2,650 research outputs found

    A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain

    Full text link
    Detecting camouflaged moving foreground objects has been known to be difficult due to the similarity between the foreground objects and the background. Conventional methods cannot distinguish the foreground from background due to the small differences between them and thus suffer from under-detection of the camouflaged foreground objects. In this paper, we present a fusion framework to address this problem in the wavelet domain. We first show that the small differences in the image domain can be highlighted in certain wavelet bands. Then the likelihood of each wavelet coefficient being foreground is estimated by formulating foreground and background models for each wavelet band. The proposed framework effectively aggregates the likelihoods from different wavelet bands based on the characteristics of the wavelet transform. Experimental results demonstrated that the proposed method significantly outperformed existing methods in detecting camouflaged foreground objects. Specifically, the average F-measure for the proposed algorithm was 0.87, compared to 0.71 to 0.8 for the other state-of-the-art methods.Comment: 13 pages, accepted by IEEE TI

    Video foreground detection based on symmetric alpha-stable mixture models.

    Get PDF
    Background subtraction (BS) is an efficient technique for detecting moving objects in video sequences. A simple BS process involves building a model of the background and extracting regions of the foreground (moving objects) with the assumptions that the camera remains stationary and there exist no movements in the background. These assumptions restrict the applicability of BS methods to real-time object detection in video. In this paper, we propose an extended cluster BS technique with a mixture of symmetric alpha stable (SS) distributions. An on-line self-adaptive mechanism is presented that allows automated estimation of the model parameters using the log moment method. Results over real video sequences from indoor and outdoor environments, with data from static and moving video cameras are presented. The SS mixture model is shown to improve the detection performance compared with a cluster BS method using a Gaussian mixture model and the method of Li et al. [11]

    BSUV-Net: a fully-convolutional neural network for background subtraction of unseen videos

    Full text link
    Background subtraction is a basic task in computer vision and video processing often applied as a pre-processing step for object tracking, people recognition, etc. Recently, a number of successful background-subtraction algorithms have been proposed, however nearly all of the top-performing ones are supervised. Crucially, their success relies upon the availability of some annotated frames of the test video during training. Consequently, their performance on completely “unseen” videos is undocumented in the literature. In this work, we propose a new, supervised, background subtraction algorithm for unseen videos (BSUV-Net) based on a fully-convolutional neural network. The input to our network consists of the current frame and two background frames captured at different time scales along with their semantic segmentation maps. In order to reduce the chance of overfitting, we also introduce a new data-augmentation technique which mitigates the impact of illumination difference between the background frames and the current frame. On the CDNet-2014 dataset, BSUV-Net outperforms stateof-the-art algorithms evaluated on unseen videos in terms of several metrics including F-measure, recall and precision.Accepted manuscrip

    An improved Gaussian Mixture Model with post-processing for multiple object detection in surveillance video analytics

    Get PDF
    Gaussian Mixture Model (GMM) is an effective method for extracting foreground objects from video sequences. However, GMM fails to detect the object in challenging scenarios like the presence of shadow, occlusion, complex backgrounds, etc. To handle these challenges, intrinsic and extrinsic enhancement is required in traditional GMM. This paper presents a novel framework that combines improved GMM with postprocessing for multiple object detection. In the proposed system, GMM with parameter initialization is considered an intrinsic improvement. Video preprocessing and postprocessing are considered extrinsic improvements. Integration of morphological operation with GMM helps for better segmentation than traditional GMM, and it also helps to increase detection performance by reducing false positives. Video preprocessing is the process of noise removal that prepares input video ready for further processing. In the final step gradient of morphological operations is used for postprocessing. The proposed approach was tested on challenging surveillance video sequences from benchmark datasets such as PETS 2009 and CD 2014(Change Detection). The experimental results are compared using ground truth and performance evaluation metrics. The results show that the proposed approach performs better than GMM, and the method can detect the object effectively even in illumination variation and partial occlusion
    corecore