitoring and security aspects are seen relevant to agility. Notification

basically comprises the different service usage notifications and various service

health notifications. In general, monitoring consists of a diversity of service

element notification, log monitoring, performance monitoring, and security

monitoring. Security is generally divided into access control and data security:

46

access control comprises the different layers that a cloud service supports for

its security implementation, e.g. application layer, data layer, network layer,

process layer and system layer [154, 156]; data security outlines the data

encryption and management supports for its security implementation, e.g.

client/application encryption, data loss prevention, database encryption,

externally managed encryption, file/folder encryption and digital rights

management, instance managed encryption, link network encryption, and

provider managed encryption, proxy encryption [157, 158]. Indeed, all these

aspects above are often deployed as the guarantee for agility requirements,

since they ensure the availability, reliability, integrity, confidentiality of the

various agility responses. Consequently, the above service aspects become the

detailed reflection of a service’s agility.

As a result, as Figure 4.1 illustrates, agility becomes the bridging aspect that

incorporates cloud service functions, characteristics and features, both

functional and non-functional. To this extent, agility is then seen as the overall

reflection of a cloud service’s profile data. This is how AoFeCSO models cloud

service specification by focusing the in-depth cloud service concept details and

their relationships (detailed ontology entities are available in Appendix B).

achieves utility ofClass

Cloud Services

Class

Service Functions

Individual

AWS EC2

Class

Service Features & Characteristics

Class

Service API
Access

Class

Multiple Operating
System Support

Class

Multiple Programming
Language Support

Class

Monitoring

Class

Security

Class

Scalability

Class

Resource
Provision

Class

Platform
Provision

Class

Software
Provision

Individual

Google
AppEngine

Individual

Dropbox

Agility

has attribute has further information

...

...

reflects the agility enhances the agility

decides the agility

Class

Big Data
Provision

...

Figure 4.1 Agility-oriented Ontology Design

47

4.1.3 Ontology Construction

Built on the ground of the existing cloud (service) model knowledge, AoFeCSO

adopts full range of OWL2 property assertions, where several different property

handling techniques are employed. Figure 4.2, Figure 4.3 and Figure 4.4

demonstrate the extensions AoFeCSO achieved in contrast to other existing

models (i.e. [73, 93, 122, 144, 159, 161]).

4.1.3.1 In-depth Assertion of Cloud Service Object Properties

In ontology, an OP declares a certain relationship between two entities. While

existing practices [93, 144] utilise OP for attributing cloud service

characteristics, functional and non-functional properties, very few touches the

details of how or how well those cloud services own these characteristics and

properties.

Shown in Figure 4.2, AoFeCSO describes lower-level details regarding the

service characteristics and features. For instance, scalability is divided into

vertical scalability and horizontal scalability, where each of them has individual

sets of concepts. Security comprises access control and data security; each

category leads to own sets of security aspects [3, 157]. By digging into the

details and relating them with appropriate cloud services, AoFeCSO is capable

of expressing in-depth facts of cloud services’ characteristics, features and

functionalities.

4.1.3.2 Explicit Assertion of Cloud Service and Concept

Relationships

Many cloud companies and providers have certain industry relationships among

each other. Meantime, several cloud services are built with the ability to interact

agilely with others, i.e. they have adaptability and interoperability by nature and

hence can be composed towards customised/enhanced functions. Besides,

there are obvious/hidden relationships among a variety of CC concepts such as

service characteristics, features and functionalities, e.g. scalability is often

48

Figure 4.2 Advances of AoFeCSO in Dealing with Object Properties

49

attributed to elasticity to certain extent; monitor parameters can affect services’

scaling and load balancing behaviours. However, for the majority of the existing

models, such interoperability and concepts relations are not explicitly addressed

and expressed [7, 60, 73, 93, 122, 144, 161].

In contrast, demonstrated in Figure 4.2, AoFeCSO covers these aspects in the

form of individual-to-individual, class-to-class and individual-to-class OP

assertions among cloud services, companies and other concepts. According to

relevant information sources, the various direct/indirect and strong/weak

relationships are explicitly revealed using, e.g. “has industry relationship with”,

“is controlled by”, “can affect”, etc. Furthermore, such OPs are also asserted

with property characteristics such as “transitive”, “symmetric” and “inverse

property of”, which allows DL reasoner to reason new inferred axioms. In this

way, AoFeCSO becomes a densely interconnected ontology in which very few

concepts are seen “alone” on its own.

4.1.3.3 Categorised and Comprehensive Assertion of Cloud Entity

Data Properties

Most existing ontologies solely or largely focus on clarifying the numerical data

attributes of compute cloud services [73, 93, 161]. In contrast, AoFeCSO

employs DPs for much wider specification usages. As illustrated in Figure 4.3, it

employs diverse DP types, such as String, Boolean, Data time, etc. According

to cloud services’ delivery models, the DPs are divided into sub categories. For

instance, IaaS compute services have “vCPU core, frequency, memory size,

network performance”, etc. PaaS application platform services have

“programming language version support, maximum size of application file,

maximum total number of file per directory”, etc. SaaS file storage services

have “binary difference support, file session support, individual size limit,

revision history support”, etc.

In addition, cloud service SLA data is specified with DP assertions. This

involves specifications of SLA descriptions, obligations and other relevant terms

50

and conditions, such as “SLA effective date, service commitment, service

compensation, service error rate, service credit request, service annual/monthly

up time”, etc. [28]. These become an individual complete service DP

specification category.

Figure 4.3 Advances of AoFeCSO in Dealing with Data Properties

51

4.1.3.4 Multi-sourced Assertion of Cloud Entity Annotation

Properties

Figure 4.4 Advances of AoFeCSO in Dealing with Annotation Properties

As depicted in Figure 4.4, AoFeCSO utilises annotation properties in a rather

different approach against [121, 122, 128] for concept annotations. It involves

annotating not only cloud services, but also all other entities appeared in the

ontology, e.g. service delivery/deployment models, service characteristics,

service properties, cloud service companies, OSs, programming languages,

protocols, APIs, etc., regardless of their uniqueness or commonness. In this

way, the whole ontology becomes much more interpretable, even to non-expert

users.

Moreover, unlike others who acquire (annotation) information from a single

knowledge source, AoFeCSO collects and uses multiple, in fact, as many as

possible, descriptions over a diversity of sources. This establishes trustful

concept annotations throughout the ontology, since each annotation asserted is

52

accompanied with its origin source information (by annotating the annotation

with the source data). Obviously, these multi-sourced annotations offer a much

more comprehensive view for the modelled entities, and by interpreting which

users would gain more insights than they could from any single one.

4.2 Fuzzy Cloud Service Specification with OWL2 Fuzzy

Extension

4.2.1 Fuzzy Scenarios

The fundamental elements of OWL are individuals, classes, OPs and DPs [126].

OWL2 fuzzy extension can therefore be achieved if the fuzziness of the above

basic elements and their relations are addressed. More specifically, it deals with

the following three scenarios: the fuzzy subsumption exists in

individuals/classes/OPs/DPs, the fuzzy restrictions asserted on individuals or

classes of individuals, and the fuzzy values used in axioms (literal, secondary

individuals or classes of individuals). In the following fuzzy scenarios, “()I”

denotes an individual, “()C” denotes a class, “()OP” denotes an OP, “()DP”

denotes a DP. “∈” denotes to fuzzily belong to, “⊆” denotes to fuzzily subsume.

4.2.1.1 Scenario 1: Subsumption Weights

Based on the fuzzy set and PLN theories talked in Section 2, “subsumption

weights” are introduced to illustrate at what degree a class/property/superclass

subsume an instance/subpropety/class in OWL2. The weight works on top of

formal OWL2 sub/subsume assertion and does not tend to modify the overall

ontology hierarchy (for now). For example, if an instance is specified to belong

to either set A or set B, different subsumption weights can express which set

the instance is more or less likely to belong to; or if both x and y belong to the

same set, dissimilar subsumption weights can indicate which one follows the

maximum specification of the set.

53

A. Subsumption weights of OWL2 individuals

Case 1:

Individual (a)I fuzzily belongs to only class (C1)
C which disjoints its sibling

classes (Ci)
C within their superclass (C)C; the subsumption weight is 𝜇 (C1)

c ((a)I)

→ (0, 1], which satisfies that the degree of (a)I belonging to the superclass (C)C

is at least the degree of (a)I belonging to (C1)
C and up to 100%; denotes:

 If (a)I ∈ (C1)
C and (a)I ∉ (Ci)

C and (C)C = (C1)
C ∪ (C2)

C ∪ … ∪ (Cn)
C;

 then 𝜇 (C1)
c ((a)I) → (0, 1];

 and 𝜇 (C)
c ((a)I) → [𝜇 (C1)

c ((a)I), 1];

where for each 2≤ i ≤ n.

Case 2:

Individual (a)I fuzzily belongs to either class (C1)
C or (C2)

C or … or (Ci)
C; where

(C1)
C, (C2)

C, …, (Ci)
C can be either disjointed or jointed classes within their

superclass (C)C; the subsumption weights are 𝜇 (C1)
c ((a)I) → (0, 1], 𝜇 (C2)

c ((a)I)

→ (0, 1], …, 𝜇 (Ci)
c ((a)I) → (0, 1], which satisfy that the degree of (a)I belonging

to the superclass (C)C is 100%, whereas the sum of all the subsumption

degrees is 100%; denotes:

If (a)I ∈ (C1)
C or (a)I ∈ (C2)

C or … or (a)I ∈ (Ci)
C and (a)I ∉ (Cj)

C ∩ (Ck)
C and

(C)C = (C1)
C ∪ (C2)

C ∪ … ∪ (Cn)
C;

 then 𝜇 (C1)
c ((a)I) → (0, 1]; 𝜇 (C2)

c ((a)I) → (0, 1]; …;

 𝜇 (Ci)
c ((a)I) → (0, 1];

 and 𝜇 (C)
c ((a)I) = 1;

∑ 𝑛
𝑖=1 𝜇 (Ci)

c ((a)I) = 𝜇 (C1)
c ((a)I) + 𝜇 (C2)

c ((a)I) + … + 𝜇 (Ci)
c ((a)I) = 1;

where for each 2≤ i ≤ n and for each 1≤ j ≤ n and for each 1≤ k ≤ n and
such that j ≠ k.

54

Case 3:

Individual (a)I fuzzily belongs to the union of class (C1)
C, (C2)

C, …, (Ci)
C within

their superclass (C)C; the subsumption weights are 𝜇 (C1)
c ((a)I) → (0, 1], 𝜇 (C2)

c

((a)I) → (0, 1], …, 𝜇 (Ci)
c ((a)I) → (0, 1], which satisfy that the degree of (a)I

belonging to the superclass (C)C is equal to or greater than the maximum

degree of all these subsumptions and up to 100%, whereas the sum of all the

subsumption degrees is in (0, ∑ 𝑖𝑛
𝑖=1

0]; denotes:

If (a)I ∈ (C1)
C and (a)I ∈ (C2)

C and … and (a)I ∈ (Ci)
C and (C)C = (C1)

C ∪
(C2)

C ∪ … ∪ (Cn)
C;

 then 𝜇 (C1)
c ((a)I) → (0, 1]; 𝜇 (C2)

c ((a)I) → (0, 1]; …;

 𝜇 (Ci)
c ((a)I) → (0, 1];

 and 𝜇 (C)
c ((a)I) → [max{𝜇 (C1)

c ((a)I), 𝜇 (C2)
c ((a)I), …, 𝜇 (Ci)

c ((a)I)}, 1];

 ∑ 𝑛
𝑖=1 𝜇 (Ci)

c ((a)I) = 𝜇 (C1)
c ((a)I) + 𝜇 (C2)

c ((a)I) + … + 𝜇 (Ci)
c ((a)I) → (0,

∑ 𝑖𝑛
𝑖=1

0];

where for each 2≤ i ≤ n and such that j ≠ k.

B. Subsumption weights of OWL2 classes

The subsumption cases are nearly the same as for OWL2 individuals, similarly:

Case 1:

If (C0)
C ⊆ (C1)

C and (C0)
C ⊈ (Ci)

C and (C)C = (C0)
C ∪ (C1)

C ∪ … ∪ (Cn)
C;

 then 𝜇 (C1)
c : (C0)

C → (0, 1];

 and 𝜇 (C)
c : (C0)

C → [𝜇 (C1)
c : (C0)

C, 1];

where for each 2≤ i ≤ n.

If class (C0)
C is only a subclass of (C1)

C (fuzzily), the subsumption weight of

(C1)
C subsuming (C0)

C is 𝜇 (C1)
c : (C0)

C → (0, 1], and when (C1)
C is a subclass of

(C)C, the subsumption weight of (C)C subsuming (C0)
C is equal to or greater

than 𝜇 (C1)
c : (C0)

C and up to 100%.

55

Case 2:

If (C0)
C ⊆ (C1)

C or (C0)
C ⊆ (C2)

C or … or (C0)
C ⊆ (Ci)

C and (C0)
C ∩ (Cj)

C ∩
(Ck)

C = ∅ and (C)C = (C0)
C ∪ (C1)

C ∪ … ∪ (Cn)
C;

 then 𝜇 (C1)
c : (C0)

C → (0, 1]; 𝜇 (C2)
c : (C0)

C → (0, 1];

 …; 𝜇 (Ci)
c : (C0)

C → (0, 1];

 and 𝜇 (C)
c : (C0)

C = 1;

 ∑ 𝑛
𝑖=1 𝜇 (Ci)

c : (C0)
C = 𝜇 (C1)

c (C0)
C + 𝜇 (C2)

c (C0)
C + … + 𝜇 (Ci)

c (C0)
C = 1;

where for each 2≤ i ≤ n and for each 1≤ j ≤ n and for each 1≤ k ≤ n and

such that j ≠ k.

If class (C0)
C is a subclass of (C1)

C or (C2)
C or … or (Ci)

C (fuzzily), the

subsumption weights of (C1)
C, (C2)

C, …, (Ci)
C subsuming (C0)

C are: 𝜇 (C1)
c : (C0)

C

→ (0, 1]; 𝜇 (C2)
c : (C0)

C → (0, 1]; …; 𝜇 (Ci)
c : (C0)

C → (0, 1]; when (C)C subsumes

(C1)
C and (C2)

C and … and (Ci)
C, the sum of all the subsumption degrees is

100%, the subsumption weight of (C)C subsuming (C0)
C is 100%.

Case 3:

If (C0)
C ⊆ (C1)

C ∩ (C2)
C ∩ … ∩ (Ci) and (C)C = (C0)

C ∪ (C1)
C ∪ … ∪ (Cn)

C;

 then 𝜇 (C1)
c : (C0)

C → (0, 1]; 𝜇 (C2)
c : (C0)

C → (0, 1];

 …; 𝜇 (Ci)
c : (C0)

C → (0, 1];

 and 𝜇 (C)
c : (C0)

C = [max{𝜇 (C1)
c : (C0)

C, 𝜇 (C2)
c : (C0)

C, …, 𝜇 (Ci)
c : (C0)

C}, 1];

 ∑ 𝑛
𝑖=1 𝜇 (Ci)

c : (C0)
C = 𝜇 (C1)

c (C0)
C + 𝜇 (C2)

c (C0)
C + … + 𝜇 (Ci)

c (C0)
C → (0,

∑ 𝑖𝑛
𝑖=1

0];

where for each 2≤ i ≤ n.

If class (C0)
C is the subclass of (C1)

C and (C2)
C and … and (Ci)

C, the

subsumption weights of (C1)
C, (C2)

C, …, (Ci)
C subsuming (C0)

C are: 𝜇 (C1)
c : (C0)

C

→ (0, 1]; 𝜇 (C2)
c : (C0)

C → (0, 1]; …; 𝜇 (Ci)
c : (C0)

C → (0, 1]; when (C)C subsumes

(C1)
C and (C2)

C and … and (Ci)
C, the sum of all the subsumption degrees is in

56

(0, ∑ 𝑖𝑛
𝑖=1

0]. The subsumption weight of (C)C subsuming (C0)
C is at least the

maximum degree of all subsumptions and up to 100%.

C. Subsumption weights of OWL2 object properties

The subsumption degree of OWL2 OPs is handled differently from above cases.

They are fairly simple, since we do not tend to say an OP (OP0)
OP is either a

subproperty of (OP1)
OP or (OP2)

OP, or (OP0)
OP is both the subproperty of

(OP1)
OP and (OP2)

OP. For the simplest case, it uses 𝜇 (OPj)
OP : (OPk)

OP → (0, 1]

(where j ≠ k) to infer the weight of (OPj)
OP subsuming (OPk)

OP. In addition, for

the case of multiple OPs belonging to their mutual superproperty, the

subsumption weights would hardly interfere with each other. Therefore, for the

superproperty (OP)OP which consists (OP1)
OP, (OP2)

OP, …, (OPn)
OP; in implies 𝜇

(OP)
OP : (OP1)

OP → (0, 1], 𝜇 (OP)
OP : (OP2)

OP → (0, 1], …, 𝜇 (OP)
OP : (OPi)

OP → (0, 1],

where for each 2 ≤ i ≤ n.

D. Subsumption weights of OWL2 datatype properties

Similarly to the condition of OPs, DP subsumptions denote:

 𝜇 (DPj)
DP : (DPk)

DP → (0, 1];

 𝜇 (DP)
DP : (DP1)

DP → (0, 1]; 𝜇 (DP)
DP : (DP2)

DP → (0, 1]; …; 𝜇 (DP)
DP :

 (DPi)
DP

 → (0, 1];

where (DP)DP = {(DP1)
DP, (DP2)

DP, …, (DPn)
DP} and for each 2 ≤ i ≤ n such

that j ≠ k.

It implies that each DP subsumption weight is assigned individually whilst they

have no interference against each other.

E. Subsumption weight Example (Class hierarchy)

Other than initially defined cloud delivery model Infrastructure-as-a-Service

(IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS),

57

emerged concepts such as Communication-as-a-Service (CaaS), Hardware-as-

a Service (HaaS) are being accepted to some extent. Instead of saying “HaaS

is subsumed by IaaS” and “CaaS is subsumed by either IaaS or PaaS”,

subsumption weights can therefore be added to express “HaaS is ‘likely’ to be

subsumed by IaaS” and “CaaS is ‘less likely’ to be subsumed by IaaS than by

PaaS”, e.g.:

 𝜇 (IaaS)
c : (HaaS)C = 0.9;

 𝜇 (IaaS)
c : (CaaS)C = 0.4; 𝜇 (PaaS)

c : (CaaS)C = 0.6;

where (CaaS)C ⊆ (IaaS)C or (CaaS)C ⊆ (PaaS)C and (IaaS)C ∩ (PaaS)C =
∅.

4.2.1.2 Scenario 2: Restriction Weights

Despite the fact that OWL2 OP based relation axioms seem to be similar as the

fuzzy relationship theory talked in Section 2, it suggests a rather different

approach here. In OWL, both OPs and DPs are used to compose axioms that

certain individuals/classes may satisfy. These axioms are implemented in the

form of restriction properties, which can only be used positively or negatively. In

the case of fuzziness, it is difficult to compose the most appropriate restrictions

as the “powers” of the axioms are missing. e.g. the user interface of Apple

products is “kind of” friendly. Additionally, suppose two individuals are asserted

with the same fuzzy restriction(s), without the power indications it is unlikely to

tell the differences between them. For example, both ZohoCRM and

SalesforceCRM can do Customer Relationship Management (CRM) related

tasks, including account/contacts management, task/event tracking, etc.;

without a proper degree indication they would seem to be exactly the same to

users. Hence, restriction weights (notated as float “𝜆”) are proposed on certain

OWL2 restrictions to indicate the powers/constraints of the unit interval (0, 1].

Restriction weights can be applied to both OP and DP.

58

A. Restriction weights of OWL2 object properties

For OPs applied between specific OWL2 individuals:

 𝜆 (OP)
OP : (I1)

I × (I2)
I → (0, 1]

For OPs applied on specific OWL2 individuals with OWL2 classes of individuals:

 𝜆 (OP)
OP : (I)I × (C)C → (0, 1]

For OPs applied between OWL2 classes of individuals:

 𝜆 (OP)
OP : (C1)

C × (C2)
C → (0, 1]

One example use of OP restriction weights is to clarify relationships which are

not likely to be 100% strong between OWL2 individuals. Amazon Web Services

as an example, have a series of subservices (EC2, S3, Elastic MapReduce,

Elastic Beanstalk, etc.) which work in conjunction with each other. However, in

the case that they do not have full interoperability among all of them, restriction

weights can then be attributed to the OP (worksInConjunctionWith)OP meaning

the interoperability between certain paired subservices do not come in full. e.g.

𝜆 (worksInConjunctionWith)
OP : (EC2)I × (S3)I → 0.95; 𝜆 (worksInConjunctionWith)

OP :

(ElasticBeanstalk)I × (S3)I → 0.75. In addition, in the case of existential

restriction, restriction weights are to be applied separately at a per restriction

basis over the same OP.

B. Restriction weights of OWL2 datatype properties

Same as OPs, restriction weights also work on certain OWL2 DP restrictions

which are applied on OWL2 individuals or classes of individuals, indicating the

powers of the data based restriction axioms, denote:

For specific OWL2 individuals:

 𝜆 (DP)
DP : (I)I → (0, 1]

59

For OWL2 classes of individuals:

 𝜆 (DP)
DP : (C)C → (0, 1]

4.2.1.3 Scenario 3: Axiom Value Weights

In addition to subsumption and restriction weights, axiom value weights (notated

as float “𝛿”) are proposed to address the fuzziness of the secondary OWL2

resources used in certain axioms. In contrast to restriction weights, the

vagueness emerges from the values used in axioms to describe the subject

entities. Assuming there are two axioms applied to an individual using the same

OP/DP but with two fuzzy values (individual/class with OP or literal with DP), if

different fuzzy weights are added to those values additionally in the axioms, it

can then reveal: one value is more/less applicable than the other to some

extent. Axiom value weights are, therefore, to clarify the truth degrees of using

certain OWL2 resources as axiom values in certain axioms. They are initialised

when there are ambiguity/inconsistent/vagueness values asserted as the axiom

value, denotes:

For OP axiom values asserted between individuals and classes of individuals:

 𝛿 (OP)
OP : (I1)

I ∘ (I2)
I → (0, 1];

 𝛿 (OP)
OP : (C1)

C ∘ (C2)
C → (0, 1];

 𝛿 (OP)
OP : (I)I ∘ (C)C → (0, 1].

For DP axiom values asserted on individuals and classes of individuals:

 𝛿 (DP)
DP : (I)I ∘ (LT)LT → (0, 1];

 𝛿 (OP)
OP : (C)C ∘ (LT)LT → (0, 1].

Axiom value weights, for instance, can be used to indicate the fuzzy comparison

of two individuals assigned over the same OP on the subject individual:

60

𝛿 (SLAServiceCompensation)
OP :(S3)I ∘ (ServiceCredit Request)I=1.00;

𝛿 (SLAServiceCompensation)
OP: (iCloud)I ∘ (ServiceCreditRequest)I=0.8;

𝛿 (SLAServiceCompensation)
OP :(iCloud)I ∘ (ITunesVoucher)I = 0.2. It means traditional

cloud providers, like Amazon “S3”, returns users “service credit request” if “SLA

Service compensation” is authorised. Yet, Apple “iCloud” provides additional

option, seen as “ITunes voucher”. So an axiom value weight can be used to

emphasise that for SLA service compensations, ITunes voucher is less likely to

be recognised compare to the traditional service credit request.

4.2.2 Native OWL2 Support

OWL2 introduces a series of new features and rationale in addition to previous

OWL, notably as new property constructs, enhanced DP expressions and

syntactic sugar [53]. The update makes OWL2 ontology more comprehensive

as well as simpler to construct. As a matter of fact, it can accomplish above

scenarios of fuzzy weights assertions by using different forms of OWL2 DPs

along with these updates, whereas they may have the potential to deal with

more complicated cases.

OWL2 DP is primarily designed for asserting axioms that cloud entities may

comply with. Traditionally it is used to define facts or specifications that certain

concepts fulfil specific data based attributes. In this thesis it proposes a series

of unique and categorised “weight” DP domains to implement fuzzy assertions.

They are asserted to certain fuzzy entities where necessary and seen like fuzzy

tags, where OWL2 annotations can be used to explain how the fuzziness is

tackled. Rather than writing a complete new built-in [17] or using OWL2

annotation oriented technique [19], our approach is considered to be more

naturally embedded in OWL2 whilst it is supported by traditional DL reasoners.

4.2.2.1 Applicability of OWL2 Subsumption Weight

The subsumption weights are asserted in the form of OWL2 DPs, on top of

basic OWL2 individual/superclass/superproperty assertions. For each

individual/class/property the subject might belong to, an exclusive named

61

datatype restriction with the float between (0, 1] is assigned. It is recommended

that the name of the DP should reflect the class/superclass/superproperty, such

as the weight DP (AppleWeight)DP for use of the class (Apple)C subsuming the

instance (iCloud)I, as the subsumption degree is meaningful only towards the

subject’s class/superclass/superproperty.

Class (owl:subjectclass)

 SubclassOf (

 ObjectIntersectionOf (

 Class (owl:superclass)

 DataHasValue (owl:subsumptionweight (Literal:double))

)

)

Figure 4.5 OWL2 Fuzzy Subsumption Weight for Individuals

Class (:CaaS)

 SubclassOf (

 ClassUnionOf (

 IntersectionOf (

 Class (:IaaS)

 DatatypeDefination ((:IaaSWeight)

 DatatypeRestriction (

 xsd: double hasValue 0.6)

)

)

 IntersectionOf (

 Class (:PaaS)

 DatatypeDefination ((:PaaSWeight)

 DatatypeRestriction (

 xsd: double hasValue 0.4)

)

)

)

);

DisjointClasses (:IaaS :PaaS)

Figure 4.6 OWL2 Fuzzy Subsumption Weight Application for Classes

62

For individual’s fuzziness the assertion is done by applying the weight DP

directly just like other datatype axioms. For OWL2 class’s fuzzy subsumption,

the simplest case (Section 4.2.1.1.B.Case 1) of fuzzy weight can be asserted as

in Figure 4.5.

Additionally, a more complex assertion is demonstrated by using the

subsumption example above (section 4.2.1.1.E). First, to assert the basic axiom

that all individuals of (CaaS)C are either members of (IaaS)C or (PaaS)C and

cannot be both of them. Then inside the “ClassUnionof”, (IaaSWeight)DP = 0.4

and (PaaSWeight)DP = 0.6 are applied separately along with their own subclass

statement, where two “IntersectionOf” are formed, seen as in Figure 4.6.

Finally, annotations can be asserted to the classes as well as the weight DPs.

4.2.2.2 Applicability of OWL2 Restriction Weight

Restriction weights are implemented by using exclusively and respectively

named OWL2 datatype restrictions. In OWL2, for axioms which are applied

between classes of individuals, existential or universal restrictions must be

declared and specified.

In the case of existential restriction, it is recommended that the name of the

weight DP presents all names and values involved. i.e. the weight DP

(EC2worksInConjunctionWithS3Weight)DP for use of (EC2)I × (S3)I with

(worksInConjunctionWith)OP; for universal restriction, it is not necessarily to

mention the secondary class (yet still recommended). Furthermore, for

OPs/DPs which are directly asserted between/on individuals, both the

individuals/values along with the properties need to be disclosed in the weight

DPs. Indeed, OWL2 constraint weights only make sense under named DPs

which comprise adequate information of the target axioms.

For individuals’ restriction fuzziness assertion, it is done by asserting the weight

DP directly as well. Below is an example of a class with single fuzzy weighted

OP restriction:

63

Multiple weights which are assigned to multiple restrictions which applied to a

single entity are applied by continuing adding the weight DP assertions within

“<ObjectIntersectionOf> </ObjectIntersectionOf>” (See Figure 4.7).

4.2.2.3 Applicability of OWL2 Axiom Value Weight

Axiom value weights can also be interpreted and presented using OWL2 DPs.

The way they are asserted is the same as for restriction weight assertions.

Despite the fact that axiom value weights are applied to the axiom values only,

to avoid weights overlapping and differentiate with two other types of weight, the

names of the weight DPs should indicate the OPs/DPs plus the values involved

in the axioms. For instance, (SLAServiceCompensationItunesVoucherAVWeight)
DP for use of

(iCloud)
I
 × (Itunes Voucher)

I with (SLAServiceCompensation)OP.

4.2.3 Fuzzy Specification Application

While traditional OWL ontologies cannot effectively handle and express

uncertainties, AoFeCSO employs a series of fuzzy-extended axioms on top of

conventional ontology specifications. This significantly enhances the accuracy

of the ontology specification and expression by presenting the most appropriate

facts. Generally, in contrast with an ordinary axiom which clarifies a crisp fact, a

fuzzy-extended axiom depicts the fact that “to a certain degree this is

Class (owl:subjectclass)

 ObjectIntersectionOf (

 ObjectSomeValuesFrom (

 (owl:objectproperty) (owl:secondaryclass)

)

 DatatypeDefination ((owl:restrictionweight)

 DatatypeResriction (

 xsd: double hasValue ⋕double)

)

)

Figure 4.7 OWL2 Fuzzy Restriction Weight Application

64

considered to be true”. The degree of truth, usually a float of interval (0, 1), is

viewed as the fuzzy weight of the axiom assertion. With such weighted

assertions, AoFeCSO is able to clarify: e.g. a service owns “partial” of certain

properties; a service works “closely” with another service; a service is

sometimes and not always regarded as what it is being specified.

4.2.3.1 Fuzziness Notation and Representation

To explain how the impreciseness service specifications are implemented in

AoFeCSO under PLN [51] theory, some examples are demonstrated here,

using Dropbox [36]. As a cloud storage service that allows users to save,

upload, download, synchronise, and share personal files and folders from

different OS platforms in a variety of geographic locations, it further enables

developers to build additional applications based on the storage platform. To

this extent, such services can be regarded to have some PaaS characteristics

whilst they would offer properties such as reliability. However, the “PaaS” and

“reliability” specifications are vague and may differ from one person to another;

this implies that there might be different degrees of acceptance. According to

PLN, these are basic first-order and higher-order logical relationship which

denotes (using example fuzzy values):

IntensionalInheritance Dropbox PaaS < [0.3, 0.9] 0.8, 10>

Evaluation hasReliability Dropbox < [0.3, 0.9] 0.8, 10>

These reveal that Dropbox is considered to own PaaS characteristics/reliability

attribute at a degree within interval of 0.3 and 0.9 with confidence (“credibility”)

of 0.8 after 10 more observations (“lookahead”). In contrast to FL representation

(which presents only a single fuzzy degree value), it comprehensively reveals

not only an interval as the range of the fuzzy weight, but also the confidence of

this fuzziness plus the number of collected evidences.

65

4.2.3.2 Fuzzy Data Collection

Table 4.1 Fuzzy Weight Rating Authorisation Control

Authority Beginner Intermediate Advanced Expert

Fuzzy weight update ╳ √ √ √

Fuzzy interval update ╳ ╳ √ √

Crisp fuzzy convention ╳ ╳ ╳ √

As fuzziness is seen a subjective matter, a closely constructed fuzzy ontology

would then become relevantly subjective, and becomes unideal eventually. To

this extent, the approach takes the initiative to involve a great deal of users to

rate their own perception weight for appropriate axioms in AoFeCSO. This also

complies with the data collection and evaluation processes against relevant

PLN theories. By using an integrated user-friendly fuzzy rating mechanism,

users do not necessarily require any explicit knowledge of knowledge

engineering to make the contribution. Here, the reputation management

framework [115] is adopted for the user expertise classifications. Then, for

different user expertise levels, the approach provides fuzzy rating authorisation

for AoFeCSO, based on the authorisation control reference illustrated in Table

4.1.In fact, the user expertise profile values obtained from other categorisation

model can be altered if necessary for our approach.

Basically, the lower the user’s level (expertise in CC) is, the smaller the degree

of change one will trigger. As shown in Table 1: 1) “Beginners” users are not

permitted to input/change anything specified in AoFeCSO. 2) Users from

“Intermediate” level and up are allowed to donate their own fuzzy ratings

according to their understanding for certain specifications. If so, accepted fuzzy

rating will trigger a series of ontology update actions, where a new fuzzy value

will be recalculated based on the historical fuzzy rating data stored plus the

level of the donating user, under relevant PLN theory. 3) In addition, the fuzzy

interval will be updated only if the user is at level of advanced or above. 4)

Finally, only “Expert” level users are permitted to make an initial fuzzy rating for

a certain specification axiom, as this means to convert the regular axiom from

66

crisp to fuzzy for the first time. The algorithm prevents low level users from

making critical changes to AoFeCSO whilst it increases the overall credibility of

the occurred fuzzy specifications.

4.2.3.3 Fuzzy axiom assertion and annotation

Figure 4.5 shows the comparison between regular and fuzzy assertions (and

fuzzy annotation) plus the respected reasoning outcome in Protégé [62]

snapshots. Using Amazon S3 [2] in the example, originally, while controversial

evidences show its belonging to IaaS, PaaS and SaaS, it makes no difference

from the three regular delivery model assertions. However, if converted into the

fuzzy version, the adds-up part would then be able to reveal that the “PaaS”

delivery model for Amazon S3 is considered to be vague (minority agrees only)

with the overall weighted average value of “0.21200001f” (“f” stands for float).

Here, since the fuzzy part of the extended axiom is created in the format of

regular OWL2 DP axiom, after the conversion, the weight-combined axiom

becomes an axiom that intersects the original object axiom and its fuzzy weight

data axiom, also in standard OWL2 syntax. As a result, the fuzziness-

embedded ontology supports native OWL2 DL reasoner such as FaCT++ [152]

and HermiT [131] (see the reasoned/inferred axiom in Figure 4.8).

Meantime, apart from the fuzzy weight value added onto the original axiom,

complete fuzziness data as well as all historical fuzzy rating information are also

stored in the annotation field of the fuzzy-extended axiom (see the Annotations

in Figure 4.8). With respect to PLN fuzzy data representation, the “Interval”

concludes the fuzzy weight interval of the historical rating ranges; the

“Credibility” captures the up-to-date credibility of the fuzzy weight ratings; the

“Count”, which indicates the current total number of ratings, is known to be

same as the “lookahead” value. Additionally, historical detailed rating data for

each eligible user expertise level is stored, which comprises the average values

and counts for “Intermediate”, “Advanced” and “Expert” users respectively.

67

Figure 4.8 Fuzzy Conversion, Annotation and Reasoning in AoFeCSO

68

Let FW represents fuzzy weight, Coverall represents the overall credibility, the

equations for fuzzy weight and credibility calculation takes the form:

 𝐹𝑊 =
𝑅𝐼̅̅ ̅∗𝐶𝐼∗𝑁𝐼+𝑅𝐴̅̅ ̅̅ ∗𝐶𝐴∗𝑁𝐴+𝑅𝐸̅̅ ̅̅ ∗𝐶𝐸∗𝑁𝐸

𝐶𝐼∗𝑁𝐼+𝐶𝐴∗𝑁𝐴+𝐶𝐸∗𝑁𝐸
 (1)

 𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
𝐶𝐼∗𝑁𝐼+𝐶𝐴∗𝑁𝐴+𝐶𝐸∗𝑁𝐸

𝑁𝐼+𝑁𝐴+𝑁𝐸
 (2)

 where

 𝑅𝐼
̅̅ ̅ =

∑ 𝑅𝐼𝑖
𝑁𝐼
𝑖=1

𝑁𝐼

 𝑅𝐴
̅̅ ̅ =

∑ 𝑅𝐴𝑖
𝑁𝐴
𝑖=1

𝑁𝐴
 (3)

 𝑅𝐸
̅̅̅̅ =

∑ 𝑅𝐸𝑖
𝑁𝐸
𝑖=1

𝑁𝐸

Here RI
̅̅ ̅ , RA

̅̅ ̅̅ , and RE
̅̅̅̅ represent the average rating values of “Intermediate”,

“Advanced” and “Expert” users respectively, for each ratings RAi, RIi and REi; CI,

CA and CE represent the credibility values of each respected user levels; NI, NA

and NE represent the number of total ratings of the different user levels. From

the equations, it can be seen that whenever a new rating is accepted, the fuzzy

weight and overall credibility is recalculated whilst a series of detailed data

fields are updated.

4.2.3.4 Fuzzy Axiom Management

Figure 4.9 illustrates the processes of the ontology fuzzy modification flow.

While a new fuzzy rating is detected, it is first verified against the authorisation

control specified in Section 4.2.

69

Figure 4.9 Fuzzy Modification Flow

70

In case of an initial fuzzy weight assertion (crisp-to-fuzzy conversion), a series

of fuzziness statements and parameters are created in the format illustrated in

Section 4.3 at first. Due to the fact that it is the only rating, the creditability

would be 100% whilst the interval is set to +/-10% of the rating value. Followed

by that, an ad-hoc DP is created using a name which combines the name of the

OP and class plus the word “Weight”, indicating this is a specific restriction

applied onto the target axiom. The value of the ad-hoc DP, also known as the

fuzzy weight, is simply the rating entered by the expert user.

For fuzzy weight updates, the existing fuzziness data is retrieved and validated

at first. Then based on the new rating, appropriate fields are updated according

to (3). As the updates complete, a new fuzzy weight and the overall creditability

value are recalculated using (1) and (2).

While all fields of the detailed fuzziness data and fuzzy axioms are successfully

created/updated, a fuzzy annotation label is also prepared for the fuzzy axiom,

based on the new fuzzy parameters as well as the nature of the axiom: e.g. with

weight of (0,0.5)/[0.5,1), “STRONG/WEAK” for service property axioms which

suggests the cloud service are strongly/weakly considered to own the

properties; “DIRECT/INDIRECT” for service functionality axioms, suggesting

such is a primary/secondary function of the service; “MAIN/ALSO” for other

assertions, meaning that the assertion is mainly/also regarded as such. These

further explanations help users better understand the fuzzy weight values with

respect to the nature of the information it reveals.

Next, all above updated contents are imported to the ontology where certain

data will be changed. If there is no error occurred after updating the ontology,

the reasoning process will be initiated to check for any inconsistency or new

inferred axioms. Here, any new inferred axioms (new knowledge) will also be

saved to the ontology, whereas the original ontology data (if it exists) will be

restored if there is any updating/saving error occurred or inconsistency

detected.

71

4.3 Summary

This chapter has presented the design of AoFeCSO. The novel ontology

extends the current CC and cloud service semantic modelling practices by

embedding two innovative features: agility-oriented design and OWL2 native

ontology fuzzy extensions. The agility-oriented design and ontology

implementation are able to comprise as many specifications considering the

modelling scale and depth. Specifically, this is achieved through the following

four tasks: in-depth assertions of cloud service object properties, explicit

assertion of cloud service and concept relationships, categorised and

compressive assertion of cloud entity data properties, and multi-sourced

assertion of cloud entity annotation properties. Further, in order to capture and

optimally present the fuzziness appeared in cloud service specifications,

AoFeCSO is embedded with a series of fuzzy OWL2 specifications for

applicable vague and uncertain descriptions. Accordingly, AoFeCSO can serve

as a comprehensive knowledge source to enable effective cloud service search,

recommendation, retrieval, plus evaluation and comparison tasks.

72

Chapter 5 SAMOS

- Cloud Service Operation Specification Approach

This chapter focuses on the semantic presentation of the various cloud service

operations. Toward the second object, a unified cloud service access and

manipulation operation specification approach (SAMOS) is proposed. The

approach achieves generic descriptions for relevant cloud service operation

entities, entity classifications, entity relationships, entity data attributes.

Incorporating with a series of service operation reasoning mechanisms, SAMOS

consequently enables a unified view and manipulation for handling service

operation tasks via a single structured interface. Specifically, Section 5.1

describes the three series of service operation specification elements, including

specification of cloud service entities and operations, specification of cloud

service entity data types, specification of cloud service operational relationships.

Then, Section 5.2 demonstrates two service operation verification algorithms

that can be used for operation preparation and execution tasks. Subsequently,

Section 5.3 introduces a range of service operation reasoning assistances for

advanced operation tasks. Finally, Section 5.4 outlines the design of cloud

service operation process map for further graphical operation process

presentation.

5.1 Modelling Granular Cloud Service Entities and Operations

5.1.1. Specification of Cloud Service Entity and Operation

Classification

As a cloud service operation executes, a wide range of entities may be involved.

Generally, this can include the subject service, the concepts in the operation

condition, the entities involved in the required operation parameters, the objects

in the execution outcomes… Obviously, the above cloud service aspects are

the fundamental concepts and entities involved in cloud service operations.

Among these entities, there are usually certain membership or association

73

relationships. In fact, these subsumption memberships can be well modelled

with ontology classification techniques.

Class

Cloud Service
Provider

Class

Cloud Service
e.g., EC2

Individual

Cloud Service
Instance

(CSI)
e.g., EC2 instance

Class

Provider-specific
Service Aspect

(PSSA)
(group)

e.g., regions

Individual

Provider-specific
Service Aspect

(PSSA)
(member)

e.g., region

n

1

1

n

1

n

1

n

Figure 5.1 Cloud Service Entity Association and Membership Relations

Specifically, as illustrated in Figure 5.1, for cloud services, each cloud service

provisioned by a certain service provider can be asserted as an ontology class.

According to their subsumption relationships, the service class is modelled as a

subclass of the CSP class. Then, any cloud service instance (CSI) created in a

cloud service (and owned by a specific service user) is specified as an

individual of the service class.

Furthermore, any other concepts and entities involved in a service operation or

correlated with a service’s attribute are also modelled likewise (See Figure 5.1).

This may include possible service operation parameter entities, service

configuration specification entities, or a series of service accountability and user

authorisation data. Considering that the almost all of such entities tend to be

only recognisable for a specific CSP (i.e. the data formats, names, descriptions

of the entities would all be unique from one provider to another whilst the

entities would only be applicable for certain specific service operation tasks),

they are specified as “provider-specific service aspect” (PSSA). Nonetheless,

for some common cloud service aspects, despite the distinct PSSA names

74

being given, they would stand for the same entity fundamentally, e.g. public IP

addresses, certain application source files, VM images, SQL database data

entries. These associated entities are declared with equivalent class or same

individual axioms in SAMOS. Figure 5.2 summarises the association

relationships among cloud services, CSIs, PSSAs.

Class

Cloud
Service

Operation

Class

IaaS
Operation

Class

VM Service
Operation

Class

Common
Operation

1

Class

PaaS
Operation

Class

SaaS
Operation

n

Class

...

Individual

e.g. Start A VM

Class

e.g. List
Instance

Class

e.g. Set
Region

Class

e.g. Start VMs

Class

Platform Service
Operation

Individual

e.g. Create A New
Environment

Class

e.g. Create New
Environments

Class

Load Balancer
Service Operation

Individual

e.g. Suspend A
Load Balancer

Class

e.g. Suspend
Load Balancers

...

n

n

Figure 5.2 Example Cloud Service Operation Membership Relations

In addition to the above, the diverse service operation concepts are also

specified for each type of cloud services. As illustrated in Figure 5.2, cloud

service operation class comprises four subclasses: IaaS, PaaS, SaaS and

common operation. Indeed, due to the distinct service delivery models and

functionalities, the majority of the operations would be different from IaaS, PaaS

and SaaS. Hence, the three operation classes each have its own list of

operations. On the other hand, there are still some general operations which

appear to be of no difference among different service models/types. These

operations are filled in the common operation class.

75

5.1.2. Specification of Cloud Service Entity Data Types

Individual

Provider-specific
Service Entity

(member)

EC2 Region

has type: String
has letterContainPattern:

“ec2.amazonaws.com”
has length: 35

EC2 Instance

has type: String
has letterContainPattern:

“i-”
has length: 10

Individual

Cloud Service
Instance

Rackspace Cloud Server
Instance

has type: String
has letterContainPattern:

“-”
has length: 36

Rackspace Region

has type: String
has letterCasePattern:

“[A-Z]”
has length: 3

Figure 5.3 Cloud Service Entity Data Type Attribute Implementation

As cloud service concepts and entities are established in appropriate

classification hierarchy, their data type attributes are to be specified in details.

Generally speaking, cloud services appear to be the same (entity) to everyone,

and hence own no typical data-relevant properties. In contrast, the service

instances created and owned by users are unique to the owners; they would

have certain specific data attributes associated with them. i.e. unique ID,

creation time, name, etc. As depicted in Figure 5.3, these details are attached to

the instance entities by asserting DP axioms. With the DP assertions, a cloud

service instance can be easily recognised by interpreting its unique ID, whereas

any other instance attributes can also be effectively addressed as required.

Similarly, all PSSAs are asserted with appropriate DPs according to the

respected data formats, e.g. strings, integers, dates, URLs, as well as a series

of unique CSP-specific data formats (see Figure 5.3). For instance, for CSPs

that offer multiple deployable regions, each set of provider regions would have

its own region type information that would make sense only to a specific

provider.

Indeed, these DPs enable precise data type format demonstration,

differentiation and validation for cloud entities and operations. With the

extracted data presentation patterns and respected pattern examination

76

mechanism, validations can be effectively implemented for cloud service

operation preparation and execution (e.g. authorisation, input, output, condition,

etc. validations).

5.1.3. Specification of Cloud Service Entity Operational

Relationships

Cloud service operations can be seen as reflections of the operational

relationships among relevant cloud service and operation entities. For instance,

I) “Create instance” and “List instance” can describe the creation and inclusion

relationships from a cloud service to its instance(s). II) “Get instance ID” and

“Modify instance name” can clarify the retrievable and modifiable relationships

from a service instance to its property and condition. This is how SAMOS

tackles cloud service operation specification by modelling the diversity of entity

operational relationships.

5.1.3.1 Classification of Cloud Service Operations

Shown in Table 5.1, based on the different nature and intentions, cloud service

operations are divided into two categories: service information request (SIR)

and service manipulation request (SMR).

SIR

At the cloud service level, SIR operations often lie on collecting a cloud

service’s available settings and the owned service instances (e.g. get available

regions and list instances). At the CSI level, they apply to all kinds of dynamic

Table 5.1 Cloud Service Operation Classification

Service
Operation Type

Description Examples

Service
Information
Request (SIR)

Service operation requested to
retrieve various service entities
and entity information

List owned service instances, get
instance ID, get available
platforms, etc.

Service
Manipulation
Request (SMR)

Service operation requested to
make changes to cloud services,
CSIs or PSSAs

Create new service instance,
terminate instance, modify
instance name, etc.

77

instance’s running information retrieval (e.g. get instance status). At the PSSA

level, they are to acquire the (real-time) information of a specific CSP entity for

certain service(s) (e.g. get VM image ID). Generally speaking, these operations

usually have a high success rate and take little time for execution.

SIR operations generally require few parameters. The majority of such

operations are executed with only a single subject (service, CSI, or PSSA).

Considering its main purpose of (dynamic) service information retrieval, the

operations typically result into no changes. The returned information can be one

or a list of entities, depending on the intension of the request. Overall, SIR

operations have few restrictions (e.g. restricted operation frequency, account

authorisation control, etc.) for executions.

 SMR

At the cloud service level, SMR operations are usually found regarding the

general service setting, plus a series of service instance management tasks

(e.g. set region and delete all instances). At the CSI level, SMRs make up

comprehensive service instance management and configuration function

controls (e.g. reboot VM instance). At the PSSA level, it is regarding the

manipulations implemented on those unique CSP entities (e.g. delete VM

image). On successful execution, SMR should alter the target cloud

service/CSI/PSSA in a certain intended way.

Typically, SMR should have certain pre condition requirement. For considerable

of such operations, they tend to require some parameters. Obviously, these

requirements would vary from different CSPs. As a SMR operation successfully

executes, new entities may be produced whilst existing entities may be

eliminated, depending on the nature of it. Moreover, the chances of failed SMR

operation execution are much higher than that of SIR. Considering the

execution time, some SMRs may take a considerably long time; the time may

vary dramatically for different time slots.

78

5.1.3.2 Specification of Cloud Service Operation Object Properties

Based on the proposed operation classifications, the diverse cloud service

operations can then be described, shown in the form of various operational

relationships among relevant cloud services, CSIs, PSSAs. These relationships

can be adequately described using ontology OP assertions. Figure 5.4

illustrates the representation of cloud service operations using OP specifications.

Basically, “hasSIR” and “hasSMR” are asserted to describe the types of

operations available, between cloud service/CSI/PSSA and relevant operation

concepts. For instance, the “create” and “list” operations between cloud

services and CSIs can be represented with “hasSMR create instance” and

“hasSIR list instance”, respectively; the “get attribute” and “modify” operations

between CSIs and PSSAs can be represented with “hasSIR get attribute” and

“”hasSMR modify…”, to demonstrate their operational relationships.

Indeed, for almost all types of service operations, there are usually a series of

required operation conditions and parameters, whereas successful executions

often result into certain outcome(s) (e.g. newly created entities, modified entities,

altered conditions, etc.). For different service providers, even for the same

operation, these details are likely to be diverse. For instance, for VM instance

creation tasks, some IaaS providers may use complex account authorisation

restriction and require several VM configuration parameters whilst others may

only need few. In order to comprehensively define the various contents involved

in the service operations, several systematic operation specification elements

are resulted according to their different roles that service the service operations.

As cloud service, service instance, and provider-specific each is modelled with

its own list of service operation OP assertions, the detailed systematic operation

specifications are stored in the respected OP’s annotation fields. In this way, by

interpreting the ontology, it can effectively assist the service request executions

for all types of cloud service entities and entity operations.

79

Class

Cloud Service

Class

Provider-specific
Service Aspect
(PSSA)(group)

has SIR
(has attribute)

Individual

Cloud Service
Instance

Individual

Cloud Service
Instance

Individual

Cloud Service
Instance

Individual

Cloud Service
Instance

(CSI)

Individual

Provider-specific
Service Aspect

(member)

Individual

Provider-specific
Service Aspect

(member)

Individual

Provider-specific
Service Aspect

(member)

Individual

Provider-specific
Service Aspect

(PSSA)(member)

used for

Individual

e.g. Start A VM

Individual

e.g. Create A New
Environment

Individual

e.g. Suspend A
Load Balancer

Class

e.g. Start VMs

Class

e.g. Create New
Environments

Class

e.g. Suspend
Load Balancers

creates

has SMR

Class

e.g. Delete
Security Groups

Class

e.g. Create New
VM Image

Class

e.g. Modify Load
Balancer Nodes

Class

e.g. List Instance

Class

e.g. Set Region

has SIR

Individual

e.g. Delete A
Security Group

Individual

e.g. Create A
New VM Image

Individual

e.g. Modify A Load
Balancer Node

has SMR

creates
has SIR

has SIR
(has attribute)

has SMR

has SMR

Figure 5.4 Cloud Service Entity Object Properties

5.1.3.3 Specification of Cloud Service Request Operation Elements

Described in Table 5.2, the five cloud service operation elements described are

service request subject (SRSubject), service request parameter (SRParameter),

service request outcome (SROutcome), service request precondition

(SRPreCondition) and service request post-condition (SRPostCondition). With

such detailed specifications, any differences among similar service operations

would stand out clearly, regardless of across distinct providers or within the

same cloud.

 SRSubject

SRSubject is recognised as the target that a cloud service operation is

implemented over. As a user selects a cloud service for available service

operation, the service itself becomes the target. Similarly, as a user chooses a

specific CSI for action, the instance is regarded as the target. Additionally,

80

PSSA entities can also be seen as SRSubject for those operations initiated for

them.

 Service Request Parameters (SRParameter)

Although some cloud service operations can be initiated without any information

other than the target service/instance, the rest majority do require some

parameters, e.g. relevant restrictions, options, customised data, etc. inputted to

enable an accurate and successful service operation. SRParameters specifies

such details for those applicable service operations. Generally, PSSAs

(including the common entities) make up the majority of SRParameters; for

some cloud service level operations, CSIs can also be involved as

SRParameters (e.g. while attempting to modifying multiple CSIs at once, the

selected CSIs are considered to be the parameters of the operation); it is

unlikely for any cloud services to be recognised as SRParameters.

To effectively model the various SRParameter requirement specifications, a

SRParameter attribute system is developed to specify the series of aspect

attributes for each parameter type. This would enable a precise service

Table 5.2 Cloud Service Operation Specification Element

Element

Name

Required Description Element Format Element Type

SRSubject Mandatory The subject for which a

service operation is

requested

Single entity Cloud services,

CSIs, PSSAs

SRParameter Optional The required parameters

that must be satisfied for a

service operation request

Single/multiple

entities

CSIs, PSSAs

SROutcome Mandatory The expected output to be

returned after a service

operation successfully

executes

Single/multiple

entities OR

“Succeeded/failed”

CSIs, PSSAs

OR

“null”

SRPre

Condition

Mandatory The condition that must be

fulfilled prior to initiating a

service operation

Two entities

connected with

“is” or “isNot” OR

“Unconditional”

Cloud services,

CSIs, PSSAs

OR

“null”

SRPost

Condition

Mandatory The expected condition that

is formed after a service

operation successfully

executes

Two entities

connected with

“is” or “isNot” OR

“Unconditional”

Cloud services,

CSIs, PSSAs

OR

“null”

81

operation specification and interpretation while dealing with the variety of the

requirement for diverse service operations and parameters. Basically, according

to the request requirements of a service operation, a parameter is specified with

mandatory/optional differentiations; depending on whether an operation accepts

single/multiple parameters of the same entity type, the parameters are also

differentiated. The denotations and examples of the SRParameter attributes are

shown in Table 5.3.

Table 5.3 SRParameter Symbol Notations

 Service Operation Outcome (SROutcome)

As an initiated service operation request is handled in the cloud, certain

response would be returned from the service provider, informing users whether

the operation has been successfully executed, or their expected service

information. The operation element is represented as SROutcome. If the

purpose of a service operation request is not to acquire/generate any direct

service entities, the SROutcome will only be the success result of it; for all other

operation requests, SROutcome reveal the expected service entities to be

returned from the respected service providers. Typically, a service operation

owns only a single SROutcome. Yet, such SROutcome not necessarily has to

be one service entity; instead, it can be a series of CSIs or PSSAs as long as

they are of the same entity type (represent the same thing in the ontology). For

instance, while creating multiple service instances, all new instances become

the SROutcome.

 Service Operation Precondition (SRPreCondition)

SRParameter

Attribute

Denotation

(in OP annotation)

Examples Service Operations and

SRParameters

Mandatory “[]”

Optional “”

Single “()”

Multiple “<>”

Mandatory single “[()]” Rename: [(new_name)]

Mandatory multiple “[<>]” Reboot: [<vm1,2,…n>]

Optional single “()” Set authorisation: (default_security)

Optional multiple “<>” Deny access: <user1,2,…n>

82

The diversity of cloud service operations lead to various request conditions

issues: while some can be initiated without any condition restrictions, others do

have specific condition requirements. In order to properly specify the conditions,

SRPreCondition defines the mandatory requirement by employing two service

entities: in case of a positive condition (e.g. VM is off), the entities are linked

with “==”; for a negative condition (e.g. service is not updating), “!=” is used to

link the entities; for numbered aspect-involved conditions, “>=” or “<=” is

introduced to connects the entities. SRPreCondition specification applies only

to those service operations which genuinely require so; others would have an

empty entry (“unconditional”) for the element.

 Service Operation Postcondition (SRPostCondition)

Using the same specification pattern as SRPreCondition, SRPostCondition

describes the expected condition changes after a service operation successfully

executes. Specifically, this does not necessarily need to contradict with the

respected SRPreCondition. In fact, the condition is accounted whenever a “new”

condition is formed. For instance, operations of entity creation request would

have SRPostConditions such as “Instance is running/active”. SRPostCondition

specifications can effectively assist requirement preparation for possible

subsequent operations.

5.2 Preparation and Invocation of Basic Service Operations

A typical use of the cloud service operation specifications is seen as verification.

Given SRSubject, relevant SRParameters and fulfilled SRPreCondition, an

operation can be executed through appropriate programming request. If

successfully executed, this would result into certain service entity (data) which

matches the respected SROutcome and/or SRPostCondition.

5.2.1 Verification of Service Operation Parameters

83

Specifically, the cloud service operation parameter requirement verification

algorithm demonstrated in Figure 5.5 can be used to provide the first control

prior to any operation execution. Basically, the service entities, either selected

or manually entered data, are processed in two hash lists. One holds the entity

type information whilst the other holds the actual data. Here, only the entity type

list is used for the verification check: according to the retrieved SRParameter

specification, the parameters (types) are verified against the relevant mandatory

requirements. As shown in Figure 5.5, whenever there is a parameter type

match, the verification counter would increment. Then, if all the mandatory

parameters are satisfied, the respected parameter data would be sent to

INPUT: Operation op, SRParameterType srpt1, srpt2, ..., srptn;
SRParameterData srpd1, srpd2, ..., srpdn,

 1 INIT SRParameterRequirement srpr1, srpr2, …, srprn to

 CALL getMandatoryParameter with op;

 ParameterSatisfied to FALSE;

 2 IF ParameterCount = 0 THEN

 3 SET ParameterSatisfied to TRUE

 4 END IF

 5 ELSE THEN

 6 INIT matchCount to 0;

 7 FOR each srprn in SRParaterRequirement

 8 IF srprn = srptn THEN /*parameter type matches*/

 9 INCREMENT matchCount

10 END IF

11 END FOR

12 IF matchCount >= ParameterCount THEN

 /*all mandatory parameters satisfied*/

13 SET ParameterSatisfied to TRUE

14 CALL fillParameter with op, srpd1 to srpdn

 /*pass parameter data*/

15 END IF

16 END ELSE

OUTPUT: ParameterSatisfied

Figure 5.5 Cloud Service Operation Parameter Verification Algorithm

84

appropriate operation handler component for further preparation. This then

suggests that the parameter verification process is complete.

5.2.2 Verification of Service Operation Preconditions

The service operation precondition verification is implemented depending on the

format of the condition specification. As depicted in Figure 5.6, distinct types of

SRPreCondition specification are dealt with separately. More specifically, if the

candidate requires no SRPreCondition (unconditional), the verification will be

complete instantly. Otherwise, a series of dynamically initiated real-time service

entity information checks will be implemented. Then, depending on whether a

condition is positive, negative or numerical, relevant match or equivalence

decision is made against the obtained real-time entity information. Once all

mandatory verifications are complete, the operation can then execute as

requested.

While the above verifications are mainly for use of simple individual cloud

service operations, there are advanced usages, seen as operation assistances.

Indeed, the assistances can be widely enabled, such as to automatically

prepare preconditions and gather parameters, to program the execution

schedules for multiple relevant operations, or to assess the applicability for

potential service interactions and compositions. They are provided based on the

analysis of cloud service entity operational relationships and the operation

specification elements involved.

85

For instance, operation grouping applicability can be analysed by seeking

operations with similar types/requirements of both SRParameters and

SROutcomes; Operation chaining applicability can be determined when the

operations own SROutcome and SRParameter or SRPostCondition and

SRPreCondition match (equivalence) one another. The summary of the cloud

service operation assistances can be found in Table 5.4.

INPUT: Operation op

 1 INIT SRPreconditionRequirement srprec1, srprec2, …,
 Srprecn to CALL getPrecondition with op;
 ConditionSatisfied to FALSE;
 2 IF ConditionCount = 0 THEN
 3 SET ConditionSatisfied to TRUE
 4 END IF
 5 ELSE THEN
 6 INIT SatisfyCount to 0;
 7 FOR each srprecn in SRPreconditionRequirement
 8 INIT condition to CALL
 getCurrentServiceEntityCondition with op, srprecn
 9 IF srprecn HAS “==” THEN
10 IF srprecn = condition THEN /* SRPreCondition
 fulfils certain positive condition requirement */
11 INCREMENT SatisfyCount
12 END IF
13 END IF
14 ELSE IF srprecn HAS “!=” THEN
15 IF srprecn NOT EQUAL condition THEN /*
 SRPreCondition fulfils certain negative condition
 requirement */
16 INCREMENT SatisfyCount
17 END IF
18 END ELSE IF
19 ELSE THEN
20 IF condition COMPLY with srprecn THEN /*
 SRPreCondition fulfils certain numerical (>=/<=)
 condition requirement */
21 INCREMENT SatisfyCount
22 END IF
23 END ELSE
24 END FOR
25 IF SatisfyCount >= ConditionCount THEN /* all
 preconditions satisfied
26 SET ConditionSatisfied to TRUE
27 END IF
28 END ELSE

OUTPUT: ConditionSatisfied

Figure 5.6 Cloud Service Operation Precondition Verification Algorithm

86

Table 5.4 Cloud Service Operation Reasoning Assistance Type

Reaso

ning

Assist

ance

Name

Assistance

Description

Reasoning

Scale

Operation

Scheduling

Precondition

& Parameter

Preparation

Reasoning Steps

BASR To assist in
preparation of

precondition

and

parameters

for

unsatisfied
service

operations

Single
cloud

(CSP)

None Guided
manual input

1. For the unsatisfied SRParameters and
SRPreConditions, list possible options

based on current selected SRSubject and

SRParameters, plus the real-time status of

them;

CCSR To assist in
multiple

concurrent

service
operations of

similar types

Multiple
clouds

(CSPs)

None Manual input 1. Get SRSubjects’ operations which have
satisfied SRParameters;

2. Filter the operations based on whether

their Preconditions fulfil the real-time
SRSubject statuses;

3. Produce the operation lists for the

applicable SRSubjects;

SCSR To assist in

automatic

scheduled
executions of

a series of

operations in
a logical

sequence

Single

cloud

(CSP)

Yes Manual input 1. Get SRSubjects’ operations which have

satisfied SRParameters;

2. For the operations, seek for those which
have Precondition SRPostCondition

matches;

3. Compose these operations into
 sequenced chains by filtering

 Them from their factorial combinations,

according to the two-two sequenced
connections;

4. Filter the operation chains based on

whether the first operation’s Preconditions
fulfil the real-time SRSubject status;

Produce the operation lists for the

applicable SRSubjects

IOSR To assist in

seeking
possible

service

interactions
by linking

appropriate

operations in
a scheduled

sequence

Multiple

clouds
(CSPs)

Yes Automatic

preparation

1. For all SRSubjects’ operations, seek for

those which have SROutcomes
SRParameters (equivalence) matches;

2. For all SRSubjects’ operations, seek for

those which have SRPreCondition
SRPostCondition matches;

3. Compose these operations into

sequenced chains as long as
their SRPostConditions and

SRPreConditions are not

contradictory, according to the two-two
sequenced connections;

4. Filter the operation chains based on

whether the first operation’s Preconditions
fulfil the real-time SRSubject status;

5. Produce the operation lists for the

applicable SRSubjects

87

5.3 Assisted Service Operation Reasoning

While cloud service entities, their attributes and relationships, and operation

elements are comprehensively specified, relevant service operation reasoning

can then be introduced to assist cloud service operation tasks. In fact, the

reasoning is able to provide dynamic assistances during service operation

execution, and even enables cloud service orchestration.

Table 5.4 outlines the four operation reasoning assistances available within

SAMOS approach. From their descriptions, it can be seen that they enable

better operation experiences and advanced implementation tasks, such as to

automatically prepare preconditions and gather parameters, to program the

execution schedules of multiple operations, and to assess the applicability for

potential service interactions and compositions. Seen in Table 5.4, the

assistances are provided based on seeking and analysing the relevant cloud

service entities defined in the operation specifications. For instance, operation

grouping applicability can be verified via analysing the feasibility of using a

single or group of SROutcome as SRParameter for other services’ operations,

when SRPreCondition complies; interaction applicability can be determined

depending on whether the service (instance) subjects have any entities

recognised in common.

In the following sections, each of the four assistances is to be discussed in

detail.

5.3.1 Basic Assisted Service Request (BASR) Operations

With comprehensive descriptions and detailed specifications of each SIR and

SMR for the modelled cloud services, some assistance can be offered

dynamically to when users are trying to make the service requests. BASR

serves to help users understand and prepare for necessary service request

conditions and assist in gathering various request parameters during the

request process.

88

As a user selects some cloud services or service instances, a simple scan of

the ontology can firstly bring all available service request options which

belonged to them. By looking into the semantically specified SR requirement

and outcome data, every SIR/SMR which requires certain request conditions or

parameters is accompanied with its own unsatisfied SRPreCondition and

SRParameter fields. Then, based on the current selected parameters as well as

the real-time service/instance running status, further information regarding how

to fulfil the conditions or/and obtain the mandatory parameter can be collected

by addressing the relevant entity relationships throughout the ontology. The

detailed dynamic request preparation assistance can effectively help users

throughout every request process.

BASR is implemented on a per cloud service/service instance and per service

request basis. This means that the assistance algorithm does not consider the

potential impact resulted from one request to another, or from service instance

to another. It is the simplest assisted service request form.

5.3.2 Concurrent Combined Service Request (CCSR) Operations

As previously discussed, for those cloud services and service instances of the

same service/instance model/type/function, many of them would share similar

service request options, whereas the specification patterns for such requests,

i.e. the involved parameters, conditions and outputs often coincide. As a result,

given all the necessary request parameters and when the conditions satisfy, a

list of service request options can be enabled dynamically for a group of cloud

services or service instances for a simultaneously operated request tasks.

CCSR is seen as the dynamically grouped service operations which are to be

executed simultaneously for selected cloud services and service instances,

when all mandatory request condition and parameters satisfied in prior. The

action is made available at a per service request basis. Basically, the reasoning

algorithm firstly extracts a list of candidate request options for which the current

selected SRParameter and SRSubject are fully satisfied. Afterwards, depending

89

on whether those requests would require SRPreCondition and the format of the

condition specification, a series of reasoning results are returned separately. If

the candidate requires no SRPreCondition (unconditional), it is to be returned

as a finalised CCSO option, which will be accompanied by a series of

dynamically retrieved service/instance information (e.g. origin, reference,

SRParameter). In case of experiencing a positive SRPreCondition specification

(e.g. the service/instance status == “ready”), the reasoning mechanism would

check each of the selected service/instance’s real-time condition, and those

which fulfil the condition will be returned along with the request option and other

dynamically gathered service information and SRParameter. For a negative

SRPreCondition (e.g. the service/instance status != “Updating”), the reasoning

process is similar, except that it would return the data as long as the

dynamically obtained service/instance condition is not equal to the one specified.

From these reasoning outcomes, a list of CCSR options is finally produced.

The above reasoning algorithm enables dynamic transformation of single basic

service request into a convenient means to initiate multiple similar service

request operations for each fulfilled service request and eligible cloud

services/instances. CCSR options provide several combined control for efficient

service request tasks, which would dramatically improve the overall service

access and request experiences, even of across multiple clouds.

For the reason that CCSR is produced at a per request basis, although it acts to

control multiple cloud services/service instances, the algorithm still does not

consider the potential impact resulted from one request to another. For all

reasoned CCSR options, this means that initiation of certain request could

violate others’ operating conditions.

5.3.3 Sequenced Chained Service Request (SCSR) Operations

For some service request operations, the conditions defined in their

SRPreCondition may happen to match (or potentially equal to) with others’

SRPostCondition specifications. In other words, to initiate a request with certain

90

pre-selected SRParameters and SRSubjects, another request has to be

executed successfully in prior. The ontology consists of various associated SIR

and SMR specification among services and requests. Indeed, this can happen

for services both within a single cloud and across multiple clouds. As a number

of these service requests are interconnected together with appropriate

dependencies one another, a sequenced service request chain (SCSR) can be

composed dynamically.

SCSR is formed when the following three conditions are satisfied: I) within all

available SIRs and/or SMRs of the selected SRSubjects, there are coherent

match between the SRPreConditions and SRPostConditions from one to

another; II) all SRParameters required for the SIRs and SMRs are satisfied in

prior simultaneously. III) the very initial service request of the chain has

SRPreCondition that equals to the real-time retrieved service condition. More

specifically, to produce such service request chains for current selected

SRSubjects and SRParameters, initially, the reasoning mechanism checks for

satisfied service request for the selected SRSubjects and SRParameters. Then,

from the list of requests, a list of paired service requests is generated from the

ontology. For instance, request R2 requires R1 can be revealed as R1R2. Next,

all of the paired service requests are connected whenever the SRPreCondition

of a pair’s former equals another’s latter, as long as a composed request chain

does not contain any duplicated service requests. Subsequently, based on the

real-time service conditions (retrieved dynamically), the list of chains are filtered

where any request chain starts with unsatisfied SRPreCondition is to be

removed. Finally, these chains are arranged so that users can find the preferred

compositions easily, depending on the initial service request, no of requests,

ending request, etc.

When all of the required SRParameters present, SCSR can provide assistance

for dynamic cloud service composition tasks by present all possibilities of

chained service requests.

91

5.3.4 Interactive Orchestrated Service Request (IOSR) Operations

Until now, all of the above dynamic service request reasoning assistance

process only those requests with fully satisfied SRParameter, which has to be

selected manually by users. In fact, there is another route for SRParameter

collection, i.e. with a successfully executed service request, the SROutcome

entity retrieved in real-time can also be used as potential SRParameter for

further service requests. Indeed, this provides another means toward dynamic

service request orchestrations. IOSR is designed to provide orchestrated

service request that requires minimum information from users. Basically, it

attempts to gather all necessary service requests together to prepare the

SRPreCondition and SRParameter for the service interaction tasks

automatically by reasoning and referring the ontology for comprehensive entity

and OP specifications. As a result, the appropriately assembled IOSR option

may only need users to choose relevant services or instances as SRSubject

and require no additional interventions.

In order to enhance the interaction among cloud services, IOSR reasoning

algorithm does not simply consider the exact match between service request’s

SROutcome and SRParameter or between SRPreCondition and

SRPostCondition. Instead, it checks whether there can be indirect “equal”

relationships between those entities involved the SROutcome and

SRParameter; as long as there are no direct conflicts between the

SRPreCondition and SRPostCondition, a link can be created (for certain valid

interaction intention). Compared with the above reasoning algorithms, this

means that it would examine the operation specifications of all cloud

services/CSIs/PSSAs across all CSPs. The orchestration points between the

interactive pairs of cloud services can be resulted whenever there are “common”

entities involved for the service operations: entities that recognisable regardless

of CSPs or service types, e.g. a file with a specific extension, which can be

obtained from a storage service and then used by another service; dynamically

updated database entries retrieved from a database service being used by

another service.

92

5.4 Service Operation Process Maps

The previous sections has demonstrated that SAMOS approach can reveal the

detailed specifications of cloud service operations whilst a series of reasoning

assistances can be enabled to assist operation tasks deployment. So far, a

possible limitation of the approach is that the semantics–based specifications

lack of operation internal execution process information. Indeed, for an

operation which requires multiple parameters, SRParameter specification

provides no sequence verification information regarding the parameter

collection, yet such do exist sometimes (e.g. while performing the actions

through the official service web portal). Similarly, some operations do incur

inner states (transitions) for the involved CSIs/PSSAs, but such details are not

addressed. As a solution, service operation process map modelling (SOPMM) is

introduced.

For the service operations which involve “complicated” sub-processes,

operation process maps (OPMs) are created to visualise the detailed sub

processes incurred while preparing and executing cloud service operations. For

CSCs, especially new or potential users, this helps them better understand the

explicit details of fairly complicated service operations. Further, while

distinguishing similar service operations from different CSPs, this would provide

a better contrast in addition to the operation specifications.

SOPMM adopts Petri net-based graphic modelling techniques. Basically, in

each OPM, the sub-processes are represented by relevant transitions and

places, which are linked with arrows according the actual steps incurred during

the operation. Here, the transitions denote the various actions to be performed

by a user; the places designate the changes/states to be encountered; the

arrows indicate the sequenced relationships between the actions and states.

OPMs employ XML formatting for standardised information processing.

93

As illustrated in Table 5.5, each OPM element (transition, place or arc) is

designated with a unique ID. Apart from element names, transition and place

elements are created with position and shape data so that they can be

displayed properly through user interface. The arcs, which join pairs of

transitions and places, only require relevant connection end information, plus

the orientations of the links. Figure 5.7 demonstrates an example OPM for

Amazon EC2, which is captured from the developed prototype tool.

Table 5.5 Cloud Service OPM Element Representation

<trans id="ID1412310665"

 explicit="false">

 <posattr x="536.000000"

 y="197.000000"/>

 <fillattr colour="White"

 pattern=""

 filled="false"/>

 <lineattr colour="Black"

 thick="1"

 type="solid"/>

 <textattr colour="Black"

 bold="false"/>

 <text>enter server name</text>

 <box w="148.000000"

 h="28.000000"/>

 <binding x="7.200000"

 y="-3.000000"/>

 </trans>

<place id="ID1412310604">

 <posattr x="536.000000"

 y="127.000000"/>

 <fillattr colour="White"

 pattern=""

 filled="false"/>

 <lineattr colour="Black"

 thick="1"

 type="Solid"/>

 <textattr colour="Black"

 bold="false"/>

 <text>server name entered</text>

 <ellipse w="158.000000"

 h="40.000000"/>

 <posattr x="-440.000000"

 y="103.000000"/>

 </place>

<arc id="ID1412316096"

 orientation="TtoP"

 order="1">

 <posattr x="0.000000"

 y="0.000000"/>

 <fillattr colour="White"

 pattern=""

 filled="false"/>

 <lineattr colour="Black"

 thick="1"

 type="Solid"/>

 <textattr colour="Black"

 bold="false"/>

 <arrowattr headsize="1.200000"

 currentcyckle="2"/>

 <transend idref="ID1412310665"/>

 <placeend idref="ID1412310604"/>

 </arc>

94

Figure 5.7 Cloud Service OPM Representation

95

5.5 Summary

This chapter has introduced a new approach for unified clouds service

operation specification, known as SAMOS. Resting on ontology modelling

techniques, SAMOS is able to describe the diverse cloud service operations

comprehensively regardless of the service/operation types. The approach

consists of three specification components: specification of cloud service entity

and operation classification, specification of cloud service entity data types,

specification of cloud service operational relationships. Further, the

categorisation in SIR and SMR classifies the wide range of operations

according to the operation nature/intent. The details of the involved operation

elements, including cloud entity subjects, parameter entities, pre and post

conditions, operation outcomes, etc. are specified in granular level so as to

present as much as information for every operation. Additionally, benefiting from

ontology modelling, SAMOS provides service operation reasoning capabilities

for advance use on dynamic operation preparation and validation. The four

reasoners, BASR, CCSR, SCSR and IOSR, are able to enable a series of

service operation preparation and execution assistances over multiple clouds

for a variety of tasks.

96

Chapter 6 Approach Integration and Process

Automation

In Chapter 4 and Chapter 5, the designs of AoFeCSO and SAMOS approach

are given respectively. While each of them is developed for presenting a certain

range of cloud service specifications, they can be flawlessly integrated so as to

combine the diverse CC knowledge as a while for the wide range of cloud

service usage tasks. This makes it feasible for providing the versatile usage

assistances, including cloud service search, recommendation, retrieval,

management and dynamic orchestration, via a united tool interface. As for the

third objective, this chapter presents the approach integration and process

automation by introducing CSRMP prototype. Firstly, the overall design of the

tool architecture is illustrated. Subsequently, the involved sub systems, which

each own a separate design and implementation, are described in detail. Finally,

the interactions between the sub systems are explained.

Service
Recommendat

ion Engine

Collaborative Cloud Service Search, Recommendation, Retrieval, Access and Manipulation Platform

Active Agility-Oriented
Cloud Service Ontology

(AoFeCSO)

Active Ontology
Manger

Authorization
Manager

User Accounts
& Profiles

SPARQL Query

Ontology Revision
Copies

OWL API

Ontology Revision
Copies

Ontology Revision
Copies

Ontology Revision
Copies

Ontology Revision
Copies

Historical Ontology
Copies

OWL API

UI
Service

Operation
SchedulerCloud Service Access and

Manipulation Request
Operation Specification

Ontology
(CSAMO)

Service Operation
Reasoning Engine

OWL API

UI

Service Entity &
Operation Mapping

ManagerOWL API

USAMS (Cloud service access, manipulation,
orchestration tasks)

CSR (Cloud service search,
recommendation, retrieval tasks)

Figure 6.1 CSR Platform Architecture

97

6.1 Overall Platform Architecture Design

The overall architecture design of CSRMP is illustrated in Figure 6.1. Basically,

the platform consists of two sub systems: collaborative cloud service search,

recommendation, retrieval system (CSR) and unified cloud service access and

manipulation system (USAMS). Each sub system is designed and implemented

separately; there are two series of system components which utilise their two

ontologies as knowledge sources so as to enable a separate range of cloud

service assistance functions. Further, between the two sub systems, there are

shared data access and component interactions. The links enables users to

navigate from one to another where necessary.

6.2 CSR Sub System Design

Service
Recommendation

Engine

Active Agility-Oriented
Cloud Service Ontology

(AoFeCSO)

Active Ontology Manger

Authorization
Manager

(public)

User
Accounts
& Profiles

(public)

SPARQL Query

Ontology Revision
Copies

OWL API

Ontology Revision
Copies

Ontology Revision
Copies

Ontology Revision
Copies

Ontology Revision
Copies

Historical
Ontology

Copies

OWL API

UI

Service
Recommender

Account
Management

Service
Seeker

Entity &
Axiom

Manager

Ontology
Reasoning
Manager

Revision &
Rollback
Manager

Ontology
Evolution

Engine

Service
Explorer

CSR (Cloud service search,
recommendation, retrieval tasks)

98

Figure 6.2 CSR Sub System Architecture

CSR comprises Active Ontology Manager, Authorisation Manager, Service

Search Recommendation Engine and User Interface four main components

(see Figure 6.2).

6.2.1 CSR System Components

 User Accounts and Profiles Database and Authorisation Manager

The database stores various user data, which is used as the basis for

Authorisation Manager to authorise actions such as service information access,

recommendation and fuzzy rating actions. Basically, all registered users can

access the ontology specifications through Service Seeker, Service Explorer

and Service Recommender. Yet for inputting knowledge, users are given

restricted powers against their levels in the authorisation hierarchy.

 Service Search and Recommendation Engine

The component takes input of user’s preference entries as well as their profiles

as the basis to provide service search and recommendation functions. Through

pre-set SPARQL query clauses and API queries, the service discovery is

implemented by collecting services for exact keywords/filters or both match,

whereas the service recommendation is performed by evaluating all services’

specifications against a series user specified importance weighted service

aspects. When the search/recommendation process is completed, the

component outputs a list of services (and additional details) to User Interface.

 Sub System UI

UI consists of Account Manager, Service Explorer, Service Recommender and

Service Seeker. Account Manager allows users to complete and edit their

account and profile details. Service Explorer fulfils various requirements

including service information lookup, interpretation, profile analysis, fuzzy rating,

99

etc. Service Recommender and Service Seeker provide cloud service

recommendation and search functions respectively.

 Active Ontology Manager

It manages AoFeCSO through OWL API [66]. It incorporates Entity and Axiom

Manager, Ontology Reasoning Manager, Ontology Evolution Engine and

Revision and Rollback Manager four sub-components. Together they achieve

effective ontology management and evolution. Entity and Axiom Manager

interprets the ontology axioms whilst can make changes to them by creating a

temporary ontology according to certain users’ certain requests. It deals with

both regular and fuzzy interpretations/modifications two sets of tasks. Ontology

Reasoning Manager handles ontology consistency checks and inference

controls through binding OWL2 reasoner. The reasoner adopted is FaCT++,

due to its faster response plus better syntax and property characteristics

support [152]. If the temporary ontology becomes inconsistent after update, the

modification will be discarded whilst the details of inconsistency will be reported

to the initiator user. This ensures the absolute ontology consistency. Meanwhile,

it attempts to discover new knowledge through reasoning inference for ontology

evolution purposes. Ontology Evolution Engine is in charge of implementing

changes to the ontology: As the reasoning process completes successfully, the

consistent temporary ontology plus any new inferred axioms (specification) are

saved to replace the current ontology. This is how the ontology evolves

progressively while remaining absolute consistency. Revision and Rollback

Manager maintains and conserves consistent AoFeCSO redundant copies both

actively (called according to schedule) and passively (triggered by certain

events). Historical Ontology Copies are guarantees for ontology recovery in

case of certain errors occurred while manipulating the current AoFeCSO copy,

which could happen during ontology modification, reasoning, saving or

replacing processes. If encountered, the most recent copy will be deployed.

100

6.2.2 Service Search and Filter Rules

The Cloud service search function is implemented based on word/character

matches between the query keywords and dynamically retrieved service

specifications. On the other hand, the service filter function is provided

depending on whether the filter phrases would comply with the obtained service

specification clause. More specifically, the algorithm shown in Figure 6.3

describes the rules behind for the functions. Basically, as a use enters a series

of keywords to search potential service candidates, the system would scan the

specifications from the entire cloud service registry. Whenever there is at least

one match, the service is added to the service result list. Further, if a user

intends to filter the result (or from the entire services), the system would check if

any service that owns specifications which complies with the filters used. Here,

only the services that satisfy all the filter phases can be added into the service

result list. In fact, the two functions are specifically designed to fulfil certain user

needs individually. The search function is for users who want to get as many

services as possible, based on some simple information. The filter function is for

users who want to get as few services as possible, based on some exact data.

Further, the two functions can be used alone or in any preferred orders. In this

way, they enable flexible cloud service search functions that would fulfil various

needs for a wide range of users with different knowledge background and

expertise.

101

6.2.3 Service Profile (Agility) Evaluation

The evaluation of a cloud service’s agility is based on all the specifications that

are relevant to the service. An agility score is calculated according to three

evaluation criteria. Let PA, SA and TA represent primary tertiary, secondary

tertiary and tertiary agility aspects, the assessing equation takes the form:

Figure 6.3 Algorithm for Cloud Service Search and Filter

INPUT: CloudServiceLitst csList, KeywordList kwList, FilterList fList

 1. INIT ResultServiceList rsList to null

 //begin search

 2. IF KeywordCount = 0 and rsList = null THEN

 3. SET rsList to csList

 4. END IF

 5. ELSE THEN

 6. FOR each CloudService cs in csList

 7. INIT CloudServiceSpecifications csSpecs to CALL getSpecifications with cs,

 8. FOR each keyword in kwList

 9. IF csSpecs MATCH keyword THEN

10. ADD cs to rsList

11. END IF

12. END FOR

13. END FOR

14. END ELSE

 //begin filter

15. IF FilterCount > 0 THEN

16. Set rsList to null

17. INIT FilterMatch fMatch to 0

18. FOR each CloudService cs in rsList

19. INIT CloudServiceSpecifications csSpecs to CALL getSpecifications with cs,

20. FOR each filter in fList

21. IF csSpecs MATCH filter THEN

22. INCREMENT fMatch

23. END IF

24. END FOR

25. IF fMatch >= fCount THEN

26. ADD cs to rsList

27. END IF

28. END FOR

29. END IF

OUTPUT: ResultServiceList rsList

102

 𝐴𝑔𝑖𝑙𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 = 𝑃𝐴 + 𝐹𝑊𝑆𝐴 ∗ ∑ 𝑆𝐴𝐼
𝑁𝐼
𝐼=1 + ∑ 𝑇𝐴𝑖

𝑛𝑖
𝑖=1 (1)

where NI and ni are the total numbers of the secondary and tertiary aspects

found, FWSAis the asserted fuzzy weight of the aspect.

Basically, primary agility criterion accounts for 50% of a service’s agility score,

which is determined by the service’s function utilities (e.g.

resource/platform/software provisions, etc.). Secondary agility criterion takes

40% of the total agility score, which is decided based on the service’s main

service characteristics and features (e.g. scalability, elasticity, API,

OS/programming language support, etc.). Tertiary agility criterion only makes

up the rest 10%. It tracks the total number of other service attributes that are

regarded weakly relevant to agility (e.g. logging access, application deployment

support, migration and transition support, customer service and negotiation

support, etc.).

6.2.4 Service Recommendation

Cloud service recommendation is implemented based on user selected

weighted recommendation keywords. The process starts by asking for relevant

information (keywords) for the target cloud services. The keywords can be of

any categories, e.g. services’ functions, features, characteristics, etc. The

selectable keywords are arranged in a hierarchical layout according to relevant

structure/relationships defined in AoFeCSO. Furthermore, to assist users in

understanding the unfamiliar terminology, multi-sourced annotation

explanations of the keywords are retrieved.

During the selection process, users can specify degrees of importance for each

keyword selected. With the list of the weighted recommendation keywords, the

recommendation engine scans the ontology and analyses all service

specifications for each candidate cloud service. Then for the services which

comply with the keywords, recommendation ratios are calculated and provided:

103

 𝑅𝑎𝑡𝑖𝑜(𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑛) =
 ∑ 𝐼𝐾𝐼

∗∑ 𝐼𝑘𝑖∗𝐹𝑊𝑖
𝑛𝑖
𝑖=1

𝑁𝐼

𝐼=1

𝑛𝑖
 (2)

where IKI
 is the main importance degree of the home service keywords

category, NI is the number of the home categories selected, Iki is the sub

importance degree of the sub service keywords, FWi is the fuzzy weight of the

encountered service specification if applicable, ni is the total number of the sub

keywords selected for recommendation.

Finally, a recommendation result would contain a list of cloud services. They are

accompanied by computed recommendation ratios, indicating how appropriate

they would fit the user specified weighted keywords.

6.2.5 Component Interactions

The main interactions among the above system components are seen as: Any

ontology modification requests must go through authorisation checks at first.

Ontology Reasoning Manager is called every time the ontology is successfully

updated, either by Entity and Axiom Manager (due to new information added) or

Ontology Evolution Engine (due to new ontology copy saved). Then, 1) if the

temporary ontology is inconsistent, it will notify Entity and Axiom Manager to

discard the temporary ontology and changes and tell the users the

inconsistency along with the cause; 2) if the temporary ontology is consistent

and free from new inferred knowledge, it will be forwarded to Ontology Evolution

Engine where it will be deployed and take place of the current live ontology; 3) if

the temporary ontology is consistent with the updates whilst there are new

inferred axioms, the details will be sent back to Entity and Axiom Manager to

notify the system user, where upon acceptance the temporary ontology along

with the inferred axioms will be saved. Revision and Rollback Manager only

receives calls from Ontology Evolution Engine when it fails to deploy the new

ontology with the updates. Furthermore, the system components are controlled

with a deadlock and queuing mechanism, which prevents possible concurrent

104

actions during the ontology modification, temporary ontology creation,

reasoning processes, and ontology replacement processes.

6.3 USAMS Sub System Architecture Design

User
Accounts
& Profiles

(public)

Service
Operation
SchedulerCloud Service Access and

Manipulation Request
Operation Specification

Ontology
(CSAMO)

Service Operation Reasoning Engine

OWL API

UI

Unified Service Access
and Manipulation Portal

Service Operation
Process Viewer

BASR
Reasoner

CCSR
Reasoner

SCSR
Reasoner

IOSR
Reasoner

Service Entity & Operation Mapping Manager

OWL API
SMR MapperSIR Mapper

Dynamic
Service

Condition
Checker

Logging
Manager

Authorization
Manager

(public)

Figure 6.4 USAMS Sub System Architecture

USAMS consists of four main components: User Interface, Service Entity &

Operation Mapping Manager, Service Operation Scheduler, Service Operation

Reasoning Engine (see Figure 6.4).

6.3.1 USAMS System Components

 User Accounts and Profiles Database and Authorisation Manager

In addition to the above data, the database also stores users’ cloud service

account data (e.g. API credentials), which is mandatory for most of service

access and manipulation operations over different clouds.

 Service Entity & Operation Mapping Manager

105

The mapping manager is responsible for retrieving and translating granular

service operation and entity specifications and respected API calls and

request/response data. This includes interpreting the lists of SIR and SMR

operations available for a certain cloud service, plus gathering the entire

operation details (i.e. SRPreCondition, SRParameter, SROutcome, etc.) for the

operations if required.

Another important function of the component is that it also manages their

mapping entries so that users’ service operation requests can be implemented

properly. Specifically, it has two separate mappers inside for use of SIR and

SMR operations respectively. Indeed, due to the many different characteristics

between the two operation categories, the operation handling processes are

treated separately. This prevents potential issues as attempting to schedule a

group of mixed operation tasks.

As a user launches an operation, the component would first obtain the user’s

API credentials (for the target cloud). Any necessary data format verification

tasks are then performed. If no error occurs, the operation task will then be

forwarded to Service Operation Scheduler for (scheduled) execution.

 Sub System UI

Differently from the above UI which serves for cloud service search,

recommendation, retrieval, and evaluation tasks, USAMS UI deals with a wide

range of service operation execution tasks by providing a unified portal for real-

world cloud service access and manipulation. There are two components

involved here: Unified Service Access and Manipulation Portal and Service

Operation Process Viewer. Specifically, while the former works to enable a

generic portal for various service operation requests and responses, the latter

allows users to view the detailed processes incurred for certain complex

operations. Primarily using the raw information retrieved from Service Entity &

Operation Mapping Manager, it can display the various types of each service

operation. Further, for advanced operation tasks such as operation

106

combinations, the UI provides an interactive means of operation reasoning,

dynamic entity information retrieval and operation composition.

 Service Operation Reasoning Engine

Service Operation Reasoning Engine incorporates four individual service

operation reasoners which each works for a certain operation assistance

scenario. BASR Reasoner assists in preparation of the required operation data

so as to guide users throughout operation process. The scale of its reasoning is

restricted to operations in a single cloud. CCSR Reasoner assists in grouping

similar operations for users so as to enable simultaneous executions, even if

such are implemented across distinct clouds. SCSR Reasoner assists in

scheduling chained tasks when a series of operation are found with certain

execution dependency relations one another. Compared to the above, further

scheduling control is needed since such operations must be executed

(successfully) according to a certain reasoned order. Finally, IOSR Reasoner

assists in implementing service orchestration tasks by analysing the possibilities

for potential operation interactions for selected services. Its reasoning is

implemented with consideration of both dynamically obtained service data and

conditions.

 Service Operation Scheduler

For advanced service operation tasks, Service Operation Scheduler acts to

control the schedule and execution of the involved tasks. The component works

closely with Service Operation Reasoning Engine, enabling the tasks reasoned

by the reasoners. For every SMR operations executed, the logs are forwarded

to Logging Controller.

 Logging Controller

Logging Controller documents critical system and operation log entries for users

so that they can examine the details at a later time. It fulfils the needs of event

107

tracking, diagnostics and evaluation for the operations implemented via the

platform.

Here, as a user selects any of the returned service information, such would be

used as parameters for other service operations. In case of a CSI or certain

PSSA returned, it can direct the user to its own list of SIRs and SMR operations

6.3.2 Mapping Ontology Specifications to Service API Calls

Nowadays, cloud services and service resources can be accessed and

managed via a diversity of interfaces, e.g. standard web portal, smart phone,

tablet cloud service applications, and provider-specific desktop command

interfaces. Other than the above, most cloud service providers also release

native service API libraries and complete SDKs as a customised service and

resource control interface, whereas a series third-party service APIs are also

available as an alternative programmable entrance. In fact, these service API

call/respond operations can enable more effective service access and

enhanced service function manipulation, for the reason that they allow to control

services and relevant resources from a much lower level [43]. Since cloud

services, service instances, their attributes and relationships are

comprehensively modelled, appropriate service API requests can be introduced

to the ontology, i.e. mapping service operations specifications with respected

API calls, through Service Entity and Operation Mapping Manager (illustrated in

Figure 6.5). Here, for a cloud service’s OP assertions, each one asserted

should be exclusively mapped to a unique API request, where the specified

information (e.g. SRParameter, SRPreCondition) must be consistent with the

relevant requirements for launching the API request.

As the mapping between the specifications and API calls is established, service

operations can be activated and initiated through retrieving interpreting relevant

ontology descriptions.

108

Given certain cloud services or service instances along with some operation

parameters, successfully executed service API requests would result into some

dynamically returned service information from the target service’s providers. As

these responded entities match the defined SROutcome according to the

respected OP assertions, depending on their natures, they can either

dynamically bring up a new list of available operations (if it is a service or

service instance), or be used and reused as SRParameters required for other

applicable service’s API operations. In this way, by interpreting new entity’s OP

specifications and possible SRParameter matches, appropriate new service API

calls would emerge automatically; once such are executed, further request

OCSO Cloud Service APIOCSO Cloud Service API

Native & 3rd Party Service APIs

Service Entity &
Operation

Mapping Manager

AWS API

OCSO API Adapter

Google
AppEngine

API

Jclouds
API

…
API

Cloud Services

CSAMO
consult

bind

invoke

request response

invoke

intepret

Cloud Service/Resource Data
Clouds

Service
API

USAMS

Figure 6.5 The Cloud Service Operation Specification and API Mapping

109

options would arise, and so would the future ones. Accordingly, each service

entity retrieved from the ontology may result into a dynamically chained

manually operated service requests, depending on the intensions of the

executed service commands. In fact, due to the dynamic nature of the lively

exposed service operation options and the efficient service entity reuse, the

mapping greatly enhance the overall service access and control experiences.

6.4 Platform Sub System Interactions

Service
Recommendat

ion Engine

Platform Sub System Component Interactions

Active Ontology
Manger

Authorization
Manager

User Accounts
& Profiles

UI
Service

Operation
Scheduler

Service Operation
Reasoning Engine

UI

Service Entity &
Operation Mapping

Manager

CSAMS
(Cloud service access,

manipulation, interaction tasks)

CSR
(Cloud service search,

recommendation, retrieval tasks)

Figure 6.6 CSR Platform Sub System Component Interactions

To enable seamless assistances for a combination of cloud service

recommendation and management tasks across the platform sub systems,

some of the system components are deployed publically whilst a range of

component interactions are enabled (see Figure 6.6). Firstly, the User Accounts

& Profiles database and Authorisation Manger are public components that are

110

shared in use of the two sub systems. Secondly, although there are two

separate UIs which specifically work for a set of service assistance tasks, there

are diversions available across the UIs so as to allow flexible service views and

accesses if needed. Thirdly, another linkage is found between Service

Operation Reasoning Engine and Active Ontology Reasoner. This is to enhance

the overall assistance function interactions within the platform by incorporating

the two ontologies and enlarging the scale of ontology reasoning, e.g.

information collected from one ontology can be used for tasks over another.

6.5 Summary

In Chapter 4 and 5, the detailed design of AoFeCSO and SAMOS approach are

revealed. Yet, despite their comprehensive knowledge specification and

presentation capabilities, it is unclear that whether the approaches can be

integrated to provide a combination of cloud service recommendation and

management tasks and how these assistances can be offered via the proposed

CSRMP prototype. This chapter has given the implementation details with

regard to approach integration, prototype tool development and process

automation. Towards the aim of a versatile cloud service assistance tool,

CSRMP platform has been designed to serve effective and efficient cloud

service assistances including service search, recommendation, retrieval,

evaluation, access, manipulation, and dynamic orchestration. In the next

chapter, a large series of case studies and experiments will be demonstrated in

ordered to validate the practical use of the proposed ontologies, approaches

and the prototype tool.

111

Chapter 7 Case Studies

This chapter uses a series of case studies to further demonstrate, validate and

evaluate the proposed framework. Specifically, a case study on Google

AppEngine is conducted to illustrate how AoFeCSO-based cloud service

specifications can be utilised for cloud service search, recommendation and

retrieval tasks (via CSR sub system). Then, to demonstrate the practice use

and to validate SAMOS approach toward unified service access, manipulation

and orchestration, case studies on AWS EC2 and Rackspace Cloud Load

Balancers are conducted (via USAMS sub system). Additionally, a number of

experiments are implemented to evaluate the performance of CSRMP prototype

in terms of the effectiveness and efficiency of the service search,

recommendation and retrieval and management functions.

7.1 Agility-oriented Service Search, Retrieval and

Recommendation

CSR sub system achieves an effective and effortless means of cloud service

search, retrieval, and recommendation through Service Seeker, Service

Explorer and Service Recommender interfaces: Service Seeker provides

flexible service search and filter options (Figure 7.1); Service Recommender

produces service lists and recommendation ratios based on user-defined

recommendation conditions (Figure 7.2 and 7.3). Service Explorer divides

service specifications into a number of tabs (Figure 7.4, 7.5, 7.6 and 7.7), seen

as “General Description, General Attributes, Detailed Attributes and Agility

Breakdown”;

112

Figure 7.1 Cloud Service Search and Filter

7.1.1 Cloud Service Search with Keywords and Filters

As illustrated in Figure 7.1, CSR Service Seeker accepts both keywords and

filters as search options. Users can flexibly use any option alone, or perform

one firstly and then apply the other. Taken advantage of AoFeCSO’s

comprehensive ontological service specification, the keywords can be of a

diversity of service concepts, description and attributes and do not necessarily

to be explicit. In fact, as long as a service is involved in an assertion which

contains the keywords, it is selected as one of the service candidates.

On the other hand, a service filter mechanism is embedded to enhance service

discovery. Basically, users are allowed to select certain property restriction

clauses so that applicable services can be extracted. The list of properties

comprises all available service OP and DP specifications which are retrieved

dynamically from AoFeCSO. As an OP/DP is selected, the available property

113

values are collected and displayed, where users can complete the filter clause

by choosing a certain value or entering their customised values. As depicted in

Figure 7.1, the customised property value can take diverse forms, e.g. data

number ranges, fuzzy assertion weight ranges, strings, etc.

Seen the example search in Figure 7.1, as a user enters “PaaS, elasticity,

database, etc.” words, the search would output all cloud services which are

specified as PaaS, or with elasticity, or directly/indirectly offers database

functions, etc., from applicable CSPs. Then, as a series of filters are deployed,

the service lists are reduced based on whether they would fit into each of the

restrictions. Users can freely use the given filter terms (which are acquired from

AoFeCSO), or insert customise restrictions using numerical values and symbols.

As a result, the proposed approach enables much more flexible cloud service

search.

7.1.2 Cloud Service Recommendation with Ratios

7.1.2.1 Recommendation Preparation

Figure 7.2 illustrates the appearance of the CSR Service Recommender

preparation interface which contains the list of hierarchy displayed keywords,

their annotation descriptions and selectable importance factors.

114

Figure 7.2 Cloud service recommendation preparation

115

7.1.2.2 Recommendation Result

Figure 7.3 Cloud service recommendation result

A recommendation result example is demonstrated in Figure 7.3, in which a list

of cloud services is recommended. The keywords used for the recommendation

are displayed at the top. The services recommended are accompanied by their

recommendation ratios, which indicate how appropriate they would fit the user

specified weighted keywords. For more information regarding the recommended

service, as the user select a service from the list, the recommendation

information for matched keyword and its percentage towards the

116

recommendation ratio are displayed on its right, whereas a widow containing

some service details pops up at the bottom.

7.1.3 Cloud Service Specification Retrieval, Modification and

Evaluation

7.1.3.1 General Service Descriptions

Figure 7.4 Cloud Service General Descriptions

CSR Service Explorer uses “General Description” tab to outline general

descriptions of cloud services, which are displayed according to their different

origin sources. The service description data is stored in the services’ annotation

properties using syntax “rdfs:isDefinedBy” in AoFeCSO, whereas the properties

are further annotated with respect source information in syntax “rdfs:comment”.

117

As demonstrated in Figure 7.4, the retrieved multi-sourced service descriptions

can effectively help users understand the services from diverse perspectives.

7.1.3.2 General Service Attributes

Figure 7.5 Cloud Service General Service Attributes

“General Attributes” tab states a service’s general attributes such as its

affiliations, delivery model, deployment type, general functionalities and

features, etc. (in Figure 7.5). Such information is stored in the form of class

assertions (individual-to-class OP assertions) of the service in the ontology.

Additionally, for certain information displayed that may not be universally

agreed, users are allowed to donate own truth degree ratings based on their

understanding or perceptions. Seen in Figure 7.5, the “MAIN/ALSO”,

“STRONG/WEAK” are dynamically created and updated as new fuzzy ratings

received, to explicitly reveal the most accurate service attributes towards their

rated applicability. The fuzzy modification processes are handled dynamically in

the background and do not need any further human intervention, which enables

118

uninterrupted service search, retrieval and recommendation as well as effortless

fuzziness assertion.

7.1.3.3 Detailed Service Attributes

Figure 7.6 Cloud Service Detailed Attributes

“Detailed Attributes” tab in Figure 7.6 outlines the additional details regarding a

service’s functions and general service attributes, by translating both the

services’ OPs and DPs into explicit statements. In AoFeCSO, such detailed

OPs involve a variety of CC concepts and services related individual-to-

individual assertions such as: various service orchestrations, supportable

OS/API/monitor/security/programming language options for the service, etc.

Additionally, the DPs consist of all data-formed service attributes that the

service complies such as a service’s operation parameters, constraints, pricing,

SLA terms and parameters, etc.

119

7.1.3.4 Service Profile (agility) Evaluation

Figure 7.7 Cloud Service Agility Evaluation

In CSR Service Explorer, “Agility Breakdown” tab illustrates an in-depth analysis

of a cloud service’s overall service specification. Seen from the example in

Figure 7.7, it gathers and analyses all axioms which are relevant to the service,

and then generates an agility score plus a series of details which together

indicate the service’s overall capability. Here, the main purpose is to

demonstrate a method for cloud service agility evaluation. This is to be

considered as sample calculation of agility scores, and should be recognised as

some guide data. Based on different knowledge grounding and understanding,

users may change the agility contributions where necessary.

Primary agility criterion accounts for 50% of a service’s agility score. It is

determined by the service’s function utilities. Generally, the rules are: I) the

120

more resources a service has control over or connection with, the more agile it

should be argued; II) the more functions a service can provide, the more agile it

ought to be seen; III) the more functional specific a service is designed for, the

less agile it should be considered; However, there could be exceptions for

certain services, and such are treated differently.

Secondary agility criterion examines whether a cloud service possesses any

strongly agility-relevant service characteristics and features. It takes 40% of the

total agility score. Overall, those agility-relevant service attributes are seen as:

scalability in terms of the scaling types and options, number of available service

APIs, options for secure service access and control, number of

OSs/programming languages/platform supported, and monitor options. For

services that offer better supports or more available options of these service

attributes, they would receive higher scores in this against this criterion.

Apart from the attributes presented in primary and secondary agility criterion,

there are a number of other service attributes that are regarded as only weakly

relevant to agility, e.g. “logging access, application deployment support,

migration and transition support, customer service and negotiation support”, etc.

The presences of these aspects are assessed for tertiary agility evaluation. This

partition only takes 10% of the agility calculation, since such service properties

generally have minimal effects towards a service’s agility.

7.1.3.5 Dynamic Keyword Field

Moreover, Service Explorer includes a dynamic list of keywords placed aside for

every service information tab according to the contents displayed (the right of

the panels in Figure 7.8). The list comprises those CC concepts appear in the

tab and are traceable for further information in AoFeCSO. This enables to

extract as much knowledge as possible from the ontology in an infinite loop as

long as there are further connections among the concepts, and hence

significantly increases the quality, quantity and density of service retrieval.

121

Figure 7.8 Dynamic Keyword Field

122

7.1.4 Evaluation: Cloud Service Search, Recommendation and

Retrieval

Currently, AoFeCSO holds 200 cloud services from more than 100 companies.

There are over 20,000 axioms stored in the ontology describing various

relationships among cloud services as well as between other CC entities (e.g.

service property, granular service entities, fuzzy weights, etc.). To evaluate the

proposed approach, a series of experiments are implemented to test both the

performance and effectiveness of AoFeCSO and CSR prototype. For ontology

evaluation, it discusses a series of aspects according to state-of-the-art

ontology evaluation approaches [126, 120].

7.1.4.1 Performance Evaluation

Figure 7.9 CSR Service Information Processing Time

Figure 7.9 demonstrates the performance of CSR prototype as accessing and

retrieving the stored cloud service specification from AoFeCSO, when dealing

with different total numbers of services (and their data). Reasonably, the larger

0

200

400

600

800

1000

1200

1400

1600

1800

2000

50 Services

5000+ axioms

100 Services

10000+ axioms

150 Services

15000+ axioms

200 Services

20000+ axioms

M
il

li
se

c
o

n
d

s
(m

s)

No of servces in AoFeCSO

CSR Service Inforamtion Processing Time

(average value with a single thread)

Prepare & list all

services

Retrieve a service &

list its 25+/- relations

Retrieve a service &

list its 50+/- relations

Retrieve a service &

list its 75+/- relations

Retrieve a service &

list its 100+/-

relations

123

the total number of cloud services is, the more time it would require to process

their information. More specifically, for preparing and listing all services (and

cloud companies), the amounts of time increases are seen fairly gradual: as the

total number of services rises from 50 to 200, the time increase is only about

75%. Then, depending on the total relations a service is actively/passively

involved in, the individual service access and retrieval time varies rather

differently. Firstly, for a service that has around 25 relations (asserted axioms),

the time (consumed while accessing it) increases approximately 150% (as from

50 services to 200 services). Secondly, while accessing a service with roughly

50 relations, the time increase is seen as 175%. Thirdly, when there are around

75 relations found for a service, retrieving all the information will need some

210% more time, as the total number of services increases from 50 to 200.

Finally, if a service is involved in some 100 relations, the time needed for

retrieving all the information would increase approximately 240%, if the total

number of services was quadrupled from 50. These statistics suggest that,

there is a linear increase for the service access time depending on the total

number of services and their service information stored in the ontology,

whereas the more relations a service is involved in, the more time it will take

while retrieving it with these relations. Fundamentally, this is due to the current

single thread processing algorithm used in CSR prototype.

7.1.4.2 Domain Coverage

Table 7.1 Domain Coverage Scale

Coverage Partial Full

Infrastructure Unified business and
cloud service ontology
[144], Cloud Ontology
[73, 59, 169]

FCFA [93], CoCoOn [161], mOSAIC
[7], AoFeCSO

Platform Unified business and
cloud service ontology
144, Cloud Ontology 73,
59

mOSAIC [150], Business ontology
[90], AoFeCSO

Software Cloud Ontology [73, 59],
Business ontology [99]

[122], Unified business and cloud
service ontology [144], cloud software
ontology [121], mOSAIC [150],
AoFeCSO

124

In ontology evaluation, domain coverage attempts to justify the ontology

knowledge coverage in contrast with other modelling practices (e.g. other gold

standard ontologies, information sources, etc.) [119]. Hence, it compares

AoFeCSO with a number of existing cloud (service) ontologies in terms of both

the scale and details of modelling.

The domain coverage scales of existing cloud (service) ontologies are

summarised in Table 7.1. Indeed, the majority of the ontologies either own

partial knowledge of multiple service categories, or only concentrate on a

specific service delivery model. Only AoFeCSO and mOSAIC cover the entire

cloud service models. Further, from the previous discussions, it can be found

that AoFeCSO captures much more detailed specifications, including the in-

depth cloud service OP and explicit cloud service entity relationship

specifications, comprehensive DP and multi-sourced annotation specifications.

Accordingly, these suggest that the proposed AoFeCSO owns competent

domain coverage.

7.1.4.3 Quality of Modelling

Ontology modelling quality is often assessed based on the syntactic, structural

and semantic quality aspects [21], where the logical consistency should be

guaranteed. AoFeCSO was initially built by using Protégé. This means it follows

formal OWL2 syntactic features for every axiom assertions. It adopts

ReasoningOP, which enables it to reason new cloud service specifications such

as inferred membership functions, property constraints and other object

relationships. Its DL consistency has been verified (by HermiT and FaCT++)

whenever any new information is added. Consequently, the modelling quality of

AoFeCSO is kept to the latest standard.

125

7.1.4.4 Suitability for Service Retrieval and Recommendation Tasks

For the suitability evaluation, it compares AoFeCSO with other existing service

specification models for service retrieval and recommendation tasks.

Regarding the suitability of the service recommendation tasks, the proposed

approach is found to be advanced in three main aspects (refer to Table 7.2): I) It

facilitates a user-friendly recommendation process due to the comprehensive

keywords annotation presentation, whilst this assistance feature is seldom

available in other service recommendation tools. II) It is by far the first tool that

provides comprehensive service recommendation functions for diverse service

delivery models and categories. III) The recommendation functions consider the

fuzziness occurred in cloud service specifications; this enables a clearer view of

Table 7.2 Service Attributes Processing: Service Recommendations

Cloud service
recommendations

Other existing
practices

AoFeCSO & CSR

Description/explanation of
the keywords

Few, partially, single
source [150, 122, 128]

Full, multiple sources

Cross/multiple service
categories/models

Partial [7, 59] Yes

Fuzzy cloud specifications
considered

N/A Yes; processed during the
recommendation process and
represented in the recommendation ratios

Table 7.3 Overall Service Attributes Processing Effectiveness

Overall effectiveness

comparison

Other models and service

recommendation systems

AoFeCSO & CSR

Description of service

attribute

Yes [7, 122, 144, 161, 73, 121, 59,

90, 151, 60]

Yes

Granular service attribute

details

Very few [7] Yes

Service attribute

connections

N/A Yes

Service attribute fuzziness

specification

N/A Yes, through collaborative

fuzzy weight rating

Service/provider

relationships

N/A Yes

126

the small differences between similar services through more precise service

recommendation ratios.

Additionally, as Table 7.3 summarises, the proposed approach is able to

capture and present extended service specifications from a variety of aspects,

e.g. showing multiple service model information, explaining granular details of

service attributes, revealing service attribute connections, and processing fuzzy

service specifications. Fundamentally, it is argued that other existing work is

held back by their conventional inflexible ontology definition and

implementation, whereas our approach rests on a loosely-coupled class and

relation hierarchy.

As a result, seen from the above case study and comparison data, the

proposed approach offers distinguished effectiveness for cloud specification

processing with regard to the full range service recommendation and retrieval

tasks.

7.1.4.5 Adoption and Use

 In addition to the present use, AoFeCSO is also actively involved in a number

of research projects. Indeed, its knowledge is being widely used for recent

service brokerage [41] and optimisation [43] studies. While being adopted to

assist service optimisation tasks, it can provide adequate semantic support to

compare cloud services with similar functions, features, characteristics, etc.

Further, as being used for service brokerage tasks, it would greatly enhance

service matchmaking for cloud (resource) interoperability enablement. Indeed,

the comprehensive service specifications across multiple abstraction layers

make it a preferred knowledge for a wide range of service selection-relevant

tasks.

127

7.2 Cloud Service Operation Specification and Execution

According to the native cloud service API reference documents, various service

operations can be comprehensively specified using SAMOS framework.

7.2.1 Specification of IaaS Service Operations

In CC, IaaS services are generally provisioned to fulfil various computing

resource needs for different users. Among all of the resources, IaaS compute

service is regarded as a typical example that is widely consumed by many user

types (e.g. individuals, companies, organisations). Indeed, the majority of such

services offer choices for a wide range of VM sizes, OSs, software bundles, etc.

For available service management options, accordingly, there are usually

various VM-oriented operations available, such as to create, access and

manage the service instances (VMs). In fact, the options of these operations are

found very similar among CSPs. This means that the specification patterns

would appear to be similar for the involved entities, entity data type formats, and

entity operational relationships. SAMOS can effectively reveal both the similarity

and the uniqueness among service operations from distinct providers.

To demonstrate how SAMOS framework can be applied to real-life IaaS cloud

services, a series of examples are provided using operations selected from two

CSPs. The specifications given below are divided according to their execution

levels, i.e. service level, CSI level and PSSA level respectively.

128

7.2.1.1 Typical Operations of an IaaS Compute Service

Table 7.4 and 7.5 demonstrate some cloud service level operation

specifications retrieved from CSAMO. These typical operations belong to two

IaaS services, i.e. AWS EC2 [1] and Rackspace Cloud Servers [118]. In

comparison, although the two services own some service operations in common,

the specifications are very different from each other. For instance, they all

Table 7.4 AWS EC2 Service Level Operation Specification

Granular

Service

Operations

AWS EC2

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

List VM

Instance

SIR Unconditional EC2 Region(M) EC2

InstanceIDs

Unconditional

Create VM

Instance(s)

SMR < account

allowance, i.e. 20

instances per

region

EC2 RequestCount(O), EC2

InstanceType(M), EC2

AMIID(M), EC2 KeyName (M),

EC2 SecurityGroup(O), EC2

Region(M), EC2 Monitor(O),

EC2 AvailabilityZone (O), etc.

EC2

InstanceID(s)

Instance(s) are in

“running” state

Reboot VM

Instances

SMR Instances are in

“running” state

EC2 InstanceIDs(M) Operation

Succeeded

Instances are in

“running” state

Stop VM

Instances

SMR Instances are in

“running” state

EC2 InstanceIDs(M) Operation

Succeeded

Instances are in

“stop” state

Resize VM

Instances

SMR Instances are in

“stop” state

EC2 InstanceIDs(M), EC2

InstanceTypes(M)

Operation

Succeeded

Instances are in

“stop” state

…

Table 7.5 Rackspace Cloud Servers Service Operation Specification

Granular

Service

Operations

Rackspace Cloud Servers

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

List VM

Instances

SIR Unconditional Rackspace Region(M)

Rackspace FlavorID(M)

Rackspace

CloudServerIDs

Unconditional

Create VM

Instance

SMR < Rackspace

Absolute

CSLimits, i.e. 100

Rackspace Server name(M),

Rackspace ImageRef(M),

Rackspace OSDiskConfig (O),

Rackspace Metadata(O),

Rackspace KeyPair(O), etc.

Rackspace

CloudServer

InstanceID

Instance is in

“ACTIVE” state

Reboot VM

Instances

SMR Unconditional Rackspace CloudServerID(M),

Rackspace RebootType(M),

e.g. SOFT, HARD

Operation

Succeeded

Instances are in

“ACTIVE” state

StopVM

Instances

X X X X X

Resize VM

Instances

SMR Instances are

Rackspace

Standard Flavor

Rackspace CloudServerID,

Rackspace FlavorID(M)

Operation

Succeeded

Unconditional

…

129

support retrieving owned instance through the “List Owned VM” request, which

is seen a SIR and requires only a pre-selected region information as the

mandatory SRParameter. Obviously, the two region parameters are two

different PSSAs: despite the fact that AWS and Rackspace both have regions of

the same geographic locations (e.g. UK and USA), the two entities represented

them are known distinctively and therefore have their own strings (formats) of

presentation (data type). On successful execution, both SIR executions would

not alter the services, hence there would be no change to their

SRPostCondition; the SROutcomes for the SIRs are seen as two series of ID

lists of the owned service instances.

On the other hand, for SMR operations, EC2 offers more options than the other

for the listed operations. I) While both services allow users to create new

instance, the SRPreCondition and SRParameter in need are seen distinctive:

For preconditions, EC2 uses a maximum of 20 running instances per region for

ordinary users, whereas Rackspace limits the total instance count to 100 for all

users. For SRParameter, EC2 requires a specific AWS region, instance type,

AMI (VM image) ID and key name (for user authentication use) as mandatory

parameters, plus security group (virtual firewall), request count (number to be

created), availability zone (sub zones for the region), monitor (for frequent

monitor), etc. as optional parameters; Rackspace Cloud Servers needs

mandatory server name, Flavor (instance type) ID and ImageRef (VM image

reference), as well optional parameters such as OSDiskConfig (disk

configuration value), metadata (custom server metadata), key pair (for user

authentication use), etc. As the request complete successfully, both would

return the new created VM instance IDs as SROutcome II) Except the major

distinctiveness which rests in Rackspace does not provide “stop” command for

the VM instances, there are still clear differences between the two providers,

even for the basic “reboot” and “resize” commands. Indeed, the reboot option

offered by Rackspace accepts additional “SOFT/HARD” parameter for the

respected reboot operations, whereas EC2 simply needs subject instance IDs;

130

For instance resize operations, EC2 needs the subjects to be at “stop” state

whilst Rackspace requires the instance to be a “standard flavoured” VM.

7.2.1.2 Typical Operations of an IaaS Compute Service Instance

In addition, a number of typical IaaS service instance operation specifications

are illustrated in Table 7.6. In contrast with the above service (class) request

operations, IaaS service instances (individual) are often provisioned with more

request options, due to the considerably more instance-specific SIR and SMR

operations involved.

Considering SIR operations, for each service/instance attribute that is

associated with the instance, there would be a respected SIR to retrieve the

dynamic information, e.g. to get the instance’s architecture, type, public IP

address, etc., as illustrated in Table. Generally speaking, these SIR operations

requires very few to no more SRParameter other than the instance’s ID, and

would return the respected SROutcome according to their expected data types.

Such SIR would unlikely result into any changes to the instance.

Table 7.6 AWS EC2 Service Instance Operation Specification

Granular

CSI

Operations

AWS EC2 Instance

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

Get VM

Architecture

SIR Unconditional EC2 InstanceID(M) EC2 Instance

Architecture

Unconditional

Get VM

Instance Type

SIR Unconditional EC2 InstanceID(M) EC2

InstanceType

Unconditional

Get Instance

PublicIP

SIR Instance is in

“running” state

EC2 InstanceID(M) EC2

InstancePublic

IP

Unconditional

Duplicate

VM Instance

SMR < account

allowance, i.e. 20

instances per

region

EC2 InstanceID(M) EC2

RequestCount(O), EC2

InstanceType(O), EC2

AMIID(O), EC2 KeyName (O),

EC2 SecurityGroup(O), EC2

Monitor(O), etc.

EC2

InstanceID(s)

Instance(s) are in

“running” state

Create VM

Image

SMR Unconditional EC2 InstanceID(M) EC2 AMIID AMI is in

“available” state

Terminate

VM Instance

SMR Instance is NOT

in “terminated”

state

EC2 InstanceID(M) Operation

Succeeded

Instance is in

“terminated” state

…

131

On the other hand, there are several SMR operations are seen applicable only

for a specific IaaS service instance, such as to create the instance’s image and

to duplicate the instance. Take “Duplicate Instance” for example, the SMR has

very similar SRPreCondition and SRPostCondition with EC2 service’s “Create

Instance(s)” operation. This is due to the very same fundamental API request

they both are mapped to. Take EC2 instance as an example, the “Create Image”

operation is to save the latest snapshot of the VM and then create an image of it

(for duplication, records, backup, etc. purposes). The SMR can be initiated

regardless of the instance’s status, and therefore, requires no SRPreCondition.

On after successful execution, the created image’s AMI ID is returned as the

SROutcome, with the SRPostCondition of the AMI is at “available” state. Except

such service instance-specific operations, the rest are seen as the singular

version of the IaaS service SMR operations, i.e, “Start VM”, “Stop VM”,

“Terminate VM”, as long as they are of the same manipulation function as for

the service. Obviously, the SRPreCondition, SRParameter, SROutcome and

SRPostCondition of such operations would also be transformed be for the

instance only.

7.2.1.3 Typical Operations of an IaaS Compute Provider-specific

Entity

Additionally, to provide comprehensive functionalities, IaaS service console

often comprise a series of additional concepts and entities management

functions that are specifically related to certain aspects of the service, i.e.

entities representing certain computational concepts, resource pools, resource

interfaces, etc. For these PSSA entities, many are supplied with certain

additional management operations. Indeed, these additional service operations

add up to the range of service instance configuration tasks. Similarly to the

nature of PSSA, most PSSA operations are recognisable only for a certain

single CSP.

132

Table 7.7 illustrates some operation specification data of EC2 AMI. As VM

image is one typical IaaS service entity that applies to all IaaS VM services,

some of the entity operations may still be reused for other IaaS providers, e.g.

Create VM Instance(s) and Delete Image are known as two general operations

which are supported by almost all IaaS VM service providers. However, for

SMR operations like the above, there would be very distinct condition and

parameter requirements between different CSPs. For instance, for EC2 AMI,

the SRPrecondition and SRParameter are found similar to which for EC2

instance’ Duplicate Instance operation and EC2 create VM Instance(s)

operation (also mapped to the same API call). Additionally, the combination of

SIR operations of these provider-specific entities would mostly vary from distinct

providers. There are few chances of compatible cross-provider SROutcome

entities even for the same operation, except the cases such as some service

providers have strong industrial relationships with each other, some providers

employ (rely) other’s service resources, etc.

Table 7.7 AWS EC2 Provider-Specific Entity Operation Specification

Granular

PSSA

Operations

AWS EC2 AMI (VM image)

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

Get Image

Name

SIR Unconditional EC2 AMIID(M) EC2 AMIName Unconditional

Get Image

Platform

SIR Unconditional EC2 AMIID(M) EC2

Instance

Platform

Unconditional

Create VM

Instance(s)

SMR < account

allowance, i.e. 20

instances per

region

EC2 InstanceID(M) EC2

RequestCount(M), EC2

InstanceType(M), EC2

AMIID(M), EC2 KeyName

(O), EC2 SecurityGroup(O),

EC2 Monitor(O), etc.

EC2

InstanceID(s)

Image is in

“available” state

Delete Image SMR Image is in

“available” state

EC2 AMIID(M) Operation

Succeeded

Unconditional

…

133

7.2.2 Specification of SaaS Service Operations

In contrast with IaaS and PaaS services which serve fairly limited number of

purposes, SaaS services are usually found in a diversity of functions, e.g.

business applications such as CRM, ERP, accounting software services. Due to

the variations and complexity of the functions, the available service, service

instance and SaaS provider-specific operations would vary dramatically among

distinct service types. In fact, for some SaaS services, there may be no

applicable service instances. For instance, online storage services (e.g. Google

Drive [56]) would only have some provider-specific SaaS entities (e.g. the file

nodes, the “Bin”, the user account). Therefore, SaaS service operation

specification patterns are seen diverse for each specific software function

category. The example used here is cloud load balancer services. In contrast

with others software functions, the load balancer application provide a moderate

view considering the overall functional operations available, service entity

constitution, as well as a layered entity reference architecture.

7.2.2.1 Example Operations of a SaaS Cloud Load Balancer Service

Using GoGrid Dynamic Load Balancers (GDLB) and Rackspace Cloud Load

Balancers (RCLB) as examples, Table 7.8 and 7.9 list the specifications of

some typical service level load balancer operations. For both services, there are

general operations such as to obtain the owned service instances and create

new instance, similarly as for ordinary IaaS and PaaS services. Nevertheless,

compared with services from other delivery models, the total number of such

operations is typically smaller. This is due to the fact that these services tend to

be simpler and generally have fewer interactions with other services and service

entities.

134

More specifically, considering the SIR operations, any cloud load balancer

instance created can be allocated with a public IP address; to retrieve such

information, there are SIRs such as “List Load Balancer Instances” and “List

Table 7.8 GoGrid Dynamic Load Balancers Service Operations

Granular

Service

Operations

GoGrid Dynamic Load Balancers

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

List

Load Balancer

Names

SIR Unconditional

GoGrid Datacenter(M) GoGrid

LoadBalancer

InstanceNames

Unconditional

List

Load Balancer

Instance

Addresses

SIR Unconditional GoGrid Datacenter(M) GoGrid

LoadBalancer

VIPs

Unconditional

Create Load

Balancer

Instance

SMR Uncnditional GoGrid Datacenter(M),

LoadBalancerName(M),

GoGridRealIP(M),

GoGridVIP(M), GoGrid

BalancerAlgorithm(M)

GoGrid

LoadBalancer

InstanceID

Load Balancer

instance is in “ON”

state

Delete Load

Balancers

SMR Load Balancer is

NOT in

“UPDATING”

state

GoGrid

LoadBalancerInstanceID(

M)

Operation

Succeeded

Load Balancer

Instance is NOT in

“UNKNOWN” state

…

Table 7.9 Rackspace Cloud Load Balancers Service Level Operation Specification

Granular

Service

Operations

Rackspace Cloud Load Balancers

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

List

Load Balancer

Instance Names

SIR Unconditional

Rackspace Region(M) Rackspace Cloud

LoadBalancer

InstanceNames

Unconditional

List

Load Balancer

Instance

Addresses

SIR Unconditional

Rackspace Region(M) Rackspace Cloud

LoadBalancer

Addresses

Unconditional

Create Load

Balancer

Instance

SMR < Rackspace

Absolute

LBLimits, i.e. 25

Rackspace Region(M),

LoadBalancerName(M),

LoadBalancerPort(M),

Rackspace

CloudServer(O),Rackspace

CloudLoadBalancer

ExternalNode(O),

Rackspace

VirtualIP(M) ,etc

Rackspace Cloud

LoadBalancer

InstanceID

Load Balancer

Instance is in

“ACTIVE” state

Delete Load

Balancer

SMR Load Balancer is

NOT in

“UPDATING”

state

Rackspace

CloudLoadBalancer

InstanceID(M)

Operation

Succeeded

Load Balancer

Instance is in

“ACTIVE” state

…

135

Load Balancer Addresses”. In addition, both services would offer the same SIR

operations as listed, for which the SRPreCondition, SRPremeter, SROutcome

and SRPostCondition specifications appear to be similar, with only differences

of the entities involved (owning by the respected providers).

In the meantime, for the listed SMR operations, there is also similarity over the

load balancer instance control options between the two services. It is found that

some of the SMR can only be applied to a single instance subject at a time, for

the reason that it is very unlikely for users to perform massive management

operations simultaneously for multiple load balancer instances (e.g. create

multiple load balancer instances at once).

7.2.2.2 Example Operations of a SaaS Cloud Load Balancer Service

Instance

SaaS cloud load balancer services do offer a series of operations at the service

instance level, seen as the relevant load balancer instance configuration tasks.

As illustrated in Table 7.10, there are many SIR and SMR operations available

for an individual load balancer (RCLB).

Table 7.10 Rackspace Cloud Load Balancers Service Instance Operations

Rackspace Cloud

Load Balancer

Instance

Opera

tion

Type

Granular Service Instance Operations (partial)

Load balancer

instance general

tasks

SIR Get LoadBalancer InstanceName, Get LoadBalancer InstanceStatus, Get LoadBalancer

InstanceAddress

SMR Edit LoadBalancerName

Nodes

configuration tasks

SIR List LoadBalancer InstanceNodes, List LoadBalancer InstanceNodeAddresses

SMR Add LoadBalancer Instance Nodes, Delete LoadBalancer Instance Nodes

General load

balancing

management tasks

SIR Get LoadBalancing Algorithm , Get Load Balancing Port, Get LoadBalancing

AccessRules

SMR Edit LoadBalancing Algorithm, Edit Load Balancing Port, Add LoadBalancing

AccessRules, Edit LoadBalancing AccessRules, Delete LoadBalancing AccessRules

Rackspace

exclusive feature

management tasks

SIR

Get RackspaceCloudLoadBalancer HealthMonitor, Get RackspaceCloudLoadBalancer

SessionPersistence, Get RackspaceCloudLoadBalancer ConnectionThrottling, Get

RackspaceCloudLoadBalancer ErrorPage, Get RackspaceCloudLoadBalancer Logging

SMR Edit RackspaceCloudLoadBalancer HealthMonitor, Edit

RackspaceCloudLoadBalancer SessionPersistence, Edit RackspaceCloudLoadBalancer

ConnectionThrottling, Edit RackspaceCloudLoadBalancer ErrorPage Edit

RackspaceCloudLoadBalancer Logging, etc.

136

More specifically, Table 7.11 shows the detailed information of a series of RCLB

service operations. For SIR, except general information such as the name, ID,

status, etc. that is widely available for all the service providers, RCLB offers

additional functionalities such as a series of advanced load balancing

algorithms (e.g. “weighted round robin” and “weighted least connections”), load

balancer health monitor and access rules. While requesting the information, the

SIR SRPreConditions require the load balancer instance to be at the “Active”

state. Additionally, as a cloud load balancer typically consists of a series of

nodes, “List Load Balancer Instance Nodes” action is then enabled. Due to the

fact that RCLB supports both external (e.g. a public IP address) and internal (a

private IP address or a VM instance in Rackspace cloud) nodes for load

balancing tasks, the SROutcomes of the operations return only the instance

Table 7.11 Rackspace Cloud Load Balancers Service Instance Operation Specification

Granular

CSI

Operations

Rackspace Cloud Load Balancer Instance

Type SRPre

Condition

SRParameter/SRSubject SROutcome SRPostConditi

on

Get

Load Balancing

Algorithm

SIR Load Balancer

is in “ACTIVE”

state

Rackspace Cloud

LoadBalancer InstanceID(M)

Rackspace

LoadBalancing

Algorithm

Unconditional

List

Load Balancer

Instance Nodes

SIR Load Balancer

is in “ACTIVE”

state

Rackspace

CloudLoadBalancer

InstanceID(M)

Rackspace Cloud

LoadBalancer

Instance NodeID(s)

Unconditional

Edit

Load Balancer

Instance Health

Monitor

SMR Load Balancer

is in “ACTIVE”

state

Rackspace Cloud

LoadBalancerInstanceID(M),

Rackspace Cloud

LoadBalancer

HealthMonitor(M)

Operation

Succeeded

Load Balancer

is in “Active”

state

Add Load

Balancing

Access Rule

SMR Load Balancer

is in “ACTIVE”

state

Rackspace

CloudLoadBalancer Instance

ID(M), Rackspace

CloudLoadBalancing

AccessRule (M)

Operation

Succeeded

Load Balancer

is in “ACTIVE”

state

Add Load

Balancer

Instance Nodes

SMR Load Balancer

is in “ACTIVE”

state

Rackspace CloudServer(O),

Rackspace

CloudLoadBalancer

ExternalNode(O), Rackspace

CloudLoadBalancer

InstanceNodePort(O), etc.

Operation

Succeeded

Load Balancer

is in “ACTIVE”

state

Delete Load

Balancer

Instance Nodes

SMR Load Balancer

is in “ACTIVE”

state

Rackspace

CloudLoadBalancer

InstanceNodeIDs(M)

Operation

Succeeded

Load Balancer

is in “ACTIVE”

state

…

137

node IDs. By using the ID, additional provider-specific entity operations can be

launched.

The load Balancer’s SMR operations provide comprehensive configurations

regarding the load balancing algorithm, access rule, health monitoring, logging,

connection throttling, and session persistent, etc. management tasks. In fact,

except for few SMRs which are similar regardless of any provider (e.g. those

load balancer instance node management operations), the majority of the

features are seen only applicable for RCLB. Hence, except some load baling

ports and algorithms which might be recognisable for other load balancer

services, the entities involved in the SMRs’ SRParameters are meaningless to

all other services, even for those owned by Rackspace.

7.2.2.3 Example Operations of a SaaS Cloud Load Balancer Provider-

specific Entity

At the PSSA level, a number of additional load balancer service operations are

usually presented for certain granular service access and controls. Such as

routing, logging and load balancer node management tasks (see Table 7.12).

Here, cloud load balancer node is seen as a typical entity that applies to all of

such services. For the majority of such CSPs, it usually comes with some a

series of SIR and SMR operations.

As the fundamental element of load balancer instances, each node is normally

given a unique ID. From the ID, the address information can be obtained: in

case of an external node, it would point to a public IP Address; a private node

would either lead to a private IP address or a RCS instance ID. Additionally,

RCLB also allow users to edit the conditions of the node from “Enabled,

Disabled or Draining Connections”. Under a weighted load balancing algorithm,

each nodes presented in the instance is associated with a weight (an integer of

1-100); the load balancer instance would distribute the traffic based on the

proportional relationships among the weights.

138

7.2.3 The Unified Interface for Real-world Cloud Service Access and

Manipulation Tasks

The above cloud service specification case studies suggest that SAMOS

framework can adequately model and specify the variety of service operations

from distinct service types, delivery models and provider clouds. Based on

these specifications, USAMS prototype is implemented to enable a unified

interface for comprehensive cloud service management tasks. This section

demonstrates some case studies on cloud service access and manipulation

tasks by utilising a real-life IaaS service (AWS EC2).

Table 7.12 Rackspace Cloud Load Balancers Provider-Specific Operation Specification

Granular

Service

Instance Node

Operations

Rackspace Cloud Load Balancer Instance Node

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

Get

LoadBalancer

Instance Node

IP

SIR Load Balancer is

in “ACTIVE”

state

Rackspace

CloudLoadBalancer

InstanceNodeID(M)

Rackspace Cloud

LoadBalancer

InstanceNodeIP

Unconditional

Get

LoadBalancer

Instance Node

Status

SIR Load Balancer is

in “ACTIVE”

state

Rackspace

CloudLoadBalancer

InstanceNodeID(M)

Rackspace Cloud

LoadBalancer

InstanceNode

Condition

Unconditional

Get

LoadBalancer

Instance Node

Port

SIR Load Balancer is

in “ACTIVE”

state

Rackspace

CloudLoadBalancer

InstanceNodeID(M)

Rackspace Cloud

LoadBalancer

InstanceNode Port

Unconditional

Edit

LoadBalancer

Instance Node

Weight

SMR Load Balancer is

in “ACTIVE”

state

Rackspace

CloudLoadBalancer

InstanceNodeID(M),

Rackspace

CloudLoadBalancer

InstanceNodeWeight(M)

Operation

Succeeded

Load Balancer is

in “ACTIVE”

state

Edit

LoadBalancer

Instance Node

Status

SMR Load Balancer is

in “ACTIVE”

state

Rackspace

CloudLoadBalancer

InstanceNodeID(M),

RackspaceCloud

LoadBalancerInstance

NodeCondition(M)

Operation

Succeeded

Load Balancer is

in “ACTIVE”

state

Delete Load

Balancer

Instance Node

SMR Load Balancer is

in “ACTIVE”

state

Rackspace

CloudLoadBalancer

InstanceNodeID(M)

Operation

Succeeded

Load Balancer is

in “ACTIVE”

state

…

139

USAMS adopts a structured interface for cloud service operation retrieval

preparation and execution. Basically, all cloud services, CSIs and PSSAs are

initially displayed in a small panel. Seen in Figure 7.10, the panel comprises

four buttons: “Description”, “Use Entity”, “Information” and “Manipulation”. By

clicking the “Description”, users can view its annotation description through

platform sub system interactions. The “Information” and “Manipulation” buttons

lead to the respected SIR and SMR operations, which are retrieved dynamically

from CSAMO. Then, if a user’s API account authorisation permits, one can

execute the respected operations via the interface.

Figure 7.10 Initial Cloud Service Entity Panels

7.2.3.1 Cloud Service Access Operations

Using AWS EC2 as the example cloud service, the following contents

demonstrate the processes of the SIR operations retrieval, followed by real-time

service and service instance accesses tasks. To illustrate the practical service

access example, Figure 7.11 demonstrates the appearance of cloud service

SIR operation retrieval. In fact, as the “Information” button is clicked, a dynamic

ontology lookup is performed, where the relevant SIR operations specifications

are extracted, processed and displayed for further commands. As a typical IaaS

compute service, EC2 is provisioned with various service operations which are

closely relevant to VM configuration tasks: sizes, access keys, security groups,

regions, etc. Further, while acquiring the SIR option lists, each operation would

140

be mapped with a specific API call for execution preparation. Once the

preparation is ready, a “Request” button will be presented next the operations,

notifying the user that one can request the information through pre mapped

service programming calls.

Figure 7.11 EC2 SIR Operations Retrieval

Then, as the user clicks the “Request” button, relevant pre-mapped API calls

are dynamically initiated. If the requests successfully execute, the respected

service data is obtained from the service provider (i.e. AWS EC2) via the API

requests (See Figure 7.12). For instance, EC2 involves several aspects that are

relevant to the usage of VMs: VM sizes, images, security groups, regions, etc.

All of the information can be acquired via the SIR execution. Additionally, via the

“has instance” operation, the user can retrieve the VM instances owned for a

specific region.

141

Figure 7.12 EC2 SIR Operation with Real-time Cloud Data Access

Subsequently, for the dynamically retrieved service information, there can be

additional actions, if the entity type allows. As previously discussed, all CSIs

and PSSAs are backed by subsequent actions which are uniquely presented,

owning to their specific characteristics and usages. As shown in Figure 7.13,

the “i-b2485df8” instance provides an example of SIR interaction across service

and CSI levels. While the instance’s SIR operations successfully execute, the

instance-specific information is then acquired from EC2. Later, based on the

entity type of the newly obtained instance data (entity), they may also lead to

their own lists of service request operations.

142

Figure 7.13 EC2 Instance Cloud Service SIR Interactions

In the meantime, another use of the dynamically retrieved service information

(SROutcome) is known entity reuse. In this example, except the “running” status

of the EC2 instance (which is unusable), all other information can be selected

as either SRSubject or SRParameter or both for relevant service operations (e.g.

the IP address can be used for another service; the access key can be used to

create another instance).

143

7.2.3.2 Cloud Service Manipulation Operations

Figure 7.14 EC2 SMR Operation Retrieval

Continuing with the above example IaaS service, SMR operations of EC2 can

also be retrieved from the operation specification ontology. Displayed in Figure

7.14, this involves a series of general service instance configuration operations

(e.g. create, start, stop and terminate), plus some management operations for

its unique PSSA entities (e.g. EC2 KeyPair, SecurityGroup). As a user clicks at

an operation command, an ontology look up process would be triggered, where

the respected SRParameter requirements will be obtained and displayed along

with the SMR. Shown in Figure 7.14, for instance, “set region” command would

need the user to specify a relevant “EC2 Region”; “create security group” would

require an input of “EC2 Security Group Name” and “EC2 Security Group

Description”.

144

Figure 7.15 EC2 SMR Operation Preparation

To further explain how SMR operation is prepared and executed, a detailed

example is given, using the “create new VMs” operation. The example SMR

requires a number of parameters including “EC2 Region”, “EC2 Instance Type”,

“EC2 AMI ID”, etc. As illustrated in Figure 7.15, these parameters can be

entered through either selection of the previously obtained service information,

or manual typed input. As the system detects user’s input, fulfilled parameters

would fit into the respected position whilst the icon followed which would transit

from “unchecked” into “checked”. By the time all of the SRParameters are

fulfilled, a dynamic service condition checking process is initiated prior to the

operation execution. In this case, the command requires the user to own no

more than 20 instances per region.

145

Figure 7.16 EC2 SMR Execution

Then, as all defined requirements are fulfilled, when the user clicks the SMR

command, the pre-mapped API request is sent to the service provider. After

some time, relevant respond will be returned from the provider, notifying the

execution status. As shown in Figure 7.16, the request has executed

successfully and has resulted two newly created VM instances: “i-00cbf742”

146

and “i-01cbf743”, which can be found at the bottom the panel. Subsequently,

seen in Figure 7.17, the two new instances can be found through SIR updates.

Figure 7.17 EC2 SIR Update After SMR Execution

147

7.2.4 Cloud Service Operation Assistance and Dynamic

Orchestration

7.2.4.1 Cloud Service Operation Assistance - BASR

Figure 7.18 BASR Reasoning Assistance Example

As a means towards versatile SMR assistances for real-world cloud services,

BASR tends to extract various types of information that can be relevant while

preparing service operations’ requirements. Figure 7.18 shows the reasoned

outcome for the selected subject (an AWS EC2 instance with ID of “i-1f6bc95f”).

Using the SMR “duplicate VM” as an example, the full details regarding the

operation are displayed in the interface: the SMR requires a precondition of

“EC2 Instance count < 20”, which is currently satisfied for the user. There are

five mandatory parameter needed, involving region, instance type, security

group, etc.; as none of these are present, lists of information regarding how they

148

can be obtained are generated. For instance, “EC2 Instance Type” can be

retrieved through the “get VM size” request launched on EC2 service or

instance level; “EC2 Security Group” can be obtained by requesting existing

ones or creating new ones.

In the meantime, BASR also reveals the expected changes for each SMR

execution. In the example, if the SMR successfully executed, a duplicate

instance will be created, which is seen as the outcome of the operation.

Furthermore, considering the post-condition status after execution, the most

obvious condition change is that the raised total owned instance number in

contrast with before. Yet, due to the fact that the former status is less

“meaningful” compared with the latter, the main condition change for the SMR is

recorded as the new instance’s “running” state. More specifically, with the new

instance’s running state, various types of instance manipulation (deployments,

configurations, etc.) actions would be reasoned; in contrast, given the similar

instance count-relevant condition, the possible following operations would still

be reasoned as instance creation-related actions, which would be relatively

unlikely to be implemented.

7.2.4.2 Cloud Service Operation Assistance - CCSR

CCSR enables serves to perform multiple service manipulation tasks

simultaneously over the selected cloud service subjects. It enables users to

deploy a combination of service manipulation tasks simultaneously, without

having to go through different provider clouds and perform each individually.

With appropriate parameters and dynamic service (instance) condition checks,

the reasoning engine gathers similar SMR operations for which all requirements

are satisfied. Figure 7.19 illustrates two CCSR operation examples produced

based on the real-time selected service instance subject, parameters and

condition check results. The reasoning is implemented with a number of

subjects only, without any parameters: the subjects are seen as a number of

“Rackspace Cloud Server Instance” and two “EC2 Instance”.

149

Figure 7.19 CCSR Reasoning Assistance Example

Seen in Figure 7.19, the first CCSR option reasoned, “Create image”, is

produced under the following conditions: the SRPreCondition of the SMR is

“unconditional”, which means it needs no precondition. Besides, the operation

requires a subject, which is the ID of a VM; no additional parameter is required.

As this is a “common” IaaS operation, such can be implemented despite distinct

service providers. Then, if the requests are successfully executed, there will be

a number of VM images produced in each provider cloud whilst the condition

changes are known as the new images’ “available” state.

On the other hand, the second reasoned CCSR option is “stop VM”. Similarly as

the above operation, it needs only some service instance as subjects no and no

other parameters, whereas it can also be initiated for multiple distinct service

150

providers. However, due to the fact that the SMR requires a precondition of

“instance status =running” and only those from AWS satisfy the state at that

time, the CCSR is only deployable for the EC2 instances presented. Lastly, the

expected condition change is known as the “stopped” state of the instances.

Figure 7.20 CCSR Reasoning Assistance Operation Execution

Then, Figure 7.20 demonstrates the outcome of a successful deployment of the

“create image” CCSR command, for the selected AWS EC2 and Rackspace

Cloud Server Instances (the whole process is also demonstrated via the native

web page screenshots in Appendix C.i). Seen from the displayed messages,

the concurrently executed operations compose four individual requests for each

subject presented. After the executed, four new VM images are produced in the

two provider clouds. From the dynamically retrieved image IDs, it can be seen

that they follow the distinct patterns for the respected provider. In the meantime,

the elapsed time for the instance image creation varies due to many factors

including the size of the virtual disks, the operating system of the VM, a series

of virtualisation platform and provider-specific aspects, plus some uncontrollable

influences such as the real-time load and traffic of the clouds, etc.

151

7.2.4.3 Cloud Service Operation Assistance - SCSR

The intent of SCSR reasoning is to present a list of chained service operations,

where each operation chain can be executed in a certain applicable sequence

for a desired aim(s). This enables users to implement a process of service

manipulations effectively, so that they do not need to manually operate them

one another and wait for their completions. For a selected operation chain, once

the user initiates the very first action command, the system would deal with the

rest automatically according to the dynamically updated and synchronised

service conditions: the last service operation would be initiated only if all the

previous ones have reached the positive completion states one after another.

In Figure 7.21, an example operation chain is seen reasoned from input of an

EC2 instance subject and an EC2 instance type parameter. There are three

operations in the chain: “top VM”, “resize VM” and “start VM”. For the selected

service instance, the reasons why the three operations can be composed into a

sequenced chain rest on the following facts. Firstly, the real-time condition

status of the subject decides the first operation. In the example, the state of the

EC2 instance is “running”, which complies with the precondition requirement.

Secondly, there are post-condition and precondition matches from first

operation to another, and so are the subsequent operations one another. Seen

from “Pre condition” and “Expected condition change” columns in Figure 7.21,

there are exact pair between the three operations (from “EC2 Instance

Status=running” to “EC2 Instance Status=stopped”, and from “EC2 Instance

Status=stopped” to “EC2 Instance Status=running”). Lastly, the parameters

requirement (if any) of the presented operations must all be satisfied. In this

case, there are only one parameter requirement for the “resize VM” command,

which can be found as the “m1.large” entered previously.

152

Figure 7.21 SCSR Reasoning Assistance Example

153

Then, as the use initiates the chained SMR, respected API requests are sent to

the cloud one after another. The outcome updates of the execution can be

found in the system messages at the bottom (see bottom of Figure 7.21. The

whole process is also demonstrated via the native web page screenshots in

Appendix C.ii.). The subsequent operations would wait until current ones finish

their execution cycles. Consequently, the automatically deployed chained

operations save overall execution time and efforts due to the minimum gaps

and human action incurred.

7.2.4.4 Cloud Service Operation Assistance - IOSR

IOSR has a major difference in contrast with the previous reasoned operation

assistances, known as the automated service operation planning and execution.

This means that it would prepare the necessary service conditions and collect

service parameters dynamically for the listed orchestrated service operations.

When services or instances from different providers are selected for reasoning,

the system seeks for possible service interactions based on whether they had

any aspects in common. In Figure 7.22, an example is demonstrated with two

selected cloud services: AWS EC2 and Rackspace Cloud Load Balancers.

In this scenario, the interaction entity resulted is the IP address. This is due to

the fact that an IP is obviously a common entity that is recognisable for the two

services selected. Hence, the likely interactions, i.e. the service operations

reasoned would be centred on the IP entity of the services. Services. More

specifically, by using the public IP address obtained from EC2 instances,

instances of EC2 can be inserted to Rackspace Cloud Load Balancer instances

in the form of load balancer nodes through operations such “add node” or

“update node”.

154

Figure 7.22 IOSR Reasoning Assistance Example

155

Figure 7.23 IOSR Reasoning Assistance Example

156

In the meantime, as there are no instances nominated presently, the system

would then allow users to either select from the instances owned or create new

ones (see Figure 7.23). Then, depending on the real-time status of the

instances selected, the chained interactions are implemented automatically. As

seen from the log entries at the bottom of Figure 7.23, before execution, the

target EC2 instance chosen was at “stopped” state and hence had no active IP;

then, the system performs the “start VM” action on the instance; subsequently,

as the instance becomes online and owns an IP, the “add note” request is

called by using the IP address obtained dynamically; finally, as the new node

presents in the load balancer node, the interaction process is completed (the

whole process is also demonstrated via the native web page screenshots in

Appendix C.iii).

7.2.5 Performance of Service Access and Manipulation

As a cloud service management tool that works with diverse real-world CSPs,

CSRMP prototype provides an interface of service access and manipulation

through a unified portal. Relying on CSAMO, it interprets the complexity which

lays behind various service operation executions by revealing a diversity of

operation details in a formal systematic way. Hence, this allows users to

effectively view, create and amend a wide range of cloud service information via

a simple structured interface. Moreover, with the series of service operation

reasoning and assistances, certain service operations can be composed into

groups and then executed automatically according to the dynamic status of

target cloud services, where potential cloud/service interoperability issues can

be eliminated accordingly.

In order to test the efficiency of the proposed approach in terms of service

access and manipulation, a series of experiments are conducted over a number

of cloud services. Especially, considering the diversity of service and operation

types, a variety of services and several operations are selected while running

the experiments. In addition, to deal with the potential deviation involved in the

test data (e.g. unexpected/sight QoS differences during the tests), the results

157

are seen the average values regulated based on two factors: the tests are

conducted at different time slots and on different days; the test results are

obtained from several sample tests, where the minimum and maximum values

are eliminated. In this way, the finalised result data is able to present their

typical execution performance. Accordingly, the experiments should enable

comprehensive evaluation. The sections below discuss the evaluation data in

respect of both single and multiple service operation, where the comparisons

between standard web portal and the proposed interface are demonstrated in

details.

7.2.5.1 Performance of Single Service Operation

Evaluation of single service operation execution performance is based on 100s

of tests for each sample service operation. The cloud services involved in the

experiments are known as EC2, Relational Database Service (RDS), Elastic

Load Balancer, Cloud Servers, Cloud Databases and Cloud Load Balancers,

which belong to AWS and Rackspace respectively. For SIR response

evaluation, a diversity of service instance retrieval operations are tested so as

to justify the individual performances for IaaS, PaaS and SaaS services

respectively. Furthermore, for SMR execution evaluation, various service

instance manipulation operations are also tested, including creation, deletion,

updating, etc.

A. SIR response time comparison

While attempting to retrieve these service instances, it shows many differences

between accessing from standard web portal and via the prototype.

Table 7.13 Comparison of Single SIR Access Time (Via Standard Web Portal/USAMS)

Service

provider

 Typical SIR

Access

method

List owned

cloud VM

instances

(IaaS)

List owned

cloud database

instances

(PaaS)

List owned

cloud files

(SaaS)

List owned

cloud load

balancers

(SaaS)

Success

rate (based

on 100

tests)

AWS Via Web portal < 1 sec < 1 sec < 1 sec < 1 sec >= 98%

Via Prototype* 1.185 sec 1.032sec 1.143 sec 1.263 sec 100%

Rackspace Via Web portal < 2-5 sec < 2-5 sec < 2-5 sec < 2-5 sec >= 99%

Via Prototype* 5.534 sec 5.281 sec 5.129 sec 5.483 sec 100%

158

Demonstrated in Table 7.13, while accessing AWS service instance details, the

official web portal offers almost instant response (less than 1 second) for all the

service operations, though there is a chance for failures (success rate of 98+%).

In contrast, the prototype achieves an excellent success rate, yet provides a

slower access. In fact, the approximate one minute delay for each operation is

caused by two factors: the API libraries (AWS Java SDK version 1.8.3) used

decide the main execution time; prototype system also spends extra preparing

time for processing the obtained information and other additional service

operations.

On the other hand, Rackspace official web portal also offers quicker access for

retrieving the service instance information. Although the time consumed for

these operations are less than those for AWS, it enables almost identical

success rate (99+%). Considering the performance of the prototype, despite the

exceptional success rate, the information access times for Rackspace are

relatively slow, seen as around 5.5 seconds in average. The reason for such

delay is the dynamic synchronisation process raised by the third-party jclouds

Rackspace API libraries (version 1.7.0), as currently no official API package is

available.

B. SMR execution time comparison

The SMR operations involved are seen as IaaS service instance

creation/termination and SaaS service instance creation/modification tasks.

More specifically, the IaaS VM creation operations are deployed with plain Linux

Red Hat 7.0 image on m3.large (2vCPU/7.5GB RAM) for EC2 and 4GB

standard instance (2vCPU/4GB RAM) for Rackspace Cloud Servers. Then, the

instances created are used for the termination tasks. On the other hand, the

SaaS cloud load balancer creation and update operations are performed using

a http load balancer with node adding modification tasks.

Shown in Table 7.14, overall, the success rates of all executions remain to be

100%. Note that the results are shown using “>”/”<” instead of acute figures.

159

This is due to some uncontrollable facts found after considerable experiments:

many SMR operations often fail to execute with constant identical/typical

elapsed time; instead, certain delays can always be recorded regardless of the

services or the operations deployed.

Table 7.14 Comparison of Single SMR Access Time (Via Standard Web Portal/USAMS)

Service

providers

 Typical SMR

Execution

method

Create cloud

VM instance

(IaaS)

Terminate cloud

VM instance

(IaaS)

Create cloud

load balancer

(SaaS)

Update cloud

load balancer

(SaaS)

Success rate

(based on

100 tests)

AWS Via Web portal > 208 sec > 57 sec < 1 sec < 1 sec 100%

Via Prototype >= 152 sec >= 29 sec < 1 sec < 1 sec 100%

Rackspace Via Web portal > 392 sec > 19 sec > 16 sec > 7 sec 100%

Via Prototype >= 390 sec >= 20 sec >= 10 sec >= 3 sec 100%

Specifically, for service manipulation implemented in AWS, IaaS operation tasks

are completed faster through the prototype versus the official web portal,

whereas the SaaS load balancer manipulation tasks execute instantly without

noticeable differences regardless of the method of execution. Considering the

SMRs run in Rackspace, it is found that the IaaS tasks are completed with the

same resulted for both execution methods. This is due to the similar dynamic

progress update and synchronisation utilised for both the web portal and the

API call; nevertheless, the load balancer instance manipulation tasks tend to

consume more time while launching from the standard web portal.

7.2.5.2 Performance of Multiple Service Operations

One of the benefits provided by the prototype is that it allows users to combine

a series of service operations and execute them in a certain preferred manner.

Based on the previous data recorded from single service operation experiments,

it is expected that it should enable effective and efficient service manipulations

due to fewer expected execution steps incurred as well as less overall

execution time required, in contrast with ordinary web portal-based multiple

tasks deployment.

Although the prototype supports initiating multiple service operations across

different cloud service providers, it is difficult for the task to be implemented via

different web portals for the distinct services involved, especially for concurrent

160

operations. Hence, the experiments are conducted within a single real-world

cloud. For comprehensive evaluation of the series of proposed multiple service

operations execution, both concurrent and chained SMR operation execution

performances are tested, using AWS EC2 platform. The reason for choosing

the IaaS platform is twofold: some SMR options of the service can be

composed into operation chains one another; after execution, the SMR

operations have high success rates, whereas the elapsed time is neither too

short nor too long.

A. Concurrent service operations

While concurrent service operations may be initiated for both SIR and SMR, two

EC2 service operations are selected to test the performance differentiations of

the proposed approach versus standard task implementation.

Figure 7.24 Comparison of Multiple SIR Operations Execution

As seen in Figure 7.24, for SIR such as “list all EC2 instance” (information),

distinct varying patterns are found depending on the total number of instances

(operations) involved. More specifically, for web portal SIR tasks, despite

completing rather quickly, the responses tend to take longer while the number

of the instances grows. In contrast, the trend does not apply the proposed

prototype. Instead, the access time varies slightly around 1.2 seconds

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25 30 35 40

E
la

p
se

d
 t

im
e

(s
ec

o
n

d
s)

No. of concurrent operations (list AWS EC2 VM instances)

Concurrent SIR operation access comparison

via web portal

via prototype

161

regardless of the number of instances it processes. Due to the account limit (40

instances per user), it is not possible to test with more instances and

demonstrate further trends.

Figure 7.25 Comparison of Multiple SMR Operations Execution

On the other hand, using “start instance” as the sample SMR, the command

execution response times are illustrated in Figure 7.25. For the 5 to 40 tasks

deployed via standard web portal, it is found that the job completion times

varies between 30 and 45 seconds; for operations implemented through the

prototype, the completion times appear to be identical at 20 seconds,

regardless of the number of instances (tasks) involved.

B. Chained service operations

In a single cloud service environment, it is very unlikely that a user would initiate

a series of chained SIRs to obtain service information, since the tasks can

always be done simultaneously. Hence, the chained service operation

evaluation only justifies the overall performance of sequenced SMRs. Here, the

sequence of the sample chained service operations involves start, stop and

resize a VM instance, which can be executed in an infinite loop (if no error

occurs).

0

10

20

30

40

50

5 10 15 20 25 30 35 40

 E
la

p
se

d
 t

im
e

(s
ec

o
n

d
s)

No. of concurrent operations (start AWS EC2 VM instances)

Concurrent SMR operations execution comparison

via web portal

via prototype

162

Figure 7.26 Comparison of Chained SMR Operations Execution

Figure 7.26 below demonstrates the chained tasks completion times by two

different execution methods, i.e. via web portal and via prototype. Basically, as

the number of the service operations increase, both methods consume more

time as expected. Nonetheless, it can be seen that the increase of the

completion time by using the prototype is much more gradual than which for via

the standard web interface. More specifically, while executing 3 to 18

operations, the completion times between the two methods are relatively small

(< 5 seconds). Yet, as more tasks are followed into the chain, the gap of them

grows quickly: with some chained tasks that involve 30 service operations, the

prototype can manage to complete less than half of the time required by the

web portal.

0

10

20

30

40

50

60

3 6 9 12 15 18 21 24 27 30

 E
la

p
se

d
 t

im
e

(m
in

u
te

)

No. of concurrent operations (on AWS EC2 VM instance start, stop,

resize...)

Concurrent SMR operations execution comparison

via web portal

via prototype

163

7.2.6 Evaluation and Discussion

The above experiments have comprehensively tested the performance of the

prototype while handling all typical types of service operations including single

SIR, single SMR, multiple concurrent SIRs, multiple concurrent SMRs, and

multiple chained SMRs. The analysed experiment results illustrate significant

performance differences between the proposed approach and the standard web

portals. Specifically, for single service operation tasks, the prototype

demonstrates solid success rate while executing a diversity of operation

commands, whereas there is small chances of failures while using the web

portals. Although single SIR executions may take a little longer (usually 1

seconds) than the ordinary web interface, SMR operations can complete much

faster (1/3 less time needed) with the prototype. Meantime, considering the

multiple service operation executions, the prototype also demonstrates a better

performance in overall. Although it shows that the concurrent SIR operation

response times are still relatively slow while using the prototype, there is not

much differences if more operations are involved; on the other hand, accessing

via web portal tends to consume more and more time as the number of

operations increases. On the other hand, simultaneous SMR operations can be

executed much quicker in the prototype whilst the execution times are fairly

stable; as a contrast, the web portal executions typically consume twice the

times whilst the completion times varies significantly. Subsequently, for chained

service operations, the series of sequenced SMRs can be completed sooner for

prototype implementation methods. Especially, the more the chained operations

are involved, the better the performance the prototype can achieve.

As illustrated in the EC2 case study, SAMOS framework can adequately model

a wide range of operations. Its classifications of cloud service entities and

operations enable structured specification presentation layout. The relevant

operation element specifications reveal sufficient details for operation

executions. As implemented in a wider service domain and across multiple

CSPs, these would drive cloud service interoperability and composition (a

further PaaS case example is illustrated in Appendix D). Further, to evaluate

164

SAMOS against other well-established cloud (service) specification

frameworks/models, it provides the data comparison with OCCI, TOSCA and

mOSAIC. Shown in Table 7.15, the four approaches involve dissimilar

core/base model concepts with different specification semantics. They adopt

distinct management tools/APIs as cloud service interfaces and enable service

orchestration with own solutions. In contrast, SAMOS achieves a distinguished

outcome for service management and orchestration tasks due to the flexible

choices of API libraries and the lightweight operation reasoning assistances.

Meanwhile, the performance evaluation with USAMS involve covers a wide

range of typical service operations. Obtained experiment results illustrate

significant performance differences between the proposed approach and the

standard web portals. Specifically, for single service operation tasks, the

prototype demonstrates solid success rate regardless of the type/nature of

operations; there is a small chance of failure while using the web portals.

Although USAMS may consume a little more time (approximately 1 second)

while handling single SIR operations, it facilitates SMR operations more

efficiently (1/3 less time needed). Additionally, considering multiple service

Table 7.15 Comparison of Cloud Service Specification Frameworks

Approach Syntax/
Semantic
s

Model Core/Base Concepts Management
Interface

Service
Orchestrati
on

OCCI OCCI
Grammar

Category, Kind, Mixin, Resource
Instantiation, Collections, Discovery
/Entity, Resource, Link, Action)
[108]

Testing tool,
doyouspeakOCCI,
OCCI API

OCCI client

TOSCA YAML Topology Templates, Plans /Service,
Node, Relationship, Requirement,
Capability, Artifact, Policy, Cloud
Service Archive [148]

OpenTOSCA,
jclouds and
PyTosca API

Pre-defined
Plans

mOSAIC OWL Environment, Infrastructure,
Resource, Runtime Component,
Stateful Component, Stateless
Component/etc. [103, 104]

mOSAIC API mOSAIC
Cloud
Agency

SAMOS OWL Entity and operation classifications,
Entity data type specifications,
Entity operational relationship
Specifications /etc.

USAMS prototype
tool, flexible
choice of API
libraries via OCSO
API

Lightweight
automatic
reasoning

165

operations, USAMS demonstrates a better overall performance. For concurrent

SIRs, despite the slower responses for a small number of operations, there is

no perceptible time increase despite more tasks involved. In contrast, accessing

via web portal tends to consume increasingly more time as the number of

operations arises. On the other hand, simultaneous SMR operations can be

executed much more efficient through USAMS whilst the execution times

appear to be stable. As a contrast, the web portal executions typically consume

twice of the times whilst the completion times varies significantly. These results

suggest the proposed approach a competent solution to enable effective and

efficient cloud service operations.

7.3 Summary

This chapter has demonstrated a series of real-world cloud service case studies

to validate the modelled service specifications and the enabled cloud service

assistance functions. Considering the range of service recommendation,

retrieval and evaluation functions, the proposed AoFeCSO is capable of

comprehensively describing the wide range of cloud service features,

characteristics and properties. Utilising such as the knowledge source, the CSR

sub system can display comprehensive service descriptions and evaluations

and enable effective service search, recommendation and comparison tasks.

On the other hand, the SAMOS approach is able to model the granular aspects

of cloud service operations regardless of the service provides or types. As the

CSAMO and USAMS sub system are deployed based on the approach, they

can provide a unified interface for efficient cloud service remote management

and orchestration tasks. Accordingly, these validate the proposed ontologies

and approaches with solid experiments and evaluations.

166

Chapter 8 Conclusions

The research undertaken for this thesis has enabled the development of a

semantic-driven framework that integrates a series of the proposed approaches,

including ontology modelling extensions, a service operation modelling

approach, two new cloud service semantic models and a prototype tool.

Together, they serve to provide the versatile cloud service recommendation and

management assistances for different types of users. These research outcomes

involve both the traditional and latest theory support, and are backed by the

latest service modelling and manipulation technologies (e.g. PLN, OWL2, open

cloud APIs).

This chapter discusses the above research outcomes in terms of how well they

achieve the research objectives defined previously and fulfil the different

individual requirements involved. Next, the conclusions are reached and the

contributions are presented. Finally, the future research directions are outlined.

8.1 Critical Analysis

8.1.1 Objective I: Agility-oriented Cloud Service Modelling with

OWL2 Natively-supported Fuzzy Extensions for Collaborative

Service Search, Recommendation and Retrieval

The first thesis objective is to develop an approach to effectively assist cloud

service search, recommendation and retrieval tasks. The objective has been will

accomplished by the successful delivery of the following requirement via the

AoFeCSO along with CSR (prototype) sub system.

R1: Scale of Cloud Service Modelling

Recently, despite many cloud service ontologies being presented, they can

seldom model services of different models and functions. In contrast, the

proposed cloud service modelling approach benefits from a loosely-coupled

ontology foundation design, known as the flexible membership classifications

167

and maximum deployment of ontology property specifications. These

consequently enable to maintain knowledge of diverse cloud service concepts

and aspects from distinct abstraction levels and service delivery models within a

single information source (refer to section 4.1.1). The requirement for the full

modelling scale is therefore fulfilled.

R2: Granularity of Cloud Service Modelling

While covering cloud service concept and property specifications, the existing

work often outlines the high level aspects only, without any specific details. This

results into difficulties while understanding, comparing and evaluating cloud

services with similar specifications. The requirement for granular service

specifications is addressed by a series of ontology construction techniques

including: in-depth cloud service object property assertion, categorised data

property assertion and multi-sourced annotation property assertion (refer to

section 4.1.3). Together, they adequately specify the fundamental details of a

wide range of relevant aspects and concepts for each base cloud entity

modelled. The requirement for the high modelling granularity is therefore fulfilled.

R3: Modelling Interactive Cloud Entities

In fact, there are various forms of interactions among many cloud service

entities, e.g. connections between service function, features, properties,

characteristics, and even providers. Yet, these relationships are often ignored or

poorly disclosed in the existing ontologies. In this thesis, owning to the adoption

of ReasoningOP ontology design pattern, the requirement for modelling

interactive cloud entities is fulfilled. Specifically, this is achieved by explicit cloud

service and concept relationship assertions (refer to section 4.1.3).

R4: Preciseness of Service Specification:

Indeed, cloud service specifications usually incur vague terms and descriptions.

Fundamentally, these are due to the agile and adaptable nature of cloud

services and resource provisions. Historically, although ontology techniques has

168

been widely used to provide quality semantics for service modelling tasks, the

conventional DL consistency restricts the modelling preciseness whiling dealing

with uncertainties. As a solution towards the specification precision requirement,

a fuzzy extension framework is proposed. It provides a series of fuzzy scenarios

to deal with different fuzziness specification and control needs, by using OWL2

natively supported assertion applications with the latest syntax features (refer to

section 4.2.1 and 4.2.2).

R5: Scalability, Evolvability and Maintainability of the Cloud Service

Ontology

Benefitting from the loosely-coupled ontology modelling foundation, the

proposed AoFeCSO owns high scalability that accepts any forms of new

information or updates. In the meantime, the adoption of the ReasoningOP

design pattern guarantees the logic consistency of all the information specified

and presented. It allows knowledge inference where new knowledge may be

reasoned whenever the ontology is changed and updated. This model evolution

process can be managed automatically by an ontology specification

management mechanism (refer to section 4.2.3). Further, the maintainability of

AoFeCSO is enhanced since users are allowed to input knowledge where

applicable. This collaborative manner of ontology maintenance would

significantly enhance the resourcefulness and creditability of the ontology.

R6: Knowledge Usage and Application of the Cloud Service Ontology

With the modelled cloud service knowledge and specifications, a wide range of

assistances can be enabled. For service search tasks, AoFeCSO can facilitate

various search activities regardless of using keywords or filters. For service

recommendation tasks, it can provide weighted recommendations according to

the individual user profile preferences. For additional service evaluation and

comparison tasks, it allows to analyse and formulate service agility profiles so

as to distinguish services even if they own many similarities (refer to section 6.2,

169

more details to be found in section 8.1.3). The requirement is fulfilled

accordingly.

8.1.2 Objective II: Cloud Service Access and Manipulation Operation

Modelling and Unified Service Management Portal

The second thesis objective is to enable unified cloud service access,

manipulation and dynamic orchestration. The objective has been well

accomplished by the successful delivery of the SAMOS approach along with

USAMS (prototype) sub system.

R1: Modelling Operations Across Distinct Service Delivery Models and

Levels

Many solutions are proposed to drive and enhance cloud service operation

tasks across distinct service delivery models and levels. Yet, most of the

existing work can only deal with certain specific service categories or function

types. To fill the research gaps and fulfil the requirement, this thesis involves a

series specification approaches that formulates a common cloud service

operation framework that can be applied to any cloud service operations

regardless of the service functions/types/models/levels.

R2: Modelling Cloud Service Operation Entities from Different CSPs

For different CSPs, many entities involved in cloud service operations are

heterogeneous due to the differences exist in the service standards,

technologies, terms, etc. This brings difficulties in entity specifications whilst it

incurs interoperability issues for operation implementation. Targeting these

issues, a novel cloud service operation specification approach is proposed. It

can adequately model such complexity via cloud service entity and operation

classification and cloud service entity data type specification (refer to section

5.1.1 and 5.1.2). Subsequently, this approach provides an effective solution that

fulfils the requirement.

170

R3: Service Composition Enhancement

Indeed, many cloud service entities can act interactively for certain composited

operation tasks, either within a single large scale cloud or across multiple

clouds. The requirement for service composition enablement is fulfilled by

effectively modelling such interactive relationships for the relevant service

entities universally. It involves declaration of diverse service entity operational

relationships, plus the detailed specification of operation pre condition,

parameter, outcome, post condition, etc. (refer to section 5.1.3). As a result,

these specifications can provide adequate information to assist service

composition during tasks preparation and execution.

R4: Unified Cloud Service Operation Interface

Presently, CSCs often need to use different management portals for operations

implemented over different CSPs. Towards the requirement of enabling a

common interface for comprehensive management tasks, the thesis provides

the design of a unified cloud service management interface. With its structured

and interlinked cloud service operation presentation and control panels, the

interface allows CSCs to access, navigate and manipulate cloud

services/resources over multiple clouds (refer to section 6.3, more details to be

found in section 8.1.3).

R5: Service Operation Reasoning Assistances

An additional requirement of cloud service operation assistance is handled by

the proposed service operation reasoning assistance applications (refer to

section 5.3). Considering basic assistances such as entity and condition

preparation and verification for single operation, BASR is developed. For ease

of concurrent service operation tasks, CCSR is proposed. To automatically

execute a series of service operations with an appropriate schedule, SCSR is

designed. Finally, for complicated combined service orchestration tasks, IOSR

serves to dynamically prepare the operations and manage the executions.

171

Accordingly, these ought to fulfil the possible needs for diverse operation

assistance requirements.

8.1.3 Objective III: Validation with Approach Integration and

Prototype Tool Implementation

The third objective of the thesis is to implement a prototype tool to utilise the

integrated ontology knowledge for versatile cloud service assistance tasks. On

the one hand, AoFeCSO along with the CSR (prototype) sub system serves to

provide relevant cloud service search, recommendation, retrieval, and

evaluation assistance. On the other hand, CSAMO along with the USAMS

(prototype) sub system serves to enable a unified cloud service management

portal for service access, manipulation and orchestration tasks. Table 8.1 and

8.2 summarises the functions achieved on utilisation of the modelled cloud

service specifications.

Shown in see Table 8.1, considering the search and recommendation relevant

functions, a large variety of cloud service concepts, concept aspects and

properties are widely processed in CSR (refer to section 6.2). More specifically,

cloud service functions (e.g. compute, storage), features (e.g. protocol/API

support) and characteristics (e.g. scalability, agility) aspects can be used for all

sorts of search/recommendation/retrieval/evaluation relevant tasks. Other

specifications, including service delivery and deployment models, parties and

roles, other properties such as SLA and reliability, can also participate in service

search, recommendation and comparison tasks as need. As discussed earlier in

section 7.1.4, these provide the feasibility of comprehensive cloud service

profile analysis and data evaluation during search and recommendation

processes. Consequently, this greatly extends the current practices by

retrieving more accurate service candidates with more flexible search and

recommendation controls.

172

Furthermore, as Table 8.2 shows, SAMOS framework provides compressive

cloud service operation specifications, which enable a diversity of service

operation management and assistance functions in USAMS (prototype) sub

system (refer to section 6.3). Specifically, CSAMO offers description and

reasoning support for diverse service operations and relevant elements involved.

Table 8.1 Cloud Service Specifications Toward Service Recommendation Relevant
Functions

 Function

Service
aspects

Service
description
(annotation)

Service
search

Service
recommendation

Service
comparison

Service
evaluation

Service
functions

√ √ √ √ √

Service
features

√ √ √ √ √

Service
characteristics

√ √ √ √ √

Service
delivery
models

√ √ √ √

Service
deployment
models

√ √ √ √

Service
party/Roles

√ √ √ √

Other service
properties

√ √ √ √

Table 8.2 Cloud Service Operation Specifications Toward Service Management Relevant

Functions

 Function

Service
operation
aspects

Element
description
(annotation)

Requirement/
Element
dynamic
lookup

Requirement/
Element
dynamic
fulfilment

Requirement/
Element dynamic
verification

Operation
Classification

√

Operation
PreCondition

√ √ √ √

Operation
PostCondition

√ √ √ √

Operation
Subject

√ √ √ √

Operation
Parameter

√ √ √ √

Operation
Outcome

√ √ √ √

Operation
Orchestration

 √ √ √

173

These specifications, including operation classifications, parameters, outcome,

pre/post conditions, etc. provide fundamental information that guides operation

execution process. The prototype is, therefore, able to facilitate various cloud

service operation tasks by satisfying advanced needs such as dynamic

operation requirement lookup, fulfilment, verification and orchestration. As

compared with other solutions in section 7.2.6, this outperforms alternative

solutions by enabling not only performance and reliability, but also a range of

assistance functions toward better service management operations.

8.1.4 Objective IV: Evaluation with Real-world Cloud Service Case

Studies

For critical evaluation requirements, the thesis involves several real-life case

studies and experiments using popular real-world cloud services from multiple

clouds and service delivery models. Firstly, quantitative literature and more than

100 companies are researched and investigated to construct AoFeCSO.

Considering the cloud service search, recommendation enhancement studies,

specifications of over 200 cloud services are processed for the search and

recommendation tasks (refer to section 7.1.1 and 7.1.2). Secondly, for specific

cloud service specification retrieval and evaluation study, Google AppEngine

was selected as the typical example and qualitatively examined (refer to section

7.1.3). Thirdly, the specification processing performance experiment and formal

ontology evaluation are performed. Consequently, it shows that the proposed

approach can achieve effective cloud service specification towards a

combination of service search, recommendation and evaluation requirement.

In the meantime, to evaluate the comprehensiveness of the SAMOS modelling

framework, two series of operations from IaaS and SaaS model are studied

explicitly (refer to section 7.2.1 and 7.2.2). Examples are demonstrated with

regard to the enablement of the unified cloud service management interface

(refer to section 7.2.3). Next, to assess the proposed operation reasoning

assistance applications, a series of operation task examples are tested (refer to

section 7.2.4). Subsequently, to examine the service operation execution

174

performance of the prototype, extensive experiments are conducted on several

cloud services of distinct functions, delivery models and CSPs (refer to section

7.2.5). These suggest that the proposed approach enables generic cloud

service operation modelling and can facilitate effective service operations via

the common management interface.

8.2 Conclusions and Contributions

The continuously propagated cloud service has imposed strong requirements

for comprehensive cloud service specification models as well as effective

service recommendation systems. Meanwhile, existing cloud (service) models

cannot cover comprehensive and in-depth service specifications in regard of

diverse concepts and their interactions across different function categories and

abstraction levels, whereas current service recommendation tools fail to handle

the detailed aspects of the various and unique cloud service characteristics,

properties and orchestrations. In addition, none of the current practices

attempts to capture and deal with the fuzzy specification and facts that are

widely and frequently encountered; this consequently prevents existing models

and service assistance tools from facilitating versatile service search, retrieval

and recommendation tasks.

The thesis aims towards a cloud service semantic specification approach which

takes into consideration of the combination of service function, feature, delivery

model, operation, orchestration, etc. concepts and aspects so as to enable

versatile service search, recommendation, retrieval, and management

assistances. The following work has been undertaken during the study.

8.2.1 Contribution I: OWL2 Natively Supported Fuzzy Extensions

The thesis demonstrated an OWL2 fuzzy extension framework that can deal

with a wide range of specification fuzziness. The extension benefits from OWL2

native syntax application for maximum compatibility. For effective fuzziness

175

representation, it involves both data-oriented fuzzy weight assertion and

additional fuzzy rating details annotation assertion.

Moreover, unlike most existing approaches which require additional fuzziness

interpretation and reasoning mechanism, the fuzzy extended ontology can be

easily interpreted and reasoned by ordinary classic ontology tools and

reasoners. Indeed, the approach can be widely adopted while modelling vague

or uncertain specifications for other domains.

8.2.2 Contribution II: AoFeCSO

This thesis presented a novel cloud service semantic model named AoFeCSO.

It owns the following four main features: 1) it introduces multiple sourced

annotation assertions for trustful cloud services descriptions; 2) it employs

functionally categorised DP assertions and a diversity of data types for

comprehensive service data specifications; 3) it discloses in-depth service

details regarding services’ characteristics, features, functionalities, etc. by

exploring their fundamental sub-concepts involved; 4) it reveals explicit cloud

service and concept relations through both asserted and inferred axioms in the

form of individual-to-class and individual-to-individual OP and property

characteristics assertions.

Additionally, different from other models which are managed exclusively and

deployed statically, AoFeCSO is maintained collaboratively and can evolve

autonomously, and hence remains active. Indeed, the proposed collaborative

cloud service rating mechanism enhances the presentation of several cloud

service specifications. Hence, the overall building source of the ontology

becomes much wider and more accurate, whereas these continuously imported

dynamic aspects actively drive AoFeCSO to evolve progressively.

8.2.3 Contribution III: SAMOS framework

This thesis proposed a cloud service operation specification approach which

can be applied to diverse cloud service delivery models and resource types,

176

namely SAMOS. The modelling framework can reveal comprehensive

information with regard to the involved service entities, their attributes and

relationships, plus a series of operational elements including parameters,

conditions and outcomes.

Further, owning to its ontological modelling techniques, the approach also

enables a series of service operation reasoning assistances. They can provide

intelligent and automated solutions for advanced multi-provider operation tasks

such as simultaneous, chained and service orchestration actions.

8.2.4 Contribution IV: CSAMO

Based on SAMOS framework, CSAMO was implemented. It incorporates

numerous cloud service operation specifications from popular cloud vendors

such as Amazon, Rackspace. It demonstrated granular operation descriptions

for each granular cloud service operations from three hierarchical initiation

levels, known as cloud service level, CSI level and PSSA level.

The presented cloud service operation specifications can be widely utilised,

such as to serve as a comprehensive knowledge source for operation

annotations, to compare or evaluate operations for similar services. Additionally,

along with the proposed service API mapping mechanism, they can enable

efficient service remote management tasks towards customisability requirement.

8.2.5 Contribution V: CSRMP prototype tool

To validate and evaluate the effectiveness and comprehensiveness of the

proposed cloud service ontologies and modelling approaches, a joint prototype

tool was developed to facilitate a combination of cloud service search,

recommendation, retrieval, comparison, evaluation, access, manipulation, and

orchestration tasks.

On the one hand, CSR sub system provides an effective solution for cloud

services search, recommendation, retrieval and evaluation from distinct service

177

categories and delivery models the performance and effectiveness evaluation

results suggest that it is a promising means to overcome various existing

limitations. On the other hand, USAMS sub system enables a unified cloud

service access and manipulation via a structured management interface. This is

validated through considerable experiments that are conducted over Amazon

and Rackspace IaaS, PaaS and SaaS clouds. The test results suggest that

USAMS can provide competitive service operation effectiveness and efficiency,

especially while handling groups of operation tasks.

8.3 Future Work

Considering future research directions on cloud service search,

recommendation and comparison enhancement, the future work will target at

extending the proposed framework and tool for extended ontology modification

and evolution, e.g. to allow CSPs to add services, change service

specifications, etc.; to allow CSBs to specify service interactions and

orchestrations, etc.; to allow CSCs to complete service usability ratings,

reviews, etc. It is believed that this collaborative manner of cloud service

ontology specification, maintenance and update to be a distinguished means in

providing knowledge sources for service search, retrieval and recommendation

tasks.

In the meantime, for future development on cloud service remote management

tasks, the existing work will be extended by introducing the service

recommendation engine and the service interaction agent. The

recommendation module should enable more user friendly service selection and

operation experiences. The service interaction agent would drive more effective

service compositions with enhanced operation reasoning applications.

178

References

1. Amazon EC2 User Guide, http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-

ug.pdf. Accessed 12 Aug 2015

2. Amazon S3 Developer Guide, http://awsdocs.s3.amazonaws.com/S3/latest/s3-

dg.pdf. Accessed 12 Aug 2015

3. Antwerp ALV, Scoboria K and Santos JR, “Security Guidance for Critical Areas

of Focus in Cloud Computing v3.0”.

https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf. Accessed 12 Aug

2015

4. Apache Jclouds, http://jclouds.apache.org/. Accessed 30 Jul 2015

5. Apache Libcloud, https://libcloud.apache.org/. Accessed 12 Aug 2015

6. Arthi T and Hamead HS, “Energy Aware Cloud Service Provisioning Approach

for Green Computing Environment”, International Conference on Energy

Efficient Technologies for Sustainability (ICEETS), pp. 139-144, 2013

7. Aversa R, Martino BD, Moscato F, Petcu D, Rak M and Venticinque S, “An

Ontology for the Cloud in mOSAIC”, Cloud Computing Book: Cloud Computing:

Methodology, System, and Applications, CRC Press, pp. 467-486, 2011

8. Bastião Silva LA, Costa C and Oliveira JL, “A Common API for Delivering

Services over Multi-vendor Cloud Resources”, Journal of Systems and

Software, vol. 86, no. 9, pp. 2309-2317, 2013

9. Battle S, Bernstein A, Boley H, Grosof B, Gruninger M, Hull R and Kifer M,

“Semantic Web Service Ontology (SWSO)”,

http://www.daml.org/services/swsf/1.0/swso/. Accessed 13 Aug 2015

10. Behrendt M, Glasner B, Kopp P, Dieckmann R, Breiter G, Pappe S, Kreger H

and Arsanjani A, “Introduction and Architecture Overview: IBM Cloud Computing

Reference Architecture 2.0”,

https://www.ibm.com/developerworks/community/files/form/anonymous/api/librar

y/20eaa907-3440-482c-a234-65c3584bdd7c/document/e817254b-f0b8-4e6d-

8980-ef753c531825/media/CCRA_2.0_NonConfidential.pdf. Accessed 13 Aug

2015

11. Behl A and Behl K, “An Analysis of Cloud Computing Security Issues”, World

Congress on Information and Communication Technologies (WICT), pp. 109-

114, 2012

179

12. Beloglazov A, Abawajy J, Buyya R, “Energy-aware Resource Allocation

Heuristics for Efficient Management of Data Centers for Cloud Computing”,

Future Generation Computer Systems, vol. 28, no 5, pp 755-768, 2012

13. Bernabe JB, Marin Perez JM, Alcaraz Calero JM, Garcia Clemente FJ, Perez

GM, Gomez Skarmeta AF, “Semantic-aware Multi-tenancy Authorization

System for Cloud Architectures”, Future Generation Computer Systems, vol. 32,

pp. 154-167, 2014

14. Berners-Lee T, Hendler J and Lassila O, “The Semantic Web”, Scientific

American, pp. 29–37, 2001

15. Bibi S, Katsaros D and Bozanis P, “Business Application Acquisition: On-

Premise or SaaS-Based Solutions”, IEEE Software, vol. 29, no. 3, pp. 86-93,

2012

16. Bobillo F and Straccia U, “Fuzzy Ontology Representation Using OWL2”,

International Journal of Approximate Reasoning, vol. 52, no. 7, pp. 1073-1094,

2011

17. Bobillo F and Straccia U, “fuzzyDL: An Expressive Fuzzy Description Logic

Reasoner", IEEE International Conference on Fuzzy Systems, no. 1-6 pp. 923-

930, 2008

18. Bobillo F, Delgado M and Gomez-Romero J, “Delorean: A Reasoner for Fuzzy

OWL2”, Expert Systems with Applications, vol. 39, pp. 258-272, 2012

19. Bobillo F and Straccia U, “An OWL Ontology for Fuzzy OWL2, Foundations of

Intelligent Systems”, Lecturer notes in Computer Science, vol. 5722, pp. 151-

160, 2009

20. Bondi AB, “Characteristics of Scalability and Their Impact on Performance,

Proceeding of the 2nd ACM international workshop on Software and

performance, pp. 195-203, 2000

21. Brambilla M, Ceri S, Facca FM, Celono I, Cerizza D and Valle ED, “Model-

Driven Design and Development of Semantic Web Service Applications”, ACM

Transactions on Internet Technology, vol. 8, no. 1, art. 3, 2007

22. Burton-Jones A, Storey VC, Sugumaran V and Ahluwalia P, “A Semiotic Metrics

Suite for Assessing the Quality of Ontologies”, Data & Knowledge Engineering,

vol. 55, no. 1, pp. 84-102, 2005

23. Buyya R, Vecchiola C and Thamarai S, "Master Cloud Computing: Foundations

and Applications Programming”, Elsevier, Waltham, USA, pp. 3-27, 2013

180

24. Byung CT, Urgaonkar B and Sivasubramaniam A, “Cloudy with a Chance of

Cost Savings”, IEEE Transactions on Parallel and Distributed Systems, vol. 24,

no. 6, pp. 1223-1233, 2013

25. Cáceres J, Vaquero LM, Rodero-Merino L, Polo and Hierro JJ, “Service

Scalability over the Cloud”, Handbook of Cloud Computing, Springer US, pp.

357-377, 2010

26. Cisco WebEx Overview, http://www.webex.co.uk/why-webex/overview.html.

Accessed 12 Aug 2015

27. Chapman C, Emmerich W, M árquez FG, Clayman S and Galis A, “Elastic

Service Definition in Computational Clouds”, IEEE/IFIP Network Operations and

Management Symposium Workshops, pp. 327-334, 2010

28. Cloud Computing Use Cases group, Cloud Computing Use Cases White Paper.

http://opencloudman ifesto.org/Cloud_Computing_Use_Cases_Whitepaper-

4_0.pdf. Accessed 10 Oct 2014

29. Cohen B, “PaaS: New Opportunities for Cloud Application

Development”, Computer, vol. 46, no. 9, pp. 97-100, 2013

30. Cunningham H, Maynard D, Bontcheva K, Tablan V, Ursu C, Dimitrov M,

Dowman M, Aswani N, Roberts I and Li Y, “Developing Language Processing

Components with GATE Version 5”. University of Sheffield, http://gate.ac.uk

/releases/gate-5.0-build3244ALL/doc/tao/splitch1.html. Accessed 11 Aug 2015

31. d'Aquin M, Motta E, Sabou M, Angeletou S, Gridinoc L, Lopez V and Guidi D,

“Toward a New Generation of Semantic Web Applications”, IEEE Intelligent

Systems, vol. 23, no. 3, pp. 20-28, 2008

32. Das-neves F, Fox EA and Yu X, “Connecting topics in document collections with

stepping stones and pathways", Proceedings of the 14th ACM CIKM, pp. 91- 98,

2005

33. De Chaves SA, Uriarte RB and Westphall CB, “Toward an Architecture for

Monitoring Private Clouds”, IEEE Communications Magazine, vol. 49, no. 12,

pp. 130-137, 2011

34. Deltacloud, https://deltacloud.apache.org/. Accessed 22 May 2014

35. Demchenko Y, Ngo C, de Laat C, Rodriguez J, Contreras LM, Garcia-Espin JA,

Figuerola S, Landi G and Ciulli N, “Intercloud Architecture Framework for

Heterogeneous Cloud based Infrastructure Services Provisioning On-Demand”.

IEEE International Conference on Advanced Information Networking and

Applications Workshops (WAINA), pp 777-784, 2013

181

36. Deng Y, Head RH, Kochut A, Munson J, Sailer A and Shaikh H, “Introducing

Semantics to Cloud Services Catalogs”, IEEE International Conference on

Services Computing, pp.24-31, 2011

37. Dropbox Platform developer guide,

https://www.dropbox.com/developers/reference/devguide. Accessed 19 Aug

2015

38. Emeakaroha VC, Netto MAS, Calheiros RN, Brandic I, Buyya R and De Rose

CAF, “Towards autonomic detection of SLA violations in Cloud infrastructures”,

Future Generation Computer Systems, vol. 28, no. 7, pp. 1017-1029, 2011

39. Etinski M, Corbalan J, Labarta J, Valero M, “Understanding the Future of

Energy-performance Trade-off via DVFS in HPC Environments”, Journal of

Parallel and Distributed Computing, vol. 72, no 4, pp 579-590, 2012

40. Fang D, Liu X, Romdhani I, “A Loosely-coupled Semantic Model for Diverse and

Comprehensive Cloud Service Search and Retrieval”, The Fifth International

Conference on Cloud Computing, pp.6-11, 2014

41. Fang D, Liu X, Romdhani I and Claus P, “An Approach to Unified Cloud Service

Access, Manipulation and Dynamic Orchestration via Semantic Cloud Service

Operation Specification Framework”, Journal of cloud computing: Advances,

Systems and Applications, vol. 4, no.14, pp. 1-20, 2015

42. Fang D, Liu X, Romdhani I and Zhao H, “Towards OWL2 Natively Supported

Fuzzy Cloud Ontology”, 36th Annual Computer Software and Applications

Conference Workshops (COMPSACW), pp. 328-333, 2012

43. Fang D, Liu X, Liu L and Yang H, “OCSO: Off-the-cloud Service Optimization for

Green Efficient Service Resource Utilization”, Journal of Cloud Computing:

Advances, Systems and Applications, vol. 3, no. 9, pp. 1-17, 2014

44. Fang D, Liu X, Liu L, Yang H, “TARGO: Transition and Reallocation Based

Green Optimization for Cloud VMs”, IEEE International Conference on Green

Computing and Communications (GreenCom), pp 215-223, 2013

45. Federici C, “Cloud Data Imager: A Unified Answer to Remote Acquisition of

Cloud Storage Areas”, Digital Investigation, vol. 11, no. 1, pp. 30-42, 2014

46. Fjellheim T, Milliner S, Dumas M. and Vayssie`re J, “A Process-based

Methodology for Designing Event-based Mobile Composite Applications”,

Journal of Data & Knowledge Engineering, vol. 61, no. 1, 2007

47. Fog. http://fog.io/. Accessed 02 Aug 2015

https://scholar.google.com/scholar?oi=bibs&cluster=1506049131525213250&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=1506049131525213250&btnI=1&hl=en

182

48. Gagnon S, Nabelsi V, Passerini K and Cakici K, “The Next Web Apps

Architecture: Challenges for SaaS Vendors”, IEEE IT Professional, vol. 13, no.

5, pp. 44-50, 2011

49. Gam E. and Reich S, “An Analysis of the Applicability of User Trails in Web

Applications”, Web Engineering Workshop, pp. 89-94. 2004

50. Gangemi A, “Ontology Design Patterns for Semantic Web Content”, Lecture

Notes in Computer Science, vol. 3729, pp. 262-276, 2005

51. Goertzel B, Iklé M, Goertzel IF and Heljakka A, “Probabilistic Logic Networks - A

Comprehensive Framework for Uncertain Inference”, Springer, pp.1-148, 2008

52. GoGrid Cloud Servers Overview,

https://wiki.gogrid.com/wiki/index.php/Cloud_Servers. Accessed 12 Aug 2015

53. Golbreich C, Wallace EK. and Patel-Schneider PF, “OWL2 Web Ontology

Language New Features and Rationale”, W3C Recommendation 27 October

2009, http://www.w3.org/2009/pdf/REC-owl2-new-features-20091027.pdf.

Accessed 05 Aug 2015

54. Goiri Í, Ll J, Berral, Oriol Fitó J, Julià F, Nou R, Guitart J, Gavaldà R and Torres

J, “Energy-efficient and Multifaceted Resource Management for Profit-driven

Virtualized Data Centers”, Future Generation Computer Systems, vol. 28, no. 5,

pp. 718-731, 2012

55. Google AppEngine. https://developers.google.com/appengine/. Accessed 02

Aug 2015

56. Google Apps for Business, Web applications that increase productivity,

http://www.google.com/Apps. Accessed 10 Aug 2015

57. Goscinski A and Brock M, “Toward Dynamic and Attribute Based Publication,

Discovery and Selection for Cloud Computing”, Future generation computer

systems, vol. 26, no. 7, pp. 947-970, 2010

58. Gracia J and Mena E (2012) Semantic Heterogeneity Issues on the Web, IEEE

Internet Computing, vol. 16, no. 5, pp. 60-67

59. Grigori D, Corrales JC. and Bouzeghoub M, “Behavioural Matchmaking for

Service Retrieval: Application to Conversation Protocols”, Information Systems,

vol. 33, no. 7-8, pp. 681-698, 2008

60. Han T and Sim KM, “An Ontology-enhanced Cloud Service Discovery System”,

International Multi-Conf. Engineers and Computer Scientists (IMECS), no. 1, pp.

27-32, 2010

http://link.springer.com/search?facet-author=%22Aldo+Gangemi%22
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558

183

61. HEADS, HEADS project overview, http://heads-project.eu/objectives. Accessed

15 Jun 2015

62. Himmel MA and Grossman F, “Security on Distributed Systems: Cloud Security

Versus Traditional IT”, IBM Journal of Research and Development , vol. 58, no.

1, pp. 1-13, 2014

63. Hoefer CN and Karagiannis G, “Taxonomy of Cloud Computing Services”,

proceedings of the 4th IEEE workshop on enabling the future service-oriented

internet, pp. 1345-1350, 2010

64. Hofmann P and Woods D, “Cloud Computing: The Limits of Public Clouds for

Business Applications”, IEEE Internet Computing, vol. 14, no. 6, pp. 90-93, 2010

65. Horridge M, “A Practical Guide to Building OWL Ontology's Using Protégé 4 and

CO-ODE Tools”, The University of Manchester, edition 1.3.

http://owl.cs.manchester.ac.uk/tutorials/protege

owltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf. Accessed 14 Aug 2015

66. Horridge M and Bechhofer S, “The OWL API: A Java API for OWL

Ontologies”, Special Issue on Semantic Web Tools and Systems, Semantic

Web Journal, vol. 2, no. 1, pp. 11-21, 2011

67. Huang C, Guan C, Chen H, Wang Y, Chang S, Li C and Weng C, “An Adaptive

Resource Management Scheme in Cloud Computing”, Engineering Applications

of Artificial Intelligence, vol. 26, no 1, pp. 382-389, 2013

68. Jansen W and Grance T, “Guidelines on Security and Privacy in Public Cloud

Computing”, Draft NIST Special Publication,

https://downloads.cloudsecurityalliance.org/initiatives/ guidance/NIST-Draft-SP-

800-144_cloud-computing.pdf. Accessed 11 Aug 2015

69. Jeffery K and Neidecker-Lutz B, “The Future of Cloud Computing: Opportunities

for European Cloud Computing Beyond 2010”, Software & Service Architectures

and Infrastructures, ICT, FP7, European commission, 2010

70. Jeyarani R, Nagaveni N, Srinivasan S and Ishwarya C, “ISim: A Novel Power

Aware Discrete Event Simulation Framework for Dynamic Workload

Consolidation and Scheduling in Infrastructure Clouds”, Advances in Intelligent

Systems and Computing, vol. 177, pp 375-384, 2013

71. Joint A and Baker E, “Knowing the past to Understand the Present – Issues in

the Contracting for Cloud based Services”, Computer Law & Security Review,

Science Direct, vol. 27, no. 4, pp. 407-415, 2011

http://heads-project.eu/objectives
http://link.springer.com/search?facet-author=%22N.+Nagaveni%22
http://link.springer.com/search?facet-author=%22S.+Srinivasan%22
http://link.springer.com/search?facet-author=%22C.+Ishwarya%22

184

72. Jung JJ, “Semantic Business Process Integration based On Ontology

Alignment”, Expert Systems with Applications, vol. 36, no. 8, pp. 11013-11020,

2009

73. Kang J and Sim K, “Cloudle: A Multi-criteria Cloud Service Search

Engine”, IEEE Asia-Pacific Services Computing Conference (APSCC), pp.339-

346, 2010

74. Kaufman LM, “Data Security in the World of Cloud Computing”, IEEE Security &

Privacy, vol. 7, no. 4, pp. 61-64, 2009

75. Kavantzas N, Burdett D, Ritzinger G, Fletcher T, Lafon Y and Barreto C, “Web

Service Choreography Description Language Version 1.0”, W3C candidate

recommendation 9 November 2005, http://www.w3.org/TR/ws-cdl-10/. Accessed

26 Jul 2015

76. Ke C and Huang Z, “Self-adaptive Semantic Web Service Matching Method”,

Knowledge-Based Systems, vol. 35, pp. 41-48, 2012

77. Keppeler J, Brune P and Gewald H, “A Description and Retrieval Model for Web

Services Including Extended Semantic and Commercial Attributes”, IEEE 8th

International Symposium on Service Oriented System Engineering (SOSE), pp.

258-265, 2014

78. Kim D and Vouk MA, “A Survey of Common Security Vulnerabilities and

Corresponding Countermeasures for SaaS”, Globecom Workshops, pp. 59-63,

2014

79. Kim S and Choi H, “An Ontology Model Framework for Supply of Active

Situation Decision Service”, IEEE Fourth International Conference on Computer

Sciences and Convergence Information Technology, pp. 1207-1212, 2009

80. Llora X, Acs B, Auvil LS, Capitanu B, Welge ME and Goldberg DE, “Meandre:

Semantic-Driven Data-Intensive Flows in the Clouds”, IEEE Fourth International

Conference on eScience, pp. 238-245, 2008

81. Li C and Li Y, “Optimal Resource Provisioning for Cloud Computing

Environment”, The Journal of Supercomputing, vol. 62, no 2, pp. 989-1022,

2012

82. Li L, Liu D and Bouguettaya A, “Semantic based Aspect-oriented Programming

for Context-Aware Web Service Composition”, Information Systems, vol. 36, no.

3, pp. 551-564, 2011

185

83. Li J, Li B, Wo T, Hu C, Huai J, Liu, L and Lam KP, “CyberGuarder: A

Virtualization Security Assurance Architecture for Green Cloud Computing”,

Future Generation Computer Systems, vol. 28, no. 2, pp. 379-390, 2012

84. Li Q, Wang Z, Li W, Cao Z, Du R and Luo H, “Model-based Services

Convergence and Multi-Clouds Integration”, Computers in Industry, vol. 64, no.

7, pp. 813-832, 2013

85. Li Y, Krishnamurthy R, Vaithyanathan S. and Jagadish HV, “Getting Work Done

on the Web: Supporting Transactional Queries”, Proceedings of the 29th ACM

SIGIR, pp. 557-564, 2006

86. Lim HC, Babu S and Chase JS, “Automated Control for Elastic Storage”,

Proceedings of the 7th ACM International conference on automated computing,

pp. 1-10, 2010

87. Liu Y and Agah A, “A Prototype Process-Based Search Engine”, IEEE

International Conference on Semantic Computing, pp.481-486

88. Liu F, Tong J, Mao J, Bohn RB, Messina JV, Badger ML and Leaf DM, “NIST

Cloud Computing Reference Architecture”,

http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505. Accessed 20 Aug

2015

89. Lombardi F and Pietro RD, “Secure Virtualisation for Cloud Computing”, Journal

of Network and Computer Applications, vol. 34, no. 4, pp.1113-1122, 2011

90. Loutas N, Peristeras V, Bouras T, Kamateri E, Zeginis D and Tarabanis K,

“Towards a Reference Architecture for Semantically Interoperable Clouds”,

IEEE 2nd International Conference on Cloud Computing Technology and

Science (CloudCom), pp 143-150, 2010

91. Lukasiewicz T and Straccia U, “Managing Uncertainty and Vagueness in

Description Logics for the Semantic Web”, Web Semantics: Science, Services

and Agents on the World Wide Web, vol. 6, no. 4, pp. 291-308, 2008

92. Marinescu DC, “Cloud computing: Theory and Practice” , Elsevier, Waltham,

USA, pp. 2-17, 2013

93. Marston S, Li Z, Bandyopadhyay S, Zhang J and Ghalsasi A, “Cloud Computing

— The Business Perspective, Decision Support Systems”, Elsevier, vol. 51, no.

1, pp. 176-189, 2011

94. Martin D and Domingue J, “Semantic Web Services, Part 1”, IEEE Intelligent

Systems, vol. 22, no. 5, pp. 12-17, 2007

186

95. Martin D and Domingue J, “Semantic Web Services, Part 2”, IEEE Intelligent

Systems, vol. 22, no. 6, pp. 8-15, 2007

96. Manno G, Smari WW and Spalazzi L, “FCFA: A Semantic-based Federated

Cloud Framework Architecture”, International Conference on High Performance

Computing and Simulation (HPCS), pp. 42-52, 2012

97. Maven link, Features, http://www.mavenlink.com/features. Accessed 05 Aug

2015

98. McGuuinness, D.L and Harmelen F.V, “OWL Web Ontology Language

Overview”, W3C recommendation 10 Feb 2004, http://www.w3.org/TR/owl-

features/, Accessed 05 Aug 2015

99. Modica GD, Petralia G and Tomarchio O, “A Business Ontology to Enable

Semantic Matchmaking in Open Cloud Markets”, 8th International Conference

on Semantics, Knowledge and Grids (SKG), pp. 96-103, 2012

100. Mokhtar SB, Preuveneers D, Georgantas N, Issarny V and Berbers Y, “EASY:

Efficient semAntic Service discoverY in Pervasive Computing Environments with

QoS and Context Support”, Journal of Systems and Software, vol. 81, no. 5, pp.

785-808, 2008

101. Moreno-Vozmediano R, Montero RS and Llorente IM, “IaaS Cloud Architecture:

From Virtualized Datacenters to Federated Cloud Infrastructures”, IEEE

Computer, vol. 45, no.12, pp.65-72, 2012

102. Moreno-Vozmediano R, Montero RS and Llorente IM, “Key Challenges in Cloud

Computing: Enabling the Future Internet of Services”. IEEE Internet Computing,

vol. 17, no. 4, pp. 18-25, 2011

103. Moscato F, Aversa R, Martino BD and Venticinque S, “An Ontology for the

Cloud in mOSAIC”, Cloud Computing: Methodology, System, and Applications.

CRC Press, pp.467-485, 2011

104. Moscato F, Fortis F and Munteanu V, “Cloud Ontology and Cloud Resources

Representations”, mOSAIC public deliverables D 1.2. http://www.mosaic-

cloud.eu/index.php?option=com_chronocontact&Itemid=186. Accessed 29 Jul

2015

105. Nacer H and Aissani D, “Semantic Web Services: Standards, Applications,

Challenges and Solutions”, Journal of Network and Computer Applications, vol.

44, pp. 134-151, 2014

106. Naumann S, Dick M, Kern E and Johann T, “The GREENSOFT Model: A

Reference Model for Green and Sustainable Software and Its Engineering”,

187

Sustainable Computing: Informatics and Systems, vol. 1, no 4, pp. 294-304,

2011

107. OCCI. http://occi-wg.org/. Accessed 31 Jul 2015

108. Open Cloud Computing Interface – Core,

https://www.ogf.org/documents/GFD.183.pdf. Accessed 21 Aug 2015

109. Orozco JMS, “Applied Ontology Engineering in Cloud Services, Networks, and

Management Systems”, Springer Science+Business Media, pp. 23-52, 2012

110. Owens D, “Securing Elasticity in the Cloud”. Communications of the ACM, vol.

8, no. 5, 2010

111. Parrilli DM, “Legal Issues in Grid and Cloud Computing, Grid and Cloud

Computing”, Springer Berlin Heidelberg, pp. 97-118, 2010

112. Peoples C, Parr G, McClean S, Scotney B and Morrow P, “Performance

Evaluation of Green Data Centre Management Supporting Sustainable Growth

of the Internet of Things”, Simulation Modelling Practice and Theory, vol. 34, pp.

221-242, 2013

113. Petcu D, Craciun C, Neagul M, Lazcanotegui I and Rak M, “Building an

Interoperability API for Sky Computing”. International Conference on High

Performance Computing and Simulation (HPCS), pp. 405-411, 2011

114. Policy-based automated scaling for IBM SmarCloud Application Services.

http://www.ibm.com/cloud-computing/uk/en/paas.html. Accessed 23 Jul 2015

115. Portmann E, Meier A, Cudré-Mauroux P and Pedrycz W, “FORA — A Fuzzy Set

Based Framework for Online Reputation Management”, Fuzzy Sets and

Systems, vol. 269, pp. 90-114, 2014

116. Povedano-Molina J, Lopez-Vega JM, Lopez-Soler JM, Corradi A and Foschini L,

“DARGOS: A Highly Adaptable and Scalable Monitoring Architecture for Multi-

Tenant Clouds”. Future Generation Computer Systems, vol. 29, no. 8, pp. 2041-

2056, 2013

117. Rackspace Cloud Load Balancers Developer Guide.

http://docs.rackspace.com/loadbalancers/api/v1.0/clb-devguide/clb-devguide-

20140630.pdf. Accessed 19 Aug 2015

118. Rackspace Next Generation Cloud Servers Developer Guide.

http://docs.rackspace.com/servers/api/v2/cs-devguide/cs-devguide-

20140311.pdf. Accessed 19 Aug 2015

119. Ranjan R, “The Cloud Interoperability Challenge”, IEEE Cloud Computing, vol.

1, no. 2, pp. 20-24, 2014

188

120. Rico M, Caliusco ML, Chiotti O and Galli MR, “OntoQualitas: A Framework for

Ontology Quality Assessment in Information Interchanges between

Heterogeneous Systems”, Computers in Industry, vol. 65, no. 9, pp. 1291-1300,

2014

121. Rodríguez-García MA, Valencia-García R, García-Sánchez F and Samper-

Zapater JJ, “Ontology-based Annotation and Retrieval of Services in the Cloud”,

Knowledge-Based Systems, vol. 56, pp. 15-25, 2014

122. Rodríguez-García MA, Valencia-García R, García-Sánchez F and Samper-

Zapater JJ, “Creating a Semantically-Enhanced Cloud Services Environment

through Ontology Evolution”, Future Generation Computer Systems, vol. 32, pp.

295-306, 2014

123. Roman D, Lausen H and Keller U, “Web Service Modelling Ontology, WSMO

final draft 13 April 2005”, http://www.wsmo.org/TR/d2/v1.2/D2v1-

2_20050414.pdf. Accessed 01 Aug 2015

124. Ross TJ, “Fuzzy Logic with Engineering Applications”, 3rd Edition, John Wiley &

Sons, Ltd, Chester, UK, pp 48-73, 2010

125. Ryoo J, Rizvi S, Aiken W and Kissell J, “Cloud Security Auditing: Challenges

and Emerging Approaches”, IEEE Security & Privacy, vol. 12, no. 6, pp. 68-74,

2014

126. Sabou M and Fernandez M, “Ontology (Network) Evaluation. Ontology

Engineering in a Networked World”, Springer, pp. 193-212, 2012

127. Salesfroce, CRM Software & Online, http://www.salesforce.com/uk. Accessed

02 Aug 2015

128. Sandikkaya MT and Harmanci AE, “Security Problems of Platform-as-a-Service

(PaaS) Clouds and Practical Solutions to the Problems”, IEEE 31st Symposium

on Reliable Distributed Systems (SRDS), pp. 463-468, 2012

129. Sellami M, Tata S, Maamar Z and Defude B, “A Recommender System for Web

Services Discovery in a Distributed Registry Environment”, Proceedings of

Fourth IEEE International Conference on Internet and Web Applications and

Services, pp. 418-423, 2009

130. Serrano M, Shi L, Foghlú MÓ and Donnelly W, “Cloud Services Composition

Support by Using Semantic Annotation and Linked Data”, Knowledge

Engineering and Knowledge Management, Communications in Computer and

Information Science, vol. 348, pp 278-293, 2013

http://link.springer.com/search?facet-author=%22Mart%C3%ADn+Serrano%22
http://link.springer.com/search?facet-author=%22Lei+Shi%22
http://link.springer.com/search?facet-author=%22M%C3%ADche%C3%A1l+%C3%93+Foghl%C3%BA%22
http://link.springer.com/search?facet-author=%22William+Donnelly%22
http://link.springer.com/book/10.1007/978-3-642-37186-8
http://link.springer.com/book/10.1007/978-3-642-37186-8
http://link.springer.com/bookseries/7899
http://link.springer.com/bookseries/7899

189

131. Shearer R, Motik B and Horrocks I, “HermiT: A Highly Efficient OWL Reasoner”,

5th OWL Experienced and Directions Workshop, pp. 26-27, 2008

132. Shen J, Beydoun G, Low G and Wang L, “Aligning Ontology-based

Development with Service Oriented Systems”, Future Generation Computer

Systems, vol. 32, pp. 263-273, 2014

133. Sheth A and Ranabahu A, “Semantic Modelling for Cloud Computing, Part 1”,

IEEE Internet Computing, vol. 14, no. 3, pp.81-83, 2010

134. Sheth A and Ranabahu A, “Semantic Modelling for Cloud Computing, Part 2”,

IEEE Internet Computing, vol. 14, no. 4, pp.81-84, 2010

135. Slack N, Chambers S, Johnston R and Betts A, “Operation and Process

Management”, 2nd Edition, Pearson Education Limited, Essex, pp. 127-134,

2009

136. Smith MK, Welth C and McGuinness DL, “OWL Web Ontology Language Guide,

W3C Recommendation”, http://www.w3.org/TR/owl-guide/. Accessed 10 Aug

2015

137. Sotomayor B, Montero Ruben S, Llorente IM and Foster I, “Virtual Infrastructure

Management in Private and Hybrid Clouds”, IEEE Internet Computing, vol. 13,

no. 5, pp. 14-22, 2009

138. Sousa L, Leite J and Loques O, “Green data centers: Using Hierarchies for

Scalable Energy Efficiency in Large Web Clusters”, Information Processing

Letters, vol. 113, no 14-16, pp 507-515, 2013

139. Stanoevska-Slabeva K and Wozniak T, “Cloud Basics – An Introduction to

Cloud Computing, Grid and Cloud Computing”, Springer Berlin Heidelberg, pp.

47-61, 2010

140. Stoilos G, Stamou G, Pan JZ, Tzouvaras V and Horrocks I, “Reasoning with

Very Expressive Fuzzy Description Logics”, Journal of Artificial Intelligence

Research, vol. 30, pp. 273-320, 2007

141. Stoilos G, Stamou G and Pan JZ, “Fuzzy Extensions of OWL: Logical Properties

and Reduction to Fuzzy Description Logics”, International Journal of

Approximate Reasoning, vol. 51, no. 6, pp. 656-679, 2010

142. Suchithra R, Selvarani R and Nagamalai D, “Elements of Cloud Computing: A

Perspective on Service Oriented Enterprises (SOEs)”, Advances in Digital

Image Processing and Information Technology, Communications in Computer

and Information Science, Springer Berlin Heidelberg, pp. 366-377, 2011

190

143. Sycara K and Paolucci M, “Dynamic Discovery and Coordination of Agent-

based Semantic Web Services”, IEEE Internet Computing, vol. 8, no. 3, pp. 66-

73, 2004

144. Tahamtan A, Beheshti SA, Anjomshoaa A and Tjoa AM, “A Cloud Repository

and Discovery Framework Based on a Unified Business and Cloud Service

Ontology”, IEEE World Congress on Services (SERVICES), pp. 203-210, 2012

145. Tahir A, Tosi D and Morasca S, “A Systematic Review on the Functional Testing

of Semantic Web Services”, Journal of Systems and Software, vol. 86, no. 11,

pp. 2877-2889, 2013

146. Tari Z, “Security and Privacy in Cloud Computing”, IEEE Cloud Computing, vol.

1, no. 1, pp. 54-57, 2014

147. The Dasein Cloud API. http://dasein-cloud.sourceforge.net/. Accessed 26 Jun

2015

148. Topology and Orchestration Specification for Cloud Applications Version 1.0.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html.

Accessed 22 Jul 2015

149. Toosi AN, Calheiros RN, Buyya R, “Interconnected Cloud Computing

Environments: Challenges, Taxonomy, and Survey”. ACM Computing Surveys,

vol. 47, no. 1.7, 2014

150. TOSCA Overview. https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=tosca#overview. Accessed 27

Jul 2015

151. Tserpes K, Aisopos F, Kyriazis D and Varvarigou T, “A Recommender

Mechanism for Service Selection in Service-oriented Environment”, Future

Generation Computer Systems, vol. 28, no. 8, pp. 1285-1294, 2012

152. Tsarkov D and Horrocks I, “FaCT++ Description Logic Reasoner: System

Description”, 3rd International joint conference on Automatic Reasoning, pp.

292-297, 2006

153. UDDI, http://uddi.xml.org/. Accessed 27 May 2014

154. Uddin M and Rahman AA, “Energy Efficiency and Low Carbon Enabler Green IT

Framework for Data Centers Considering Green Metrics, Renewable and

Sustainable Energy Reviews”, vol. 16, no. 6, pp. 4078-4094, 2012

155. Vhahn V, Santos L, Scoboria K, Scoboria E and Yeoh J, “Secaas

Implementation Guidance: Web Security”, Cloud Security Alliance,

191

https://downloads.cloudsecurityalliance.org/initiatives/secaas/SecaaS_Cat_3_W

eb_Security_Implementation_Guidance.pdf. Accessed 19 Aug 2015.

156. Vhahn V, Santos L, Scoboria K, Scoboria E and Yeoh J, “Secaas

Implementation Guidance: Security Assessments”, Cloud Security Alliance,

https://downloads.cloudsecurity

alliance.org/initiatives/secaas/SecaaS_Cat_5_Security_Assessments_Impleme

ntation_Guidance.pdf. Accessed 19 Aug 2015.

157. Vhahn V, Santos L, Scoboria K, Scoboria E and Yeoh J, “Secaas

Implementation Guidance: Encryption”, Cloud Security Alliance,

https://downloads.cloudsecurityalliance.org/initiatives/secaas/SecaaS_Cat_8_E

ncryption_Implementation_Guidance.pdf. Accessed 19 May 2015.

158. Vhahn V, Santos L, Scoboria K, Scoboria E and Yeoh J, “Secaas

Implementation Guidance: Network Security Implementation Guidance”, Cloud

Security Alliance,

https://downloads.cloudsecurityalliance.org/initiatives/secaas/SecaaS_Cat_10_

Network_Security_Implementation_Guidance.pdf. Accessed 19 Aug 2015.

159. VMunteanu V, Mindruta C and Fortis T, “Service Brokering in Cloud

Governance”, 14th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing (SYNASC), pp.497-504, 2012

160. Vaquero LM, Rodero-Merino L, Caceres J and Lindner M, “A Break in the

Clouds: towards a Cloud Definition”, ACM SIGCOMM Computer Communication

Review, vol. 39, no. 1, pp. 50-55, 2009

161. Wang X., Hauswirth M, Vitvar T and Zaremba M, “Semantic Web Services

Selection Improved by Application Ontology with Multiple Concept Relations”,

Proceedings of the 2008 ACM symposium on Applied computing, pp. 2237-

2242, 2008

162. Wlodarczyk TW, Rong C, O'connor M and Musen M, “SWRL-F: a Fuzzy Logic

Extension of the Semantic Web Rule Language”, International Conference on

Web Intelligence, Mining and Semantics, no. 39, 2011

163. WSDL, http://www.w3.org/TR/wsdl. Accessed 19 Jul 2015

164. Xero, Features, http://www.xero.com/accounting-software. Accessed 15 Aug

2015

165. Xiao Z, Song W and Chen Q, “Dynamic Resource Allocation Using Virtual

Machines for Cloud Computing Environment”, IEEE Transactions on Parallel

and Distributed Systems, vol. 24, no. 6, pp. 1107-1117, 2013

http://www.w3.org/TR/wsdl

192

166. Yeh T and Lee H, “Enhancing Availability and Reliability of Cloud Data through

Syncope”, IEEE International Conference on Green Computing and

Communications, pp. 125-131, 2014

167. Youseff, L., Butrico, M. and Silva, D.D., “Toward a Unified Ontology of Cloud

Computing”, Grid Computing Environments Workshop, IEEE, pp. 1-10, 2008.

168. Zedeh LA, “Fuzzy Set”, Information and Control, vol. 8, pp. 338-353, 1965

169. Zhang M, Ranjan R, Haller A, Georgakopoulos D, Menzel M and Nepal S, “An

Ontology-based System for Cloud Infrastructure Services' discovery”, 8th

International Conference on Collaborative Computing: Networking, Applications

and Work sharing, pp.524-530, 2012

170. Zhang Y, Li Y and Zheng W, “Automatic Software Deployment using User-level

Virtualization for Cloud-computing”, Future Generation Computer Systems, vol.

29, no. 1, pp. 323-329, 2011

171. Zoho, Explore the Features of the Zoho Recruit,

https://www.zoho.com/recruit/features.html. Accessed 10 Aug 2015

193

Appendix A Abbreviations and Acronyms

All the abbreviations and acronyms used in this thesis are defined below.

Abbreviation
/Acronyms

Description

AoFeCSO agility-oriented & fuzziness-embedded cloud service ontology

API application programming interface

CC cloud computing

CSAMO cloud service access and manipulation ontology

CSC cloud service consumer

CSI cloud service instance

CSP cloud service provider

CSRMP cloud service recommendation and management platform

DL description logic

DoS denial of service

DP datatype property

FL fuzzy logic

IaaS infrastructure-as-a-service

ICT information communication technology

OS operating system

OP object property

OPM operation process map

OWL web ontology language

QoS quality of service

PaaS platform-as-a-service

PLN probabilistic logic framework

PSSA provider-specific service aspect

SaaS software-as-a-service

SAMOS service access and manipulation operation specification

SIR service information request

SLA service level agreement

SMR service manipulation request

SOA service oriented architecture

SOPMM service operation process map modelling

UDDI universal description, discovery and integration

WSDL web service description language

WSMF web service modelling framework

194

Appendix B AoFeCSO Entity Screenshots

i. Cloud service entities

ii. Cloud service programming language support entities

195

iii. Cloud service operating system support entities

iv. Cloud service security entities

196

v. Cloud service API entities

vi. Cloud service function entities

197

vii. Cloud service monitor entities

viii. Cloud service scalability entities

198

Appendix C Cloud Service Web Portal Screenshots

i.(a)

i.(b)

199

i.(c)

i.(d)

200

ii.(a)

ii.(b)

201

iii.(a)

iii.(b)

202

iii.(c)

iii.(d)

203

Appendix D PaaS Service/CSI/PSSA operation
specifications for AWS Elastic Beanstalk

Cloud Service

Level

Operations

Elastic Beanstalk

Type SRPreCondition SRParameter/SRSubject SROutcome SR

PostCondition

List

Applications

SIR Unconditional ElasticBeanstalk Region(M) ElasticBeanstalk

ApplicationName

(s)

Unconditional

List

Application

Environment

SIR Unconditional ElasticBeanstalk Region(M) ElasticBeanstalk

EnvironmentID(s)

Unconditional

Delete

Application

SMR Unconditional ElasticBeanstalk

ApplicationName(M)

Operation

Succeeded

Unconditional

Delete

Application

Environment

SMR Unconditional ElasticBeanstalk

EnvironmentID(M)

Operation

Succeeded

Unconditional

CSI Level

Operations

Elastic Beanstalk Application Instance

Type SRPreCondition SRParameter/SRSubject SROutcome SR

PostCondition

Get

Application

Environment

SIR Unconditional ElasticBeanstalk

ApplicationName(M)

ElasticBeanstalk

EnvironmentID

Unconditional

Get

Application

Versions

SIR Unconditional ElasticBeanstalk

ApplicationName(M)

ElasticBeanstalk

ApplicationVersio

nDescrptions

Unconditional

Create

Application

SMR Unconditional Elastic Beanstalk

ApplicationName(M), Elastic

Beanstalk

ApplicationDescription(O)

ElasticBeanstalk

ApplicationName

Elastic Beanstalk

EnvironmentStat

us is in “Ready”

state

Update

Application

SMR Elastic Beanstalk

EnvironmentStatu

s is in “Ready”

state

Elastic Beanstalk

ApplicationName(M), Elastic

Beanstalk

ApplicationDescription(O)

ElasticBeanstalk

ApplicationName

Elastic Beanstalk

EnvironmentStat

us is in “Ready”

state

PSSA Level

Operations

Elastic Beanstalk Application Environment

Type SR

PreCondition

SRParameter/SRSubject SROutcome SR

PostCondition

Get

Application

Environment

VMs

SIR Unconditional ElasticBeanstalk EnvironmentID (M) EC2

InstanceIDs

Unconditional

Get

Application

Environment

LoadBalancers

SIR Unconditional ElasticBeanstalk EnvironmentID (M) Elastic

LoadBalancer

ID

Unconditional

Create

Application

Environment

SMR Unconditional ElasticBeanstalk ApplicationName(M),

ElasticBeanstalk

EnvironmentDescription(O),

ElasticBeanstalk EnvironmentName(M),

Elastic Beanstalk

ConfigurationOptionSettings<…>(O), etc.

ElasticBeanst

alk

EnvironmentI

D

Unconditional

Update

Environment

Configuration

SMR Elastic

Beanstalk

EnvironmentSta

tus is in

“Ready” state

Elastic Beanstalk

ConfigurationOptionSettings<…>(M)

ElasticBeanst

alk

EnvironmentI

D

Elastic

Beanstalk

EnvironmentSta

tus is in

“Ready” state

